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ABSTRACT

Representation learning is an approach that allows to discover and extract the fac-
tors of variation from the data. Intuitively, a representation is said to be disentan-
gled if it separates the different factors of variation in a way that is understandable
to humans. Definitions of disentanglement and metrics to measure it usually as-
sume that the factors of variation are independent of each other. However, this is
generally false in the real world, which limits the use of these definitions and met-
rics to very specific and unrealistic scenarios. In this paper we give a definition of
disentanglement based on information theory that is also valid when the factors are
not independent. Furthermore, we demonstrate that this definition is equivalent to
having a representation composed of minimal and sufficient variables. Finally, we
propose a method to measure the degree of disentanglement from the given defini-
tion that works when the factors are not independent. We show through different
experiments that the method proposed in this paper correctly measures disentan-
glement with independent and non-independent factors, while other methods fail
in the latter scenario.

1 INTRODUCTION

In the jargon of representation learning, data are considered to be completely defined by factors of
variation (or simply factors from now on) and nuisances. The difference between them is that the
former are relevant for a given task and the latter are not. For example, if we had a dataset composed
of images of fruits and the task were to describe the fruits in the images, the factors could be the
type of fruit, the color or the size. On the other hand, nuisances could be the background color or the
shadow of the fruit. In multiple works it has been proposed that it is desirable for a representation to
be disentangled, i.e., it separates the different factors of variation (Schmidhuber, 1992; Bengio et al.,
2013; Ridgeway, 2016; Lake et al., 2017; Achille & Soatto, 2018a). Disentangled representations
have different application, such as: (i) interpreting and explaining the representations and predictions
(Hsu et al., 2017; Worrall et al., 2017; Gilpin et al., 2018; Zhang & Zhu, 2018; Liu et al., 2020; Zhu
et al., 2021; Nauta et al., 2023; Almudévar et al., 2024), (ii) making fairer predictions by mitigating
or eliminating biases in sensitive attributes (such as gender or race) (Calders & Žliobaitė, 2013;
Barocas & Selbst, 2016; Kumar et al., 2017; Locatello et al., 2019a; Sarhan et al., 2020; Chen et al.,
2023), or (iii) giving generative models the ability to create new data with concrete attributes (Yan
et al., 2016; Paige et al., 2017; Huang et al., 2018; Dupont, 2018; Kazemi et al., 2019; Antoran &
Miguel, 2019; Zhou et al., 2020; Shen et al., 2022; Almudévar et al., 2024).

The definition in the previous paragraph allows us to understand the concept of disentangled rep-
resentation in an intuitive but imprecise way. Two main questions arise from this definition: what
does it exactly mean to separate the factors, and how can we assess whether the different factors
are actually separated? We review in section 2 different works that have tried to clear these doubts.
Most of these works assume that the different factors are independent of each other and of the nui-
sances. Therefore, the definitions and metrics they propose are assuming this independence. Most
of the datasets where these definitions and metrics are assessed do have their factors independent
(or nearly independent) (LeCun et al., 2004; Liu et al., 2015; Reed et al., 2015; Matthey et al., 2017;
Burgess & Kim, 2018; Gondal et al., 2019), so the definitions and metrics are valid (or nearly valid).

However, in the real world it is uncommon for factors to be independent of each other and of the
nuisances. In the previous example, it is easy to see that the type of fruit is not independent of the
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color, the size or the shadow of the fruit. It is very likely to have a red strawberry, but the probability
of having a red banana tends to zero. When the factors are independent of each other, understanding
the concept of separating them seems obvious. However, it is not so obvious to understand what it
means for a representation to separate dependent factors. For example, we might ask whether it is
possible to separate the concept of a strawberry from the color red and what the implications of this
are. If we can separate the factors, we could create an image of a red banana or avoid classifying a
yellow strawberry as a banana or a lemon just for the fact that it is yellow, for example. In this work,
we focus on defining and measuring disentanglement when the factors are not independent of each
other and of the nuisances. Our key contributions can be summarized as follows:

• We propose a set of four properties based on information theory that are desirable for a
disentangled representation when the factors are not independent of each other and of the
nuisances. We connect these properties to those most accepted in the literature.

• We demonstrate that these properties are fulfilled if and only if the representations are
minimal and sufficient. Then, we argue that measuring minimality and sufficiency is more
interesting than measuring the previous properties separately.

• We give a method for measuring the degree of minimality and sufficiency, which allows to
evaluate the level of disentanglement of a representation. We evaluated these methods on
different datasets to illustrate their appropriateness in a variety of scenarios.

2 RELATED WORK

Definition of Disentanglement Despite being a topic of great interest, there is no general con-
sensus on the definition of disentangled representation. Intuitively, a disentangled representation
separates the different factors of the data (Desjardins et al., 2012; Bengio et al., 2013; Cohen &
Welling, 2014; Kulkarni et al., 2015; Ridgeway, 2016). Originally, disentanglement was evaluated
via visual inspection (Kingma & Welling, 2013). However, there is a need to better specify what
it means for a representation to be disentangled, as this provides insight into the scope and limi-
tations of their different applications. One of the first definitions of disentanglement was given in
Bengio et al. (2013) and long the most widely accepted in the literature (Higgins et al., 2017; Kim
& Mnih, 2018; Kim et al., 2019; Suter et al., 2019), says that a disentangled representation is one
in which a change in one part of the representation corresponds to a change in a factor of variation,
while being relatively invariant to changes in other factors. Other authors claim that a disentangled
representation is one in which a change in a single factor of variation translates into the change in
a single part of the representation (Kumar et al., 2017; Locatello et al., 2019b). Others propose to
define a disentangled representations based on a list of properties that they must satisfy. Ridgeway
& Mozer (2018) and Eastwood & Williams (2018) stand out in this by proposing virtually simul-
taneously three properties that a representation must satisfy in order to be considered disentangled.
Although they refer to the same ideas, the two papers refer to these properties by different names.
These properties are: (i) modularity (disentanglement in Eastwood & Williams (2018)), that is, each
variable in the representation captures at most one factor of variation; (ii) compactness (complete-
ness in Eastwood & Williams (2018)), i.e., a factor of variation is captured by only one variable of
the representation; and (iii) explicitness (informativeness in Eastwood & Williams (2018)), that is,
the representation captures all the information about the factors that is present in the input. All of
the above definitions present two problems: (i) they do not analyze the invariance to some nuisances
possibly present in the input; and (ii) they assume that the factors of variation are independent of
each other and of the nuisances, which is in general false. In this paper we give a list of properties
that a representation must satisfy to be considered disentangled considering these two last aspects.

Metrics for Disentanglement As a consequence of the fact that there is no consensus on the
definition of disentanglement, there is no consensus on how to measure it. In Carbonneau et al.
(2022) they organize the methods in the literature into three groups according to the principle of
their operation. Below we explain an overview of each of these groups.

• Intervention-based Metrics. These create subsets in which their elements have in com-
mon a factor of variation while the rest are different. Subsequently, the representations of
these elements are obtained and compared in different ways to obtain a score. Some of
the methods in this family are: β-VAE (Higgins et al., 2017), FactorVAE (Kim & Mnih,
2018) and R-FactorVAE (Kim et al., 2019). These methods are intended to measure only
modularity, but not compactness and explicitness (Sepliarskaia et al., 2019).
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• Information-based Metrics. These methods estimate the mutual information between the
factors of variation and each variable in the representation. Some of the most widely used
are Mutual information Gap (MIG) (Chen et al., 2018) or Robust MIG (Do & Tran, 2019).
These methods are designed to measure only the compactness. Modifications on these
methods have been proposed to also capture modularity (Do & Tran, 2019; Li et al., 2020;
Ridgeway & Mozer, 2018; Sepliarskaia et al., 2019).

• Predictor-based Metrics. These train regressors or classifiers to predict the factors of
variation from the different variables in the representations. Subsequently, the predictor is
inspected to analyze the importance of each variable to predict each factor. The first method
of this family proposed was Separated Attribute Predictability (SAP) (Kumar et al., 2017),
which measures only compactness. Soon after, as we have already explained, it was pro-
posed to measure disentanglement through different properties. In Eastwood & Williams
(2018) the properties disentanglement, completeness and informativeness (DCI) and ways
to measure them are proposed. Simultaneously, the properties modularity, compactness
and explicitness and ways to measure them are proposed in Ridgeway & Mozer (2018).

Our proposal would fall into the latter group, since we train predictors to measure the different
properties we describe. However, unlike the methods mentioned above, ours allows us to measure
the degree of disentanglement even when the factors are dependent between them or of the nuisances.

Disentanglement under Dependent Factors of Variation As mentioned, disentanglement under
dependent factors is an underexplored field. However, there are some works related to this idea,
among which the following stand out: Suter et al. (2019), that gives a causal perspective on repre-
sentation learning that addresses disentanglement and domain shift robustness; Choi et al. (2020),
which disentangles variations common to all classes and variations exclusive of each class; Montero
et al. (2020; 2022), which excludes combinations of factors during training and at test time they ask
the models to reconstruct the missing; Träuble et al. (2021), that artificially introduces dependencies
between pairs of factors; Roth et al. (2022), which considers the use of Hausdorff Factorized Sup-
port (HFS) criterion allowing for arbitrary distributions of the factors over their support, including
correlations between them; Ahuja et al. (2023), that explores how interventional data can help causal
representation learning by revealing geometric patterns in latent variables; and von Kügelgen et al.
(2024), which focuses on inferring latent causal variables and relations from high-dimensional data
using a non-parametric approach without restrictive assumptions.

Information Bottleneck This a technique introduced by Tishby et al. (2000) that is designed to
find a trade-off between fidelity and compression of representations. The representation that is max-
imally faithful is said to be sufficient and the one that is maximally compressed is called minimal.
The ideal representation should contain only (minimal) all (sufficient) the information necessary to
solve a given task. Formally, given an input x, a task y and a representation z, the sufficient represen-
tation z maximizes I(z; y) and the minimal representation minimizes I(z;x). Different works use
this technique to derive regularizers in representation learning (Alemi et al., 2016; 2018; Achille &
Soatto, 2018b;a). Others have optimized it to obtain disentangled representations. Vera et al. (2018);
Yamada et al. (2020); Jeon et al. (2021); Gao et al. (2021). However, to the best of our knowledge,
the present is the first work formally defining the concept of disentanglement through that of mini-
mal sufficient representation. We do it in a way in which we consider each of the factors as a task
and the representation as a set of representations. Concretely, if each of these representations is
minimal and sufficient for a given factor, then we consider the representation to be disentangled.

3 DESIRABLE PROPERTIES OF A DISENTANGLED REPRESENTATION

In our representation learning task we have a raw data x which is fully explained by a set of factors
of that raw data y = {yi}ni=1 and a set of nuisances n. The factors y refer to the underlying sources
or causes that influence the observed data and that are relevant to a given task. We assume that these
factors are conditionally independent of each other given x, i.e., p(yi, yj |x) = p(yi|x)p(yj |x) for
i ̸= j 1. The nuisances n refer to the variations present in x that are irrelevant to a given task.

A representation z is a variable that is fully described by the distribution p(z|x). Therefore, we have
the Markov chains y ↔ x ↔ z and yi ↔ x ↔ z for i = 1, 2, . . . , n. The goal of representation

1Most of the works in the literature consider yi and yj to be independent, that is, p(yi, yj) = p(yi)p(yj)
for i ̸= j, but this is not true in most real world scenarios.
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learning is to obtain representations of the inputs. A representation z can be viewed as a set of
representations such that z = {zj}mj=1, which are also fully described by p(zj |x). From now on
we will refer to the zj as the variables of z. In some works they restrict the zj to scalars. However,
in this paper we do not consider this restriction, since it is in general impossible to fully describe a
factor of variation by using an scalar.

Next, we describe four different properties that are desirable for a disentangled representation. They
are connected to those described in section 2. However, the latter do not consider the case where the
factors are dependent and the ones we propose do. In fact, we could view three of these properties
as an adaptation of those defined in Ridgeway & Mozer (2018) and Eastwood & Williams (2018)
for the case in which the factors are not independent between them and of the nuisances. For the
definitions of these properties, we assume that zj is intended to describe yi.

• Factors-Invariance: We say that a variable zj of the representation z is factors-invariant
for a factor yi when it satisfies the next Markov Chain:

ỹi ↔ yi ↔ zj (1)

where ỹi = {yk}k ̸=i. This is equivalent to having I(zj ; ỹi|yi) = 0, i.e., once yi is known,
zj will be the same regardless of all other factors. This property is directly connected
to modularity (Ridgeway & Mozer, 2018) (or disentanglement in Eastwood & Williams
(2018)): a representation zj is said to be modular (or disentangled) if it captures at most one
factor yi. However, this last definition is convenient only when the factors are independent
of each other. Imagine that we have two factors yi and yk dependent on each other, then,
according to this definition, zj could never be modular and store all the information about
yi at the same time, since yk contains information about yi.

• Nuisances-Invariance: We call a variable zj of the representation z nuisances-invariant
for a factor yi and nuisances n when it satisfies the next Markov Chain:

n↔ yi ↔ zj (2)

This is equivalent to having I(zj ;n|yi) = 0, i.e., once yi is known, zj will be the same
regardless of the nuisances. This property is typically neither mentioned nor measured,
which could be due to the difficulty of its measurement. This difficulty comes from the fact
that it is complicated to estimate the distribution of n. However, it is a relevant property for
a disentangled representation. Through factors-invariance we are measuring that all factors
other than yi do not affect zj , but in a disentangled representation we would expect that
everything that is part of the input and is not a factor of variation (i.e. a nuisance) does not
affect zj either (Carbonneau et al., 2022).

• Representations-Invariance: We call a variable zj of the representation z representations-
invariant for a factor yi when it satisfies the next Markov Chain:

z̃j ↔ zj ↔ yi (3)

where z̃j = {zk}k ̸=j . This is equivalent to having I(yi; z̃j |zj) = 0, i.e., yi does not need
any variable of z other than zj to be defined. This can be useful for downstream tasks: if
we want to predict yi, we could keep only zj and ignore the rest. Also, in a controllable
generative model, it would be sufficient to manipulate only zj to determine the value of yi
in x. This property is closely connected to compactness (Ridgeway & Mozer, 2018) (or
completeness in Eastwood & Williams (2018)): a representation zj is said to be compact
(or complete) if it is the only one that captures a factor yi. For the same reason as in factors
invariance, this last definition is only convenient if the factors are independent of each other.
Let yi and yk be two dependent factors represented by zj and zl, respectively. Then it is
expected that both zj and zl have information about both yi and yk.

• Explicitness We call a representation z explicit for a factor yi when it satisfies the next
Markov Chain:

x↔ z ↔ yi (4)
This means that I(yi;x|z) = 0, i.e., x provides no information about yi when z is known
or, equivalently, z contains all the information about yi. This property is defined in Ridge-
way & Mozer (2018) with the name explicitness or in Eastwood & Williams (2018) with
the name informativeness and it is not desirable only for a disentangled representation but
for a representation in general (Bengio et al., 2013).
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4 DISENTANGLEMENT THROUGH MINIMALITY AND SUFFICIENCY

In representation learning, given an input x and a task y, the representation z that maximizes I(z; y)
is called sufficient. By the definition of representation, we know by the Data Processing Inequality
(DPI) (Beaudry & Renner, 2011) that I(z; y) ≤ I(x; y). Since this is the unique upper bound of
I(z; y), the sufficient representation satisfies that I(z; y) = I(x; y) or, equivalently, the Markov
chain x ↔ z ↔ y, i.e., y is fully described by z. On the other hand, the representation z that
minimizes I(z;x) is called minimal. From the definition of representation and the DPI, we know
that I(z;x) ≥ I(z; y). Since this is the unique lower bound of I(z;x), the minimal representation
satisfies that I(z;x) = I(z; y) or, equivalently, the Markov chain x ↔ y ↔ z, i.e., z is fully
described by y. From the above, we have that a representation is sufficient and minimal if it satisfies
that I(x; y) = I(z; y) = I(z;x).

4.1 CONNECTION BETWEEN DISENTANGLEMENT AND MINIMALITY AND SUFFICIENCY

Proposition 1. Let y = {yl}nl=1 be some factors and z = {zj}mj=1 a representation. Then, zj is
a minimal representation of yi if and only if zj is factors-invariant for yi and nuisances-invariant.
Equivalently, we have that: 2

(x↔ yi ↔ zj)⇐⇒ (ỹi ↔ yi ↔ zj) ∧ (n↔ yi ↔ zj)

where ỹi = {yl}l ̸=i. Therefore, satisfying minimality is equivalent to satisfying factors-invariance
and nuisances-invariance jointly. Intuitively, if zj is completely defined by yi (minimal), then nei-
ther the rest of the factors of y nor the nuisances n affect zj once yi is known (factors-invariance
and nuisances-invariance, respectively). Similarly, since x is completely defined by y and n, the
reciprocal is also true. We prove this proposition in Appendix A.
Proposition 2. Let yi be a factor and z = {zl}ml=1 a representation. Then, zj is a sufficient represen-
tation of yi if and only if zj is representations-invariant for yi and z is explicit for yi. Equivalently,
we have that:

(x↔ zj ↔ yi)⇐⇒ (z̃j ↔ zj ↔ yi) ∧ (x↔ z ↔ yi)

where z̃j = {zl}l ̸=j . Thus, satisfying sufficiency is equivalent to satisfying representations-invariant
and explicitness jointly. Intuitively, if yi is completely defined by zj regardless x (sufficiency), then
there is no information about yi that is in z and is not in zj (representations-invariance) and yi is
completely defined by z (explicitness) since zj ∈ z. Similarly, if all information present in z about
yi is present in zj (representations-invariance) and z captures all yi (explicitness), then zj fully
describes yi (sufficiency). We prove this proposition in Appendix A.

4.2 WHY MEASURING DISENTANGLEMENT THROUGH MINIMALITY AND SUFFICIENCY?

In section 3 we have provided four desirable properties for a disentangled representation. These
properties hinge on those most widely accepted in the literature and are adapted to the scenario in
which the factors may be non-independent. In section 4.1 we connect this properties to the concepts
of minimality and sufficiency. Next, we argue that it makes more sense to evaluate minimality and
sufficiency than the four properties of 3 separately to measure the degree of disentanglement.

1. Minimality vs. Factors-Invariance + Nuisance Invariance: When we evaluate whether
a representation is disentangled, we really want to analyze whether each of its variables is
affected only by a single factor regardless of the other factors or the nuisances as a whole. It
is no use having a variable that is only affected by one of the factors if the nuisances affect
it to a large extent. Similarly, if a variable is nuisances-invariant, but the rest of the factors
affect it, we could not consider that we have an disentangled representation. Therefore,
we argue that it makes sense to measure these two properties jointly and, as proposed in
Proposition 1, this can be done through measuring the minimality.

2. Sufficiency vs. Representation-Invariance + Explicitness: When we evaluate whether a
representation is disentangled, we want to analyze if we can describe a factor using only
one variable of the representation and whether we can describe it completely. If we had a
representation in which only one variable affected a factor, but could describe it to a very
low extent, it would not be fulfilling the most elementary objective of a representation,

2Do not confuse ⇐⇒, which means if and only if, and ↔, which is an arrow of the Markov chain.
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which is to describe the factors. Similarly, if a factor were well defined by a representation,
but all variables affected this factor equally, then we could not say that the representation
is disentangled. Therefore, we believe that measuring these two properties jointly is more
convenient than separately. As proposed in Proposition 2, this can be done through mea-
suring the sufficiency.

Due to the aforementioned, we propose metrics to measure the degree of minimality and sufficiency
of the variables of z and, hence, its degree of disentanglement. Notwithstanding the foregoing,
it could be that one would be interested in measuring also the different properties of 3 individu-
ally. Thus, in Appendix C we propose methods to measure all these properties separately except
nuisances-invariance because of the intrinsic difficulty (or impossibility) of estimating the distribu-
tion of the nuisances. In this appendix we also give some examples that illustrate the convenience of
using sufficiency and minimality to evaluate the degree of disentanglement compared to measuring
properties in section 3 separately.

4.3 METRICS FOR MINIMALITY AND SUFFICIENCY IN PRACTICE

As we have explained, a variable zj is minimal with respect to yi when I(zj ;x|yi) = I(zj ;x) −
I(zj ; yi) = 0. On the other hand, we would like our metric for minimality to be in the range [0, 1]
for simplicity of interpretability and comparability with other metrics. Therefore, we define the
minimality of zj with respect to yi:

mij = 1− I(zj ;x|yi)
I(zj ;x)

=
I(zj ; yi)

I(zj ;x)
(5)

i.e., mij collects the proportion of information about zj present in yi relative to that present in x.
Although it is useful to analyze mij to obtain information about what is the connection between each
factor and each variable, it is also interesting to have a single term that determines how minimal a
representation z is. We define this term below:

m̄ =
1

nz

nz∑
j=1

max
i

mij (6)

Thus, we are taking into account only the minimality for the factor that most influences each variable.
Importantly, unlike other metrics in the literature, we do not compute the gap between maxi mij and
other elements of mij , since this gap can be low for correlated factors even when zj is minimal: let
yi and yi′ two highly correlated factors, then mij −mi′j ≈ 0 even if zj is completely defined by yi.
From now on we refer to m̄ as Minimality (italic) to differentiate it from minimality (lowercase and
roman), which is the property defined in Proposition 1.

On the other hand, a representation zj is sufficient for yi when I(yi;x|zj) = 0. Following a process
analogous to the previous one, we define the sufficiency of zj with respect to yi as:

sij = 1− I(yi;x|zj)
I(yi;x)

=
I(yi; zj)

I(yi;x)
(7)

i.e., sij captures the proportion of information about yj present in zj relative to that present in x.
Again, here we calculate a single value of sufficiency as:

s̄ =
1

ny

ny∑
j=1

max
j

sij (8)

From now on we refer to s̄ as Sufficiency (italic) to differentiate it from sufficiency (lowercase and
roman), which is the property defined in Proposition 2.

The problem with the above metrics is that it is in general intractable to compute I(zj ;x) and
I(yi;x), since this requires integrating over the entire space of entries. Similarly, it is difficult to
find a good estimator of I(zj ;x) and I(yi;x), since x is in general high-dimensional (Hausser &
Strimmer, 2009). For this reason, we propose m̂ij and ŝij , which estimate mij and sij from a
dataset, respectively. We provide these estimators in Algorithms 1 and 2 and derive them in Ap-
pendix B. Next, we give an intuition on why these estimators capture the minimality and sufficiency.
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Given the set of inputs
{
x(k)

}
, the set of factors of variation

{
y(k)

}
=
{
{y(k)i }ni=1

}
, the set of

representations
{
z(k)

}
=
{
{z(k)j }mj=1

}
and the fact a representation zj is minimal with respect to

yi if I(zj ;x|yi) = 0 or, equivalently, p(zj |x) = p(zj |yi). Then, we can construct a regressor fij
that tries to predict z(k)j from y

(k)
i for each k. Subsequently, we compare the prediction fij(y

(k)
i ) ∼

p(zj |y(k)i ) with z
(k)
j ∼ p(zj |x(k)). When y

(k)
i has no information about z(k)j , then fij(y

(k)
i ) will

tend to 0, which is the mean value of zj after standardization. Therefore, we will have that m̂ij =
1 − var(zj) = 0. In the opposite case, when yi has all the information about zj , we will have that
fij(y

(k)
i ) = z

(k)
j ∀k and thus m̂ij = 1. To define ŝij , we simply have to follow an analogous process

taking into account that a representation zj is sufficient with respect to yi when I(yi;x|zj) = 0. In
all the experiments provided next, we have used random forest regressors for fij . We note that
different families of regressors could be used and this could affect to the metrics.

Algorithm 1 Calculation of Minimality

Input:
{
{y(k)i }ni=1

}
,
{
{z(k)j }mj=1

}
Output: m̄

1: {y(k)i } ← StandardScale({y(k)i }), i = 1 to n

2: {z(k)j } ← StandardScale({z(k)j }), j = 1 to m
3: for j = 1 to m do
4: for i = 1 to n do
5: fij ← fit

(
{y(k)i }, {z

(k)
j }

)
6: m̂ij ← 1− 1

K

∑
k ||fij(y

(k)
i )−z(k)j ||22

7: end for
8: end for
9: m̄← 1

m

∑n
j=1 maxi(m̂ij)

Algorithm 2 Calculation of Sufficiency

Input:
{
{y(k)i }ni=1

}
,
{
{z(k)j }mj=1

}
Output: s̄

1: {y(k)i } ← StandardScale({y(k)i }), i = 1 to n

2: {z(k)j } ← StandardScale({z(k)j }), j = 1 to m
3: for i = 1 to n do
4: for j = 1 to m do
5: fij ← fit

(
{z(k)j }, {y

(k)
i }

)
6: ŝij ← 1− 1

K

∑
k ||fij(z

(k)
j )− y

(k)
i ||22

7: end for
8: end for
9: s̄← 1

n

∑n
i=1 maxj(ŝij)

5 EXPERIMENTS

We propose in this section a set of experiments in which we artificially define the representations
based on the factors. This allows us to have exact knowledge of the relationship between the factors
and the representation, so we can know with certainty if the different metrics are correctly capturing
the presence or absence of disentanglement under different conditions.

5.1 DEFINING THE FACTORS OF VARIATION

In this experiment we define our own factors, nuisances and the relationship between these and
the different variables of the representation. Thus, we can modify the degree of fulfillment of the
properties of the section 3 and analyze whether different metrics capture these modifications.

Minimality with Independent Factors of Variation Here we analyze how the different metrics
that are designed to measure minimality (or at least factors-invariance) behave in different scenarios.
To do so, we design an experiment in which we have four factors y = (y1, y2, y3, y4) such that
yi ∼ U [0, π) for i = 1, 2, 3, 4; a nuisance n ∼ U [0, π), and a representation z = (z1, z2, z3, z4)
such that z = cos ((1− β)Ay + βn), where β ∈ [0, 1] and A is defined as:

A =

1− α 0 0 α
α 1− α 0 0
0 α 1− α 0
0 0 α 1− α

 (9)

where α ∈ [0, 0.5]. Thus, the factors-invariance level will decrease as α grows and the nuisances-
invariance level will decrease as β grows. We should note that due to the injectivity of the cosine
in [0, π), each component of z can only have been generated by one element (or combination of
these) of y. In Figure 1 we compare different metrics for different values of α and β. First, we can
see that β-VAE (Higgins et al., 2017), Factor-VAE (Kim et al., 2019), and Modularity (Ridgeway
& Mozer, 2018) behaves approximately as the step-function for both α and β so that they take high
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values even when the levels of factors-invariance or nuisances-invariance are very low. Second,
DCI-Disentanglement (Eastwood & Williams, 2018) only takes high values when factors-invariance
and nuisances-invariance levels are very low. Thus, this metric takes low values even with high
levels of minimality. Finally, Minimality (ours) palliates the above problems: it varies gradually
according to the levels of factors-invariance and nuisances-invariance for a large range of values.

(a) β-VAE (b) Factor-VAE (c) DCI Dis. (d) Modularity (e) Minimality

Figure 1: Different metrics in the literature that aim to measure minimality for independent factors.
In all the cases, α ∈ [0, 0.5] and β ∈ [0, 1] and the values of the metrics go from 0 to 1.

Sufficiency with Independent Factors of Variation Here we analyze how different metrics in
the literature measure sufficiency (i.e. representations-invariance and explicitness) in an experiment
similar to the previous one. In this case, we have four factors y = (y1, y2, y3, y4) such that yi ∼
U [0, π), and our representation z = cos (γAy), where A is defined in equation 9 and γ ∈ [1, 2).
In this case, when α grows the representations-invariance level will decrease and when γ grows, the
explicitness level will decrease, because the cosine is not injective in [0, γπ) for γ > 1 and there
will be more than one possible combination of elements of y that can generate the components of
z and we cannot completely obtain the factors from the z representation. In Figure 2 we compare
our metric with others in the literature that try to measure sufficiency (or at least representations-
invariance or explicitness) for different values of α and γ. First, we see that MIG (Chen et al., 2018)
is practically insensitive to explicitness, since its value does not change with γ. Second, we see that
SAP (Kumar et al., 2017) takes values close to 0 when α or γ are equal to 0.5 and 2, respectively.
However, these are not the minimum levels of representations-invariance and explicitness, so this
metric is not too sensitive for low values of sufficiency. Third, we see that for a high range of
values of α, DCI-Completeness (Eastwood & Williams, 2018) takes higher values the higher γ is,
i.e. its value increases the less explicit the representation is. Fourth, we see that when α is low,
Explicitness (Ridgeway & Mozer, 2018) takes high values even when γ is high, i.e. it gives low
values of explicitness when they are actually high. Finally, we see that Sufficiency (ours) mitigates all
the problems mentioned in the previous metrics varying gradually with the level of representations-
invariance and explicitness.

(a) MIG (b) SAP (c) DCI Comp (d) Explicitness (e) Sufficiency

Figure 2: Different metrics in the literature that aim to measure sufficiency for independent factors.
In all the cases, α ∈ [0, 0.5] and γ ∈ [1, 2) and the values of the metrics go from 0 to 1.

Minimality with Dependent Factors of Variation To compare the behavior of the different met-
rics in the condition of non-independent factors, we design an experiment similar to the previous
one, but with slight modifications. On the one hand, we define y1 and y2 in the same way as in the
previous case, but y3 = (1− δ)y1 + δy2 and y4 = (1− δ)y2 + δy1, where δ ∈ [0, 0.5]. On the other
hand, we define z = cos (Ay), where A is the matrix in equation 9. In this case, we do not include
nuisances, since having nuisances is independent of whether or not the factors are correlated. In
Figure 3 we show the values of different metrics according to α and δ. In this case, we see that when
α = 0, the only metric that gives a maximum value for all δ is Minimality (ours). That is, when
A is the identity matrix and we have one-to-one ratio of each variable with a factor, the rest of the
metrics can give values different from one. In particular, we see that β-VAE (Higgins et al., 2017)
has again a step-like behavior, Factor-VAE (Kim et al., 2019) is quite sensitive to the correlation
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strength of the factors, and DCI-Disentanglement (Eastwood & Williams, 2018) and Modularity
(Ridgeway & Mozer, 2018) give low and intermediate values for almost any combination of values.
We should note that Minimality (ours) takes high values in a large part of the cases since the level of
factors-invariance is in general high and the level of nuisances-invariance is always maximum.

(a) β-VAE (b) Factor-VAE (c) DCI Dis. (d) Modularity (e) Minimality

Figure 3: Different metrics in the literature that aim to measure minimality for dependent factors. In
all the cases, α ∈ [0, 0.5] and δ ∈ [0, 0.5] and the values of the metrics go from 0 to 1.

Sufficiency with Dependent Factors of Variation This experiment is identical to the one de-
scribed in the previous paragraph and the goal is to analyze how the different metrics that try to
measure sufficiency behave depending on the level of the correlation between the factors. The re-
sults are shown in Figure 4. We see that the values of MIG (Chen et al., 2018) and SAP (Kumar et al.,
2017) are low regardless of α and δ. On the other hand, DCI-Completeness (Eastwood & Williams,
2018) does not take a maximum value whenever α = 0 even though in this case it is possible to
predict all factors from a single variable. Finally, Explicitness (Ridgeway & Mozer, 2018) does
not take a maximum value even when the factors can be completely defined by the representation.
Finally, we have that Sufficiency (ours) takes maximum values when the representations-invariance
and explicitness are maximal and gradually decreases with these.

(a) MIG (b) SAP (c) DCI Comp (d) Explicitness (e) Sufficiency

Figure 4: Different metrics in the literature that aim to measure sufficiency for dependent factors. In
all the cases, α ∈ [0, 0.5] and δ ∈ [0, 0.5] and the values of the metrics go from 0 to 1.

5.2 LITERATURE DATASETS

As mentioned, the factors in most of the datasets in the literature for measuring disentanglement are
independent. However, Träuble et al. (2021) propose a modification to introduce correlation between
pairs of factors as p(y1, y2) ∝ exp

(
−(y1 − αy2)

2/2σ2
)
, where α = cmax

2 /cmax
2 , i.e., the lower

the value of σ the stronger the correlation. Subsequently, Roth et al. (2022) propose to introduce
this correlation scheme between multiple pairs of factors. Here, we propose a similar scheme.
Concretely, the results include scenarios with uncorrelated factors (original datasets), correlations
between multiple pairs of factors (a factor is never correlated with more than one factor) and shared
confounders (one factor correlates to all others). As in the previous experiment, we artificially
define the representation from the factors, so that we can have exact knowledge of the level of
disentanglement. We define z = Ay, so that A = (aij), aii = 1 − α, aij ∼ U [0, α) if i ̸= j and
α ∈ [0, 0.5]. Thus, the representation will be fully disentangled when α = 0. We use this scheme
for Shapes3D (Burgess & Kim, 2018), dSprites (Matthey et al., 2017), MPI3D (Gondal et al., 2019)
and CelebA(Liu et al., 2015). The results for MPI3D are shown next and those corresponding to
Shapes3D, dSprites and CelebA can be found in Appendix D due to space limitations and the fact
that the conclusions drawn are similar to those of MPI3D. We compute the experiments 10 times and
values of mean and standard deviation are provided in the figures. More details about the experiment
(concretely, values of σ and correlated pairs) can also be found in Appendix D.
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In Figure 5 we see the values of the different metrics that try to measure minimality for the different
levels of correlation. First and most importantly, we see that Minimality (ours) is the only metric
that is always equal to 1 when α = 0. This means that the other metrics fail in detecting perfect
disentanglement even in the simplest case (i.e., z = y) under correlated factors of variation. Second,
we find similar values of Minimality for 1, 2 and 3 pairs of correlated factors and the different values
of α. This is desirable, since α is what determines the degree of minimality irrespective of the
number of pairs of factors. Finally, in the case of a shared confounder, our metric is the only one
taking its near-maximum value regardless of the value of α. Again, this is desirable, since one factor
is strongly confounding to all the others, which translates into the fact that each variable is affected
by only ”almost” one factor.

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 5: Metrics measuring minimality for MPI3D. The values of all the metrics go from 0 to 1.

In Figure 6 we analyze the different metrics to measure sufficiency in the previous scenarios. First,
we can see that Sufficiency (ours) is the only metric that is equal to 1 always that α = 0. Again, the
other metrics fail in detecting maximum disentanglement under the presence of correlated factors
of variation. Second, the values of Sufficiency decrease slower with α when the level of correlation
between factors is higher. This is desirable because the fact that factors are more correlated implies
that, for the same value of α, a variable zj will tend to have more information about any factor yk
through its ”corresponding” factor yi. The extreme of this is in the case of a shared confounder,
in which Sufficiency takes almost its maximum value regardless of α, since we can describe every
factor ”almost” perfectly by using only one variable due to the high correlation between factors.

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 6: Metrics measuring sufficiency for MPI3D. The values of all the metrics go from 0 to 1.

6 CONCLUSION

In this work we have presented two problems that the different definitions of disentanglement suffer:
(i) they do not analyze the invariance to the nuisances; and (ii) they assume that the factors of
variation are independent of each other and of the nuisances. Consequently, the metrics used to
measure disentanglement do not capture it accurately when any of these two factors are present. To
address these problems, we have first proposed four properties from the point of view of information
theory that serve to define a disentangled representation considering the nuisances in the input and
the scenario in which the factors can be dependent. Furthermore, we have related these properties
to the concepts of minimality and sufficiency of a representation. In fact, we have argued that it
is more convenient to measure the degree of sufficiency and minimality of a representation rather
than measuring the four properties individually. Subsequently, we have proposed metrics to measure
sufficiency and minimality and derived estimators of them. Finally, we have compared our metrics
with others in the literature to illustrate that our metrics are able to correctly capture the level of
disentanglement under a wider variety of scenarios.
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A PROOF OF PROPOSITIONS

Proposition 1. Let y = {yl}nl=1 be some factors and z = {zj}mj=1 a representation. If zj is a min-
imal representation of yi, then zj is factors-invariant for yi and nuisances-invariant. Equivalently,
we have that:

(x↔ yi ↔ zj)⇐⇒ (ỹi ↔ yi ↔ zj) ∧ (n↔ yi ↔ zj)

Proof. First, we demonstrate that (x ↔ yi ↔ zj) =⇒ (ỹi ↔ yi ↔ zj): Given this Markov chain,
by the DPI, we have that I(zj ;x) ≤ I(zj ; yi). Since zj is a representation of x, we also have by DPI
that I(zj ;y) ≤ I(zj ;x). Therefore, it follows that I(zj ;y) ≤ I(zj ; yi) On the other hand, by the
chain rule of mutual information, we have that I(zj ;y) = I(zj ; yi, ỹi) = I(zj ; yi) + I(zj ; ỹi|yi).
By the non-negativity of mutual information, we are left with I(zj ;y) ≥ I(zj ; yi). Therefore, we
have that I(zj ; yi) = I(zj ;y) = I(zj ; yi, ỹi) or, equivalently, ỹi ↔ yi ↔ zj .

Second, we demonstrate that (x ↔ yi ↔ zj) =⇒ (n ↔ yi ↔ zj): Given this Markov chain, we
know from the DPI that I(zj ;x) ≤ I(zj ; yi). On the other hand, since zj is a representation of x,
we have the Markov chain (n, yi) ↔ x ↔ zj . Equivalently, we have that I(zj ;n, yi) ≤ I(zj ;x).
The chain rule of mutual information tells us that I(zj ;n|yi) = I(zj ;n, yi)− I(zj |yi). According
to the above two points, we are left with I(zj ;n|yi) ≤ I(zj ;x) − I(zj |yi). Therefore, because of
the non-negativity of mutual information, it is only possible that I(zj ;n|yi) = 0 or, equivalently,
n↔ yi ↔ zj .

Finally, we demonstrate that (ỹi ↔ yi ↔ zj) ∧ (n ↔ yi ↔ zj) =⇒ (x ↔ yi ↔ zj): We
know by the Bayes’ theorem that p(zj ,y,n) = p(zj |y,n)p(n|y)p(y) = p(n|zj ,y)p(zj |y)p(y) =
p(n|zj ,y)p(zj |yi)p(y). Thus, p(zj |x) = p(zj |y,n) = p(zj |yi) if and only if p(n|y) = p(n|zj ,y),
which is equivalent to having p(zj |y) = p(zj |y,n) = p(zj |x) and since p(zj |y) = p(zj |yi), we
are left with p(zj |x) = p(zj |yi), and thus, (x↔ yi ↔ zj).

Proposition 2. Let yi be a factor and z = {zl}ml=1 a representation. Then, zj is a sufficient represen-
tation of yi if and only if zj is representations-invariant for yi and z is explicit for yi. Equivalently,
we have the that:

(x↔ zj ↔ yi)⇐⇒ (z̃j ↔ zj ↔ yi) ∧ (x↔ z ↔ yi)

Proof. First, we demonstrate that (x↔ zj ↔ yi) =⇒ (z̃j ↔ zj ↔ yi): Given this Markov chain,
by the DPI, we have that I(yi;x) ≤ I(yi; zj). Since z is a representation of x, we also have that
I(yi; z) ≤ I(yi;x). Therefore, it follows that I(yi; z) ≤ I(yi; zj) On the other hand, by the mutual
information chain rule, we have that I(yi; z) = I(yi; zj , z̃j) = I(yi; zj) + I(yi; z̃j |zj). By the
non-negativity of mutual information, we are left with I(yi; z) ≥ I(yi; zj). Therefore, we have that
I(yi; zj) = I(yi; z) = I(yi; zj , z̃j) or, equivalently, z̃j ↔ zj ↔ yi.

Second, we demonstrate that (x ↔ zj ↔ yi) =⇒ (x ↔ z ↔ yi): Since zj is a representation of
x, we have that p(yi|x, zj) = p(yi|x). Moreover, since zj is sufficient, we have that p(yi|x, zj) =
p(yi|zj). Putting the above two terms together, we are left with p(yi|x) = p(yi|zj). As we have
already shown, if zj is sufficient, then we have the Markov chain (z̃j ↔ zj ↔ yi), so p(yi|z) =
p(yi|zj). Therefore, we are left with p(yi|z) = p(yi|x). Finally, since z is a representation of x,
we know that p(yi|x) = p(yi|x, z). Putting all of the above together, we are left with p(yi|x, z) =
p(yi|z) or, equivalently, x↔ z ↔ yi.

Finally, we demonstrate that (z̃j ↔ zj ↔ yi) ∧ (x ↔ z ↔ yi) =⇒ (x ↔ zj ↔ yi): Since
zj and z are representations of x, we have that p(yi|x, zj) = p(yi|x, z) = p(yi|x). Furthermore,
given the Markov chain x ↔ z ↔ yi, we know that p(yi|x, z) = p(yi|z). Equivalently, given
z̃j ↔ zj ↔ yi, we have that p(yi|zj) = p(yi|zj , z̃j) = p(yi|z). Recapitulating the above, we are
left with p(yi|zj) = p(yi|z) = p(yi|x, z) = p(yi|x, zj). Therefore, we have that x↔ zj ↔ yi.
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B DERIVATION OF THE ESTIMATORS FOR Minimality AND Sufficiency

In section 4.3 we have defined metrics to measure the levels of minimality and sufficiency, but
their exact calculation is in general computationally intractable. Moreover, they include mutual
information terms of the input x with other variables, so there are no good estimators either, since
x is in general high dimensional. We derive next the estimators described in Algorithms 1 and 2.

B.1 DERIVATION OF THE ESTIMATOR FOR Minimality

As explained, we define the minimality of a variable zj with respect to a factor yi as:

mij = 1− I(zj ;x|yi)
I(zj ;x)

=
I(zj ; yi)

I(zj ;x)
(10)

i.e., mij collects the proportion of information about zj present in yi relative to that present in x.
The problem with this metric is that it is in general intractable to compute I(zj ;x) and it is difficult
to find a good estimator of I(zj ;x), since x is in general high-dimensional.

In the following, we derive approximations for I(zj ;x|yi).

I(zj ;x|yi) =
∫∫∫

p(x, yi, zj) log
p(x, yi, zj)p(yi)

p(x, yi)p(yi, zj)
dx dyi dzj (11)

=

∫∫∫
p(x, yi)p(zj |x, yi) log

p(zj |x, yi)
p(zj |yi)

dx dyi dzj (12)

=

∫∫∫
p(x, yi)p(zj |x) log

p(zj |x)
p(zj |yi)

dx dyi dzj (13)

≈ 1

|D|
∑

(
x(k),y

(k)
i

)
∈D

∫
p(zj |x(k)) log

p
(
zj |x(k)

)
p
(
zj |y(k)i

) dzj (14)

=
1

|D|
∑

(
x(k),y

(k)
i

)
∈D

DKL

(
p
(
zj |x(k)

) ∣∣∣∣∣∣∣∣ p(zj |y(k)i

))
= Î(zj ;x|yi) (15)

On the other hand, as described in different papers (Bishop, 1994), the output of a regression or clas-
sification system (a linear model or a neural network, for example) are not necessarily predictions of
the value of the variable output but the parameters of the distribution of the variable output. There-
fore, we may assume without loss of generality that p

(
zj |x(k)

)
= N

(
zj ; fj

(
x(k), θ

)
, I
)
, where f

is our representation learning system and θ its parameters. That is, our representation learning sys-
tem is not predicting a representation for each input but the mean of the distribution of zj for a given
input x(k). Therefore, we would not have one representation per input but infinite. Equivalently, we
can assume that p

(
zj |y(k)i

)
= N

(
zj ; fij

(
y
(k)
i , ϕ

)
, I
)

, where fij is a regressor whose parameters

are ϕ that predicts the mean of zj factor y(k)i . Under this assumption, we have that:

DKL

(
p
(
zj |x(k)

) ∣∣∣∣∣∣∣∣ p(zj |y(k)i

))
=

1

2

∣∣∣∣∣∣∣∣ fj (x(k), θ
)
− fij

(
y
(k)
i , ϕ

) ∣∣∣∣∣∣∣∣2
2

(16)

Thus, we have that

Î(zj ;x|yi) =
1

2|D|
∑

(
x(k),y

(k)
i

)
∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
)
− fij

(
y
(k)
i , ϕ

) ∣∣∣∣∣∣∣∣2
2

(17)
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Through a procedure analogous to the previous one, we give an approximation for the term I(zj ;x):

I(zj ;x) =

∫∫
p(x, zj) log

p(x, zj)

p(x)p(zj)
dx dzj (18)

=

∫∫
p(x)p(zj |x) log

p(zj |x)
p(zj)

dx dzj (19)

≈ 1

|D|
∑

x(k)∈D

DKL

(
p
(
zj |x(k)

) ∣∣∣∣∣∣∣∣ p (zj)) = Ĩ(zj ;x) (20)

On the other hand, we have that:

p(zj) =

∫
p(x, zj) dx ≈

1

|D|
∑

x(l)∈D

p
(
zj |x(l)

)
(21)

that is, p(zj) can be approximated as a mixture of |D| Gaussians with the identity matrix as its
covariance matrix. Since DKL(p||q) is a convex function on the pair (p, q), we have that:

Ĩ(zj ;x) ≈
1

|D|
∑

x(k)∈D

DKL

p
(
zj |x(k)

) ∣∣∣∣∣∣∣∣ 1

|D|
∑

x(l)∈D

p
(
zj |x(l)

) (22)

≈ 1

|D|
∑

x(k)∈D

1

|D|
∑

x(l)∈D

DKL

(
p
(
zj |x(k)

) ∣∣∣∣∣∣∣∣ p(zj |x(l)
))

(23)

=
1

2|D|2
∑

x(k)∈D

∑
x(l)∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
)
− fj

(
x(l), θ

) ∣∣∣∣∣∣∣∣2
2

(24)

=
1

2|D|
∑

x(k)∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
) ∣∣∣∣∣∣∣∣2

2

− 1

2|D|2
∑

x(k)∈D

fj

(
x(k), θ

)T ∑
x(l)∈D

fj

(
x(l), θ

)
(25)

=
1

2|D|
∑

x(k)∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
) ∣∣∣∣∣∣∣∣2

2

−
∣∣∣∣∣∣∣∣ f̄j (x, θ) ∣∣∣∣∣∣∣∣2

2

= Î(zj ;x) (26)

where line 23 is demonstrated in Proposition 3 and f̄j (x, θ) is the sample mean of fj (x, θ). We
must note that if we standardize the samples from fj (x, θ) to have zero mean and unit variance,
then we have that:

Î(zj ;x) =
1

|D|
∑

x(k)∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
) ∣∣∣∣∣∣∣∣2

2

= 1 (27)

Finally, we define m̃ij , which is an estimator of mij :

m̂ij = 1− Î(zj ;x|yi)
Î(zj ;x)

(28)

= 1− 1

|D|
∑

(
x(k),y

(k)
i

)
∈D

∣∣∣∣∣∣∣∣ fj (x(k), θ
)
− fij

(
y
(k)
i , ϕ

) ∣∣∣∣∣∣∣∣2
2

(29)
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Proposition 3. Let Q = {qi(z)}ni=1 be a set of distributions such that qi(z) = N (z;µi, I) and the
set {µi}ni=1 is uniformly distributed with zero mean and unit variance. Thus we have that:∑

i

DKL

(
qi(z)

∣∣∣∣∣∣∣∣ 1n∑
k

qk(z)

)
≈
∑
i

1

n

∑
k

DKL

(
qi(z)

∣∣∣∣∣∣∣∣ qk(z))

Proof. We have that:∑
i

DKL

(
qi(z)

∣∣∣∣∣∣∣∣ 1n∑
k

qk(z)

)
=
∑
i

∫
qi(z) log

qi(z)
1
n

∑
k qk(z)

dz (30)

=
∑
i

∫
1

n

∑
j

qi(z) log

(
qi(z)

qj(z)

qj(z)
1
n

∑
k qk(z)

)
dz (31)

=
∑
i

1

n

∑
j

DKL

(
qi(z)

∣∣∣∣∣∣∣∣ qj(z)) (32)

+
1

n

∑
i

∑
j

∫
qi(z) log

nqj(z)∑
k qk(z)

dz (33)

Thus we have that the the proposition is true when:

1

n

∑
i

∑
j

∫
qi(z) log

nqj(z)∑
k qk(z)

dz ≈ 0 (34)

We can reformulate this term as:

1

n
Ez∈qi(z)

Eqi∈Q

∑
j

log
nqj(z)∑
k qk(z)

 (35)

Due to the Central Limit Theorem, we have this is almost equal to:

1

n
Ez∈N (0,I)

∑
j

log
nqj(z)∑
k qk(z)

 (36)

If we simply sample once so that z = 0, we have that we can approximate the previous term as:

1

n

∑
j

log
n exp

(
− 1

2 ||µj ||22
)∑

k exp
(
− 1

2 ||µk||22
) (37)

Since, {µi}ni=1 is uniformly distributed, the set of their norms is also uniformly distributed and this
term is zero.

B.2 DERIVATION OF THE ESTIMATOR FOR Sufficiency

As explained, we define the sufficiency of a variable zj for a factor yi as:

sij = 1− I(yi;x|zj)
I(yi;x)

=
I(yi; zj)

I(yi;x)
(38)

i.e., sij captures the proportion of information about yj present in zj relative to that present in x.
We have the same problem as in the previous case: it is in general intractable to compute I(yi;x)
and it is difficult to find a good estimator of I(yi;x), since x is in general high-dimensional.

Following a process analogous to that of the minimality case, we arrive at the estimator:

Î(yi;x|zj) =
1

|D|
∑

(
x(k),y

(k)
i

)
∈D

DKL

(
p
(
yi|x(k)

) ∣∣∣∣∣∣∣∣ p(yi|z(k)j

))
(39)
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Again, we can assume that the label l
(k)
i of the factor y

(k)
i is its mean and that

p
(
yi|x(k)

)
= N (yi; li, I). As in the minimality estimator, we can assume that p

(
yi|z(k)j

)
=

N
(
yi; fij

(
z
(k)
j , ϕ

)
, I
)

, where fij is a regressor whose parameters are ϕ that predicts the mean of

yi from the variable z
(k)
j . Under this assumption, we have that:

DKL

(
p
(
yi|x(k)

) ∣∣∣∣∣∣∣∣ p(yi|z(k)j

))
=

1

2

∣∣∣∣∣∣∣∣ l(k)i − fij

(
z
(k)
j , ϕ

) ∣∣∣∣∣∣∣∣2
2

(40)

Through a procedure analogous to the previous one, we give an approximation for the term I(zj ;x):

I(yi;x) =

∫∫
p(x, yi) log

p(x, yi)

p(x)p(yi)
dx dyi (41)

≈ 1

|D|
∑

x(k)∈D

DKL

(
p
(
yi|x(k)

) ∣∣∣∣∣∣∣∣ p (yi)) = Ĩ(yi;x) (42)

And we can approximate as:

p(yi) =

∫
p(x, yi) dx ≈

1

|D|
∑

x(l)∈D

p
(
yi|x(l)

)
(43)

Again, we have that:

Ĩ(yi;x) ≈
1

|D|
∑

x(k)∈D

1

|D|
∑

x(l)∈D

DKL

(
p
(
yi|x(k)

) ∣∣∣∣∣∣∣∣ p(yi|x(l)
))

(44)

=
1

2|D|
∑

l
(k)
i ∈D

∣∣∣∣∣∣∣∣ l(k)i

∣∣∣∣∣∣∣∣2
2

−
∣∣∣∣∣∣∣∣ l̄(k)i

∣∣∣∣∣∣∣∣2
2

= Î(zj ;x) (45)

where l̄i is the sample mean of li. We must note that if we standardize the samples from li to have
zero mean and unit variance, then we have that:

Î(yi;x) =
1

|D|
∑

l
(k)
i ∈D

∣∣∣∣∣∣∣∣ l(k)i

∣∣∣∣∣∣∣∣2
2

= 1 (46)

Finally, we define s̃ij , which is an estimator of sij :

ŝij = 1− Î(yi;x|zj)
Î(yi;x)

(47)

= 1− 1

|D|
∑

(
l
(k)
i ,z

(k)
j

)
∈D

∣∣∣∣∣∣∣∣ l(k)i − fij

(
z
(k)
j , ϕ

) ∣∣∣∣∣∣∣∣2
2

(48)

We note that in Algorithm 2 we use the nomenclature y
(k)
i instead of l(k)i for ease of understanding.
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C MEASURING FACTORS AND REPRESENTATIONS INVARIANCE AND
EXPLICITNESS

In section 4.2 we argue that it is more convenient to measure sufficiency and minimality than the
properties of section 3 separately. However, it could be the case that someone wanted to measure
them individually. Thus, we propose methods for measuring factors, and representations invariance
and explicitness. We also evaluate through these metrics the scenarios presented in section 5.1.

C.1 CALCULATION OF FACTORS-INVARIANCE

As we have explained, a variable zj is factors-invariance with respect to yi when I(zj ;y|yi) =
I(zj ;y) − I(zj ; yi) = 0. We would like our metric for factors-invariance to be in the range [0, 1].
Therefore, we define the factors-invariance of zj with respect to yi:

FIij = 1− I(zj ;y|yi)
I(zj ;y)

=
I(zj ; yi)

I(zj ;y)
(49)

i.e., FIij collects the proportion of information about zj present in yi relative to that present in y.
Although it is useful to analyze FIij to obtain information about what is the connection between
each factor and variable, it is also interesting to have a single term that determines how factors-
invariant a representation is. We define this term below:

F̄ I =
1

nz

nz∑
j=1

max
i

FIij (50)

Unlike minimality and sufficiency, here we do have estimators in the literature for I(zj ; y) and
I(zj ; yi) Kozachenko & Leonenko (1987); Paninski (2003). Therefore, we could either use one
of these estimators or obtain an approximation following a process analogous to those described
in Appendix B. In Algorithm 3 we give a way to obtain F̄ I following the latter approximation to
maintain consistency with section 4.3. In this algorithm we construct two regressors or classifiers
to predict zj : one from y and one from yi. We know that a representation is factors-invariant if
p(zj |yi) = p(zj |y). In the following we give an intuitive explanation of the results to be expected.
On the one hand, when yi contains all the information about zj , then the predictions from yi and y

will be equal and F̂ Iij = 1. On the other hand, if yi contains little information about zj , but other
factors of y do contain information about zj , then F̂ Iij < 1. In this case, the more information
about zj there is in y, the smaller F̂ Iij will be. Finally, if zj contains no information about bmy,
then F̂ Iij = 1. That is, we are not measuring nuisances-invariance. This extreme case presents the
importance of measuring nuisances-invariance in conjunction with factors-invariance (via minimal-
ity), since F̂ Iij can be maximal even in the case where zj contains no information about any factors.

Algorithm 3 Calculation of Factors-Invariance

Input:
{
{y(k)i }ni=1

}
,
{
{z(k)j }mj=1

}
Output: F̄ I

1: {y(k)i } ← StandardScale({y(k)i }), i = 1 to n

2: {z(k)j } ← StandardScale({z(k)j }), j = 1 to m
3: for j = 1 to m do
4: fj ← fit

(
{y(k)}, {z(k)j }

)
5: for i = 1 to n do
6: fij ← fit

(
{y(k)i }, {z

(k)
j }

)
7: F̂ Iij ← 1− 1

K

∑
k

∣∣∣∣∣∣∣∣ fij (y(k)i

)
− fj

(
y(k)

) ∣∣∣∣∣∣∣∣2
2

8: end for
9: end for

10: F̄ I ← 1
m

∑n
j=1 maxi(F̂ Iij)
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In Figure 7 we show the values of factors-invariance in the first and third experiments of section 5.1,
since these are the experiments designed to modify the value of factors-invariance. First, we see
that when β takes low values (i.e., the representation is nuisances-invariant), the metric is sensitive
to the level of factors-invariance (equivalently, it varies according to the value of α). However, as
the values of β go up, then the metric becomes insensitive to the factors-invariance level, as we
discussed in the previous paragraph. Therefore, if we were using a metric to measure only the level
of factors-invariance, it would not be reliable in the presence of nuisances in the input. It should also
be noted that in the figure 7b the value is maximum when α = 0 regardless of the dependence value
of the factors (i.e., it is independent of δ), which means that it works correctly when the factors are
correlated.

(a) First Experiment
(Independent factors)

(b) Third Experiment
(Dependent factors)

Figure 7: Values of Factors-Invariance in the first and third scenarios of section 5.1. We note that
α ∈ [0, 0.5], β ∈ [0, 1] and δ ∈ [0, 0.5] and the values of the metrics go from 0 to 1.

C.2 CALCULATION OF REPRESENTATIONS-INVARIANCE

As we have explained, a variable zj is factors-invariance with respect to yi when I(yi; z|zj) =
I(yi, z)− I(yi; zj) = 0. We would like our metric for representations-invariance to be in the range
[0, 1]. Therefore, we define the factors-invariance of zj with respect to yi:

RIij = 1− I(yi; z|zj)
I(yi; z)

=
I(yi; zj)

I(yi; z)
(51)

i.e., RIij collects the proportion of information about yi present in zj relative to that present in z.
Although it is useful to analyze RIij to obtain information about what is the connection between
each factor and variable, it is also interesting to have a single term that determines how factors-
invariant a representation is. We define this term below:

R̄I =
1

ny

ny∑
i=1

max
j

RIij (52)

Again we have estimators in the literature for I(yi; z) and I(yi; zj), which we could use to estimate
this term. In Algorithm 4, we give a method to estimate R̄I , in which we have followed a process
analogous to the one presented in Appendix B to maintain consistency with section 4.3. In Algorithm
4 we construct two regressors or classifiers to predict yi: one from z and one from zj . We know
that a representation is representations-invariant if p(yi|zj) = p(yi|z), so intuitively we have the
following. When zj contains all information about yi, then the predictions from zj and z will be
equal and R̂Iij = 1. On the other hand, if zj contains little information about yi, but other variables
from z do contain information about yi, then R̂Iij < 1. In this case, the more information about
yi in z, the smaller R̂Iij will be. Finally if z contains no information about yi, then R̂Iij = 1,
this metric would take its maximum value even when z contains no information about yi. This
extreme case demonstrates the importance of measuring representations-invariance in conjunction
with explicitness (via minimality), since F̂ Iij < 1 can be maximal even in the case where zj does
not contain any information about yi.
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Algorithm 4 Calculation of Representations-Invariance

Input:
{
{y(k)i }ni=1

}
,
{
{z(k)j }mj=1

}
Output: R̄I

1: {y(k)i } ← StandardScale({y(k)i }), i = 1 to n

2: {z(k)j } ← StandardScale({z(k)j }), j = 1 to m
3: for i = 1 to n do
4: fi ← fit

(
{z(k)}, {y(k)i }

)
5: for j = 1 to n do
6: fij ← fit

(
{z(k)j }, {y

(k)
i }

)
7: R̂Iij ← 1− 1

K

∑
k

∣∣∣∣∣∣∣∣ fij (z(k)j

)
− fi

(
z(k)

) ∣∣∣∣∣∣∣∣2
2

8: end for
9: end for

10: R̄I ← 1
n

∑n
i=1 maxj(R̂Iij)

In Figure 8 we show the values of representations-invariance in the second and fourth experiments
of section 5.1, since these are the experiments designed to modify the value of representations-
invariance. First, we see that when γ takes low values (i.e., the representation is explicit), the metric
is sensitive to the level of representations-invariance (equivalently, it varies according to the value
of α). However, as the values of γ go up, then the metric becomes insensitive to the representations-
invariance level, as we described in the previous paragraph. Therefore, a metric that measures only
the level of representations-invariance independently of the level of explicitness is not reliable, since
these two properties are related. It should also be noted that in the figure 8b the value is maximum
when α = 0 regardless of the dependence value of the factors (i.e., it is independent of δ), so it
works correctly when the factors are correlated.

(a) Second Experiment
(Independent factors)

(b) Fourth Experiment
(Dependent factors)

Figure 8: Values of Factors-Invariance in the second and fourth scenarios of section 5.1. We note
that α ∈ [0, 0.5], γ ∈ [1, 2] and δ ∈ [0, 0.5] and the values of the metrics go from 0 to 1.

C.3 CALCULATION OF EXPLICITNESS

Finally, we have defined an explicit representation as that in which z satisfies that I(yi;x|z) =
I(yi, z)−I(yi;x) = 0. We would like our metric for explicitness to be in the range [0, 1]. Therefore,
we define the explicitness of z with respect to yi:

Ei = 1− I(yi;x|z)
I(yi;x)

=
I(yi; z)

I(yi;x)
(53)

i.e., Ei collects the proportion of information about yi present in z relative to that present in x. To
calculate the level of the explicitness of a variable, we just simply calculate the mean as:
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Ē =
1

ny

ny∑
i=1

Ei (54)

In this case we do not have good estimators for I(yi;x). However, we can follow a process analo-
gous to that of sufficiency estimation based on Appendix B. In Algorithm 5 we construct a regressor
or classifier to predict yi: one from z. We know that a representation is explicit if p(yi|z) = p(yi|x).
Intuitively, we can see that the more information z contains about yi, the better the predictions of
fi will be and hence Ei will be higher. However, with this metric we are not evaluating how the
different factors separate in the representation.

Algorithm 5 Calculation of Explicitness

Input:
{
{y(k)i }ni=1

}
,
{
{z(k)j }mj=1

}
Output: Ē

1: {y(k)i } ← StandardScale({y(k)i }), i = 1 to n

2: {z(k)j } ← StandardScale({z(k)j }), j = 1 to m
3: for i = 1 to n do
4: fi ← fit

(
{z(k)}, {y(k)i }

)
5: Êi ← 1− 1

K

∑
k

∣∣∣∣∣∣∣∣ y(ki − fi
(
z(k)

) ∣∣∣∣∣∣∣∣2
2

6: end for
7: Ē ← 1

n

∑n
i=1(Êi)

In Figure 9 we show the explicitness values in the second experiment of section 5.1, which is the
case designed to modify the explicitness level. First, we see that when α takes low and medium
values (i.e., the representation has a representations-invariant level), the metric is sensitive to the
level of explicitness (equivalently, it varies according to the value of γ). However, for higher values
of α, then the metric gradually becomes more insensitive to the level of explicitness. This may be
because the classifier or regressor fi does not have sufficient complexity to obtain yi when z has a
high level of representations-invariance.

Figure 9: Values of Factors-Invariance in the second scenario of section 5.1. We note that α ∈
[0, 0.5], γ ∈ [1, 2] and δ ∈ [0, 0.5] and the values of the metrics go from 0 to 1.
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D MORE RESULTS IN LITERATURE DATASETS EXPERIMENT

In this Appendix, we give similar results to those of section 5.2 but for Shapes3D, DSprites and
CelebA. The conclusions that can be drawn from these datasets are similar to those for MPI3D.
Thus, description of section 5.2 applies also here. The purpose of these figures is to illustrate that
our metrics present similar behaviors for different datasets. We note that it is not possible to have
three pairs for DSprites since it only has 5 factors of variation.

D.1 MINIMALITY RESULTS

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 10: Metrics measuring minimality for Shapes3D. The values of all the metrics go from 0 to
1.

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) Shared Conf.

Figure 11: Metrics measuring minimality for DSprites. The values of all the metrics go from 0 to 1.

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 12: Metrics measuring minimality for CelebA. The values of all the metrics go from 0 to 1.

D.2 SUFFICIENCY RESULTS

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 13: Metrics measuring sufficiency for Shapes3D. The values of all the metrics go from 0 to
1.
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0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) Shared Conf.

Figure 14: Metrics measuring sufficiency for DSprites The values of all the metrics go from 0 to 1.

0 0.25 0.5

(a) No Corr.

0 0.25 0.5

(b) 1 Pair

0 0.25 0.5

(c) 2 Pairs

0 0.25 0.5

(d) 3 Pairs

0 0.25 0.5

(e) Shared Conf.

Figure 15: Metrics measuring sufficiency for CelebA. The values of all the metrics go from 0 to 1.

E MORE DETAILS ABOUT LITERATURE DATASETS EXPERIMENT

We show next what pairs are correlated in experiment in section 5.2. All the correlations are with
σ = 0.1, i.e., they are strong. The reason for this is that we want to analyze the performance of
different metrics under strong correlation scenario. We provide multiple combinations of pairs per
scenario (e.g. in MPI3D and 1 Pair, we give three combinations). We calculate the value of the
metrics in each combination and obtain the mean of all of them, which are the results provided.

Table 1: Correlation in MPI3D Dataset

1 Pair

• {cameraHeight,backgroundCol}
• {objCol,objSize}
• {posX,posY}

2 Pairs
• {objCol,objShape}, {posX,posY}
• {objCol,posX}, {objShape,posY}

3 Pairs
• {objCol,backgroundCol}, {cameraHeight,posX}, {objShape,posY}
• {objCol,posX}, {objShape,posY}, {backgroundCol,cameraHeight}

Shared
Conf.

• objShape against all other factors.
• posX against all other factors.
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Table 2: Correlation in Shapes3D Dataset

1 Pair

• {floorCol,wallCol}
• {objType,objSize}
• {objType,wallCol}
• {objType,objCol}

2 Pairs

• {objSize,floorCol}, {objType,wallCol}
• {objSize,objType}, {floorCol,wallCol}
• {objType,objCol}, {floorCol,wallCol}

3 Pairs
• {objSize,objAzimuth}, {objType,wallCol}, {floorCol,objCol}
• {objCol,objAzimuth}, {objType,objSize}, {floorCol,wallCol}

Shared
Conf.

• objSize against all other factors.
• wallCol against all other factors.

Table 3: Correlation in DSprites Dataset

1 Pair

• {shape,scale}
• {posX,posY}
• {shape,posY}

2 Pairs
• {shape,scale}, {posX,posY}
• {shape,psoX}, {scale,posY}

Shared
Conf.

• shape against all other factors.
• posX against all other factors.

Table 4: Correlation in CelebA Dataset

1 Pair

• {bagsUnderEyes,bald}
• {5OClockShadow,attractive}
• {bangs,bigLips}

2 Pairs
• {5OClockShadow,archedEyebrows}, {bangs,bigLips}
• {5OClockShadow,bangs}, {archedEyebrows,bigLips}

3 Pairs
• {5OClockShadow,bald}, {bagsUnderEyes,bangs}, {archedEyebrows,bigLips}
• {5OClockShadow,bangs}, {objType,objSize}, {archedEyebrows,bigLips}

Shared
Conf.

• archedEyebrows against all other factors.
• bangs against all other factors.
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