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ABSTRACT

The development lifecycle of generative AI systems requires continual evaluation,
data acquisition, and annotation, which is costly in both resources and time. In
practice, a desire for rapid iteration often makes it necessary to rely on synthetic
annotation data because of its low cost, despite the potential for substantial bias. In
this paper, we develop a rigorous theoretical framework for novel, cost-aware eval-
uation pipelines that actively balance the use of a cheap, but often inaccurate, weak
rater—such as a model-based autorater that is designed to automatically assess the
quality of generated content—with a more expensive, but also more accurate, strong
rater such as a human annotator. Building on recent work in active and prediction-
powered statistical inference, we theoretically derive a family of cost-optimal
policies for allocating a given annotation budget between weak and strong raters so
as to maximize statistical efficiency. Next, using synthetic and real-world data, we
empirically characterize conditions under which these types of policies can yield
significant improvements over classical methods. Finally, we find that practical ap-
proximations of the theoretically optimal policies can achieve the same estimation
precision at a far lower total annotation budget than standard evaluation methods,
especially in tasks where there is high variability in the difficulty of examples.

1 INTRODUCTION

Accurately and efficiently evaluating generative AI (GenAI) systems is a core technical challenge, both
for model development and for reliable model deployment. In this paper, we introduce new statistical
tools for active, cost-sensitive model evaluation. Specifically, we develop evaluation pipelines that
dynamically annotate data using a mix of weak and strong annotation options in a way that is aware of
their relative costs and strengths. The core idea is to strategically balance inexpensive but potentially
inaccurate annotations from a weak rater against more accurate, but also more costly, annotations from
a more sophisticated strong rater alternative. Our goal will be to use the weak raters to help give unbi-
ased estimates of the mean of the strong rater’s judgments. This is a key target for many AI evaluation
applications, as it captures fundamental metrics like model accuracy, win-rate, or hallucination rate.

The exact composition of the weak and strong raters is flexible; for example, the weak rater might be a
small AI model or rule-based heuristic, while the strong rater might be a larger AI model, an AI model
with tools or larger inference-time reasoning capabilities, a human, or even the consensus of multiple
expert humans. The cost of the evaluation might then be measured in compute, latency, or dollars. Ac-
tive evaluation aims to minimize cost by selectively obtaining expensive annotations only when they
are informative, relying on the cheaper option otherwise. All of the annotations are then combined us-
ing statistically principled, unbiased methods to yield reliable, yet cost-effective, performance metrics.

Combining different data sources to improve evaluation quality is not new: in particular, the use
of cheap but biased metrics as control variates to improve statistical efficiency in model evaluation
has been explored before from various perspectives (Angelopoulos et al., 2023a;b; Boyeau et al.,
2024; Chaganty et al., 2018; Chatzi et al., 2024; Fisch et al., 2024; Jung et al., 2025; Saad-Falcon
et al., 2024; Zrnic & Candès, 2024). Here, our main technical contribution is a theoretical framework
for cost-optimal active evaluations—unbiased evaluation algorithms that strategically choose when
to deploy the strong rater as opposed to the weak rater in order to achieve accurate evaluations at
low cost. Informally, these policies solve the following constrained optimization problem:

maximize Accuracy of the evaluation,
subject to Cost of the evaluation remaining below a budget B.
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We derive these optimal policies via new technical extensions and combinations of modern techniques
in statistics, namely, active statistical inference (Zrnic & Candès, 2024) and prediction-powered infer-
ence (PPI; Angelopoulos et al., 2023a;b; Zrnic & Candès, 2024). As we will prove, the resulting oracle
policies—which represent the best strategies we can hope to achieve in theory—depend on (i) the
rater costs, but also (ii) task-specific distributional properties (like the weak rater’s error) that are often
unknown in practice. Nevertheless, using the form of these optimal policies as a guiding foundation,
we are able to test and analyze empirical approximations that operate by first estimating these unknown
quantities from data (e.g., using a "burn-in" set), and then use the theoretical form of the optimal pol-
icy with the estimated parameters plugged in (and provide bounds on the optimality gap). Empirically,
we demonstrate that this practical approach can achieve substantial savings over passive strategies,
although we also highlight important open challenges for future work that naturally arise due to "cold-
start" issues, as well as imperfections of existing autorater models and their uncertainty estimates.

Finally, though AI model evaluation is the primary motivation and focus in this paper, we note that our
framework also extends to general convex M-estimation problems (in any domain). See Appendix B.

Related work. Prediction-powered inference (PPI; Angelopoulos et al., 2023a;b; Zrnic & Candès,
2024) is the technique of combining a small number of trusted observations with predictions from
a machine learning system for the purpose of statistical estimation. Its core statistical principles are
closely related to control variate estimators (Chaganty et al., 2018; Ripley, 1987) as well as semi-
parametric inference with missing data (Chernozhukov et al., 2018; Robins & Rotnitzky, 1995; Tsiatis,
2006). Recently, a body of work has explored applying PPI to the evaluation of GenAI systems, where
human annotations are combined with "autorater" outputs (Boyeau et al., 2024; Chatzi et al., 2024;
Egami et al., 2023; Fisch et al., 2024; Saad-Falcon et al., 2024); though it has also been noted that the
sample efficiency gained is limited when the autorater is not sufficiently accurate (Dorner et al., 2025;
Thakur et al., 2025). A natural extension of PPI is to actively select a fixed number of examples on
which to obtain trusted observations, while deferring the remaining examples to the autorater (Gligorić
et al., 2024; Zrnic & Candès, 2024). Roughly speaking, these approaches sample human annotations
with probability proportional to the uncertainty of the autorater. However, they work only in a
restricted setting in which the ratio of expensive to cheap ratings, n/N , is fixed in advance, and then
pick the optimal policy subject to that constraint. No guidance is given as to what this ratio should
be based on the relative costs of the ratings, or even what the total number of examples N should be.

Contributions. Our work extends this literature both theoretically and empirically. Our core theoret-
ical contribution is the derivation of error-minimizing sampling rules under cost constraints. That is,
previous methods have a fixed ratio n/N and a policy that maximizes accuracy under that fixed ratio,
while our policy maximizes accuracy subject to a cost constraint by optimizing everything including
the ratio n/N . We theoretically derive two forms of optimal policies: (i) the best fixed sampling rate
(Proposition 1), and (ii) the best active sampling rule that depends on covariates (Proposition 2). One
additional novelty of our work is that it improves upon the policy proposed by Zrnic & Candès (2024)
by accounting for the constraint that the policy must lie in [0, 1] for all values of x. Finally, Appendix B
includes further theoretical innovations, such as an extension to convex M-estimators and an optimal
method for selecting the covariate x (as opposed to only the label, as considered in the prior work).

On the empirical end, we extend the scope of the standard PPI framework to heterogeneous model
evaluation settings involving two distinct rating sources, each with a different cost-performance profile.
This goes beyond the typical "human-vs-LLM" scenario described above, and encompasses any situa-
tion where less expensive, less accurate ratings are combined with more expensive, more accurate ones,
even if both sources are automated (e.g., smaller vs. larger modelsm, or more vs. less inference-time
reasoning). In Sections 3 and 4, we present an extensive empirical investigation into the conditions
under which these new sampling rules prove beneficial over classical estimation. Specifically, we
identify that the success of our framework is determined by: (a) the overall error of the weak rater, (b)
the overall variance of the target strong rater, and (c) the heteroskedasticity of the weak rater’s errors.

2 COST-OPTIMAL ANNOTATION POLICIES

We now describe our methods for constructing active, cost-optimal evals. The methods rely on one
critical ingredient: an annotation policy π. The job of the annotation policy is to look at the input and
decide whether it should be labeled by the expensive rater. The theory in this section derives the opti-
mal policies under different restrictions on the policy space. These policies are oracle policies—we
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prove that they depend on properties of the data distribution, some of which are impossible to know
in advance. As described in Section 1, the point of this section is to tell us what kinds of policies we
should be targeting, not how to find them; later, we will explore how to estimate them in practice.

2.1 BASIC NOTATION

We observe inputsX ∼ PX from some space X and distribution PX : in the setting of LLMs, we think
of the input X as containing the prompt as well as the response from one or multiple LLMs. Our goal
is to approximate an expensive rating h(X) ∈ R, such as a human preference, with a cheap automated
evaluator g(X) ∈ R; for notational convenience we define H ≜ h(X) and G ≜ g(X). In our setup,
querying H and G cost ch and cg , respectively. We seek to query H only when it is “worth the cost”.

We consider a sequential setting: for every t ∈ N, we observe i.i.d. Xt ∼ PX and Gt ∼ PG|X . Upon
observing Xt, we then have the option to query Ht ∼ PH|X . Our objective is to estimate θ∗ = E[H],
the mean target rating. To this end, we develop estimators that efficiently sample only the data points
for which Ht is needed, and stop sampling after a certain budget is exhausted. Define the random
variable ξt ∼ Bern(πt(Xt)), which is the indicator of whether we sampled Ht. It equals 1 with
probability πt(Xt), and we have the freedom to choose the annotation policy πt based on the previous
data we have seen so far. We estimate θ∗ with the following unbiased estimator, defined for all T ∈ N:

θ̂T =
1

T

T∑
t=1

∆t where ∆t = Gt + (Ht −Gt)
ξt

πt(Xt)
. (1)

Here πt ∈ Π for some policy class Π. If Π is left unspecified, it should be assumed that πt can be any
function with range (0, 1]. This is the sequential estimator from Zrnic & Candès (2024): the difference
will be in how we set πt to balance labeling costs. In general, the annotation policy πt is allowed to
change arbitrarily online as a function of past data, as is the predictor g. For simplicity, we will focus
on the setting where the parameters of π and g remain fixed throughout and are not updated online, or
as if we are updating in batches; however our results will also hold asymptotically when π and g are
updated online and converge. We use the notation θ̂πT to denote the estimator in (1) with a fixed policy
π, i.e., where πt = π, ∀t ∈ T . To calculate the cost and error of our estimator, we additionally define:

ErrorT (π) ≜ E
[(
θ̂πT − θ∗

)2]
=

1

T

(
Var(H)− E[(H −G)2] + E

[
(H −G)2

1

π(X)

])
, (2)

CostT (π) ≜ T (chE [π(X)] + cg).

These functions describe the mean squared error and expected cost of the estimator with annotation
policy π as a function of time, and our goal will be to minimize one subject to a constraint on the
other. When we refer to a budget on the cost, it will be denoted as B. Furthermore, we note that,
for convenience, the cost-optimized policies that we present in the remainder of this section will
relax the constraint that the stopping time T stop at which CostT stop(π) is just under budget must be
an integer, though this does not have a significant effect on the optimization for large enough budgets
B where T stop ≫ 1. Some additional treatment for this restriction is included in Appendix B.

2.2 OPTIMAL RANDOM ANNOTATION

The simplest annotation policy does not depend on X , and simply queries H with some fixed
probability, which we denote as π(x) = p for a sampling rate p ∈ (0, 1]. In other words, we let
π ∈ Πrandom = {x 7→ p : p ∈ (0, 1]}. When p is too large, the cost is too high; when p is too small,
the error blows up. Our job is to choose the optimal balance, and the next result shows it has a simple,
explicit form that depends on the cost ratio cg/ch and the error of G compared to the variance of H .

Proposition 1. Let (X1, G1, H1), . . . , (XT , GT , HT ), T ∈ N, be an i.i.d. sequence of real-valued
random variables with joint distribution P , and define Error, Cost, and Πrandom as above. Assume
that P(G1 = H1) < 1 and that ch > cg > 0, and define the optimization problem

minimize
π∈Πrandom, T stop∈R>0

ErrorT stop(π) subject to CostT stop(π) ≤ B. (3)

Then the solution to Problem (3) for all x ∈ X is

3
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πrandom(x) =

{√
cg
ch

E[(H−G)2]
Var(H)−E[(H−G)2] if E[(H −G)2] < ch

ch+cg
Var(H)

1 otherwise.
(4)

We can make a few observations about πrandom. First, if the mean squared error of the weak rater
G is greater than the variance of H (or more precisely, more than a ch/(ch + cg) fraction of the
variance of H), then it is not helpful—and we should simply choose to query H all the time. If
MSE(H,G) is sufficiently low, however, then the rate at which we sample H varies inversely with
both the ratio of Var(H) to MSE(H,G) and the ratio of the cost of H to the cost of G. This makes
intuitive sense: if the target label H is high variance but our "weak" rater G is in fact a fairly "strong"
rater (in that it produces similar ratings to those of H), then we should primarily exploit G’s low cost,
high-quality predictions, while sampling H at just a low rate to correct for any minor bias that arises.

2.3 OPTIMAL ACTIVE ANNOTATION

Next, we study policies that depend onX; i.e., they queryH with some probability that depends onX .
This strategy can greatly improve statistical power when the error distribution is heteroskedastic in X;
for example, when some prompts are much harder than others. In this setting, it makes sense for π to
depend on X , and to ask for advanced rating help more often when G is likely to be wrong. Towards
that end, we define our annotation policy class to be π ∈ Π = {x 7→ f(x) : f(x) ∈ (0, 1]; ∀x ∈ X},
which is the set of annotation policies placing a strictly positive amount of sampling mass on each
query. As the next proposition shows, the optimal policy in this setting will depend on the uncertainty
of the weak rater, u(x) ≜ E[(H−G)2 | X = x], expressed as the expected mean squared conditional
error given X = x. For notational convenience, we also define the random variable U ≜ u(X).

Proposition 2. In the same setting as Proposition 1, define Π as above, let X be discrete, and
additionally define the optimization problem

minimize
π∈Π, T stop∈R>0

ErrorT stop(π) subject to CostT stop(π) ≤ B. (5)

Define the scaled and clipped policy, πclip, as:

πclip(x; τ) = min
(
γ∗(τ)

√
u(x), 1

)
=

{
γ∗(τ)

√
u(x) if

√
u(x) ≤ τ

1 otherwise,

where ch > cg > 0 and γ∗(τ) ∈
(
0, 1τ

]
is defined as

γ∗(τ) = min

(√
cg/ch + P (U > τ2)(

Var(H)− E[U1 {U ≤ τ2}]
)
+

,
1

τ

)
.

Then the solution to Problem (5) is πactive(x) = πclip(x; τ
∗), where τ∗ > 0 is the solution to

τ∗ = argmin
τ∈R>0

(chE[πclip(x; τ)] + cg)
(
Var(H) + E

[
U
(
πclip(x; τ)

−1 − 1
)])

.

Remark 3. The final optimization problem presented for the clipping threshold τ∗ is non-convex
and has no analytical solution. However, because it is a 1-dimensional optimization problem, we
can coarsely discretize and optimize τ via simple grid search.

On a technical level, the solution in Proposition 2 has a similar form to the active sequential estimator
proposed in Zrnic & Candès (2024), but with an optimized proportionality constant, as well as
additional clipping to rigorously account for the constraints on π(x) ∈ (0, 1]. The latter point is
particularly important, as it is not accounted for in prior work. In contrast to the fixed, prespecified
ratio prescribed by prior work, in Appendix B.7 we show how the cost-optimal target ratio of
expensive to cheap ratings can be as extreme as 0 or 1, depending on the cost ratio of G to H .

While the form of πactive is more complex than that of πrandom, it still admits a fairly straightforward
interpretation: for some confidence threshold τ∗ below which the conditional mean squared error
of G over all confident data points with

√
u(x) ≤ τ∗ is sufficiently low, we sample proportional to√

u(x). On the remaining highly uncertain examples where
√
u(x) > τ∗, we always use H , and

ignore G. The exact threshold τ∗ depends on the distributions of H and G, and their cost-ratio.
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We can also observe that Proposition 2 is a direct generalization of Proposition 1. When X is
independent of (H−G)2 so that u(x) = E[(H−G)2] ∀x ∈ X , the policy πactive reduces to πrandom:

γ∗(τ∗)
√
u(x)︸ ︷︷ ︸

optimal active

=

√
cg
ch

E[(H −G)2 | X = x]

Var(H)− E[(H −G)2]
=

√
cg
ch

E[(H −G)2]

Var(H)− E[(H −G)2]︸ ︷︷ ︸
optimal random

.

The intuitive conclusion is that active querying can help if the conditional squared error of G
has significant variance to it (i.e., there exist some regions of X where G has a much higher level
of agreement with H than on other regions of X , such as on easy vs. hard examples). This can be
contrasted with the optimal random policy, πrandom, from (4): there we sample at a fixed rate for each
X , where that rate depends only on G’s average error with respect to H across all types of inputs.

Takeaways: Cost-optimal annotation policies

We derive two policies for sampling the expensive rating H given a budget B: πrandom
chooses the optimal fixed probability p∗ ∈ (0, 1], while πactive defines an optimal input
conditional probability πactive(x) ∈ (0, 1]. Both navigate the following trade-off: reducing
E[π(X)] increases the total number of samples we can afford to rate at all, but not query-
ingH whenG is inaccurate increases variance. Finally, both policies converge to the baseline
estimator (i.e., πbase(x) = 1) when the error of G is too high relative to the variance of H .

3 COMPARING COST-OPTIMAL POLICIES IN SIMULATED SETTINGS

The estimation error of the optimal policies presented in Section 2 depends on the distributions of
the expensive target label H , the cheap estimated label G, and the cost-ratio cg/ch for querying G
versus H . To build a clearer understanding of how these variables influence the performance of our
proposed policies, we now conduct a series of carefully controlled experiments on simulated data.
Note that since all of the key distributional quantities (i.e., Var(H), MSE(H,G), etc) are known in
the synthetic settings we consider in this section, we are also able to compute πactive and πrandom
exactly—as opposed to the more difficult real-world data settings we will tackle next in Section 4.

3.1 METRICS

To measure the relative performance of annotation policy π1 vs π2, we compute the ratio of their
errors at T stop

i . Once again relaxing the restriction that T stop
i ∈ N, we compute a budget-free

approximation based on the expression for ErrorT stop
i

(π), where T stop
i = B/(chE[πi(X)] + cg):

ErrorRatio(π1, π2) ≜

(
chE[π1(X)] + cg

) (
Var(H)− E[(H −G)2] + E

[
(H −G)2 1

π1(X)

])
(
chE[π2(X)] + cg

) (
Var(H)− E[(H −G)2] + E

[
(H −G)2 1

π2(X)

]) .
Note that while ErrorRatio(π1, π2) does not depend on the budget, it does implicitly depend on
PX as well as PH|X and PG|X . We will focus on ErrorRatio(πactive, πbase), the error ratio of the
active estimator to the baseline estimator which only uses H , as well as ErrorRatio(πactive, πrandom),
which compares the active estimator to the estimator that doe not depend on X . Note that for
ErrorRatio(·, πbase), we disregard cg for πbase, and replace the denominator with chVar(H).

3.2 GAUSSIAN DATA

We construct an experiment where we change Var(H), MSE(H,G), and Var(U) independently
(recall that we introduced U ≜ u(X) = E[(H − G)2 | X] in Section 2.3). First, we draw
H ∼ N (0, ν) so that E[H] = 0 and Var(H) = ν. Then we draw U ∼ Gamma

(
µ2/η, η/µ

)
so that

MSE(H,G) = E[U ] = µ and Var(U) = η. Finally, we set G = H +
√
U .

Results are shown in the top row of Figure 1. The left panel plots the error ratio of πactive to πbase as
a function of MSE(H,G) and for different Var(H), while keeping Var(U) = 0.5. As expected, the
error of πactive increases with the MSE(H,G), with the rate of increase influenced by Var(H). When
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Figure 1: Results on the Gaussian (top) and Bernoulli (bottom) settings while varying MSE(H,G),
Var(U), and cg/ch. Each line plots a different value of Var(H), where we choose values that are
representative of low, medium, or high variance settings compared to MSE(H,G). In the Bernoulli
setting, MSE(H,G) = E[H ̸= G], and Var(U) can be at most MSE(H,G)(1−MSE(H,G)).

MSE(H,G) is large relative to Var(H), πactive provides no benefit over πbase. The middle panel
plots the error ratio of πactive to πrandom while varying Var(U) for a fixed MSE(H,G). For small
values of Var(U), the conditional error in G is nearly the same everywhere, and there is no benefit
to using πactive over πrandom. Larger values of Var(U), however, lead to a performance advantage
for πactive. The right panel plots the error ratio of πactive to πbase while keeping MSE(H,G) and
Var(U) fixed, but varying cg/ch. As expected, πactive is most effective when cg ≪ ch.

3.3 BERNOULLI DATA

While the Gaussian setting above is informative, in many typical situations H is bounded, such as
when H is a binary, Bernoulli rating for win-rate or accuracy estimation. This creates a more difficult
setting for πactive, since both Var(H) and Var(U) are upper-bounded by 0.25 for Bernoulli H . In
fact, in binary settings, MSE(H,G) and Var(U) are in tension: the more accurate G is, the lower
the variance of its errors, and πactive will be limited in terms of any relative benefit it can provide
over πrandom. The same is also true for when G is uniformly inaccurate. To better analyze this
kind of setting, we construct a binary dataset where first we draw H ∼ Bern(0.5 +

√
0.25− ν), so

that Var(H) = ν. Next, we draw U from a Beta distribution with mean µ and variance η, where
η ≤ µ(1− µ), which is satified by U ∼ Beta(κµ, κ(1− µ)) for κ = µ(1−µ)

η − 1. Finally, we flip H
with probability U to get the prediction G (i.e., G is also Bernoulli with MSE(H,G) = µ).

Results are shown in the bottom row of Figure 1 for πactive vs πbase (see Appendix D for πactive
vs. πrandom). As in the Gaussian setting, the error ratio of πactive to πbase improves dramatically
with larger Var(U). Note that the active and random estimator are the same when Var(U) = 0 . For
larger MSE(H,G), Var(U) must also be increasingly large for πactive to improve significantly over
πbase. Indeed, on the right-hand side of the bottom row of Figure 1 where MSE(H,G) > Var(H),
we can see that πrandom provides no benefits over πbase; that is, ErrorRatio(πrandom, πbase) = 1
when Var(U) = 0, which corresponds to the fixed-rate sampling policy as noted earlier. When
Var(U) ≫ 0, however, πactive can obtain substantially lower estimation error than πbase. Still,
unlike the earlier Gaussian data, the best active error ratio in this setting is bounded from below
by MSE(H,G), and is achieved when U has maximum variance (which is also bounded).

Takeaways: Performance characteristics of cost-optimal annotation policies

In general, the following properties hold for active annotation versus standard annotation (sim-
ilar findings for random): (i) as the error of G, MSE(H,G), increases, the benefit decreases;
(ii) as the variance of the conditional squared-error of G, Var(U), increases, the benefit in-
creases; and (iii) as the cost ratio, cg/ch, of G relative to H increases, the benefit decreases.
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4 ESTIMATING COST-OPTIMAL POLICIES IN PRACTICE

The theoretical results in Section 2 derive optimal annotation policies under the assumption that
the key distributional parameters governing the relationship between the expensive rater (H) and
the cheap rater (G) are known. In reality, these parameters must be estimated (imperfectly; see
Appendix B.5 for theoretical error analysis). Furthermore, the optimal threshold τ∗ and scaling
factor γ(τ∗) for the active policy πactive in Proposition 2 also depend on conditional versions
of these unknown quantities (e.g., the conditional MSE, E[(H − G)2 | U ≤ τ ]). Some of these
estimates can be derived automatically from the model itself, for example if g(x) ∈ [0, 1] is a binary
classifier, we may choose u(x) = g(x)(1− g(x)), which is equal to E[(H − g(x))2 | X = x] when
g(x) = P(H = 1 | X = x). Alternatively, u(x) can be a separate prediction, such as by asking an
LLM for its confidence (Kadavath et al., 2022; Xiong et al., 2024). For the key parameters Var(H),
MSE(H,G), γ(τ∗), and τ∗, we explore estimating them using the following approaches:

Policy transfer from related datasets (A1). Here we transfer all parameters necessary for π from
a separate, but related, dataset. For example, in Section 4.2, we use data from the Chatbot Arena
dataset (Zheng et al., 2023; Chiang et al., 2024) to estimate the win-rate of GPT-4 over Claude 2.1,
but transfer parameters for πrandom and πactive from a separate set of comparisons between different
available models. We also calibrate G using Platt scaling (Platt, 1999) on the transfer dataset.

Policy burn-in on the first nb examples (A2). When a suitable transfer dataset is not available as in
A1, we can take a hybrid approach where we start by sampling H for the first nb = 200 examples
with probability 1, and then use them to estimate the parameters necessary for πactive and πrandom.
We also calibrate G using Platt scaling on these nb examples. As a fair comparison to the baseline
method of only using H , we also allow these nb samples to be used as additional data for estimating
θ = E[H]. Specifically, we use the (estimated) inverse-variance-weighted average of the annotation
policy π’s estimate, θ̂πT , and the classical estimate on the burn-in data, θ̂nb

= 1
nb

∑nb

i=1Hi,

θ̂πT stop+nb
=

V̂ar
(
θ̂πT stop

)
V̂ar(θ̂nb

) + V̂ar
(
θ̂πT stop

) θ̂nb
+

V̂ar(θ̂nb
)

V̂ar(θ̂nb
) + V̂ar(θ̂πT stop)

θ̂πT stop ,

where V̂ar(·) is also estimated on the burn-in data. Note that θ̂T stop+nb
is still unbiased. To get a

sense of how close to optimal the estimated policies are, we also compute an Oracle: πactive with
parameters computed using the whole dataset, and u(x) taken directly as |h(x)− g(x)|2.

4.1 METRICS

We compare the baseline method πbase of always sampling H with the random policy πrandom and
the active policy πactive. For each policy, we compute the mean squared error, E[(θ̂πT − θ∗)2], for
a range of budgets B (ch is normalized to be one "cost unit"), with 95% bootstrap CIs shown over
2k trials. We then compute the mean effective budget, which we define as the budget B′ required
for πbase to achieve the same MSE as the given policy π at a budget B. If π is more cost-effective
than πbase, then B′ will be larger than B (higher is better). Finally, we also compute the mean
cost savings for a given mean-squared error, which we define as the budget deficit relative to πbase
required to achieve that target error (higher is better). By definition, we have that the mean effective
budget for πbase is the line y = x (since B′ = B always), while the cost savings for πbase is 0.

4.2 DATASETS

We report experimental results on four datasets, which span a diverse range of raters and distributional
characteristics. For each task, we calculate θ∗ = E[H] using the full dataset. For simplicity we
assume that the total number of data points Xt is at least ⌈B/cg⌉, and sample with replacement from
the original dataset if not. We leave treatment of datasets where T stop ≤ Tmax (and the constraint is
active) to future work. See Appendix D for results on three additional datasets: Attributed Question
Answering (Bohnet et al., 2023), ImageNet (Deng et al., 2009), and Seahorse (Clark et al., 2023).

Chatbot Arena. The Chatbot Arena dataset (Zheng et al., 2023; Chiang et al., 2024) evaluates LLMs
via pairwise comparisons (i.e., eliciting preferences for response A vs. B from two models for the same
query). Among the 64 models present in the 57k total comparisons, we focus on estimating the win-
rate of GPT-4 (specifically, the 11/06 preview model) vs. Claude 2.1, as they are both strong models,
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Figure 2: Results for estimating the win-rate of GPT-4 vs. Claude-2.1 on the Chatbot Arena dataset
when using policy transfer (see approach A1 in Section 4). Both πrandom and πactive substantially
improve estimation quality over πbase for a given budget. Consistent with our theory, πactive’s
performance benefits are substantially magnified on the heterogenous easy/hard split (bottom row).

and also have the most pairwise comparisons in the dataset (1073 total), which allows us to get a reli-
able estimate of θ∗. We modelH via the majority preference from 10 Gemini 1.5 Flash (Gemini Team,
2024) evals (5 samples each comparing A vs. B and B vs. A to mitigate position bias). G is the win
probability predicted by a Gemma-3 4B model (Gemma Team, 2025) which has been fine-tuned on the
other model comparisons from the dataset to predict the Gemini labels. U is computed as G(1−G).

Chatbot Arena (estimated easy/hard split). In an effort to include a dataset with more (identifiable)
heteroskedasticy, we also include a filtered version of the GPT-4 versus Claude 2.1 task described
above, where we construct a dataset slice containing only the examples corresponding to the bottom
25% and top 25% of Gemma’s uncertainty estimates (we use U as the metric). While partly
manipulated, this scenario is designed to test for potential gains from actively choosing when to
query the expensive rater, as per the intuition from Section 3, where it was shown how higher Var(U)
benefits active policies (though note this may not be true if the estimated U is inaccurate).

4.3 RESULTS

Figure 2 shows results for the Chatbot Arena datasets using the transfer approach (A1), while
Figure 3 shows results for all datasets using the burn-in approach (A2).1 As expected, the absolute
improvement for both πactive over πrandom and πrandom over πbase is greatest in the transfer setting in
Figure 2, where the parameters of πrandom and πactive can be approximated in advance. In particular,
to achieve a root mean-squared error (RMSE) of 0.05, πactive requires only ≈ 40% of the budget
required by πbase in the overall setting of Chatbot Arena, and only ≈ 50% of the budget in the
easy/hard setting. These cost savings become even more pronounced the more precise (i.e., lower
MSE) the estimates are required to be. In Figure 3, where the first nb = 200 examples are fully
labeled in order to estimate the parameters of πrandom and πactive, the absolute difference in MSE
is smaller for πrandom and πactive over πbase, though the subsequent cost savings over πbase for
achieving lower and lower MSE (that is, past the MSE of the initial nb sample estimate) are consistent.

As also predicted by our theory, the results in Figure 2 and Figure 3 show that the extent of the
improvement in estimation accuracy varies per dataset (see also the additional results in Appendix D).
In particular, the best results are obtained on the easy/hard split of the Chatbot Arena dataset, where
(i) the weak annotator G is a good proxy of the strong annotator H (both are LLMs), and (ii) there

1We also apply power tuning (Angelopoulos et al., 2023b) after all samples are collected. See Appendix B.2.
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Figure 3: Results on Chatbot Arena using 200 examples as a burn-in to estimate policy parameters,
and then switching to the initialized annotation policy thereafter (see approach A2 in Section 4; note
that budgets B on the x-axis reflect the “additional” budget used after the burn-in examples). While
the absolute differences in squared errors for the estimated means are smaller than in the transfer
setting in Figure 2, both πrandom and πactive still achieve consistent improvements over πbase.

is more variability in the difficulty of examples according to the predicted U , resulting in a greater
opportunity for improvement for πactive. On the other hand, while results on the homogeneous split
of the Chatbot Arena dataset show improvements for πrandom and πactive over πbase, the relative
improvement of πactive over πrandom is fairly small—indicating that while the weak annotator G
that is used is relatively good on average, there is not much variability in its estimated uncertainty,
u(x), on those distributions. To that point, when we compare to performance using the oracle active
policy, it is also clear that the estimated u(x) is also far from perfect. Even on the datasets where
the improvement due to the estimated active policy is small, the oracle policy which has knowledge
of the true error of G often promises significant headroom: indicating that the working on better
autorater uncertainty estimation is a promising and important direction for future work.

Takeaways: Performance of practical approximations to cost-optimal policies on real data

Section 2 proved that the optimal policies depend on distributional parameters that must be es-
timated. How well they are estimated does not affect the consistency or unbiasedness of the
overall estimator, but it does affect the policy’s performance advantage over passive strategies.
Yet while estimation is non-trivial, our experiments validate generic recipes that can success-
fully approximate the optimal policy—and yield policies with consistent gains over πbase.

5 CONCLUSION

This paper introduces theory and practice for cost-optimal active evals, a framework that strategically
combines cheap raters with more expensive, accurate alternatives to improve evaluation efficiency. We
derive annotation policies that are optimal in the sense of minimizing expected error under annotation
budget constraints, and we empirically characterize the conditions under which such policies yield
improvements over non-hybrid (e.g., human-only) and non-active hybrid alternatives. However, we
also show that the annotation policies that are optimal in theory are distribution dependent, and include
a number of task-specific parameters that must be estimated. Furthermore, optimal active annotation
depends on having an accurate uncertainty estimates, which can be uncalibrated for AI raters.
Nevertheless, many realistic evaluation scenarios involve incrementally adding new models to existing
benchmarks; and as shown in §4.3, policy transfer can work quite well. Furthermore, our results
demonstrate that even when active sampling is difficult for the reasons outlined above, the simple—but
optimal—fixed sampling rate policy that we derived consistently provides substantial improvements.
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REPRODUCIBILITY STATEMENT

All proofs of theoretical results are included in Appendix C. Implementation details for all of the
empirical experiments are included in Appendix E. All datasets used in for the experiments in
Section 4, and the additional experiments in Appendix D, are publicly available. The generation
process for the synthetic datasets in Section 3 is described in detail in Sections 3.2 and 3.3.
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A ETHICS STATEMENT

This paper describes fundamental research on the evaluation of generative AI systems, which is a
core technical challenge. Hybrid active evaluation has the potential to improve the cost/accuracy
tradeoff of system evaluation, which can make high-quality AI systems easier to build, deploy, and
monitor. We do not speculate about broader impacts that may follow from this technical contribution.
Gemini was used for light copy-editing during the writing of this work.

B ADDITIONAL THEORETICAL RESULTS

B.1 DERIVATION OF ErrorT (π)

We provide a short derivation of ErrorT (π) in (2). Because the estimator θ̂πT is unbiased,

E
[(
θ̂πT − θ∗

)2]
= Var(θ̂πT ) =

1

T
Var(∆π)

when π and g are fixed, and where ∆π = G+ (H −G)2 ξ
π(X) . Then,

Var(∆π) = E

[(
G+ (H −G)

ξ

π(X)

)2
]
− (θ∗)2

= E
[
G2
]
+ E

[(
(H −G)

ξ

π(X)

)2
]
+ 2E

[
G(H −G)

ξ

π(X)

]
− (θ∗)2

= E
[
G2
]
+ E

[
(H −G)2

1

π(X)

]
+ 2E [G(H −G)]− (θ∗)2

= Var(H)− E[(H −G)2] + E
[
(H −G)2

1

π(X)

]
.

B.2 POWER TUNING

Angelopoulos et al. (2023b) proposed "power tuning" as a way to improve upon the standard PPI
estimator by allowing the estimator to adapt to the "usefulness" of the supplementary predictions
(here, the weak rater G) with a tuning parameter λ ∈ R. We now extend this to our setting.

Let us consider a modified version of our estimator, with some fixed policy π and λ ∈ R:

θ̂λT =
1

T

T∑
t=1

λGt + (Ht − λGt)
ξt

π(Xt)
.

For all values of λ, this estimator is unbiased. Our job is to pick the value with minimum error.
Following the previous derivation in Section B.1, the error of the estimator is

ErrorT,π(λ) =
1

T

(
Var(H)− E[(H − λG)2] + E

[
(H − λG)2

1

π(X)

])
,

which is optimized by

λ∗ = argmin
λ∈R

E
[
(H − λG)2

(
1

π(X)
− 1

)]
= argmin

λ∈R
λ2E

[
G2

(
1

π(X)
− 1

)]
− 2λE

[
HG

(
1

π(X)
− 1

)]
.

The above expression is quadratic in λ, and its optimizer is

λ∗ =
E
[
HG

(
1

π(X) − 1
)]

E
[
G2
(

1
π(X) − 1

)] ,
14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

which can be estimated in any consistent way, e.g., by its prediction-powered plug-in that can be
computed after sampling all (Xt, Gt, Ht, ξt) as:

λ̂T =

1
T

T∑
t=1

(
G2

t + (HtGt −G2
t )

ξt
πt(Xt)

)(
1

πt(Xt)
− 1
)

1
T

T∑
t=1

G2
t

(
1

πt(Xt)
− 1
) .

B.3 OPTIMAL RANDOM ANNOTATION: DISCRETE TIME CASE

The following proposition is the full version of Proposition 1—with the constraint that T stop is an
integer. This leads to a substantially more complex optimization problem; we show the solution here,
but we do not implement it in practice.

Proposition 4. Let (X1, G1, H1), . . . , (XT , GT , HT ), T ∈ N, be an i.i.d. sequence of real-valued
random variables with joint distribution P , and define Error, Cost, and Πrandom as above. Addition-
ally, define the optimization problem

minimize
π∈Πrandom

T stop∈N+

ErrorT stop(π)

subject to CostT stop(π) ≤ B.

(6)

Then the optimal solution to Problem (6) is either π∗(x) = 1 or

π∗(x) =
B − k∗cg
k∗ch

.

for all x ∈ X , where

k∗ = argmin
k∈K

1

k

(
Var(H)− E[(H −G)2]

)
+

ch
B − kcg

E[(H −G)2],

and

K =


B 1 +

√
ch
cg

E[(H−G)2]
Var(H)−E[(H−G)2]

cg − ch
E[(H−G)2]

Var(H)−E[(H−G)2]

 ,
B

1 +
√

ch
cg

E[(H−G)2]
Var(H)−E[(H−G)2]

cg − ch
E[(H−G)2]

Var(H)−E[(H−G)2]


 .

It is easy to disambiguate between p∗ = 1 and the optimal policy based on k∗ by comparing the
objective values directly.

B.4 EXTENSION TO CONVEX M-ESTIMATORS

Here we give an extension of Proposition 2 to general convex M-estimators (Van der Vaart, 2000).
Consider a convex loss function, ℓθ for some θ ∈ Rd, equipped with the simplified notation ℓθ,t =
ℓθ(Xt, Ht) for all t ∈ N and ℓgθ,t = ℓθ(Xt, GT ). We also use ℓθ = ℓθ(X,H) and ℓgθ = ℓθ(X,G)

for generic points (X,G,H) ∼ P . The target of estimation is the population minimizer, θ∗ =
argminθ∈Rd E[ℓθ]. The active estimator is

θ̂T = argmin
θ∈Rd

1

T

T∑
t=1

∆θ,t where ∆θ,t = ℓgθ,t +
(
ℓθ,t − ℓgθ,t

) ξt
πt(Xt)

,

for some sequence of annotation policies πt, t ∈ N. For the purpose of deriving optimal annotation
policies when πt is fixed as in Section 2, we will also define

θ̂πT = argmin
θ∈Rd

1

T

T∑
t=1

∆θ,t where ∆θ,t = ℓgθ,t +
(
ℓθ,t − ℓgθ,t

) ξt
π(Xt)

.

Unlike the estimator in the case of mean estimation from Section 2, θ̂πT does not have a closed-form
variance in finite samples. The standard solution in the analysis of M-estimators is to appeal to the
asymptotic linearity of M-estimators to analyze the variance (Van der Vaart, 2000), as is done in
Theorem 1 of Zrnic & Candès (2024). The result below combines the aforementioned theorem with
standard parametric analysis to give the asymptotic distribution of the squared error.
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Proposition 5. Let ℓθ be smooth (see Assumption 1 in (Zrnic & Candès, 2024)) and define the
Hessian Wθ∗ = ∇2E[ℓθ∗,t]. Then if θ̂πT

p→ θ∗, we have
√
T (θ̂πT − θ∗)

d→ N (0,Σ∗),

where Σ∗ =W−1
θ∗ Var

(
∇ℓgθ∗,t +

(
∇ℓθ∗,t −∇ℓgθ∗,t

)
ξt

π(Xt)

)
W−1

θ∗ . Therefore, we have

T
∥∥∥θ̂πT − θ∗

∥∥∥2
2

d→
∑
j∈[d]

λjζj ,

where ζj
i.i.d.∼ χ2

1 for all j ∈ [d] and λj is the jth eigenvalue of Σ∗.

The above proposition gives us consistency of the active estimator, and more importantly, the
asymptotic distribution of the squared error. Since E[ζj ] = 1 for all j, and the sum of the eigenvalues
of a square matrix is equal to the trace, we know the mean-squared error is asymptotically equal
to ErrorT (π) =

1
T Tr(Σ∗). With this in hand, we can use the same strategy from earlier to find the

optimal annotation policy, using the asymptotic approximation of the error. For simplicity, here we
assume that we are always on the interior of the constrained optimization problem, i.e., we solve
for unconstrained π(x) while assuming that γ∗

√
u(X) ≤ 1. That said, a more rigorous treatment

analogous to that in Proposition 2 can also be applied here, which we leave to future work.

Proposition 6. In the setting of Proposition 5, let (X1, G1, H1), . . . , (XT , GT , HT ), T ∈ N, be an
i.i.d. sequence of real-valued random variables with joint distribution P , and define ErrorT (π) =
1
T

∑
j∈[d] Tr(Σ

∗). Furthermore, define Cost and Π as in Proposition 2.

Construct the optimization problem
minimize

π∈F, T stop∈R>0

ErrorT stop(π)

subject to CostT stop(π) ≤ B.
(7)

where F = {x 7→ f(x) : f(x) ∈ (0,∞); ∀x ∈ X}. Then the solution to Problem (7) is

π∗(x) =

√
cg
ch

· u(x)
C

where
u(x) = E

[
Tr
(
W−1

θ∗ (∇ℓθ∗ −∇ℓgθ∗) (∇ℓθ∗ −∇ℓgθ∗)
⊤
W−1

θ∗

)
| X = x

]
,

and

C = Tr
(
W−1

θ∗

(
E
[
∇ℓgθ∗(∇ℓθ∗)⊤ + (∇ℓθ∗ −∇ℓgθ∗)(∇ℓgθ∗)

⊤]− E[∇ℓθ∗ ]E[∇ℓθ∗ ]⊤
)
W−1

θ∗

)
.

Remark 7. When π∗(x) ≤ 1, ∀x ∈ X , then π∗ is also optimal for Problem (7) solved for π ∈ Π.

B.4.1 MEAN ESTIMATION

In the case of mean estimation, the loss function takes the form

ℓθ(x, h) =
1

2
(h− θ)2,

where ∇ℓθ∗(X,H)−∇ℓθ∗(X,G) = H −G, and Wθ∗ is the identity matrix. Plugging back into π∗

in Proposition 6 recovers πactive from Proposition 2 without clipping (τ∗ = ∞), i.e.,√
cg
ch

E[(H −G)2 | X = x]

Var(H)− E[(H −G)2]
.

B.4.2 GENERALIZED LINEAR MODELS

In the case of GLMs, the loss function takes the form
ℓθ(x, h) = −hx⊤θ + ψ(x⊤θ)

for some convex log-partition function ψ. Thus, ∇ℓθ∗(X,H) − ∇ℓθ∗(X,G) = (G − H)X . So,
again by the linearity of the trace, we have that

π∗(x) ∝
√
E [(H −G)2 | X = x] Tr

(
W−1

θ∗ xx⊤W
−1
θ∗

)
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B.5 EFFECTS OF NOISY POLICY PARAMETERS ON ESTIMATOR VARIANCE

In practice, we will be using only an imperfect estimate of u(x) for πactive, which can negatively
affect the performance of πactive to a substantial degree, as we have seen for some of the datasets
in Section 4. Similarly, we will also only be using imperfect estimates of the optimal scaling and
thresholding parameters used in πactive, which further limit performance.

There are two main factors that affect the error of a policy:

1. The variance, Var(∆π), of each active increment ∆π , where ∆π = G+ (H −G) ξ
π(X) .

2. The average sample size at which the estimator runs out of budget, T stop = B
chE[π(X)]+cg

.

In this section, we provide some additional theoretical analysis on the first factor, i.e., the increase in
Var(∆π) due to the mispecification error of an estimated active policy, while noting that the total
error will be further affected by the relative increase/decrease of the mean sampling rate, E[π(X)].

Proposition 8. In the same setting as Proposition 2, let π̃ : X → (0, 1] be any function satisfying

E
[

1

π̃(X)
− 1

π∗(x)

]
≤ δ,

where π∗ is the oracle estimate of πactive. Let (H −G)2
a.s.
≤ b. Then Var(∆π̃) ≤ Var(∆π∗

) + bδ.

If we simply things by assuming an additive error model for a policy without thresholding (i.e.,
τ∗ = ∞), we can refine the bound somewhat further:

Corollary 9. Let π̃ = γ̃
√
ũ(x), where γ̃ = γ∗+ δγ , ũ(x) = u(x)+ δu(x), and u(X)

a.s.
≥ ϵ. Further

assume that π̃ is admissible, i.e., π̃(x) ∈ (0, 1] ∀x. Then, up to first-order terms in δγ and δu(x),

Var(∆π̃) ≤ Var(∆π∗
) + b

(
|δγ |

(γ∗)2
√
ϵ
+

1

2γ∗ϵ3/2
E[|δU (X)|]

)
.

We can make a few observations about the results in Proposition 8 and Corollary 9. First, as long as
the error, (H−G)2 is bounded, and the estimated inverse propensity score 1/π̃(X) is not significantly
higher than the oracle inverse propensity score 1/π∗(X) on average, then the increase in variance
over the oracle will not be that large. Generally speaking, this is satisfied when the estimated policy
is not overconfident on examples that in fact have high error. Of course, regularizing the estimated
policy to be underconfident on all examples is also not always a satisfying solution: as E[π̃(X)] → 1,
we obtain a policy that is no better than πbase. Similarly, as seen in Section 3, the headroom for
πactive over πbase is largest when (H −G)2 is not bounded (e.g., the Gaussian data setting compared
to the Bernoulli data setting), as large (H − G)2 also increase the possible variance of U . This
reinforces the importance of having accurate uncertainty estimates when computing active policies.

B.6 OPTIMAL ACTIVE SAMPLING OF INPUT EVALUATION QUERIES

This section shows how to optimally choose the distribution of X . In contrast, Section 2 in the main
paper focuses only on querying annotators for H given i.i.d. samples from the fixed distribution P
for X . Deciding which inputs to sample can be a more difficult problem than deciding whether to
annotate a given input sample because X can be large and complex. However, we can always apply
the optimal rules to a coarse stratification of X . Towards this end, we define the estimator

θ̂Q,π
T =

1

T

T∑
t=1

∆t, where ∆Q,π
t =

dP

dQ
(Xt)

(
Gt + (Ht −Gt)

ξt
π(Xt)

)
,

Xt
i.i.d.∼ Q, Ht ∼ PH|X , Gt ∼ PG|X

which is our previous estimator with a fixed policy π, and where theX are sampled from a distribution
Q, and the distribution of H | X and G | X remain unchanged. This estimator is unbiased for θ∗,
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and a straightforward calculation gives that the error of the estimator is

ErrorT (Q, π) = EQ

[(
θ̂Q,π
T − θ∗

)2]
=

1

T
Var(∆Q,π)

=
1

T

(
EP

[
dP

dQ
(X)

(
H2 +

(
1

π(X)
− 1

)
(H −G)2

)]
− (θ∗)2

)
.

The goal is to pick a distribution Q to minimize the error of the estimator. The following proposition
gives an explicit form for this optimal sampling distribution.

Proposition 10. Define ErrorT as above, and define the set of all strictly positive densities, Q =
{x 7→ Q(x) : Q(x) ∈ R>0 and Q ∈ ∆X }. Furthermore, define the optimization problem

minimize
Q∈Q

ErrorT (Q, π) (8)

for a fixed time T ∈ N. Then the solution to Problem (3) is

Q∗(x) = P(X = x)

√
ν(x)

EP [
√
ν(X)]

,

where

ν(x) = EP

[(
H2 +

(
1

π(X)
− 1

)
(H −G)2

) ∣∣∣ X = x

]
for all x ∈ X .

We leave empirical exploration of active input sampling to future work.

B.7 INFORMATIVE SPECIAL CASES FOR πactive

Prior work (Zrnic & Candès, 2024; Gligorić et al., 2024) target some fixed, prespecified value (i.e.,
some ratio n/N ) for E[π(X)]. A key distinction of this work is that we also optimize E[π(X)],
which will depend strongly on cg/ch, that is, the cost ratio of G to H . In this section we analyze two
extreme, but informative cases, for active sampling when either cg/ch = 0 or cg/ch = ∞, that serve
to illustrate how E[πactive(X)] for the cost-optimal policy πactive can consequently be as extreme as
0 or 1.

OPTIMAL POLICY FOR cg = 0

We start with the special case where cg = 0, so that we can obtain essentially infinitely many queries
of the weak rater G irrespective of the budget constraint. In this case, we expect that unless G has
a prohibitively large error E[(H −G)2], we can purely rely on querying G, and overcome its error
with sufficiently many samples. Indeed, let us assume that E[(H −G)2] = E[U ] < Var(H). Then
we note that for any τ > 0:

τ

√
cg/ch + P(U > τ2)

Var(H)− E[U1 {U ≤ τ2}]
=

√
τ2P(U > τ2)

Var(H)− E[U1 {U ≤ τ2}]

≤

√
τ2P(U > τ2)

E[U ]− E[U1 {U ≤ τ2}]

=

√
τ2P(U > τ2)

E[U1 {U > τ2}]
≤ 1,

where the first inequality is due to our assumption that E[U ] < Var(H), and the last inequality
follows from E[U1

{
U > τ2

}
] > τ2P(U > τ2). Consequently, we get that in this case,

γ∗(τ) =

√
P(U > τ2)

Var(H)− E[U1 {U ≤ τ2}]
.
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Suppose for now that we only consider the values τ where U further satisfies that
√
Uγ∗(τ) ≤ 1

almost surely, and denote this set by T . Let ∆ = Var(H)− E[U ] > 0. Then we see that

min
τ∈T

chE[πclip(x; τ)]
[
∆+ E

[
U

πclip(x; τ)

]]
=min

τ∈T
chE[

√
Uγ∗(τ)]

[
∆+ E

[
U√

Uγ∗(τ)

]]
=min

τ∈T
chE[

√
Uγ∗(τ)]∆ + chE[

√
Uγ∗(τ)]E

[ √
U

γ∗(τ)

]
.

Since γ∗(τ) is deterministic, it cancels from the second term above, and we get that the annotation
cost over τ ∈ T is monotonically increasing in γ∗(τ), meaning that we choose τ → ∞, which
yields γ∗(τ) → 0 (since P (U > ∞) = 0). We also note that whenever

√
U ≤ B, all τ such

that γ∗(τ) < 1/B are in T trivially, since this satisfies
√
Uγ∗(τ) < 1. In particular, this includes

our choice of τ → ∞, which ensures that γ∗(τ) → 0. Finally, we note that from the proof of
Proposition 2 (specifically, Equation 11), we have that π(x) = γ

√
u(x) minimizes the objective

(chE[π(X)] + cg)

[
Var(H)− E[U ] + E

[
U

π(X)

]]
,

over all mappings π ∈ {x 7→ f(x) : f(x) ∈ (0,∞); ∀x ∈ X}. Since we find that our optimal choice
without imposing the constraint π(x; τ) ≤ 1 is already feasible, it is also optimal for the constrained
problem, π ∈ {x 7→ f(x) : f(x) ∈ (0, 1]; ∀x ∈ X}.

OPTIMAL POLICY FOR ch = 0

The other extreme case is simpler. When ch = 0, the objective for τ∗ becomes monotonically
decreasing in π(x; τ). If we assume that τ is such that γ∗(τ) < 1/τ , then we find that the expression√

cg/ch + P (U > τ2)(
Var(H)− E[U1 {U ≤ τ2}]

)
+

becomes infinite due to ch = 0, and hence we must have γ∗(τ) = 1/τ . However, for any x such that
π(x; τ) < 1, we have 1/π(x; τ) = τ/

√
u(x). Consequently, minimizing over τ results in τ = 0.

But this gives π(x; τ) = ∞, so that we must have π(x; τ) = 1 for all x. Intuitively, this makes
sense because any π(x; τ) < 1 results in an estimator with variance strictly greater than Var(H), but
having π(x; τ) ≡ 1 allows us to attain the smallest possible variance of Var(H). Since there is no
effect of these choices on the estimation cost, we choose the lowest variance estimator in this case,
and direct all our queries to the strong rater.

C PROOFS

C.1 PROOF OF PROPOSITION 1

Proof. Since ErrorT (π) is monotone in T for all π, we should first set T stop to be the largest T for
which the constraint holds. This value is

T stop =
B

chp+ cg
.

Plugging this into the objective yields

(chp+ cg)

(
Var(H)− E[(H −G)2] +

1

p
E
[
(H −G)2

])
,

which, after removing terms that do not depend on p, is equivalent to minimizing

chp
(
Var(H)− E[(H −G)2]

)
+
cg
p
E
[
(H −G)2

]
19
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subject to the constraint that p ∈ [0, 1].

This is a convex problem in p, and we know that the solution lies either on the boundary or on the
interior. We will compare the values of the objectives in three cases: p∗ = 0, p∗ = 1, and p∗ ∈ (0, 1).
It is clear that p∗ = 0 is infeasible (unless H a.s.

= G, which renders the problem trivial) because the
factor cg/p appears in the above objective. In the case that p∗ = 1, the objective value is

ch
(
Var(H)− E[(H −G)2]

)
+ cgE

[
(H −G)2

]
.

In the case that p∗ ∈ (0, 1), it must be a critical value, so it satisfies the first-order condition

ch
(
Var(H)− E[(H −G)2]

)
=

cg
(p∗)2

E[(H −G)2],

and thus,

(p∗)2 =
cgE[(H −G)2]

ch(Var(H)− E[(H −G)2])
. (9)

However, because we are in the case p∗ ∈ (0, 1), the right-hand side above must be positive (otherwise
the square root would be imaginary), and it cannot be greater than 1 (otherwise we would have p∗ > 1,
which is a contradiction). This gives us that

p∗ ∈ (0, 1) =⇒ E[(H −G)2] < Var(H) and (cg + ch)E[(H −G)2] < chVar(H).

Under these conditions, we can take square roots on both sides of (9) to obtain

p∗ =

√
cg
ch

1
Var(H)

E[(H−G)2] − 1
.

The objective value at this point is

2
√
cgch

√
E[(H −G)2](Var(H)− E[(H −G)2]).

Finally, comparing the above objective value with that of p∗ = 1, we have that

2
√
cgch

√
E[(H −G)2](Var(H)− E[(H −G)2]) < ch

(
Var(H)− E[(H −G)2]

)
+ cgE

[
(H −G)2

]
⇐⇒0 < c2h

(
Var(H)− E[(H −G)2]

)2 − 2cgchE[(H −G)2](Var(H)− E[(H −G)2]) + c2gE
[
(H −G)2

]2
⇐⇒0 <

(
ch(Var(H)− E[(H −G)2])− cgE[(H −G)2]

)2
.

Under the condition that (cg+ ch)E[(H−G)2] < chVar(H), the above inequality cannot hold, since
the squared term on the right-hand side will always be positive (and nonzero). Thus, we have that

p∗ =


√

cg
ch

1
Var(H)

E[(H−G)2]
−1

if (cg + ch)E[(H −G)2] < chVar(H) and E[(H −G)2] < Var(H)

1 otherwise.

Under the constraint that ch ≥ cg , this simplifies to

p∗ =

{√
cg
ch

E[(H−G)2]
Var(H)−E[(H−G)2] if E[(H −G)2] < ch

cg+ch
Var(H)

1 otherwise.

C.2 PROOF OF PROPOSITION 2

Proof. Following the simplification of Problem (3) in the proof of Proposition (1), Problem (5) is
also equivalent to minimizing the following objective:

J(π) = chE[π(X)]

(
Var(H)− E[(H −G)2] + E

[
(H −G)2

1

π(X)

])
+cgE

[
(H −G)2

1

π(X)

]
.
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At this point, we leverage the discreteness of X to write the objective in a simpler form. Let P ∈ ∆X

be the probability mass function of X , expressed as a vector, and let I ∈ {0, 1}|X | be the indicator
that X takes each value in X . Furthermore, let p ∈ [0, 1]|X | be the vector of π(x) for all x ∈ X .
Then, we can express π(X) = p⊤I and E[π(X)] = p⊤P , and write the objective as

J(π) = J(p) = p⊤P

(
Var(H)− E[(H −G)2] + E

[
(H −G)2

1

p⊤I

])
+
cg
ch

E
[
(H −G)2

1

p⊤I

]
.

(10)

From here on out, we assume that Px > 0 for all x ∈ X . The final result will hold without loss of
generality, since the value of the optimal policy on measure-zero points does not change the value of
the objective. For any x, we clearly cannot have px = 0, otherwise the objective would be infinite.
This rules out px = 0 for almost all x. We are left with the constraint that p ⪯ 1.

Forming the Lagrangian,

L(p, λ) = J(p) + λ⊤(p− 1)

= p⊤P

(
Var(H)− E[(H −G)2] + E

[
(H −G)2

1

p⊤I

])
+
cg
ch

E
[
(H −G)2

1

p⊤I

]
+ λ⊤(p− 1).

Taking the gradient with respect to p gives ∇pL(p, λ) equal to

P
(
Var(H)− E[(H −G)2]

)
−
(
p⊤P +

cg
ch

)
E
[
(H −G)2

I

(p⊤I)2

]
+PE

[
(H −G)2

1

p⊤I

]
+λ.

Setting the gradient to zero coordinate-wise then gives that for each x,

Px

(
Var(H)− E[(H −G)2]E

[
(H −G)2

1

p⊤I

])
=

(
p⊤P +

cg
ch

)
E
[
(H −G)2

Ix
p2x

]
− λx.

By the definition of the conditional expectation, and rearranging, we can rewrite this as

Var(H)−E[(H−G)2]+E
[
(H −G)2

1

p⊤I

]
+
λx
Px

=

(
p⊤P +

cg
ch

)
E
[
(H −G)2

1

p2x
| X = x

]
.

Solving for the optimal value as a function of the Lagrange multipliers λ gives the following
expression:

px(λ)
2 =

(
p⊤P +

cg
ch

)
E
[
(H −G)2 | X = x

]
Var(H)− E[(H −G)2] + E

[
(H −G)2 1

p⊤I

]
+ λx

Px

.

The denominator of this expression is always positive, since for all valid p, (H−G)2

p⊤I

a.s.
≥ (H −G)2,

and the remaining terms are positive. Thus,

px(λ) =

√√√√√
(
p⊤P +

cg
ch

)
E [(H −G)2 | X = x]

Var(H)− E[(H −G)2] + E
[
(H −G)2 1

p⊤I

]
+ λx

Px

. (11)

Next, we require some detailed case-by-case analysis.

Case 1: The Interior. First, we handle the case when the constraint is inactive, i.e., for any fixed
λ, px(λ) ∈ (0, 1). (If no such x exists, then the solution is trivially p(λ) = 1|X |.) For any x such
that px(λ) is in the interior, by complementary slackness, λx = 0. Now, for any x′ ∈ X satisfying
px′(λ) ∈ (0, 1), we can write

px(λ)

px′(λ)
=

√
E [(H −G)2 | X = x]

E [(H −G)2 | X = x′]
,

simply by applying (11) to x and x′, then dividing these expressions. This tells us that for all
λ and all x such that px(λ) is in the interior, px(λ) = γu(x) for some as-yet-unknown γ ∈
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(
0, 1

supx:px∈(0,1) u(x)

]
. Because λx = 0 on these x, the solution to the optimization problem must

have the same property.

Case 2: The Boundary. When the constraint is active, px(λ) = 1, since px(λ) = 0 is almost always
impossible, as established earlier. Examining (11) shows us that the constraint only activates in the
case that u(x) = E[(H −G)2 | X = x] is too large:

px = 1 ⇐⇒ u(x) ≥

√√√√Var(H)− E[(H −G)2] + E
[
(H −G)2 1

p⊤I

]
p⊤P +

cg
ch

= τ(p),

since in the alternate case, the unconstrained solution lies in the interior. The Lagrange multiplier
λx, in this case, takes on the value such that px(λx) = 1; a non-negative such value always exists by
virtue of the fact that u(x) is sufficiently large.

Combining Case 1 and Case 2 tells us that our optimal policy has the form

π(x) =

{
γ
√
u(x)

√
u(x) ≤ τ

1 otherwise
,

for a τ ∈ R>0 and γ ∈
(
0, infx : u(x)≤τ2

√
u(x)

]
, which we assume w.l.o.g. is equivalent to γ ∈(

0, 1τ
)
. The constraint on γ is necessary, as otherwise we can have π(x) > 1, which is a contradiction.

Note that another way to express this policy is as px = 1
{
u(x) > τ2

}
+ γ
√
u(x)1

{
u(x) ≤ τ2

}
.

With this in mind, and defining the vector U with entries Ux = E[(H − G)2 | X = x] and
W = Var(H)− E[(H −G)2] we can rewrite the objective in (10) as

J(p) =

(∑
x∈X

pxPx

)(
W + E

[
(H −G)2

1

pX

])
+
cg
ch

E
[
(H −G)2

1

pX

]
which is equivalent to

J(γ, τ) = E
[
1
{
UX > τ2

}
+ γ
√
UX1

{
UX ≤ τ2

}]
×
(
W + E

[
(H −G)21

{
UX > τ2

}]
+ E

[
(H −G)2

γ
√
UX

1
{
UX ≤ τ2

}])
+
cg
ch

(
E
[
(H −G)21

{
UX > τ2

}]
+ E

[
(H −G)2

γ
√
UX

1
{
UX ≤ τ2

}])
This objective is convex in γ, but not differentiable or convex in τ . For that reason, we will solve
for the optimal γ as a function of τ subject to the constraint that γ > 0 and γ

√
u(x) ≤ 1 ∀x where

u(x) ≤ τ2, and our algorithm will search over τ to complete the optimization. Keeping only terms
with a dependence on γ, and recognizing that E

[
(H−G)2√

UX

]
= E

[√
UX

]
gives the expression

E
[√

UX1
{
UX ≤ τ2

}]
×[

1

γ

(
E
[
1
{
UX > τ2

}]
+
cg
ch

)
+ γ

(
W + E

[
(H −G)21

{
UX > τ2

}])] (12)

Once again, we know that the optimal solution as a function of τ , γ∗(τ) lies either on the boundary
or the interior, and we will compare the values of the objective in both cases. In the case that
γ∗(τ) ∈ (0, τ−1), γ∗(τ) is a critical point, thus differentiating and setting equal to zero gives that

1

γ∗(τ)2

(
cg
ch

+ P
(
UX > τ2

))
=W + E

[
(H −G)21

{
UX > τ2

}]
,

and thus,

γ∗(τ)2 =

cg
ch

+ P
(
UX > τ2

)
W + E [(H −G)21 {UX > τ2}]

=

cg
ch

+ P
(
UX > τ2

)
Var(H)− E [(H −G)21 {UX ≤ τ2}]

. (13)
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As in the proof of Proposition 1, because we are in the case γ∗ ∈ (0, τ−1), the right-hand side must
be positive and it cannot be greater than τ−1. This gives us that

γ∗(τ) ∈ (0, τ−1) =⇒ E
[
(H −G)21

{
UX ≤ τ2

}]
< Var(H)

and
cg
ch

+ P
(
UX > τ2

)
Var(H)− E [(H −G)21 {UX ≤ τ2}]

<
1

τ2
,

and under these conditions we can take square roots on both sides of (13) to obtain

γ∗(τ) =

√
cg
ch

+ P (UX > τ2)

Var(H)− E [(H −G)21 {UX ≤ τ2}]
=

√
cg
ch

+ P (UX > τ2)

Var(H)− E [UX1 {UX ≤ τ2}]
. (14)

Comparing the objective value with γ∗(τ) = τ−1 vs (14), we know that (12) is decreasing in γ for

0 < γ <

√
cg
ch

+ P(UX>τ2)

Var(H)−E[UX1{UX≤τ2}] . Thus, we have that

γ∗(τ) = min

(√
cg/ch + P (UX > τ2)(

Var(H)− E[UX1 {UX ≤ τ2}]
)
+

,
1

τ

)
.

Plugging into the original objective J(τ, γ∗(τ)) and minimizing over τ yields the solution.

C.3 PROOF OF PROPOSITION 4

Proof. Since ErrorT (π) is monotone in T for all π, we should first set T stop to be the largest T for
which the constraint holds. This value is

T stop =

⌊
B

chp+ cg

⌋
.

Plugging this into the objective yields

1⌊
B

chp+cg

⌋ (Var(H)− E[(H −G)2] +
1

p
E
[
(H −G)2

])
.

This is a complicated optimization problem because of the floor function, and cannot be solved
by setting the gradient to zero. We will begin by searching over all values of p ∈ (0, 1] for which

B
chp+cg

= k for k ∈ N+, i.e., p ∈
{

B−kcg
kch

: k ∈ {⌈B/(ch + cg)⌉, . . . , ⌊B/cg⌋}
}

. In terms of k,

and denoting E = E[(H −G)2] and V = Var(H)− E[(H −G)2], the objective then becomes

1

k

(
V +

kch
B − kcg

E

)
=

1

k
V +

ch
B − kcg

E.

Ignoring the discreteness of k, in the case that p∗ ∈ (0, 1) we can set the derivative to zero, getting

cgch
(B − kcg)2

E =
1

k2
V

⇐⇒k2cgch
E

V
= (B − kcg)

2

⇐⇒k2
(
c2g − cgch

E

V

)
− 2kcgB +B2 = 0

The positive solution to this quadratic is

k =
2cgB +

√
4c2gB

2 − 4B2
(
c2g − cgch

E
V

)
2
(
c2g − cgch

E
V

) = B
1 +

√
ch
cg

E
V

cg − ch
E
V

.
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Thus, the optimal k∗ solves the following optimization problem:

k∗ = argmin

k∈


B

1+

√
ch
cg

E
V

cg−ch
E
V

,

B
1+

√
ch
cg

E
V

cg−ch
E
V




1

k
V +

ch
B − kcg

E,

And the optimal p∗ is either

p∗ =
B − k∗cg
k∗ch

or the boundary solution p∗ = 1. To disambiguate between the two, we can directly compute the
objective value for each.

C.4 PROOF OF PROPOSITION 5

Proof. The asymptotic normality statement can be read off as a simplified version of Theorem 1
from (Zrnic & Candès, 2024). The second part follows because if Z ∼ N (0,Σ∗), then ∥Z∥22 =
∥(V ∗)−1/2Z∥22, where V ∗ is the eigenvector matrix of Σ∗ (since (V ∗)−1/2 is unitary). Thus, taking
Λ∗ to be the (diagonal) eigenvalue matrix of Σ∗ and defining we have that ∥Z∥22

d
= ∥ΛZ ′∥22, where

Z ′ ∼ N(0, Id). Since ∥ΛZ ′∥22 =
d∑

j=1

λj(Z
′
j)

2, and Z ′
j

i.i.d.∼ χ2
1, the result is proven.

C.5 PROOF OF PROPOSITION 6

Proof. Following the simplification of Problem (5), our problem is equivalent to minimizing the
following objective:

(chE[π(X)] + cg) Tr(Σ
∗). (15)

Expanding out Σ∗, we can write

Tr(Σ∗) = Tr

(
W−1

θ∗ Var

(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)
W−1

θ∗

)
Expanding out the variance gives

Var

(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)
= E

[(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)⊤
]
− E[∇ℓθ∗ ]E[∇ℓθ∗ ]⊤.

Expanding out the squared term yields

E

[(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)(
∇ℓgθ∗ + (∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)⊤
]

= E
[
∇ℓgθ∗(∇ℓgθ∗)

⊤]
+ E

[
ξ

π(X)

(
∇ℓgθ∗ (∇ℓθ∗ −∇ℓgθ∗)

⊤
+ (∇ℓθ∗ −∇ℓgθ∗) (∇ℓgθ∗)

⊤
)]

+ E

[(
(∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)(
(∇ℓθ∗ −∇ℓgθ∗)

ξ

π(X)

)⊤
]

= E
[
∇ℓgθ∗(∇ℓgθ∗)

⊤]
+ E

[
∇ℓgθ∗ (∇ℓθ∗ −∇ℓgθ∗)

⊤
+ (∇ℓθ∗ −∇ℓgθ∗) (∇ℓgθ∗)

⊤
]

+ E
[

1

π(X)
((∇ℓθ∗ −∇ℓgθ∗)) ((∇ℓθ∗ −∇ℓgθ∗))

⊤
]
.
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Thus, by the linearity of the Tr operator, we can rewrite the trace as Tr(Σ∗) = E
[

M
π(X)

]
+C, where

M = Tr
(
W−1

θ∗ (∇ℓθ∗ −∇ℓgθ∗) (∇ℓθ∗ −∇ℓgθ∗)
⊤
W−1

θ∗

)
and C is

Tr
(
W−1

θ∗

(
E
[
∇ℓgθ∗(∇ℓgθ∗)

⊤ +∇ℓgθ∗ (∇ℓθ∗ −∇ℓgθ∗)
⊤
+ (∇ℓθ∗ −∇ℓgθ∗) (∇ℓgθ∗)

⊤
]
− E[∇ℓθ∗ ]E[∇ℓθ∗ ]⊤

)
W−1

θ∗

)
= Tr

(
W−1

θ∗

(
E
[
∇ℓgθ∗(∇ℓθ∗)⊤ + (∇ℓθ∗ −∇ℓgθ∗)(∇ℓgθ∗)

⊤]− E[∇ℓθ∗ ]E[∇ℓθ∗ ]⊤
)
W−1

θ∗

)
.

Returning to the objective, and excluding factors that do not depend on π, we can write it now as

(chE[π(X)] + cg)

(
E
[
M

π(X)

]
+ C

)
∝π (chE[π(X)] + cg)E

[
M

π(X)

]
+ chE[π(X)]C.

In discrete form, following Propostion 2, this is equivalent to

(chp
⊤P + cg)E

[
M

p⊤I

]
+ chp

⊤PC.

Taking the derivative with respect to p and setting it to zero coordinatewise yields

chPxE
[
M

p⊤I

]
+ chPxC = (chp

⊤P + cg)E [MIx] ,

and thus,

px =

√√√√ (chp⊤P + cg)E [M | X = x]

chE
[

M
p⊤I

]
+ chC

∝x

√
E [M | X = x] =

√
U(x).

Plugging π(x) = γ
√
E [M | X = x] back into (15) gives the one-dimensional objective

cg
γ
E

[
M√

E [M | X = x]

]
+ chγE[

√
E [M | X = x]]C.

The tower property gives us that E
[

M√
E[M |X=x]

]
= E

[√
E [M | X = x]

]
, yielding the objective

cg
γ
E
[√

E [M | X = x]
]
+ chγE[

√
E [M | X = x]]C,

which is equivalent to minimizing
cg
γ

+ chγC.

The solution to this problem is

γ∗ =

√
cg
ch

· 1

C
.

C.6 PROOF OF PROPOSITION 8

Proof. Following the derivation in Section B.1, we have that for any π

Var(∆π) = Var(H)− E[(H −G)2] + E
[
(H −G)2

1

π(X)

]
.

We then immediately get that

Var(∆π̃)−Var(∆π∗
) = E

[
(H −G)2

π̃(X)
− (H −G)2

π∗(X)

]
≤ bE

[
1

π̃(X)
− 1

π∗(X)

]
≤ bδ.
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C.7 PROOF OF COROLLARY 9

Proof. Since
π̃(x) = (γ∗ + δγ)

√
U(x) + δU (x),

we have
1

π̃(x)
=

1

(γ∗ + δγ)
√
U(x) + δU (x)

=
1

γ∗
√
U(x)

1(
1 +

δγ
γ∗

)√
1 + δU (x)

U(x)

.

A first-order Taylor expansion yields
1(

1 +
δγ
γ∗

)√
1 + δU (x)

U(x)

= 1− δγ
γ∗

− 1

2

δU (x)

U(x)
+ o
(
δγ ,

δU (x)
U(x)

)
.

Thus,
1

π̃(x)
− 1

π∗(x)
=

−δγ
(γ∗)2

√
U(x)

− 1

2γ∗
δU (x)

U(x)3/2
+ o
(
δγ ,

δU (x)
U(x)

)
.

Ignoring second-order terms, since U(x) ≥ ϵ almost surely, we have∣∣∣ 1

π̃(x)
− 1

π∗(x)

∣∣∣ ≤ |δγ |
(γ∗)2

√
ϵ
+

1

2γ∗ϵ3/2
|δU (x)|.

Taking the expectation and using linearity,

E
[

1

π̃(X)
− 1

π∗(X)

]
≤ |δγ |

(γ∗)2
√
ϵ
+

1

2γ∗ϵ3/2
E[ |δU (X)|].

Plugging this bound into the initial inequality for Var(∆π̃) completes the proof:

Var(∆π̃)−Var(∆π∗
) ≤ b

(
|δγ |

(γ∗)2
√
ϵ
+

1

2γ∗ϵ3/2
E[ |δU (X)|]

)
.

C.8 PROOF OF PROPOSITION 10

Proof. We will borrow notation from the proof of Proposition 2, and express all quantities in
vector form. The optimization problem in (8) only depends on Q through the likelihood ratio,
dP
dQ = r ∈ R|X |

>0 , and Q,P are absolutely continuous with respect to one another. So, we will learn r
and then calculate Q∗ = P/r.

Ignoring terms that do not depend on r, the problem in (8) can be rewritten as

minimize
r∈R|X|

>0

r⊤EP

[
I

(
H2 +

(
1

π(X)
− 1

)
(H −G)2

)]
subject to (1/r)⊤P = 1.

Forming the Lagrangian,

L(r, λ) = r⊤EP

[
I

(
H2 +

(
1

π(X)
− 1

)
(H −G)2

)]
+ λ((1/r)⊤P − 1).

Taking the gradient gives

∇rL(r, λ) = EP

[
I

(
H2 +

(
1

π(X)
− 1

)
(H −G)2

)]
− λP/(r2),

and setting it to zero yields

r∗x ∝x

√√√√ 1

EP

[(
H2 +

(
1

π(X) − 1
)
(H −G)2

) ∣∣∣X = x
] =

√
1

νx
.

To ensure the proper normalization, we set

r∗x =

√
ν
⊤
P

√
νx

.

Thus, Q∗(x) = P/r∗ =
√
νxPx√
ν⊤P

.
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D ADDITIONAL EMPIRICAL RESULTS

D.1 BERNOULLI DATA
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Figure 4: Results on the Bernoulli data (§3.3) for πactive vs. πrandom while varying MSE(H,G) and
Var(U). As in Figure 1, each line plots a different value of Var(H), where we choose values that are
representative of low, medium, or high variance settings compared to MSE(H,G).

Figure 4 provides results for the Bernoulli data setting in Section 3.3 when comparing πactive to
πrandom. Recall that here the results differ from comparing to πbase only when MSE(H,G) <

ch
ch+cg

Var(H), as otherwise the optimal sampling rate for πrandom is simply p∗ = 1.

D.1.1 ON THE ERROR RATIO LOWER BOUND

It is interesting to observe that ErrorRatio(πactive, πbase) is lower-bounded in the Bernoulli
data setting at a value close to MSE(H,G). To see why, we note that the lowest value of
ErrorRatio(πactive, πbase) is obtained when U is maximum variance—which is achieved when U
is a binary random variable that is 1 when G ̸= H , and 0 otherwise. Recall that in the Bernoulli
data setting both H and G are binary, and MSE(H,G) = P(H ̸= G). We can then compute
ErrorRatio(πactive, πbase) after optimizing over τ as approaching

min

( (
γMSE(H,G) +

cg
ch

)(
1 + ( 1γ − 1)MSE(H,G)

Var(H)

)
MSE(H,G) +

cg
ch

)

where γ =

√
cg/ch

(Var(H)−MSE(H,G))+
.

Note that we have the first quantity only when MSE(H,G) ≤ Var(H) + cg/ch.

Derivation. When U → 1 {H ̸= G} ∈ {0, 1}, from Proposition (2) πactive approaches either

πclip(x, τ = 1) =

{
γ∗(1) if h(x) ̸= g(x)

0 otherwise
or πclip(x, τ = 0) =

{
1 if h(x) ̸= g(x)

0 otherwise

where γ∗(1) =
√

cg/ch
(Var(H)−MSE(H,G))+

. Plugging these values into the optimization over τ ∈ {0, 1},

τ∗ = argmin
τ∈{0,1}

(chE[πclip(x; τ)] + cg)
(
Var(H) + E

[
U
(
πclip(x; τ)

−1 − 1
)])

,

at τ = 1 we get

(chγ
∗(1)MSE(H,G) + cg)

(
Var(H) +

(
1

γ∗(1)
− 1

)
MSE(H,G)

)
,

and at τ = 0 we get
(chMSE(H,G) + cg)Var(H),

so the optimal τ∗ is the smaller of the two. Dividing each by chVar(H) and taking the minimum
gives the result for ErrorRatio(πactive, πbase).

A similar calculation can also be made for ErrorRatio(πactive, πrandom), with different bounds for
when MSE(H,G) ≤ Var(H)− cg

ch
and/or MSE(H,G) ≤ ch

cg+ch
Var(H) (i.e., both conditions, one

or the other condition, or neither condition).

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

D.2 REAL DATA

We provide experimental results on three additional datasets:

AQA. Attributed Question Answering (AQA) (Bohnet et al., 2023) assesses if a QA system’s answer
is both correct and supported by the text of a document provided as evidence for it (also by the QA
system). We evaluate the highest-scoring "retrieve-and-read" system from the dataset. H is a binary
human label that is 1 only if the answer is both correct and attributable. G is the probability predicted
by an 11B parameter T5 model (Raffel et al., 2020). The T5 model is finetuned on a collection of
natural language entailment tasks (Honovich et al., 2022). U is computed as G(1−G).

ImageNet. The ImageNet dataset (Deng et al., 2009) categorizes input images into one of 1k classes.
Our goal is to evaluate the accuracy E[H] of a pretrained ResNet model (He et al., 2016), where H is
the binary indicator of whether the model’s prediction matches the human label for a given image X .
G is the softmax value the model assigns to its predicted class. U is computed as G(1−G).

Seahorse. The Seahorse dataset (Clark et al., 2023) focuses on multilingual summarization. We
focus on the “attribution to the source document” metric for summaries produced by a finetuned 13B
parameter mT5 model (Xue et al., 2020). H comes from human ratings. G is the probability score
from a finetuned mT5-XXL autorater model assessing attribution.2 U is computed as G(1−G).

0 100 200 300 400 500
Budget

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d 

Er
ro

r

×10 3

0 100 200 300 400 500
Budget

0

100

200

300

400

500

600

700

800

M
ea

n 
Ef

fe
ct

iv
e 

Bu
dg

et

0.2 0.4 0.6 0.8 1.0
Mean Squared Error ×10 3

0

100

200

300

400

500

600

M
ea

n 
Co

st
 S

av
in

gs

Baseline
Random
Active
Oracle

AQA: Burn-in

0 100 200 300 400 500
Budget

0

1

2

3

4

5

6

7

8

Sq
ua

re
d 

Er
ro

r

×10 4

0 100 200 300 400 500
Budget

0

100

200

300

400

500

600

700

M
ea

n 
Ef

fe
ct

iv
e 

Bu
dg

et

2 3 4 5 6 7
Mean Squared Error ×10 4

0

100

200

300

400

500

600

M
ea

n 
Co

st
 S

av
in

gs

Baseline
Random
Active
Oracle

ImageNet: Burn-in

0 100 200 300 400 500
Budget

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d 

Er
ro

r

×10 3

0 100 200 300 400 500
Budget

0

100

200

300

400

500

600

M
ea

n 
Ef

fe
ct

iv
e 

Bu
dg

et

0.2 0.4 0.6 0.8 1.0
Mean Squared Error ×10 3

0

50

100

150

200

250

300

350

M
ea

n 
Co

st
 S

av
in

gs

Baseline
Random
Active
Oracle
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Figure 5: Results on the AQA, ImageNet, and Seahorse datasets using 200 examples as a burn-in
(approach A2 in Section 4). The budget on the x-axis reflects “additional” budget used after the
burn-in examples.

Results are shown in Figure 5, with similar takeaways as the other burn-in (approach A2) experiments
in Section 4.3. For AQA and ImageNet, both πactive and πrandom substantially outperform πbase;

2This checkpoint is available at
https://huggingface.co/collections/google/seahorse-release-6543b0c06d87d83c6d24193b
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however, the estimated πactive still leaves a significant amount of headroom behind with respect to the
oracle active policy, and has comparable performance to πrandom. The Seahorse dataset is an interest-
ing case where the weak rater G is simply not that good, even conditionally. This results in small (but
still positive) gains for both the active and random policies—even when πactive uses oracle parameters.

E IMPLEMENTATION DETAILS

All real data experiments in this paper were performed retrospectively with G and H computed
once offline for all inputs x in each dataset. Pretrained models and labels for G and H , respectively,
were used for all datasets except Chatbot Arena (Section 4). All subsequent experiments for active
sampling were then performed on CPU resources with 32GB of RAM.

For the Chatbot Arena dataset, we sampled responses from Gemini 1.5 Flash (Gemini Team, 2024)
using an adapted version of the Chatbot Arena auto-eval prompt.3 Below is an example prompt.
Color is added for clarity. Ten responses from Gemini 1.5 Flash are then sampled, with five responses
using the same prompt with the order of A and B flipped. The final label is taken as the majority vote.

Please act as an impartial judge and evaluate the quality of the responses provided by two AI
Assistants to the user prompt displayed below. You will be given Assistant A’s answer and
Assistant B’s answer. Your job is to evaluate which assistant’s answer is better.

When evaluating the assistants’ answers, first identify any mistakes or inaccurate in-
formation. Next, consider if the assistant’s answers are helpful, relevant, and concise.
Helpful means the answer correctly responds to the prompt or follows the instructions.
Note that when the user prompt has any ambiguity or more than one interpretation, it is
more helpful and appropriate to ask for clarifications or more information from the user
than providing an answer based on assumptions. Relevant means all parts of the response
closely connect or are appropriate to what is being asked. Concise means the response
is clear and not verbose or excessive. Then consider the creativity and novelty of the
assistant’s answers when needed. Finally, identify any missing important information in
the assistants’ answers that would be beneficial to include when responding to the user prompt.

<|User Prompt|>
make a haiku on bacon the food
<|The End of User Prompt|>

<|The Start of Assistant A’s Answer|>
Crisp strips of delight,
Sizzling dance, morning’s first light,
Bacon whispers, "Bite."
<|The End of Assistant A’s Answer|>

<|The Start of Assistant B’s Answer|>
Here is a haiku about bacon:

Sizzling in pan
Savory salty bacon strips
Crispy delight yum
<|The End of Assistant B’s Answer|>

Is the higher quality response:
(A) Assistant A is better
(B) Assistant B is better
Please answer with either (A) or (B).

3https://github.com/lm-sys/arena-hard-auto/blob/main/config/judge_
config.yaml
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For G, we finetune Gemma-3 4B for two hours on TPUv3 resources. The same prompt is used,
however, we maximize the log-likelihood of the target Gemini-based answer used for H instead of
sampling. Early stopping is done based on the validation loss at predicting H using a held-out split
of the training data (recall that the training data is composed of other model comparisons from the
Chatbot Arena dataset that are distinct from the one on which we evaluate our annotation policies).
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