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ABSTRACT

Deep learning has made tremendous progress in the last decades; however, it is not
robust to adversarial attacks. The most effective approach is perhaps adversarial
training, although it is impractical because it requires prior knowledge about the
attackers and incurs high computational costs. In this paper, we propose a novel
approach that can train a robust network only through standard training with clean
images without awareness of the attacker’s strategy. We add a specially designed
network input layer, which accomplishes a randomized feature squeezing to reduce
the malicious perturbation. It achieves excellent robustness against unseen l0, l1, l2
and l∞ attacks at one time in terms of the computational cost of the attacker versus
the defender through just 100/50 epochs of standard training with clean images
in CIFAR-10/ImageNet. The thorough experimental results validate the high
performance. Moreover, it can also defend against unlearnable examples generated
by One-Pixel Shortcut which breaks down the adversarial training approach.

1 INTRODUCTION

Since the seminal work of Szegedy et al. (2014), the vulnerability of neural networks has been widely
acknowledged by the deep learning community. A lot of solutions have been proposed to solve these
problems. They can be categorized into three classes.

The first is preprocessing-based approaches that include bit-depth reduction (Xu et al., 2018), JPEG
compression, total variance minimization, image quilting (Guo et al., 2018), and Defense-GAN
(Samangouei et al., 2018). With this preprocessing, the hope is to reduce adversarial effect; however,
it neglects the fact that the adversary can still take this operation into account and craft an effective
attack through Backward Pass Differentiable Approximation (BPDA) (Athalye et al., 2018).

Secondly, perhaps the most effective method is adversarial training. In the training phase, the
attack is launched through the backward gradient propagation concerning the current network state.
A large volume of work falls into this class differing in ways to generate extra training samples.
Madry et al. (2018) used a classical 7-step PGD attack. Other approaches are also possible, such as
Mixup inference (Pang et al., 2020), feature scattering (Zhang & Wang, 2019), feature denoising
(Xie et al., 2019), geometry-aware instance reweighting (Zhang et al., 2021), and channel-wise
activation suppressing (Bai et al., 2021). External (Gowal et al., 2020) or generated data (Gowal et al.,
2021; Rebuffi et al., 2021) are also beneficial for robustness. The inherent drawbacks are the large
computation cost and the need for prior knowledge about attacks. This is certainly not realistic in
practice. Also, there is a possibility of robust overfitting (Rice et al., 2020).

The last is adaptive test-time defenses. They try to purify the input iteratively as in Mao et al. (2021);
Shi et al. (2021); Yoon et al. (2021) or adapt the model parameters or network structures to reverse
the attack effect. For example, closed-loop control is applied in Chen et al. (2021), while a neural
Ordinary Differential Equation (ODE) layer in Kang et al. (2021). Unfortunately, Croce et al. (2022)
proved that most of them are not effective as claimed.

Overall, the progress is not optimistic, and marginal improvements in robust accuracy require huge
computational costs while not valid for unseen attacks. So we ask a question: “can we design a
novel network and loss function thereof that can drive the network to be robust on its own without
awareness of adversarial attacks?” In other words, we do not intend to generate extra adversarial
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samples as most other approaches do, and standard training with clean images is enough. Indeed,
there should be no prior knowledge of attacks needed at all.

D

A

B

C

Figure 1: A conceptual illustration of feature
squeezing for adversarial robustness. The rect-
angle around the center of a test sample represents
the possible perturbation space, while only four
vertices in a diamond can be allowed through fea-
ture squeezing. As a result, only B out of A, B, C,
and D fails for adversarial defense, rather than all
of them without feature squeezing.

This certainly poses a great challenge to the
construction of networks as it is not clear even
whether it is feasible. On the other hand, it ap-
pears to be possible since deep networks have
a very high capacity. Unfortunately, Ilyas et al.
(2019) pointed out they tend to learn discrimi-
nant features that can help correct classification,
regardless of robustness. It motivates us to take
the point of view from the input side. How can
we make a new input layer most suitable for
network robustness? Our intuition is essentially
straightforward. As attacks can always walk
across the class decision boundary through the
malicious feature perturbations, feature squeez-
ing might be helpful, at least reducing the space
of being altered (see Figure 1 for an illustra-
tion). However, fundamentally different from
the preprocessing work Xu et al. (2018), the
input features are randomized squeezed with pa-
rameters learned during training as shown in
Figure 2. Moreover, in the phase of the test,
we simplify this layer and greatly facilitate the
evaluation. The experiments of CIFAR-10 and
ImageNet demonstrate this approach can pro-
mote the robustness of networks. Remarkably,
although our primary motivation is adversarial
defense against unseen attacks, it turns out that
ours is much less influenced by the unlearnable

examples, i.e., data intentionally manipulated for unauthorized usage for training DNNs. Recently, a
One-Pixel Shortcut(OPS) has been proposed in Wu et al. (2023) and could effectively degrade model
accuracy even to almost an untrained counterpart even equipped with adversarial training, while ours
sustains around 60%. Image Shortcut Squeezing Liu et al. (2023b) can counter OPS, however it may
not deal with adversarial attacks.

With all the source codes and pre-trained models online A.2, our work has the following contributions:

• We design a special input layer that uses reciprocal and multiplication to implement our
randomized feature squeezing, which is very novel. Furthermore, it could be plunged simply
into networks such as WideResNet and ConvNeXt with very different structures to boost
performance.

• Our work is the only one that does not require any prior knowledge about the attacks
with standard training with clean images; while achieves great robust accuracy.

• Our approach appears to be the only one that can effectively deal with both adversarial
attacks and unlearnable examples generated by the state-of-the-art OPS without any data
augmentation.

2 RELATED WORKS

Some works add extra preprocessing steps. For example, in Yang et al. (2019), pixels are randomly
dropped and reconstructed using matrix estimation. Ours is not preprocessing. Ours only adds an
extra layer inside the network, and the network is trained and tested as usual without explicit image
completion. Besides this, to get high robust accuracy, Yang et al. (2019) needs adversarial training,
while we adopt standard training with clean images.

Another related work is certified adversarial robustness via randomized smoothing (Cohen et al.,
2019). The base classifier needs Gaussian data augmentation for training, and inference is the most
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likely output class of the input perturbed by isotropic Gaussian noise. Ours only uses standard training
and testing, without perturbation-based training data augmentation involved at all.

Stochastic Neural Networks(SNNs) (Eustratiadis et al., 2021; Däubener & Fischer, 2022; Lee et al.,
2023) achieve robustness by intentionally injecting noise into the intermediate layers of the preexisting
networks, which is very different from ours. Motivated by the inherent weakness of the current
network, we are trying to modify it so that adversarial defense can be achievable for both CIFAR-10
and ImagetNet for which SNNs are not available due to large image size. Unlike the usual SNN, Bart
Raff et al. (2019) adopts a barrage of random transformations. However, unfortunately, its robustness
is likely over-estimated as presented in Sitawarin et al. (2022).

The key-based defense such as Rusu et al. (2022); AprilPyone & Kiya (2021) is related but completely
different from ours. The secure key is private and not open to the attacker, so the evaluation with a
complete white-box attack is impossible. In our case, the attacker has full access to the defender’s
source code to launch a white-box attack.

Recently, some works have addressed the robustness from the perspective of the network’s architecture.
Wu et al. (2021) investigates the impact of the network width on the model robustness and proposes
Width Adjusted Regularization. Similarly, Huang et al. (2021) explores architectural ingredients of
adversarially robust deep neural networks thoroughly. Liu et al. (2023a) established that the higher
weight sparsity benefits adversarially robust generalization via Rademacher complexity. Wang et al.
(2022) proposes batch normalization removal, such that adversarial training can be improved. Singla
et al. (2021) shows that using activation functions with low curvature values reduces both the standard
and robust generalization gaps in adversarial training. They are in some sense similar to ours, but our
motivations are fundamentally different. There is no adversarial training involved in our approach at
all. We emphasize that Hou et al. (2025) reprograms the network to enhance the robustness of the
baseline model; however, it only works for MNIST when there is no adversarially trained baseline
model.

There are some attempts (Tramèr & Boneh, 2019; Maini et al., 2020; Croce & Hein, 2022; Laidlaw
et al., 2021; Dai et al., 2022) to deal with multiple attacks simultaneously. Among them, the only
relevant works for unseen attacks are Perceptual Adversarial Training (PAT)Laidlaw et al.
(2021), and adversarial training with variation regularization (AT-VR) Dai et al. (2022), but
they adopt costly adversarial training, and only for CIFAR-10. Some benchmarks (Dai et al.,
2023; Kang et al., 2019) extend beyond the lp attacks.

Adversarial purification is another research line to defend against unseen attacks, but it is very slow
in test. For example, in Table 14 of (Nie et al., 2022), the inference time is around (100-300)x of
standard one. Also, they need pre-trained diffusion models, which are very expensive to get. Another
disadvantage is that the thorough evaluation of the robustness of these methods is impossible due to
very high memory consumption. Indeed, the robust accuracy is overly estimated as pointed out by
Lee & Kim (2023). Moreover, adversarial purification cannot deal with OPS, as the underlying static
model has very low clean accuracy.

3 BACKGROUND

A standard classification can be described as follows:

min
ϑ

E(x,y)∼D [L (x, y, ϑ)] , (1)

where data examples x ∈ Rd and corresponding labels y ∈ [k] are taken from the underlying
distribution D, and ϑ ∈ Rp is the model parameters to be optimized with respect to an appropriate
function L, for instance cross-entropy loss. When x ∈ Rd can be maliciously manipulated within
a set of allowed perturbations S ⊆ Rd , which is usually chosen as a lp-ball (p ∈ {0, 1, 2,∞}) of
radius ϵ around x, Equation 1 should be modified as:

min
ϑ

E(x,y)∼D

[
max
δ∈S

L (x+ δ, y, ϑ)

]
. (2)

An adversary implements the inner maximization via various white-box or black-box attack algo-
rithms, for example, APGD-ce (Croce & Hein, 2020) or Square Attack (Andriushchenko et al., 2020).
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The basic multi-step projected gradient descent (PGD) is

xt+1 = Πx+S

(
xt + αsgn (∇xL (x, y, ϑ))

)
, (3)

where α denotes a step size and Π is a projection operator. In essence, it uses the current gradient to
update xt, such that a better adversarial sample xt+1 can be obtained. Some heuristics can be used to
get better gradient estimation in Croce & Hein (2020). On the other hand, outer minimization is the
goal of a defender.

Adversarial training is the most effective approach to achieve this outer minimization via augmenting
the training data with crafted samples. In fact, all current approaches, including test-time adaptive
defense as it needs a base classifier, aim to learn the parameters of a pre-existing model to improve
the robustness. In this paper, we try to increase the robustness through a specially designed input
layer such that standard training with clean images can be adopted.

4 METHOD

4.1 INPUT LAYER

Normalization

Figure 2: The shaded and non-shaded areas show the training and test framework respectively. In
training, our specially designed input layer is inside the red rectangle. The input image x is first
normalized, then undergoes two paths. On one path, independent Gaussian noise ϵ is added, and the
other path includes k × k convolution and ReLU followed by element-wise reciprocal. Finally, these
two terms are combined through element-wise multiplication and the result feeds to the Sigmoid. The
final x′ will be used as inputs to the classification network, the same as other training approaches.
End-to-end training scheme is adopted to learn the parameters of k × k convolution. In test, the conv
k × k path is removed wholly, and Sigmoid is replaced with Sign defined in Equation 5.

As we stated earlier, the goal of input layer is to squeeze the input feature in a random and controlled
way. The whole procedure is depicted in Figure 2.

It consists of the following steps:

1. The input x with r, g, b channel will be normalized to a variable with a mean 0 and a standard
deviation 1, through x̃ = x−mean

std in the input layer, where mean and std are mean and
standard deviation of training set. Then, it goes through top and bottom paths.

2. In the top path, each element of x̃ is corrupted independently by additive Gaussian noise ε,
where ε ∼ N

(
0, σ2

)
.

3. In the bottom path, x̃ goes through a k × k 2D convolution and ReLU, and we get x̂ with
three channels, and then its element-wise reciprocal 1

x̂+γ , where γ is a small constant in
order to make the denominator always positive, which is 1×10−5 in this paper.

4. The top and bottom paths are combined by element-wise multiplication, x̄ = (x̃+ ε)× 1
x̂+γ .

4
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5. The final output x′ is a Sigmoid of the x̄, i.e., x′ = 1
1+exp(−x̄) .

So essentially,

x′ =
1

1 + exp
(
− (x̃+ε)

x̂+γ

) . (4)

This formula can be interpreted this way. x̃+ ε is a polluted version of the input image,and 1
x̂+γ tries

to modulate the image based on the x̂, named as sampling matrix having the same size as input x.

The key motivation is that if we enforce x̂ to be very small through some loss function,
∣∣∣ (x̃+ε)

x̂+γ

∣∣∣ will
become big and the response of Sigmoid will be on the saturated region, i.e., most elements of x′ will
be either 0 or 1. In other words, the input feature will be squeezed in a random manner where the
parameters of sampling matrix x̂ are learned on the end-to-end training.

Accordingly, ε plays the role of mimicking the attack that the adversary may launch. The appropriate
value of σ should be chosen as the big one will degrade the clean accuracy while the network can not
gain much robustness for the small one.

Based on our analysis above, one may raise a big concern regarding the obfuscated gradients Athalye
et al. (2018) which may be incurred by reciprocal and Sigmoid operator in robustness evaluation.
On one hand, x̂ is very small, so the gradient of reciprocal 1

x̂+γ will be very big. On the other hand,
x̄ = (x̃+ ε) × 1

x̂+γ will reside on the saturated domain of Sigmoid, i.e., the gradients of x′ with
respect to x̄ will be very small. Actually, this might also cause some trouble in training, as we need
to learn the parameters of conv k × k for sampling matrix x̂, although they might be canceled out by
each other to some extent, as they are on the same path in backward pass gradient propagation.

To resolve this, in training we adopt the BPDA-like optimization procedure. Namely, for the forward
pass, we evaluate the reciprocal and Sigmoid as usual, however, in the backward pass, the gradient of
the reciprocal is set to be -1, and 1 for Sigmoid. While in test, because Sigmoid often goes to two
extreme values 0 and 1, dependent of the sign of x̃+ ε, we just remove the bottom path wholly, and
replace the Sigmoid with Sign which is defined as:

Sign(x) =

{
0, if x < 0,
0.5, if x = 0,
1, if x > 0.

(5)

This will greatly simplify our robust evaluation. Of course, it is also possible to train directly in the
test framework. The detailed analysis is deferred to Section 5.3. In essence, the proposed training
architecture introduces a refined optimization protocol for the target test framework. Rather than direct
parameter tuning, this detour approach strategically incorporates auxiliary components—convk × k
layers, relu, reciprocal, and sigmoid—coupled with a customized loss function discussed in the next
section. These transient modules are exclusively employed during the training and subsequently
discarded during inference, yielding a streamlined test framework characterized by random noise
injection and Sign.

4.2 LOSS FUNCTION

As mentioned earlier, we have to design a loss function to implement our motivation to make the
sampling matrix x̂ small. For each x̂ , we get S, the average of all the elements of x̂ that are greater
than some threshold β. Formally,

S =

∑
i∈T

x̂i

#T
, where T = { i| x̂i > β} . (6)

A small β means x̂ will become sparse. The final loss function is:

L = α× Lce + S, (7)

5
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where S is the sparse loss and Lce is the cross-entropy loss with weight α. When α becomes large,
the loss function falls back to standard cross-entropy. In summary, there are only four parameters, σ
of noise, the size of convolution kernel k, weight α, and threshold β = 0.2 in this paper.

5 EXPERIMENTS

To verify the effectiveness of our approach, we conducted the experiments on both CIFAR-10 and
ImageNet.

For CIFAR-10, we choose the wide residual network WideResNet-28-10 (Zagoruyko & Komodakis,
2016) as the base one, where we add our specially designed input layer as described in Section 4
with σ = 0.65, α = 0.1, and conv 5× 5. The initial learning rate of 0.1 is scheduled to drop at 30,
60, and 80 out of 100 epochs in total with a decay factor of 0.2. The weight decay factor is set to
5×10−4, and the batch size is 200. To emphasize again, we only perform standard training through
just 100 epochs. Reemphasize that there is no work for unseen attacks with standard training,
and if adversarial training is allowed, Laidlaw et al. (2021) and Dai et al. (2022) are the only
two to this end with training costs 16 and 62 times as of ours with the same WideResNet-28-10,
as shown in Table 1.

ImageNet is the most challenging dataset for adversarial defense, and there is no work dealing with
unseen attacks even with adversarial training. In this paper, ImageNet only refers to ImageNet-1k
without explicit clarification, and robustness is only evaluated on the ImageNet validation set. For
simplicity, we choose the architecture of ConvNeXt-T + ConvStem in Singh et al. (2023) with
σ = 1.4, α = 0.5, and conv 7× 7. Our training scheme is very simple. All parameters are randomly
initialized, followed by standard training for 50 epochs with heavy augmentations without CutMix
(Yun et al., 2019) and MixUp (Zhang et al., 2018), as these will undermine the viability of our
sampling matrix. While for the same ConvNeXt-T + ConvStem in Singh et al. (2023), although
ConvStem is randomly initialized, the ConvNeXt-T part is from a strong pre-trained model which
usually takes about 300 epochs. Thus the whole network needs extra standard training for 100 epochs
to get good clean accuracy, followed by 300 epochs of adversarial training with 2-step APGD. So
the total cost is up to 300 + 100 + 300× [2 (APGD steps) + 1 (weights update)] = 1300, which is
around 1300/50 = 26 times bigger than ours.

Table 1: Clean and training cost comparison. For CIFAR10, the cost is defined as: #Epochs ×
[#PGD + 1 (weights update)] with respect to ours, which is denoted by 1. For ImageNet, please refer
to the above main text. Since ours is random, we report mean and standard deviation for five runs.

Defense Clean #Epochs #PGD #Cost

CIFAR-10
Ours 80.23±0.30 100 0 1
PATLaidlaw et al. (2021) 82.40 100 15 16
AT-VRDai et al. (2022) 72.73 200 30 62

ImageNet
Ours 67.60±0.55 50 0 1
Singh et al. (2023) 72.74 400+300 2 26

As expected, our specially designed input layer changes the input x into x′ that are extremely
squeezed. On one hand, it poses a great challenge to the network; while on the other hand, it
improves the robustness. Some of the example feature maps in our input layers are listed in Figure
3. Notably, thanks to the great capacity of deep network, our defense achieves reasonably good
and stable clean accuracy on total images, i.e., 10k for CIFAR-10, and 5K for ImageNet; and due
to resource constraints, we will demonstrate the robustness performance on only 1K images unless
explicitly specified, which is enough to make a fair comparison, against l0, l1, l2 and l∞ attacks in the
follow sections with l1-ϵ=12, l2-ϵ=1, l∞-ϵ=8/255 for CIFAR-10; and l1-ϵ=75, l2-ϵ=2, l∞-ϵ=4/255
for ImageNet.

The attack for a determined network only accepts correctly classified clean images and stops fur-
ther operation once the network gets fooled. Since ours is random, we run out of the maximum
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allowed number of iterations for all input samples to ensure that the generated adversarial
samples have a high probability of fooling the network. This principle goes throughout all
experiments for scientific rigor.

5.1 BLACK-BOX ATTACKS

For l0 we use Pomponi et al. (2022), which is based on rearranging the pixels inside a random
selected patch without limits of the number of perturbed pixels, i.e., l0 norm. The configuration for
CIFAR-10 is 25 restarts with 10 max iterations per restart with patch dimension of 3, so the total
budget is 250 iterations; while for ImageNet, 100 restarts with 50 max iterations per restart with the
same dimension 3, accordingly 5000 in total. For CIFAR-10, the average iterations of competitors
are only half of ours while the accuracies drop to random guess with l0 less than ours. please refer to
Table 6 for more details.

For l1 we use Square Andriushchenko et al. (2020), which is commonly adopted in adversarial defense
evaluation. We use the default iterations 5000. For l2, l∞, we use both Square Andriushchenko
et al. (2020) and SignHunter Al-Dujaili & O’Reilly (2020), which is a divide-and-conquer, adaptive,
memory-efficient algorithm.

As in Table 2, l0, l1, l2, and l∞ black-box attacks are almost impotent to ours, and in general our
robust accuracy significantly outperforms others by a large margin except in l2 for ImageNet. Our
high performance comes from the very effective adversarial perturbation simulation during training
operated by random noise, which also plays a role in misleading the attack in the test.

Table 2: Robustness comparison against l0, l1, l2, and l∞black-box attacks. The iterations column
shows the average number of iterations by the attack. Two columns in l2 and l∞ are respecively for
Square and SignHunter (in italic). Adv-Trained refers to Singh et al. (2023).

Defense Robust Iterations

CIFAR-10 l0 l1 l2 l∞ l0 l1 l2 l∞
Ours 61.10 79.00 77.60 78.70 76.70 77.80 250 5000 5000 5000 5000 5000
PAT 12.00 52.90 62.20 61.20 46.00 42.10 122 3480 4026 3939 3230 2961
AT-VR 11.40 27.70 53.20 60.80 53.10 51.50 109 2390 3915 4263 3807 3657
ImageNet l0 l1 l2 l∞ l0 l1 l2 l∞
Ours 67.70 67.00 66.90 68.40 65.40 67.40 5000 5000 5000 10000 5000 10000
Adv-Trained 33.40 50.70 69.00 71.00 64.30 64.30 3227 3668 4791 9752 4521 9001

5.2 WHITE-BOX ATTACKS

Since Sign is non-differentiable, the backward pass differentiation should be approximated with some
function to evaluate the robust accuracy on white-box attacks. We have tried different options for 1K
samples: identity; Softsign(x)+1

2 , where Softsign(x) = x
1+|x| ; and Sigmoid(ax), a ∈ {1, 3, 5, 7, 9}.

Rusu et al. (2022) also used Sign, and only tested Softsign(x) and Sigmoid(x). Of course, more
options can convince us more of the robustness of our defense. We have tested against attacks of
APGD-l2 and APGD-l∞, but their robust accuracies are higher than the plain version. Indeed, the
similar observation is also reported in Lee & Kim (2023). The APGD-l1 is adopted since it is stronger
than Sparse l1 Tramèr & Boneh (2019). The results are shown in Table 8. According to the worst
accuracies among all BPDA in Table 8, to ensure the legitimate robust evaluation in the following
sections, for CIFAR-10, we select Softsign(x)+1

2 , for both APGD-l1 and PGD-l2, Sigmoid(3x) for
PGD-l∞; while for ImageNet, x for APGD-l1, Softsign(x)+1

2 for PGD-l2, and Sigmoid(3x) for l∞.
Both APGD-l1 (5 restarts; while 1 for EOT) and PGD (1 restart) have 100 steps in this paper.

Based on the comparison in Table 3, ours converges on EOT-20. Note that EOT incurs a high
computational cost, so it is apparent in the inferior status to compare the robustness with others, but a
good performance is held, especially for l1 on ImageNet. For more comparisons with DDN Rony
et al. (2019), C&W Carlini & Wagner (2017), and Spatial Transform Xiao et al. (2018) attacks, please
refer to A.6.
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Table 3: Robustness against l1, l2, and l∞ white-box attacks on total images except the rows of EOT
only for 1k images.

Defense Clean APGD-l1 PGD-l2 PGD-l∞

CIFAR-10 BPDA Softsign(x)+1
2

Softsign(x)+1
2 Sigmoid(3x)

Ours 80.23 57.16 37.97 42.38
Ours-EOT20 81.02 38.50 33.90 34.00
Ours-EOT50 81.02 38.00 34.50 32.50
PATLaidlaw et al. (2021) 82.40 33.22 40.96 36.38
AT-VRDai et al. (2022) 72.73 9.06 31.21 52.73
ImageNet BPDA x Softsign(x)+1

2 Sigmoid(3x)
Ours 67.60 57.06 40.46 24.18
Ours-EOT20 68.80 46.90 37.90 18.80
Ours-EOT50 68.80 46.60 38.10 17.40
Singh et al. (2023) 72.74 30.63 53.56 53.28

5.2.1 ONE-PIXEL SHORTCUT

Although our approach is motivated for adversarial defense, it turns out ours is much less impacted by
OPS without any data augmentation. Following the OPS Wu et al. (2023), we also choose ResNet-18
and all training settings are exactly the same as WideResNet-28-10 except for τ = 0.3 and conv 3×3.
Ours exceeds others by 40+ in Table 7. Again, it is due to the random featured squeezing. Since we
transform all pixels to 1 or 0, the pixel chosen by the OPS can not stand out from its neighbors.

5.3 ABLATION STUDIES

Training in the configuration of the test can be regarded as special case of our detour training
framework where the parameters of all the conv k × k for sampling matrix x̂ are manually set to
be zero, then the reciprocal will become very big, and the Sigmoid is approximately equal to Sign.
Table 4 shows that this training scheme can achieves robust accuracy since it also implements random
feature squeezing. However, it is always inferior to normal ones, especially for CIFAR-10; while
performance gap is small on ImageNet. This could be due to the following reasons. With normal
training, at the early stages, since the sparse loss S in Equation 7 is relatively big, the feeds to the
network, x′, is not highly squeezed to be 0 or 1 at the early stages, which seems to benefit robustness.
For ImageNet, compared with CIFAR-10, due to the massive size of the datasets and the unique
ConvNeXt-T+ConvStem structure, S drops quickly and x′ goes to the extreme values much faster,
thus only having marginal improvement. Please refer to Section A.8 for more analysis.

Table 4: Comparison between the normal training(N.T.) and training with test(T.T.) framework. The
Clean is for total images, while the robust accuracy is on 1k.

Defense Clean APGD-l1 PGD-l2 PGD-l∞
CIFAR-10

N.T. 80.23±0.30 65.00 39.90 41.70
T.T. 77.92±0.18 58.10 31.50 31.80

ImageNet
N.T. 67.60±0.55 65.80 42.40 25.40
T.T. 66.90±0.31 64.70 40.80 23.90

Another possible concern may be related with transfer attack, i.e., using the training framework as
the targeted net to generate adversarial examples. This is not effective as shown in Section A.7, since
training network contains the sigmoid and reciprocal plus small conv k × k, which is driven by our
sparse loss term. This will cause some problems in gradient backpropagation, even though BPDA is
adopted as done in training.
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6 ROBUST ACCURACY FOR DETERMINISTIC MODEL

Table 5: Accuracy for APGD attack for the 1k images from CIFAR-10 in both training and test sets
(in bold) with different N . S stands for Sigmoid.

N Clean APGD-l1 APGD-l2 APGD-l∞
CIFAR-10 BPDA S(9x) S(19x) S(19x)
5 99.80 83.80 10.20 6.90 4.60 2.80 26.00 20.30
20 99.90 84.90 22.40 17.50 15.00 12.20 30.80 24.80
30 99.90 85.60 24.20 19.20 20.30 16.40 32.50 25.80
ImageNet BPDA S(25x) S(25x) S(25x)
5 84.70 70.20 7.30 6.70 0.40 0.10 3.50 3.10
20 85.40 70.30 37.20 27.40 7.80 6.70 5.90 5.30
30 85.50 70.10 45.60 32.70 13.70 10.90 7.00 6.90

Although we have demonstrated excellent experimental performance, one may still wonder why this is
possible, especially for those who are uncomfortable with randomness. Here, we remove randomness
and transform the test framework with random noise into a deterministic one. To our knowledge,
no existing work comprising a random component has been evaluated with that component fixed.
More specifically, we feed the N copies of the same test image to the test framework, each with a
different but fixed seed of noise, and then the average logits of N outputs are used to get the final
classification. It might be possible that our training scheme implements implicit adversarial training
due to the added random noise; however, it is unclear how it relates to test robust accuracy. It appears
that feature squeezing is beneficial in this regard, as it reduces the adversarial perturbation space of
the test sample, thereby diminishing the negative impact of the out-of-distribution effect. Since it is a
deterministic model, we can safely use APGD for l1,2,∞ attacks, and BPDA is also quite different
from previous ones since we find that these BPDA can support stronger attacks. For more details,
please refer to Table 11 in the Appendix.

Interestingly, as expected, non-trivial training robust accuracy is achieved through the implicit
adversarial training with our specially designed input layer with the random noise, and thanks to
the feature squeezing, test robust accuracy also keeps up, with maximum discrepancy less than 10
for most cases shown in Table 5. For ImageNet, ours achieves a higher l1 accuracy than Singh et al.
(2023), a remarkable evidence that standard training can outperform adversarial one.

Now we give more thorough analysis. In ImageNet, each image has dimensions of 224×224×3
(height×width×channels). Assuming an 8-bit depth per channel, the total number of possible distinct
images in the input space is 2224×224×3×8. However, our method constrains this space to 2224×224×3,
achieving an exponential compression ratio of 2224×224×3×7. This dramatic dimensionality reduction
inherently limits the adversarial perturbation space while preserving essential image semantics to
some extent, and indeed, ours achieves a good clean accuracy. Moreover, the random component in
our design enables exploration of this compressed space, which leads to enhanced model robustness.
This improvement manifests in training data and generalizes to test sets. Notably, this robustness
mechanism operates independently of gradient obfuscation techniques, instead deriving from the
intrinsic properties of our compressed representation space. The loss landscapes in Section A.10 also
verify this.

7 SUMMARY

In this paper, we proposed an efficient and effective method for unseen attacks only through standard
training. To our knowledge, this is the only paper that falls within this category.

There are several possible future research directions. Firstly, the clean accuracy needs to be improved.
Secondly, the efficient noise injection scheme should be investigated in order to improve l2 and l∞
robust accuracy. Thirdly, the strong theoretical robustness guarantee is preferred.
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Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
1829–1839, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
d8700cbd38cc9f30cecb34f0c195b137-Abstract.html.
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A APPENDIX

A.1 FEATURE MAP

Figure 3: From the left to right are the great-white-shark x; the red channel; and the corresponding
sampling matrix x̂ and the final output x′ where the continuous patterns are highly squeezed into two
extreme values, 0 and 1, due to very small x̂. Blue and green channels share a similar situation.

A.2 SOURCE CODES AND PRE-TRAINED MODELS

1. CIFAR-10
https://rfsq.obs.cn-north-4.myhuaweicloud.com/cifar.zip

2. ImageNet
https://rfsq.obs.cn-north-4.myhuaweicloud.com/imagenet.zip

A.3 l0 ATTACK

Table 6: l0 Robustness comparison. There is no specific constrains for l0, and last column shows
the average of l0 of perturbed samples; while the iterations column shows the average number of
iterations by the attack.

Defense Clean Robust Iterations l0

CIFAR-10 l0 l0
Ours 81.02 61.10 250 122
PATLaidlaw et al. (2021) 82.30 12.00 122 101
AT-VRDai et al. (2022) 73.00 11.40 109 92

ImageNet l0 l0
Ours 68.80 67.70 5000 1468
Singh et al. (2023) 73.40 33.40 3227 1706

A.4 OPS

Table 7: Performance under One-Pixel Shortcut on ResNet-18 for different training strategies. The
first two rows are excerpted from Wu et al. (2023). l∞ AT stands for adversarial training with
l∞=8/255.

Training Strategy Clean OPS

Standard 94.01 15.56
l∞ AT 82.72 11.08
Ours 82.03 56.25
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A.5 BPDA FOR RANDOM MODEL

Table 8: Comparison between the different BPDA. We choose the worst ones (in bold ) as BPDA
for tests of our defense. S stands for Sigmoid. The attacks of APGD including DLR loss are much
weaker than PGD ones. Please note that without an explicit statement, we adopt cross-entropy loss in
this paper.

DataSet Attack x softsign(x)+1
2 S(x) S(3x) S(5x) S(7x) S(9x)

CIFAR-10
APGD-l1 63.50 57.00 57.60 60.00 65.00 66.50 69.00
PGD-l2 43.10 36.40 39.40 37.60 39.90 38.00 38.90

APGD-l2 51.50 52.90 52.20 51.80 51.20 52.20 49.70
APGDDLR-l2 56.20 58.00 55.70 56.20 57.80 55.50 55.30

PGD-l∞ 41.90 42.50 41.20 41.10 41.70 42.60 42.10
APGD-l∞ 53.70 55.40 54.40 53.40 54.70 54.60 57.40

APGDDLR-l∞ 60.20 59.80 59.60 59.00 58.40 59.50 57.80

ImageNet
APGD-l1 58.20 61.90 59.20 64.10 65.80 66.50 67.10
PGD-l2 41.70 38.90 40.20 39.40 42.40 43.60 44.60

APGD-l2 49.20 50.60 47.90 51.80 55.10 55.50 55.60
APGDDLR-l2 50.40 53.80 50.90 55.20 58.20 58.90 60.50

PGD-l∞ 23.70 24.70 24.50 23.50 25.40 25.30 23.60
APGD-l∞ 34.10 33.10 33.40 34.80 34.80 32.70 35.50

APGDDLR-l∞ 37.30 40.40 39.30 37.20 39.10 39.40 38.20

A.6 MORE COMPARISONS

Table 9: Robust accuracy against DDN, C&W and Spatial Transform attacks. It is interesting to note
that all other approaches fail against DDN attacks, while ours sustain.

Defense Clean DDN C&W Spatial Transform

CIFAR-10
Ours 81.02 58.30 68.00 17.50
PAT Laidlaw et al. (2021) 82.30 0.00 64.60 4.80
AT-VR Dai et al. (2022) 73.00 0.10 46.50 10.30

ImageNet
Ours 68.80 51.50 66.80 44.50
Singh et al. (2023) 73.40 2.90 67.10 1.20
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A.7 TRANSFER ATTACK

The transfer attack is launched using the training framework, which is weaker than a direct attack on
the test framework, except for its closeness with PGD-l∞.

Table 10: Robustness against EOT-20 transfer attack.

Defense APGD-l1 PGD-l2 PGD-l∞
CIFAR-10
Transfer-EOT20 55.70 51.90 34.30
Normal-EOT20 38.50 33.90 34.00
ImageNet
Transfer-EOT20 52.00 47.50 18.70
Normal-EOT20 46.90 37.90 18.80

A.8 DETOUR TRAINING

The key distinction between the standard test framework training and detour learning lies in the
initialization strategy and early-phase optimization dynamics. In training with the test framework
where parameters are randomly initialized, x′ saturates to binary values (0/1) at the start. This
premature squeezing limits the model’s exploration capacity, potentially trapping it in suboptimal
local minima. By contrast, detour learning introduces a warm-up phase where x′ is not highly
squeezed to be 0 or 1, allowing parameters to discover better initialization regions. After that point,
x′ is highly squeezed to 0/1, so it does the training with the test framework to the same effect.

The following Figure 4 shows that although the cross-entropy loss shows similar trends, the sparse loss
is very different, slowly for CIFAR-10 drops while quick for ImagetNet. This sparse loss evolution
indicates that detour training for ImageNet is closer to direct training possibly due to massive image
size and ConvNeXt-T+ConvStem structure, which leads to only marginal improvement.

CIFAR-10 cross-entropy lossCIFAR-10 sparse loss

ImageNet sparse loss ImageNet cross-entropy loss

Figure 4: From the left to right are the sparse loss and cross-entropy loss.
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A.9 BPDA FOR DETERMINISTIC MODEL

Table 11: Comparison between the different BPDA on 1k images for deterministic model with N = 5.
We choose the worst ones (in bold ) as BPDA for tests of our defense. S stands for Sigmoid.

DataSet Attack x softsign(x)+1
2 S(x) S(3x) S(5x) S(7x)

CIFAR-10
APGD-l1 32.70 10.70 22.20 11.00 9.10 7.70
APGD-l2 34.60 14.00 28.50 17.20 9.80 6.60
APGD-l∞ 27.60 23.70 26.70 24.10 22.60 22.20

S(9x) S(13x) S(17x) S(19x) S(21x)

CIFAR-10
APGD-l1 6.90 7.20 7.30 7.40 8.20
APGD-l2 5.00 3.30 2.90 2.80 3.40
APGD-l∞ 21.50 20.70 20.80 20.30 20.90

x softsign(x)+1
2 S(x) S(3x) S(5x) S(7x)

ImagNet
APGD-l1 35.60 18.00 27.60 18.70 15.30 12.10
APGD-l2 32.60 11.30 26.10 14.00 8.60 5.90
APGD-l∞ 10.10 5.40 8.20 5.50 4.60 4.00

S(9x) S(15x) S(20x) S(25x) S(30x)

ImagNet
APGD-l1 10.40 7.40 6.90 6.70 7.30
APGD-l2 3.70 0.60 0.30 0.10 0.10
APGD-l∞ 3.90 3.40 3.20 3.10 3.10
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A.10 LOSS LANDSCAPES

The loss landscapes in Figure 5 generated using the code adapted from Eustratiadis et al. (2022) show
that although a random version of our network exhibits a rough surface, it becomes smoother as the
iterations of EOT increase. The determined versions are smooth. It suggests that EOT+BPDA is
enough to give a robust evaluation without the risk of overestimation.

Figure 5: The loss landscapes of our defense.
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