Under review as a conference paper at ICLR 2026

DATA2DECISION: A PRESCRIPTIVE ANALYTICS DATA
AGENT BRIDGING ENTERPRISE INFORMATION AND
OPTIMAL DECISIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Enterprise business analytics has evolved from simple reporting to sophisti-
cated decision-support systems. Prescriptive analytics, as the most advanced
form of business analytics, aims to recommend optimal actions based on data,
yet the field lacks standardized benchmarks that reflect real-world complexity
where optimization parameters must be extracted from enterprise databases. We
present Data2Decision, the first data agent specifically designed for database-
grounded prescriptive analytics that produces mathematically optimal decisions,
accompanied by Schema20pt, a comprehensive benchmark simulating enter-
prise decision environments. Schema20pt transforms SQL database schemas
into realistic optimization problems, providing complete business contexts, oper-
ational databases, and verified solutions. Our Data2Decision agent tackles
these scenarios through a two-stage pipeline with test-time scaling: first extract-
ing optimization parameters from databases via SQL generation, then formulating
and solving optimization models with multi-solver consensus, achieving end-to-
end automation without manual preprocessing.

1 INTRODUCTION

Enterprise decision-making has undergone a fundamental transformation in the digital age (Is-
lam| |2024; Kraus et al., 2021). As organizations generate unprecedented volumes of data, busi-
ness leaders increasingly rely on data-driven approaches rather than intuition-based decision-
making (McAfee et al., |2012; Davenport & Harrisl 2017). This shift has driven the evolution of
enterprise business analytics from simple reporting systems to sophisticated decision-support frame-
works that can directly impact organizational performance and competitive advantage. However,
most existing business analytics methods focus primarily on descriptive analytics (Hong et al.
2024} |Katsogiannis-Meimarakis & Koutrikal 2023; [[slaml 2024), understanding past data charac-
teristics. Text-to-SQL systems, while powerful for data retrieval and exploration (Zhong et al.,
2017; 'Yu et al., 2018)), are fundamentally descriptive analytics tools designed to answer historical
questions rather than guide future actions. In contrast, prescriptive analytics represents the most
advanced form of business analytics, recommending optimal actions through mathematical opti-
mization and decision modeling (Lepenioti et al.,|2020; [Wissuchek & Zschech,2024). This inherent
limitation of Text-to-SQL and other descriptive approaches creates a significant gap between data
analysis and actionable decision-making in enterprise environments, particularly when decisions
require mathematical optimization to identify provably optimal solutions.

The emerging field of Text-to-OPT has made mathematical modeling more accessible by enabling
natural language interfaces to optimization solvers (Tang et al.| [2023; Wang et al., [2024; [Zheng
et al., 2024). Despite recent advances, current approaches suffer from a critical limitation: they as-
sume optimization parameters are explicitly provided within problem descriptions as LaTeX tables
or textbook-style scenarios (AhmadiTeshnizi et al., 2024} Zhang & Luol [2025). This oversimplifica-
tion misaligns with real-world enterprise workflows (Figure 1)), where OR experts must collaborate
with business managers and data engineers to extract decision-relevant information from complex
operational databases. While some recent work has explored prescriptive analytics tasks and data
extraction from database tables, such as InsightBench (Sahu et al.,[2025), these approaches typ-

Under review as a conference paper at ICLR 2026

ically provide qualitative, single-dimensional action recommendations (e.g., open an incident ticket)
rather than quantitative, multi-variable optimization solutions with verifiable objective values.

Beyond methodological oversimplification, ex-

isting Text-to-OPT benchmarking datasets suf- (2
fer from a data generation paradigm issue. Cur-

rent datasets follow a fop-down approach: they “TA

start with textbook optimization problems (e.g., &

MANAGER

TSP, knapsack, facility location) and create

variations by adjusting parameters (Xiao et al.|

2023}, |Yang et al.l [2025; [Lu et al.| |2025). This

paradigm confines the field to recycling known s

formulations rather than discovering what op- ENGINEER

timization opportunities actually exist in enter- . o o

prise data. Critically, this limitation constrains Figure 1: Real-world enterprise decision-making in-

the potential of even the most advanced Text-to- volves collaborative workﬂgws where operation re-

OPT methods. Fine-tuning approaches (Tang search (QR) experts work w1th. busmesg managers _and
e data engineers to produce optimal business decisions

et al.L|2023} Jiang et al.||2024)), as well as recent with solvers.

reinforcement learning methods with verifiable

rewards such as SIRL (Chen et al.| 2025)), are

bounded by this paradigm. These methods can only learn to replicate existing human optimization

knowledge rather than discover novel optimization opportunities from real-world data. This raises a

crucial question: can we invert this process by starting from existing database schemas to discover

latent optimization opportunities that may not exist in operations research literature?

RECOMMENDED
J OR EXPERT BUSINESS DECISIONS

To bridge this gap, we present Schema20pt, the first benchmark dataset designed with a bottom-up
philosophy that transforms real SQL database schemas into realistic optimization problems. Unlike
existing benchmarks, our dataset generation pipeline discovers optimization opportunities directly
from database structures. Based on this benchmark, we propose Data2Decision, the first data
agent specifically designed for database-grounded prescriptive analytics that produces mathemati-
cally optimal decisions. Specifically, we make the following contributions:

* Prescriptive Analytics Problem Definition: We propose a realistic prescriptive analytics prob-
lem formulation that goes beyond simple descriptive analysis based on Text-to-SQL systems and
addresses the practical challenges of real-world enterprise decision-making. Unlike existing Text-
to-OPT approaches that assume pre-embedded parameters, our formulation requires extracting
optimization parameters from enterprise databases, reflecting actual business analytics workflows.

* Novel Bottom-up Dataset Generation Methodology: We introduce a paradigm shift in opti-
mization benchmarking dataset creation through Schema20pt, which discovers optimization
opportunities from database schemas rather than adapting known problems. This bottom-up ap-
proach analyzes existing information to identify latent decision variables, objective functions, and
constraints, enabling the discovery of new optimization applications that may not exist in tradi-
tional operations research literature.

* Comprehensive Benchmark Dataset: We present Schema20pt, a synthetic dataset specifi-
cally designed for database-grounded prescriptive analytics, along with a systematic generation
framework that transforms SQL schemas into realistic optimization scenarios. Unlike existing
business analytics benchmarks that provide high-level recommendations, Schema20pt focuses
on mathematical optimization problems with complete business contexts, operational databases,
and verified solutions.

* Effective Prescriptive Analytics Data Agent: We develop Data2Decision, an effective pre-
scriptive analytics data agent that employs a two-stage pipeline with test-time scaling and multi-
solver consensus. This approach enables end-to-end automation without manual preprocessing
and achieves up to 69.5% accuracy on Schema20pt, outperforming existing approaches.

2 RELATED WORK

2.1 FROM TEXT-TO-SQL TO DATA AGENTS: EVOLUTION AND LIMITATIONS

Text-to-SQL systems have evolved significantly from rule-based approaches to neural architec-
tures (Zhong et al.,2017;|Yu et al.} 2018)), achieving impressive accuracy on benchmarks like Spider

Under review as a conference paper at ICLR 2026

2.0 (Lei et al.| 2024)), BIRD (Li et al.,[2024a), and BIRD-CRITIC (Li et al., |2025). Data agents like
InsightPilot (Ma et al., [2023)) and DAgent (Xu et al., [2025) extend these capabilities by automat-
ing entire analytical workflows through multi-step reasoning and cross-table associations. However,
both paradigms remain fundamentally limited to descriptive and diagnostic analytics, answering
what happened rather than what actions to take. While InsightBench (Sahu et al. [2025) evalu-
ates prescriptive tasks, its recommendations remain qualitative suggestions rather than quantitative
solutions with verifiable optimal values. Neither approach can formulate or solve the constrained op-
timization problems essential for mathematically optimal decision-making in enterprise operations
where complex trade-offs require mathematical rigor. Appendix [A.T|provides extended discussion
of these architectural limitations.

2.2 TEXT-TO-OPT METHODS AND PRESCRIPTIVE ANALYTICS

The Text-to-OPT field has seen rapid development with ORLM (Tang et al., 2023)) pioneering LLM
use for operations research, followed by OptiMUS (Zheng et al., |2024) with iterative refinement,
Chain-of-Experts (Xiao et al., |2023) with modular architectures, and SIRL (Chen et al., [2025))
employing reinforcement learning with solver-based verification. However, all existing methods
assume optimization parameters are embedded within problem descriptions as LaTeX tables or
textbook scenarios, fundamentally misaligning with enterprise workflows where parameters must
be extracted from operational databases. Furthermore, benchmarks like NLAOPT (Ramamonjison
et al., 2022) and ComplexOR (Xiao et al., 2023)) perpetuate a top-down paradigm, recycling text-
book problems rather than discovering optimization opportunities that naturally emerge from real
data structures. True prescriptive analytics requires bridging both data extraction and optimization
solving (Lepenioti et al.| [2020). Our work addresses this gap through Schema20pt’s bottom-up
approach for database-grounded prescriptive analytics, leveraging test-time scaling insights (Wang
et al.,[2022} |Snell et al., 2024) with multi-solver consensus. Appendix examines these methods
in detail, while Appendix [A.3|discusses relevant test-time compute strategies.

3 ScHEMA20PT: SYNTHETIC DATA GENERATION PIPELINE

Real-world prescriptive analytics fundamentally differs from traditional Text-to-OPT problems in
how optimization parameters are obtained. While existing approaches assume these parameters are
explicitly provided in problem descriptions, enterprise decision-making requires extracting them
from operational databases through complex queries. We term this challenge database-grounded
prescriptive analytics and formalize it as a function f : (Q, S, D) — A, where () represents natural
language business objectives and constraints, .S denotes the database schema with table structures, D
contains the operational data, and A = (x*, v*) comprises the optimal decisions and objective value.
The function f embodies the complete prescriptive analytics pipeline: interpreting business require-
ments from @), identifying relevant data sources through S, extracting parameters via queries against
D, and solving the optimization model to produce A. Unlike traditional Text-to-OPT where parame-
ter extraction is merely preprocessing, the database-grounded nature makes this transformation from
(Q, S, D) to A an integral component that fundamentally shapes the optimization formulation itself.

The lack of realistic benchmarks for this database-grounded prescriptive analytics task stems from
fundamental data sharing constraints. Organizations accumulate vast amounts of structured data in
relational databases (Nambiar & Mundra, 2022), with data-driven practices growing rapidly across
industries (Brynjolfsson & McElheran, [2016). However, the proprietary nature of enterprise data
and embedded business logic makes sharing real-world optimization examples impossible due to
governance and confidentiality requirements (Janssen et al.,2020). This creates a critical evaluation
gap for systems that must bridge data extraction and optimization solving.

To address this challenge, we present Schema20pt, a synthetic dataset that pairs enterprise
database schemas with corresponding optimization problems. Unlike existing benchmarks that fol-
low a top-down paradigm by starting with known optimization formulations, Schema20pt in-
troduces the first bottom-up data generation approach that discovers optimization opportunities
directly from database structures. Our generation framework, shown in Figure [2} transforms Spider
dataset schemas (Yu et al.| 2018)) through a five-stage pipeline. We utilize schemas from the Spider
dataset with at most five tables to ensure tractability and generate two versions of the Schema20pt
dataset using different LLMs (GPT-40 and DeepSeek-V3) to ensure diversity and robustness.

Under review as a conference paper at ICLR 2026

LLM OR Expert LLM OR Expert LLM Triplet Expert

Y, ~

Process 1
Qualified | R:f',‘ef"a‘e @

N inement 1
Original > ! ¢ ’ 1 Refined >
Sch
chemas o Lo ! LLM Data Engineer J Schemas

Initial Optimization A e

Splder Dataset Opportunity Identification Schema Refinement Table Values Generation
Schemas
ST
Values
SOLUTIONS LLM Solver Coder LLM Modeler LLM Business Analyst
Soluti Optimization Business
$:=100 v utions ... Formulation Docs
S2=100 v G— G g ¢
Ss=Error @ . :s;;:); Database %
4“ Info

Solutions Consistency Check 3 Solver Code Generation OPT Model Formulation Business Doc Generation

Figure 2: Schema20pt synthetic data generation pipeline. Starting from Spider schemas, the
framework iteratively refines schemas through OR Expert and Data Engineer dialogue, generates
realistic data via Triple Expert collaboration, creates business documents, formulates optimization
models, and validates solutions across multiple solvers.

Only instances that pass multi-solver majority-vote validation with consistent optimal values are
included as valid cases in the final benchmark.

3.1 SCHEMA INITIALIZATION AND ANALYSIS

We initialize Schema20pt with schemas from the Spider dataset, a widely-used SQL benchmark
containing database schemas designed to resemble real-world applications, filtered to databases with
at most five tables. Unlike existing benchmarks that impose predetermined optimization problems,
our bottom-up approach discovers optimization opportunities by analyzing how table structures nat-
urally map to optimization parameters.

3.2 ALTERNATING EXPERT DIALOGUE FOR BENCHMARK GENERATION

The core innovation of our framework lies in the alternating dialogue between specialized LLM-
based agents that iteratively refine the optimization problem until convergence. Inspired by alter-
nating optimization methods such as EM algorithms, our approach alternates between two com-
plementary perspectives: (1) the OR Expert agent refines optimization requirements while holding
the schema fixed, then (2) the Data Engineer agent adjusts the schema to better support these re-
quirements. This iterative process ensures that optimization formulations and database structures
co-evolve to achieve mutual consistency, similar to how alternating optimization methods achieve
convergence by optimizing one component while fixing others. Appendix [D]provides the complete
algorithmic specification and detailed prompt engineering strategies that enable this alternating op-
timization approach.

3.2.1 OR EXPERT ANALYSIS

The OR Expert focuses exclusively on optimization modeling, evaluating how business objectives
map to mathematical formulations while maintaining strict linearity constraints. Given the cur-
rent schema, the expert identifies mapping adequacy for each optimization component and specifies
missing requirements without proposing database changes.

OR Expert Guidance: Focus exclusively on optimization modeling and understanding cur-
rent schema-to-optimization mapping. Design LINEAR optimization problems where objective
function MUST be minimize/maximize Y (coefficient X variable). Identify how optimization
components map to current schema ...

3.2.2 DATA ENGINEER IMPLEMENTATION

The Data Engineer implements schema modifications based on the OR Expert’s analysis, creating ta-
bles for decision variables, adjusting columns for coefficients, and managing business configuration

Under review as a conference paper at ICLR 2026

parameters. A key design principle is distinguishing between tabular data and scalar parameters: in-
formation that naturally forms multiple rows (e.g., product inventories, customer orders) belongs in
database tables, while single-value parameters (e.g., daily capacity limits, minimum thresholds) and
business formulas are stored in configuration files. This ensures proper data organization following
database normalization principles.

Data Engineer Guidance: Implement schema changes following database normalization prin-
ciples. Distinguish between tabular data and scalar configuration. Optimization information
that represents collections belongs in database tables, while single-value parameters like ca-
pacity limits belong in configuration files. Create appropriate tables for decision variables and
maintain business realism throughout the schema design ...

This alternating process typically converges within 3-4 iterations (maximum 5), with an LLM-based
judge evaluating mapping adequacy at each iteration to determine convergence, achieving complete
mapping adequacy where all optimization components have identified data sources. Appendix D]
provides the complete algorithmic specification and detailed prompt engineering strategies that en-
able this alternating optimization approach.

3.3 DATA GENERATION AND PROBLEM FORMULATION

After schema convergence through the alternating process described in Section Schema20pt
generates realistic data and business descriptions. The framework employs an LLM acting as a triple
expert with combined expertise in business operations, data management, and optimization model-
ing. This unified perspective ensures generated values reflect industry norms while maintaining
cross-table consistency and enabling feasible solutions with meaningful trade-offs. An LLM-based
business analyst then produces natural language descriptions that translate technical optimization
requirements into business narratives, naturally incorporating configuration parameters without ex-
posing their storage mechanism. To verify information completeness, we simulate how existing
methods would solve each scenario. An LLM-based OR Expert attempts to extract optimization
parameters from the business document and database to construct a complete mathematical model.
Successfully producing a well-formed linear program validates that all necessary coefficients, con-
straints, and objectives can be derived from the provided data. Instances failing this verification are
discarded, ensuring our benchmark contains only informationally complete problems. Appendix D]
provides detailed prompt engineering strategies for the triple expert and verification process.

3.4 SOLUTION GENERATION AND VERIFICATION

Schema20pt ensures both mathematical correctness and practical solvability through a multi-stage
verification process. Template-guided generation addresses the challenge of solver-specific API pat-
terns that cause frequent errors in LLM-generated code. We provide templates for Gurobipy,
DOCplex, and Pyomo that encapsulate best practices for variable declaration, constraint syntax,
and result extraction, serving as in-context examples that significantly reduce syntax errors and API
misuse. Cross-solver validation ensures solution reliability by executing all three solvers in parallel
for each problem. We consider solutions valid only when at least two solvers agree on the opti-
mal value within numerical tolerance or unanimously determine infeasibility. This majority voting
guards against solver-specific numerical issues while maintaining high confidence in the ground
truth values for our benchmark.

3.5 DATASET FORMAT AND COMPONENTS

The resulting Schema20pt synthetic data generation framework represents a paradigm shift in
optimization benchmark creation. Rather than recycling existing textbook problems or industrial
case studies, our bottom-up approach enables automatic discovery of novel optimization opportuni-
ties that emerge naturally from enterprise data patterns. Each case in Schema20pt contains four
core components: (1) a business document describing the decision scenario with context, goals and
constraints, (2) a database schema and data dictionary, (3) database content and (4) verified so-
lutions. We generate two dataset versions using GPT—40 (106 problems) and DeepSeek-V3 (95
problems), validated through multi-solver consensus. Appendix [B|provides a comprehensive clas-

Under review as a conference paper at ICLR 2026

sification of the generated problems across business domains, optimization types, and complexity
levels.

Illustrative Example: Inventory Optimization

Business Document: Problem Context and Goals: A retail company manages inventory across
3 warehouses to minimize total holding costs; Constraints: Daily capacity 1,000 units per
warehouse, safety stock > 20% demand; ...

Database Schema: CREATE TABLE warehouses (id INT, capacity INT,
cost FLOAT); CREATE TABLE products (id INT, holding._cost FLOAT,
demand INT) ;

Data Dictionary: cost — storage cost per unit ...

Database Content: INSERT INTO warehouses VALUES (1, 1000, 2.5), (2,
1000, 3.0); INSERT INTO products VALUES (1, 5.0, 300), (2, 7.5,
450); ...

Verified Solutions: Optimal value = $4,285.00

Appendix [C] presents six selected examples from both dataset versions that show the range of op-
timization scenarios discovered through our bottom-up generation method. The complete datasets
generated by both DeepSeek-V3 and GPT-40 are available in the supplementary materials for
further exploration and analysis.

4 DATA2DECISION: A PRESCRIPTIVE ANALYTICS DATA AGENT FOR
ENTERPRISE DECISION-MAKING

Having established the Schema20pt data generation pipeline and benchmark datasets (Sec [3),
we now present Data2Decision, the first data agent specifically designed for database-grounded
prescriptive analytics. Unlike existing Text-to-OPT approaches that assume pre-embedded optimiza-
tion parameters, Data2Decision must extract these parameters from enterprise databases before
solving. Our system employs a two-stage pipeline: (1) analyzing business requirements to gen-
erate SQL queries that extract decision variables, objective coefficients, and constraint parameters
from databases; (2) directly transforming the SQL-enhanced problem descriptions into executable
optimization code. To address inherent uncertainties in both stages, we incorporate test-time scal-
ing through self-consistency, temperature-controlled exploration, multi-solver diversification, and
majority voting consensus. This design eliminates error-prone mathematical modeling steps while
ensuring robust solutions through systematic exploration of diverse formulations. This design elim-
inates error-prone mathematical modeling steps while ensuring robust solutions through systematic
exploration of diverse formulations. Appendix [E] details the complete implementation including
SQL generation strategies and solver-specific code generation templates.

4.1 TEST-TIME SCALING THROUGH SELF-CONSISTENCY

Inspired by self-consistency approaches in reasoning tasks (Wang et al., [2022)), we apply test-
time scaling to prescriptive analytics by generating multiple diverse solutions and aggregating them
through majority voting. This approach addresses the inherent uncertainties in database-grounded
optimization: SQL queries may extract different subsets of relevant data, and the same optimization
problem often admits multiple valid formulations. By sampling N independent solution attempts
with controlled randomness and selecting the most frequent optimal value, we significantly improve
robustness over single-attempt methods.

Given N parallel attempts producing optimal values, let Zg,.c € {1,..., N} denote successful
attempts with values {v; : i € Zsycc - We employ majority voting:

v* = argmax |{i € Zsyee : v; = v}
v

where the argmax is taken over all unique values obtained. The consensus mechanism provides con-
fidence estimates through agreement levels, with unanimous agreement indicating high confidence.
We set N = 10 attempts per problem, which our parameter analysis shows effectively balances
accuracy and efficiency.

Under review as a conference paper at ICLR 2026

4.2 TEMPERATURE-CONTROLLED EXPLORATION

We employ adaptive temperature scheduling across both pipeline stages to balance exploration and
exploitation:

4. Aqul, T(Z) _ rcode —‘ri-ATCOde

code base

Ti = Toiee
This progressive strategy serves different purposes at each stage. For SQL generation, tempera-
ture variation explores different interpretations of which data elements map to optimization compo-
nents, addressing ambiguity when business requirements don’t explicitly specify database relation-
ships. For code generation, temperature diversity captures alternative valid formulations of the same
optimization problem. In our experiments, we use wider temperature ranges for SQL generation

(Tbsql = 0.05, AT*% = 0.05) than code generation (T2°%° = 0.0, AT°% = 0.02), reflecting their

“base X o base
different uncertainty characteristics.

4.3 DIRECT OPTIMIZATION CODE GENERATION

A key design decision in Data2Decision is eliminating explicit mathematical modeling as an
intermediate step. While conventional Text-to-OPT pipelines follow a three-stage process from nat-
ural language to mathematical formulation to executable code, we directly translate SQL-enhanced
problem descriptions into solver-specific code. This approach is supported by recent findings in
latent reasoning (Hao et al., [2024), which show that allowing models to reason implicitly in contin-
uous latent space reduces hallucinations and errors compared to explicit step-by-step reasoning. We
therefore bypass explicit mathematical formulation, allowing LLMs to leverage their internalized
optimization knowledge directly. Our ablation study validates this design choice, showing signifi-
cant performance degradation when introducing intermediate modeling steps.

4.4 MULTI-SOLVER DIVERSIFICATION

We further enhance solution robustness by cycling through Gurobipy, DOCplex, and Pyomo
implementations across attempts. This strategy exploits the fact that LLMs have learned distinct
modeling patterns from each solver’s documentation and codebase during pre-training. By lever-
aging these varied modeling languages, we capture diverse optimization knowledge embedded in
different solver languages, enabling broader problem coverage. This multi-solver approach comple-
ments temperature-based exploration: while temperature varies problem interpretations, solver di-
versity accesses different pre-trained modeling patterns, preventing framework-specific limitations
from affecting solution quality.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. Two Schema20pt test sets: GPT—40 (106 cases) and DeepSeek—-V3 (95 cases).

Evaluation Metrics. We focus on solution accuracy as the primary metric, measuring the percentage
of problems where methods find the correct optimal solution.

Baselines and Implementation Details. We compare against two categories of approaches, both
following a two-stage pipeline but with different setups. The Schema20pt benchmark was gener-
ated using GPT—-40 and DeepSeek-V3.

e (i) Text-to-OPT methods with SQL assistance: We evaluate OR-LLM-Agent,
Chain-of-Experts, OptiMUS 0.3, and ZeroShot baseline. Since these methods
cannot extract data from databases independently, we provide a unified first stage, using the
corresponding backbone model (GPT-4o0-mini for the GPT-4o0 test set, DeepSeek-V3 for
the DeepSeek—V3 test set) to analyze business requirements, generate SQL queries, and extract
optimization parameters from databases. This enhanced problem description containing both
business context and retrieved data tables is then provided identically to all baselines for their
second stage of optimization formulation.

Under review as a conference paper at ICLR 2026

Category Method DeepSeek-V3 Test Set (95 cases) GPT-4o Test Set (106 cases)
Correct Accuracy Correct Accuracy
OR-LLM-Agent 62 65.3% 57 53.8%
. ZeroShot 53 55.8% 46 43.4%
Text-to-OPT with SQL ¢ 0\ 06 pxperts 23 242% 21 19.8%
OptiMUS 0.3 45 47.4% 3 2.8%
Llama—-3.3-70B 51 53.7% 50 47.2%
Qwen2.5-72B 24 25.3% 28 26.4%
End-to-End Models i 27 28.4% 2 20.8%
Llama-4-Scout 5 5.3% 1 0.9%
Our Method Data2Decision 66 69.5% 57 53.8%

Table 1: Performance comparison on Schema20pt benchmark. “In Opt iMUS 0. 3, JSON errors cannot be
reliably repaired by GPT-40-mini, causing low performance.

* (ii) End-to-end foundation models: We evaluate L1ama—3.3-70B, Qwen2.5-72B, Phi—4,
and Llama-4-Scout, which handle both stages independently; they perform their own SQL
extraction in the first stage and optimization formulation in the second stage using their respective
models throughout.

Validation Details. We validate solutions by comparing each method’s output against the ground
truth optimal values from our dataset. To robustly extract results from diverse solver output formats,
we use an LLM-based extraction with 5-attempt majority voting.

5.2 MAIN RESULTS

Table [I] presents performance across both test sets. Our Data2Decision agent achieves the
highest accuracy on both benchmarks, with 69.5% on DeepSeek-V3-generated problems and
53.8% on GPT-4o0-generated problems. This represents a improvement over the best baselines
in each category. Among Text-to-OPT methods with SQL assistance, OR-LLM-Agent performs
best with 65.3% and 53.8% accuracy respectively, while Chain-of-Experts struggles at 24.2%
and 19.8% despite having access to pre-extracted data. The performance of Opt iMUS 0. 3 varies
dramatically between test sets, achieving 47.4% accuracy on DeepSeek—-V3 problems but only
2.8% on GPT—40 problems, suggesting high sensitivity to problem structure. End-to-end foun-
dation models face the additional challenge of joint SQL extraction and optimization formulation.
Llama-3.3-70B demonstrates competitive performance at 53.7% and 47.2% accuracy, nearly
matching specialized Text-to-OPT methods despite handling the complete pipeline. However, per-
formance degrades significantly for other models, with L1ama-4-Scout achieving only 5.3% and
0.9% accuracy. The consistent accuracy advantage of our approach across both test sets validates
our two-stage pipeline design with test-time scaling, which effectively decomposes the complex task
while maintaining robustness through multi-solver consensus.

The systematic performance gap between the two test sets across all methods reveals interesting
dataset characteristics. The DeepSeek-V3-generated problems appear more amenable to opti-
mization, with most methods achieving higher accuracy compared to their performance on GPT-4o-
generated problems. This cross-dataset evaluation demonstrates the importance of diverse bench-
mark generation and highlights the generalization challenges in prescriptive analytics. Notably, our
method maintains its relative advantage across both distributions, suggesting that the test-time scal-
ing approach provides robustness beyond what single-attempt methods can achieve.

5.3 ABLATION STUDY
We conduct comprehensive ablation studies on the DeepSeek-V3 test set to analyze the contri-

bution of each component in our Data2Decision agent (Section). All experiments use 10
attempts as the baseline configuration unless otherwise specified.

5.3.1 PARAMETER ANALYSIS

Under review as a conference paper at ICLR 2026

. . Impact of Test-Time Scaling on Accuracy
Figure [3] illustrates how the number of

attempts affects performance in our test- . 69.5%
time scaling approach. The accuracy curve 67.4% >
g app y —

shows steady improvement, rising from 65 63 Z/
o

57.9% with a single attempt to 63.2%
60 57.9/
®

with 3 attempts, 67.4% with 6 attempts,

and reaching 69.5% at 12 attempts. Fur-

ther increasing to 24 attempts yields min- .

imal gains (70.5%), demonstrating clear 1 3 6 12 24
diminishing returns. This scaling behav- Number of Attempts

ior confirms the effectiveness of our multi-

attempt strategy while revealing a natural Figure 3: Impact of test-time scaling on accuracy. Perfor-
saturation point. Our choice of 10 attempts mance demonstrates a clear scaling law, with accuracy im-
(which would achieve approximately 69% proving monotonically as the number of attempts increases,
accuracy based on the trend) effectively exhibiting rapid initial gains that gradually plateau.

balances solution quality with computational efficiency, capturing most performance benefits while
avoiding the computational overhead of larger attempt counts.

70.5%
[]

Accuracy (%)

5.3.2 COMPONENT ABLATION

Table [2] presents ablation results
for key architectural components.
(1) Multi-solver consensus provides Configuration Correct Accuracy
the largest performance gain. Re-

Table 2: Ablation study results on DeepSeek—-V3 test set.

. . Multi-solver consensus 66 69.5%
moving th}S component and rely- Single solver (Gurobipy only) 50 52.6%
ing on a single solver (Gurobipy)
causes accuracy to drop from 69.5% Incremental temperature 66 69.5%
to 52.6%, a substantial 16.9 percent- Fixed low temperature 65 68.4%
age point decrease. This demon- Two-stage pipeline 66 69.5%
strates that cross-validation across Three-stage pipeline 58 61.1%

different solver implementations is

crucial for avoiding suboptimal formulations caused by solver-specific biases. (2) Temperature
scheduling offers modest but consistent improvements. Our incremental temperature strategy
(0.05—0.50) outperforms fixed low-temperature generation (0.01) by 1.1 percentage points (69.5%
vs 68.4%). While the gain is smaller than other components, the progressive exploration from con-
servative to diverse generation helps discover alternative valid formulations. (3) The two-stage
pipeline architecture is superior to more complex alternatives. Introducing an intermediate
mathematical modeling stage in a three-stage pipeline reduces accuracy from 69.5% to 61.1%.
This 8.4 percentage point drop reveals that additional abstraction layers increase error propagation
without providing compensating benefits, validating our streamlined design that directly translates
SQL-extracted data to executable optimization code.

6 CONCLUSION

In this paper, we introduced database-grounded prescriptive analytics tasks, where optimization
parameters must be extracted from enterprise databases rather than being explicitly provided. To ad-
dress this task, we presented Schema20pt (Sec E]), a comprehensive benchmark for this problem,
and proposed Data2Decision (SecH), a two-stage data agent system with test-time scaling that
achieves strong performance on both test sets. Our bottom-up data generation approach represents a
paradigm shift from recycling textbook problems to discovering optimization opportunities inherent
in database structures. This work bridges the gap between descriptive analytics and mathemati-
cal optimization, enabling end-to-end prescriptive analytics for enterprise decision-making. Future
work could explore developing models that can better handle the joint challenges of data extraction
and optimization formulation.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces a synthetic benchmark generation framework that transforms existing database
schemas into optimization problems. All source data originates from the publicly available Spi-
der dataset (Yu et al., 2018)), which contains no personal or sensitive information. Our framework
generates entirely synthetic business scenarios and numerical data without utilizing any real enter-
prise information, thus avoiding potential privacy concerns that arise in real-world business analyt-
ics (Janssen et al., [2020).

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide relevant code and both datasets generated by
DeepSeek-V3 and GPT—-4o0 in the supplementary materials. Each dataset is organized within
the schema2opt_[model] directory structure, with individual database problems stored un-
der /schema2optsgd/text2opt_dataset_alternating_opt/database_name/. For
complete problem-to-solution cases, refer to problem_solution_description.md files that
contain the full pipeline from problem specification to verified solution. The specific prompts for
different agent roles can be found in the /schemaZoptsgd/templates/ folder within each
dataset directory. This includes the complete Schema20pt generation pipeline with prompts and
agent specifications detailed in Appendix D] the Data2Decision implementation with SQL gen-
eration strategies and solver templates described in Appendix [E] and both versions (GPT-40 and
DeepSeek-V3) of the Schema20pt benchmark. For optimization solving, we employ three
modeling frameworks: Gurobipy (Python API for Gurobi solver), DOCplex (IBM’s Python mod-
eling API), and Pyomo (open-source Python modeling framework), with Gurobi 12.0.2 and IBM
CPLEX 22.1.2 as the underlying optimization solvers.

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan Talaei, Connor Lawless, and
Madeleine Udell. Optimus-0.3: Using large language models to model and solve optimization
problems at scale. arXiv preprint arXiv:2407.19633, 2024.

Nicolés Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation of
mathematical optimization models using llms. arXiv preprint arXiv:2411.01679, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682—17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Erik Brynjolfsson and Kristina McElheran. The rapid adoption of data-driven decision-making.
American Economic Review, 106(5):133-139, 2016.

Xuanhe Chen, Ji Zhang, Guoliang Xiong, and Jianhua Li. Towards automated data integration and
optimization for database systems. Proceedings of the VLDB Endowment, 13(12):3366-3369,
2020.

Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, and Yinyu Ye. Solver-informed rl: Grounding
large language models for authentic optimization modeling. arXiv preprint arXiv:2505.11792,
2025.

Thomas H. Davenport and Jeanne G. Harris. Competing on Analytics: Updated, with a New Intro-
duction: The New Science of Winning. Harvard Business Review Press, 2017.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

10

Under review as a conference paper at ICLR 2026

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024.

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. Orlm: A customizable framework in training large models for auto-
mated optimization modeling. Operations Research, 2025.

Siful Islam. Future trends in sql databases and big data analytics: Impact of machine learning and
artificial intelligence. Available at SSRN 5064781, 2024.

Marijn Janssen, Paul Brous, Elsa Estevez, Luis S Barbosa, and Tomasz Janowski. Data governance:
Organizing data for trustworthy artificial intelligence. Government information quarterly, 37(3):
101493, 2020.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. LI-
mopt: Learning to define and solve general optimization problems from scratch. arXiv preprint
arXiv:2410.13213, 2024.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 32(4):905-936, 2023.

Sascha Kraus, Paul Jones, Norbert Kailer, Alexandra Weinmann, Nuria Chaparro-Banegas, and
Norat Roig-Tierno. Digital transformation: An overview of the current state of the art of research.
Sage Open, 11(3):21582440211047576, 2021.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

Katerina Lepenioti, Alexandros Bousdekis, Dimitris Apostolou, and Gregoris Mentzas. Prescrip-
tive analytics: Literature review and research challenges. International Journal of Information
Management, 50:57-70, 2020.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024a.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-
Guang Lou, and Reynold Cheng. Tapilot-crossing: Benchmarking and evolving llms towards
interactive data analysis agents. arXiv preprint arXiv:2403.05307, 2024b.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating 1lm pathways to solve user sql issues in
real-world applications. arXiv preprint arXiv:2506.18951, 2025.

Vinicius Lima, Dzung T Phan, Jayant Kalagnanam, Dhaval Patel, and Nianjun Zhou. Toward a
trustworthy optimization modeling agent via verifiable synthetic data generation. arXiv preprint
arXiv:2508.03117, 2025.

Hongliang Lu, Zhonglin Xie, Yaoyu Wu, Can Ren, Yuxuan Chen, and Zaiwen Wen. OptMATH:
A scalable bidirectional data synthesis framework for optimization modeling. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=9P5e6iE4WK.

Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. Demonstration of insightpilot:
An llm-empowered automated data exploration system. arXiv preprint arXiv:2304.00477, 2023.

Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Dominic Barton. Big data:
the management revolution. Harvard business review, 90(10):60-68, 2012.

Athira Nambiar and Divyansh Mundra. An overview of data warehouse and data lake in modern
enterprise data management. Big data and cognitive computing, 6(4):132, 2022.

11

https://openreview.net/forum?id=9P5e6iE4WK
https://openreview.net/forum?id=9P5e6iE4WK

Under review as a conference paper at ICLR 2026

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shigi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
Nl4opt competition: Formulating optimization problems based on their natural language descrip-
tions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research,
pp- 189-203. PMLR, 28 Nov—-09 Dec 2022. URL https://proceedings.mlr.press/
v220/ramamonjison23a.html.

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexan-
dre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, et al.
InsightBench: Evaluating business analytics agents through multi-step insight generation. In In-
ternational Conference on Learning Representations (ICLR), 2025.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Wei Sun, Scott McFaddin, Linh Ha Tran, Shivaram Subramanian, Kristjan Greenewald, Yeshi Ten-
zin, Zack Xue, Youssef Drissi, and Markus Ettl. PresAlse, a prescriptive ai solution for enterprise.
INFOR: Information Systems and Operational Research, 62(4):629-645, 2024.

Xiaodong Tang, Jie Wang, and Xiaolei Chen. Large language models for operations research: The
next frontier in optimization modeling, 2023.

Caigao Wang, Qiang Li, Runzhong Zhang, and Yu Qiao. LLM-OPT: Learning to define and solve
general optimization problems from scratch, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Luoxuan Weng, Xingbo Wang, Junyu Lu, Yingchaojie Feng, Yihan Liu, and Wei Chen. In-
sightlens: Discovering and exploring insights from conversational contexts in large-language-
model-powered data analysis. CoRR, 2024.

Christopher Wissuchek and Patrick Zschech. Prescriptive analytics systems revised: a systematic
literature review from an information systems perspective. Information Systems and e-Business
Management, pp. 1-75, 2024.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex oper-
ations research problems. In The twelfth international conference on learning representations,

2023.

Wenyi Xu, Yuren Mao, Xiaolu Zhang, Chao Zhang, Xuemei Dong, Mengfei Zhang, and Yunjun
Gao. Dagent: A relational database-driven data analysis report generation agent. arXiv preprint
arXiv:2503.13269, 2025.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng,
Linqgi Song, Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve
LLMs for optimization modeling. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=£fsDZwS49uY.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 3911-3921, 2018.

12

https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://openreview.net/forum?id=fsDZwS49uY

Under review as a conference paper at ICLR 2026

Bowen Zhang and Pengcheng Luo. Or-llm-agent: Automating modeling and solving of oper-
ations research optimization problem with reasoning large language model. arXiv preprint
arXiv:2503.10009, 2025.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Ali Zheng, Omar Arshad, Anton J. Kleywegt, and Alejandro Toriello Zvara. OptiMUS: Optimization
modeling using mip solvers and large language models, 2024.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
natural language using reinforcement learning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1-11, 2017.

13

Under review as a conference paper at ICLR 2026

Appendices
A__Extended Related Work 14
|IA.1 From Text-to-SQL to Data Agents: Evolution and Limitations| 14
A2 Text-to-OPT Methods and Prescriptive Analytics| 15
|A.3 Test-time Scaling for Complex Reasoning| 15
[B Dataset Classification and Analysis| 16
|C Representative Dataset Examples from Schema20pt)| 16
|IC.1 Example 1: University Activity Allocation (DeepSeek-V3-Generated)| 17
|IC.2 Example 2: Faculty Activity Optimization (GPT-40o-Generated)[. 19
|IC.3 Example 3: Bodybuilder Team Selection (DeepSeek—-V3-Generated) 20
|C.4 Example 4: Bodybuilder Performance Optimization (GPT—-4o-Generated)| 22
|IC.5 Example 5: Cinema Scheduling Optimization (DeepSeek-V3-Generated)| 23
|IC.6 Example 6: Cinema Scheduling Optimization (GPT-4o-Generated)| 25
[DAlgorithmic Details of Schema20pt Generation| 27
ID.1 " Alternating Optimization Algorithm| 27
ID.2 Key Prompt Engineering Strategies|. 27
[E” Tmplementation Details of Data2Decision) 29
[E.1 Data2DecisionAlgorithm| 29
[E.2 SQL Query Generation Strategy|« oo 30
[E.3 Direct Code Generation Strategy| 30

A EXTENDED RELATED WORK

A.1 FROM TEXT-TO-SQL TO DATA AGENTS: EVOLUTION AND LIMITATIONS

Text-to-SQL systems have evolved significantly from rule-based approaches to neural architec-
tures (Zhong et all, 2017} [Yu et al 2018), with recent advances leveraging LLMs for improved
semantic parsing (Hong et al., 2024} [Katsogiannis-Meimarakis & Koutrikal 2023} [Chen et al.,[2020).
These systems have achieved impressive accuracy on benchmarks like Spider 2.0 (Lei et al.,[2024)),
BIRD (Li et al.,[2024a)), and BIRD-CRITIC (Li et al.| 2025)), enabling natural language interfaces for
database querying. Building upon these foundations, data agents represent the next evolutionary step
in automated data analysis. Systems like InsightPilot pioneered LLM-empowered
data exploration with goal-oriented querying capabilities. DAgent advances this
further by generating comprehensive analytical reports through multi-step reasoning and cross-table
associations. Interactive approaches such as Tapilot-Crossing incorporate self-
reflection strategies to evolve agent capabilities, while InsightLens (Weng et al) [2024) integrates
code, visualization, and natural language for multi-modal insight management. These agents sub-
stantially extend Text-to-SQL capabilities by automating the entire analytical workflow rather than
just query generation.

However, both Text-to-SQL systems and data agents remain fundamentally limited to descriptive
and diagnostic analytics. They excel at answering what happened and why it happened, but cannot

14

Under review as a conference paper at ICLR 2026

determine optimal actions through mathematical optimization. While recent benchmarks like In-
sightBench (Sahu et al., [2025) evaluate agents on prescriptive tasks, the resulting recommendations
remain qualitative suggestions such as ”open an incident ticket” rather than quantitative solutions
with verifiable optimal values. Neither approach can formulate or solve the constrained optimization
problems essential for mathematically optimal decision-making in enterprise operations.

A.2 TEXT-TO-OPT METHODS AND PRESCRIPTIVE ANALYTICS

The Text-to-OPT field has seen rapid development with various approaches addressing mathematical
optimization from natural language. ORLM (Tang et al., 2023) pioneered the use of LLMs for op-
timization modeling in operations research, while subsequent methods like Chain-of-Experts (Xiao
et al.,2023)) introduced multi-component frameworks with domain-specific modules orchestrated by
a conductor. OptiMUS (Zheng et al.| 2024) further advanced the field with a modular system capa-
ble of iterative model refinement and debugging. LLMOPT (Jiang et al., |2024) proposes a unified
learning-based framework with a five-element formulation. OR-LLM-Agent (Zhang & Luo, [2025))
leverages reasoning LLMs through task decomposition into several stages. Autoformulation (As-
torga et al., |2024) introduces Monte Carlo Tree Search to systematically explore the formulation
space, while SIRL (Chen et al.| |2025) employs reinforcement learning with solver-based verifica-
tion. Recent work on OptiTrust (Lima et al.| |2025) introduces verifiable synthetic data generation
pipelines for training trustworthy optimization modeling agents.

Despite these advances, all existing Text-to-OPT methods share a critical limitation: they assume
that all necessary data is embedded within problem descriptions, typically in the form of LaTeX
tables or natural language specifications. This assumption fundamentally misaligns with real-world
enterprise scenarios where optimization parameters must be extracted from large databases. Further-
more, existing benchmarks like NL4AOPT (Ramamonjison et al.| [2022), ComplexOR (Xiao et al.,
2023), and IndustryOR (Huang et al., 2025) perpetuate a problematic top-down data generation
paradigm. These datasets are created by starting with well-known optimization problems from text-
books or literature, then generating variations through parameter adjustments or constraint modifi-
cations. This approach confines the field to recycling existing formulations rather than discovering
optimization opportunities that naturally emerge from enterprise data structures.

True prescriptive analytics requires bridging this gap between data extraction and optimization solv-
ing (Lepenioti et al., [2020). Unlike Text-to-SQL which retrieves data from databases, or Text-to-
OPT which assumes pre-extracted parameters, prescriptive analytics must accomplish both: ex-
tracting optimization parameters from databases and solving for optimal decisions. While recent
solutions like PresAlse (Sun et al., [2024) combine causal inference with optimization, and Insight-
Bench (Sahu et al.| 2025)) evaluates prescriptive tasks, these approaches provide only high-level sug-
gestions. This gap motivates our development of Schema20pt for rigorous evaluation of database-
grounded prescriptive analytics.

A.3 TEST-TIME SCALING FOR COMPLEX REASONING

Recent work has shown that Large Language Model (LLM) performance can be improved through
test-time scaling, such as generating intermediate reasoning steps (Wei et al.,|2022; [Yao et al.,[2023;
Besta et al., [2024). Self-consistency (Wang et al., [2022)) also shows that sampling multiple reason-
ing paths and selecting the most frequent answer enhances reliability on complex reasoning tasks.
More recent advances demonstrate that test-time compute scaling can be more effective than sim-
ply increasing model parameters (Snell et al., 2024). Methods like Forest-of-Thought (B1 et al.|
2024) extend tree-based reasoning to explore multiple solution paths simultaneously, enabling back-
tracking and lookahead capabilities. Process-based reward models have shown particular promise
in verifying intermediate reasoning steps (Zhang et al., |2025)), improving both the quality and relia-
bility of generated solutions. These approaches have proven particularly effective for mathematical
reasoning and code generation, with compute-optimal strategies achieving over 4x efficiency im-
provements compared to best-of-N baselines.

15

Under review as a conference paper at ICLR 2026

B DATASET CLASSIFICATION AND ANALYSIS

To understand the characteristics and diversity of optimization problems in Schema20pt, we an-
alyzed all generated instances before multi-solver validation. This comprehensive classification
employed GPT-5.1-mini to evaluate each problem across five key dimensions: business domain, op-
timization type, problem complexity, implementation difficulty, and real-world applicability score.

Business Domain Distribution Problem Complexity Distribution
109
. mmm DeepSeek-V3 Dataset mmm DeepSeek-V3 Dataset
Logistics _ BN GPT-40 Dataset BN GPT-4o Dataset
100 i
«» 80
=
. [=]
-
- o
o
z
enterainment |
20

4
L E
0

Simple Medium Complex

=)
N
>

6 8
Number of Problems

=
°
e
N

Figure 4: Business domain distribution and problem complexity analysis across DeepSeek-V3
and GPT-4o0 generated datasets.

The classification results reveal distinct patterns in problem generation. Our analysis identified 37
unique business sectors across both datasets, including education (25), sports (23), entertainment
(18), media (16), aviation (12), political campaigns (12), retail (11), government (9), culture (8),
logistics (8), manufacturing (8), hospitality (7), retail banking (6), college athletics (6), finance (5),
technology (5), events and wedding planning (4), maritime shipping (4), academic conferences (3),
academic institutions (3), disaster response (3), agriculture (2), construction (2), energy (2), gaming
(2), healthcare (2), research (2), winemaking (2), and several specialized domains appearing once
such as customer service centers, performing arts production, streaming systems, and transportation
operations. Figure [] visualizes the top 10 domains, showing how education, sports, and entertain-
ment lead the distribution for both DeepSeek—-V3 and GPT—-40 datasets.

The complexity analysis reveals a strong preference for tractable problems. With 86.7% of
DeepSeek~-V3 problems and 96.5% of GPT-40 problems classified as simple, our bottom-up
generation approach appears to naturally discover linear programming formulations that are com-
putationally feasible. Only 14 DeepSeek—-V3 problems and 4 GPT—40 problems reach medium
complexity, while a single complex problem appears in the DeepSeek—-V3 dataset. This distri-
bution suggests that database schemas inherently encode optimization opportunities that align well
with standard solver capabilities.

Figure [5] illustrates another consistent pattern: both datasets favor maximization over minimization
objectives. The DeepSeek-V3 dataset contains 67.3% maximization problems while GPT-40
reaches 75.2%, reflecting how businesses naturally frame goals around maximizing revenue, effi-
ciency, or satisfaction. After rigorous multi-solver validation, 95 problems from the DeepSeek-V3
generation and 106 from GPT—4 0 met all verification criteria to form the final Schema20Opt bench-
mark. This filtering ensures that every included problem represents not only a realistic business
scenario but also produces consistent, verifiable optimal solutions across multiple solver implemen-
tations.

C REPRESENTATIVE DATASET EXAMPLES FROM SCHEMAZ2OPT

We present six complete examples from Schema20pt that illustrate the breadth of optimization
scenarios our bottom-up generation approach discovers. These examples, selected from both the
GPT-40 and DeepSeek-V3 generated datasets, showcase how database schemas naturally en-

16

Under review as a conference paper at ICLR 2026

DeepSeek-V3 Dataset GPT-40 Dataset
Optimization Types Optimization Types

Minimize
24.8%

Minimize
32.7%

Maximize
67.3%
Maximize
75.2%

Figure 5: Distribution of optimization objectives showing preference for maximization problems in
both datasets.

code diverse business decision problems spanning education, sports, entertainment, and logistics
domains. Each example demonstrates the complete transformation from an existing SQL schema
through our alternating expert dialogue to a verified optimization solution.

The examples reveal several key characteristics of our generation framework. First, they show how
the same underlying database structure can support different optimization objectives through our
iterative refinement process. For instance, Examples 1 and 2 both involve university activity data
but diverge into distinct optimization problems focused on participation versus scoring. Second,
they demonstrate the framework’s ability to handle varying complexity levels, from simple linear
programs with a handful of variables to more complex scheduling problems with multiple con-
straint types. Finally, these examples validate our design principle of separating tabular data from
scalar configuration parameters, showing how business rules naturally emerge as configuration val-
ues while entity-specific data resides in database tables.

C.1 EXAMPLE 1: UNIVERSITY ACTIVITY ALLOCATION (DEEPSEEK—V3-GENERATED)

This example demonstrates how student and faculty participation constraints naturally map to binary
allocation decisions with capacity limitations.

Problem Context, Goals and Constraints

Context

A university is managing the allocation of students and faculty to extracurricular activities with the goal of maximizing overall
participation. The decision-making process involves determining which students and faculty members should participate in which
activities. Each student can participate in at most one activity, and each faculty member can participate in at most two activities.
Additionally, each activity has a predefined maximum number of participants that cannot be exceeded.

The business configuration includes the following operational parameters: Faculty Availability Limit: Faculty members are limited
to participating in a maximum of two activities to balance their workload and ensure availability. Student Preference Threshold:
Students are allowed to participate in only one activity to ensure focused engagement and avoid overcommitment. Total Par-
ticipation Calculation: The total participation in an activity is calculated as the sum of student and faculty participation in that
activity.

The optimization problem is designed to ensure that these constraints are respected while maximizing the total number of partici-
pants across all activities.

Goals

The primary goal of this optimization problem is to maximize the total participation in extracurricular activities by both students
and faculty. Success is measured by the total number of participants across all activities, which is the sum of student and faculty
participation. This goal aligns with the operational parameters and ensures that the allocation respects the constraints on faculty
availability, student preferences, and activity capacity limits.

Constraints

The optimization problem must adhere to the following constraints: 1. Student Participation Limit: Each student can participate
in at most one activity. This ensures that students are not overcommitted and can focus on their chosen activity. 2. Faculty
Participation Limit: Each faculty member can participate in at most two activities. This constraint balances faculty workload and
ensures their availability across activities. 3. Activity Capacity Limit: The total number of participants in each activity, including
both students and faculty, must not exceed the predefined maximum capacity for that activity. This ensures that activities are not
overcrowded and can operate effectively.

17

Under review as a conference paper at ICLR 2026

These constraints are designed to ensure that the allocation of participants is feasible and aligns with the operational capabilities of
the university.

Available Data - Database Schema

CREATE TABLE Participates_in (
stuid INTEGER,
actid INTEGER
)s

CREATE TABLE Faculty_Participates_in (
FacID INTEGER,
actid INTEGER
)s

CREATE TABLE Activity_Capacity (
actid INTEGER,
max_participants INTEGER

)3

INSERT INTO Participates-in (stuid, actid) VALUES (101, 1);
INSERT INTO Participates-in (stuid, actid) VALUES (102, 2);
INSERT INTO Participates-in (stuid, actid) VALUES (103, 3);

INSERT INTO Faculty_Participates_in (FacID, actid) VALUES (201, 1);
INSERT INTO Faculty_Participates_in (FacID, actid) VALUES (202, 2);
INSERT INTO Faculty_Participates_in (FacID, actid) VALUES (203, 3);

INSERT INTO Activity_Capacity (actid, max_participants) VALUES (1, 10);
INSERT INTO Activity_Capacity (actid, max_participants) VALUES (2, 15);
INSERT INTO Activity_Capacity (actid, max_participants) VALUES (3, 20);

Data Dictionary - Participates_in: Tracks student participation in activities. - stuid: Unique identifier for a student. Used to
determine which students participate in which activities. - actid: Unique identifier for an activity. Used to link students to specific
activities. - Faculty_Participates_in: Tracks faculty participation in activities. - FacID: Unique identifier for a faculty member.
Used to determine which faculty members participate in which activities. - actid: Unique identifier for an activity. Used to link
faculty members to specific activities. - Activity_Capacity: Defines the maximum number of participants allowed in each activity.
- actid: Unique identifier for an activity. Used to link capacity limits to specific activities. - max_participants: The maximum
number of participants allowed in the activity. Used to enforce capacity constraints.

Mathematical Optimization Formulation

Decision Variables
* T o Binary variable indicating whether student s participates in activity a (1 if yes, O otherwise).
* Yy, q: Binary variable indicating whether faculty f participates in activity a (1 if yes, O otherwise).
Objective Function
Maximize the total participation across all activities:

Maximize Z st,a + Z ny,a
E] a f a

Coefficients: All coefficients are 1, as each participant (student or faculty) contributes equally to the total participation.

Constraints
1. Student Participation Limit: Z Tsa <1 Vs (1)
2. Faculty Participation Limit: Y yja <2 Vf ®)
3. Activity Capacity Limit: Z Ts,a + Z Yf,a < max_participants, Va 3)
s ¥
4. Binary Constraints: x5 o € {0,1} Vs,a; yfa € {0,1} Vf,a @

Cross-Solver Analysis and Final Recommendation

Solver Results Comparison

Solver Status Optimal Value ~ Execution Time
Gurobipy ~ OPTIMAL 9.00 0.18s
Docplex OPTIMAL 9.00 1.13s
Pyomo OPTIMAL 9.00 0.94s

Solver Consistency Analysis
Result: All solvers produced consistent results v

18

Under review as a conference paper at ICLR 2026

Consistent Solvers: gurobipy, docplex, pyomo

Majority Vote Optimal Value: 9.0

Final Recommendation

Recommended Optimal Value: 9.0

Confidence Level: HIGH

Preferred Solver(s): gurobipy

Reasoning: Gurobipy is recommended due to its fastest execution time while still providing the optimal solution.

C.2 EXAMPLE 2: FACULTY ACTIVITY OPTIMIZATION (GPT—-40-GENERATED)

Here the framework (GPT—-40 as the backend LLM) transforms the same domain into a scoring op-
timization problem, showing how different business objectives emerge from similar database struc-
tures through our iterative refinement process.

Problem Context, Goals and Constraints

Context

The university is focused on optimizing the allocation of faculty members to various activities to enhance the overall participation
scores. The decision-making process involves determining whether a faculty member, identified by their unique ID, should be
assigned to a specific activity. This decision is represented by binary variables, where each variable indicates if a faculty member
is assigned to an activity. The primary objective is to maximize the total participation score, which is calculated by summing the
product of participation scores for each faculty-activity pair and the corresponding binary decision variable.

Operational parameters are crucial in this context. Each faculty member has a maximum number of activities they can participate
in, ensuring they are not overburdened. Additionally, each activity requires a minimum number of faculty members to ensure it is
adequately staffed. These parameters are derived from the business configuration, which includes the maximum number of activities
a faculty member can participate in and the minimum number of faculty members required for an activity. The problem is structured
to ensure that these constraints are respected, leading to a linear optimization formulation.

Goals

The primary goal of this optimization problem is to maximize the total participation score. This involves assigning faculty members
to activities in a way that the sum of the participation scores for all faculty-activity assignments is maximized. The success of this
optimization is measured by the total participation score achieved, which directly correlates with the participation scores assigned
to each faculty-activity pair. The goal is articulated in natural language to emphasize the linear nature of the optimization objective.
Constraints

The optimization problem is subject to several constraints that ensure the feasibility and practicality of the solution: - Each faculty
member can participate in a limited number of activities, as defined by their availability. This constraint ensures that the sum of
the binary decision variables for each faculty member does not exceed their maximum availability. - Each activity must have a
minimum number of faculty members assigned to it. This constraint ensures that the sum of the binary decision variables for each
activity meets or exceeds the required staffing level.

Available Data - Database Schema

CREATE TABLE Participation_Score (
FacID INTEGER,

actid INTEGER,
participation-score FLOAT

)s

CREATE TABLE Faculty_Participates-in (
FacID INTEGER,

actid INTEGER,

participation_score FLOAT

):

INSERT INTO Participation_Score (FacID, actid, participation_score) VALUES (1, 101, 12.0);
INSERT INTO Participation_Score (FacID, actid, participation_score) VALUES (2, 102, 18.5);
INSERT INTO Participation_Score (FacID, actid, participation_score) VALUES (3, 103, 14.0);

INSERT INTO Faculty_Participates_-in (FacID, actid, participation_score) VALUES (1, 101, 12.0);
INSERT INTO Faculty_Participates_in (FacID, actid, participation_.score) VALUES (2, 102, 18.5);
INSERT INTO Faculty_Participates-in (FacID, actid, participation_score) VALUES (3, 103, 14.0);
INSERT INTO Faculty_Participates-in (FacID, actid, participation_-score) VALUES (1, 102, 10.0);
INSERT INTO Faculty_Participates-in (FacID, actid, participation_-score) VALUES (2, 103, 16.0);

Data Dictionary

The data dictionary provides a comprehensive mapping of tables and columns to their business purposes and optimization roles:

- Participation_Score Table: This table stores the participation scores for each faculty-activity pair. The participation score repre-
sents the benefit of assigning a specific faculty member to an activity. The table includes: - FacID: Represents the unique identifier
for each faculty member. - actid: Represents the unique identifier for each activity. - participation_score: Represents the score
associated with assigning a faculty member to an activity, serving as a coefficient in the objective function.

- Faculty_Participates_in Table: This table tracks the participation of faculty members in activities. It includes: - FacID: Rep-
resents the unique identifier for each faculty member. - actid: Represents the unique identifier for each activity. - participa-
tion_score: Although included, this column is primarily used for tracking purposes and aligns with the participation scores in the
Participation_Score table.

19

Under review as a conference paper at ICLR 2026

Mathematical Optimization Formulation

Decision Variables - Let 2; ; be a binary decision variable where x; ; = 1 if faculty member i is assigned to activity j, and
x;, 5 = 0 otherwise.

Objective Function

Maximize the total participation score:

Maximize Z Participation_Score(%, j) X x;,;

(2%
Where: - Participation_Score(7, j) is the participation score for faculty member ¢ and activity j from the
Participation_Score table.
Constraints
1. Faculty Availability Constraint: Each faculty member can participate in a limited number of activities.)
> " @i,; < Max Activities(i) Vi ©)
J
- Max_Activities(z) is the maximum number of activities faculty member 4 can participate in, (@)
derived from business configuration. (8)
2. Activity Staffing Constraint: Each activity must have a minimum number of faculty members assigned. 9
> @i ; > MinFaculty(5) Vj (10)
i
- Min_Faculty () is the minimum number of faculty members required for activity j, a1
derived from business configuration. (12)
3. Binary Constraint: Each decision variable is binary. (13)
wi; € {0,1} Vi, j (14)

Data Source Verification: - Participation scores Participation_Score(%, j) are sourced from the Participation_Score table.
- Maximum activities per faculty Max_Activities(z) and minimum faculty per activity Min_Faculty(j) are derived from business
configuration parameters, which are not explicitly detailed in the provided data but are assumed to be part of the business rules.
This formulation provides a complete, immediately solvable linear mathematical model using the given data and constraints.

Cross-Solver Analysis and Final Reco

Solver Results Comparison

Solver Status Optimal Value Execution Time
Gurobipy ERROR N/A 0.18s
Docplex OPTIMAL 70.50 1.39s
Pyomo OPTIMAL 70.50 1.12s

Solver Consistency Analysis

Result: All solvers produced consistent results v

Consistent Solvers: docplex, pyomo

Majority Vote Optimal Value: 70.5

Final Recommendation

Recommended Optimal Value: 70.5

Confidence Level: HIGH

Preferred Solver(s): docplex/pyomo

Reasoning: Both DOCplex and Pyomo provided consistent and optimal results, indicating reliability. Gurobipy’s error suggests
data issues that need addressing before it can be considered.

The next two examples demonstrate how our framework handles optimization in the sports domain,
specifically bodybuilder team selection and performance optimization. These cases show how physi-
cal attributes and performance metrics stored in separate database tables can be unified into cohesive
optimization models through our schema refinement process.

C.3 EXAMPLE 3: BODYBUILDER TEAM SELECTION (DEEPSEEK-V3-GENERATED)

This example shows the integration of performance metrics with physical constraints, where team
composition must balance total scoring against average height and weight requirements.

Problem Context, Goals and Constraints

Context
A bodybuilding competition organizer is tasked with selecting a team of bodybuilders to compete in an upcoming event. The goal

20

Under review as a conference paper at ICLR 2026

is to assemble a team that maximizes the total performance score based on the bodybuilders’ Snatch and Clean & Jerk scores. The
selection process must adhere to specific operational constraints to ensure the team meets diversity and physical criteria.

The organizer must decide which bodybuilders to include in the team, represented by a binary decision for each individual. The
total number of bodybuilders in the team cannot exceed a predefined limit, ensuring the team remains manageable and diverse.
Additionally, the team must meet a minimum average height requirement of 170 cm and a maximum average weight requirement
of 100 kg. These constraints ensure the team aligns with the competition’s physical standards.

The performance scores for each bodybuilder are derived from their Snatch and Clean & Jerk results, which are stored in the
database. The physical attributes of height and weight are also recorded and used to enforce the team’s physical criteria. The
business configuration includes a maximum team size limit of 5 bodybuilders, a minimum average height requirement, and a
maximum average weight requirement, all of which are critical to the selection process.

Goals

The primary goal of this optimization problem is to maximize the total performance score of the selected team. This score is
calculated as the sum of the Snatch and Clean & Jerk scores of the chosen bodybuilders. Success is measured by achieving the
highest possible total score while adhering to the constraints on team size, average height, and average weight.

Constraints

The selection of bodybuilders for the team must respect the following constraints: 1. Team Size Limit: The total number of
bodybuilders selected for the team must not exceed the predefined limit of 5. This ensures the team remains manageable and
diverse. 2. Minimum Average Height: The average height of the selected bodybuilders must be at least 170 cm. This ensures the
team meets the competition’s physical standards for height. 3. Maximum Average Weight: The average weight of the selected
bodybuilders must not exceed 100 kg. This ensures the team aligns with the competition’s physical standards for weight.

These constraints are designed to ensure the team is both competitive and compliant with the competition’s requirements.

Available Data - Database Schema

CREATE TABLE body_builder (
Snatch FLOAT,

Clean_Jerk FLOAT

)s

CREATE TABLE people (
Height FLOAT,
Weight FLOAT
)

CREATE TABLE team_selection (
is_selected BOOLEAN
):

INSERT INTO body_builder (Snatch, Clean_Jerk) VALUES (150.5, 200.0);
INSERT INTO body_builder (Snatch, Clean_Jerk) VALUES (160.0, 210.5);
INSERT INTO body-builder (Snatch, Clean_Jerk) VALUES (170.5, 220.0);

INSERT INTO people (Height, Weight) VALUES (175.0, 90.0);
INSERT INTO people (Height, Weight) VALUES (180.0, 95.0);
INSERT INTO people (Height, Weight) VALUES (185.0, 100.0);

INSERT INTO team-selection (is-selected) VALUES (True);
INSERT INTO team-selection (is-selected) VALUES (False);
INSERT INTO team-selection (is-selected) VALUES (True);

Data Dictionary - body_builder Table: - Snatch: The Snatch score of a bodybuilder, used to calculate the total performance score.
- Clean_Jerk: The Clean & Jerk score of a bodybuilder, used to calculate the total performance score. - people Table: - Height:
The height of a bodybuilder in centimeters, used to enforce the minimum average height constraint. - Weight: The weight of a
bodybuilder in kilograms, used to enforce the maximum average weight constraint. - team_selection Table: - is_selected: A binary
indicator of whether a bodybuilder is selected for the team, representing the decision variable in the optimization model.

Mathematical Optimization Formulation

Decision Variables - Let z; be a binary decision variable where: - z; = 1 if bodybuilder 7 is selected for the team. - ; = 0
otherwise.

Here, ¢ = 1, 2, 3 corresponds to the three bodybuilders in the database.

Objective Function

Maximize the total performance score:

Maximize Z = 350.5x1 4+ 370.5z2 + 390.5x3

Constraints
1. Team Size Limit: 1 + 2 + 23 < 5 (15)
2. Minimum Average Height: 5.0¢1 + 10.022 + 15.0z3 > 0 (16)
3. Maximum Average Weight: — 10.0z; — 5.022 4+ 0.0z3 < 0 (17)

21

Under review as a conference paper at ICLR 2026

Cross-Solver Analysis and Final Recommendation

Solver Results Comparison

Solver Status Optimal Value Execution Time
Gurobipy =~ OPTIMAL 1111.50 0.17s
Docplex OPTIMAL 1111.50 1.06s
Pyomo OPTIMAL 1111.50 0.78s

Solver Consistency Analysis

Result: All solvers produced consistent results v

Consistent Solvers: gurobipy, docplex, pyomo

Majority Vote Optimal Value: 1111.5

Final Recommendation

Recommended Optimal Value: 1111.5

Confidence Level: HIGH

Preferred Solver(s): gurobipy

Reasoning: Gurobipy is recommended due to its fastest execution time while achieving the same optimal solution as the other
solvers.

C.4 EXAMPLE 4: BODYBUILDER PERFORMANCE OPTIMIZATION (GPT-40-GENERATED)

Building on similar data structures, this variant explores training optimization where impact coeffi-
cients modify the relationship between different exercises and overall performance targets.

Problem Context, Goals and Constraints

Context

The fitness organization is focused on enhancing the competitive performance of bodybuilders by optimizing their training regimen.
The primary decision variables in this optimization are the weights lifted in the Snatch and Clean & Jerk events. These variables
are continuous and directly mapped to the bodybuilder’s performance in these lifts. The operational goal is to maximize the total
weight lifted across these events, aligning with the linear objective of summing the weights lifted in Snatch and Clean & Jerk.

The business configuration includes several key parameters: the target total weight to be lifted by a bodybuilder, which serves as
a constraint in the optimization model, and the impact coefficients for Snatch and Clean & Jerk training, which adjust the focus
of training in the optimization model. These parameters are crucial for ensuring that the optimization aligns with realistic training
impacts and performance targets.

The organization uses current operational data to inform decision-making, ensuring that the optimization problem remains grounded
in practical, achievable goals. The constraints are designed to reflect resource limitations and performance targets, ensuring that the
optimization remains linear and avoids nonlinear relationships such as variable products or divisions. The business configuration
parameters are referenced throughout to maintain consistency and alignment with the optimization objectives.

Goals

The primary goal of the optimization is to maximize the total weight lifted by bodybuilders in competitions. This is achieved by
focusing on the Snatch and Clean & Jerk lifts, with the objective being to maximize the sum of the weights lifted in these events.
Success is measured by the alignment of the optimization with the expected impact coefficients for training, ensuring that the focus
on Snatch and Clean & Jerk lifts leads to improved competitive performance. The optimization goal is clearly defined in natural
language, emphasizing the linear nature of the objective without resorting to mathematical formulas or symbolic notation.
Constraints

The optimization problem includes constraints that ensure the total weight lifted by each bodybuilder does not exceed specified
limits. These constraints are directly mapped to the total weight lifted by the bodybuilder, ensuring that the optimization remains
within realistic performance boundaries. Additionally, each bodybuilder has a performance target, which serves as a constraint in
the optimization model. These constraints are described in business terms, naturally leading to linear mathematical forms without
involving variable products or divisions.

Available Data - Database Schema

CREATE TABLE body_builder (
Snatch FLOAT,
Clean_Jerk FLOAT,
Total FLOAT,
Snatch_Impact FLOAT,
Clean_Jerk_Impact FLOAT
)

CREATE TABLE bodybuilder_performance (
Bodybuilder-ID INTEGER,
Performance_Target FLOAT

)s

INSERT INTO body-builder VALUES
(85.0, 105.0, 190.0, 1.2, 1.5),
(95.0, 115.0, 210.0, 1.3, 1.6),
(100.0, 120.0, 220.0, 1.1, 1.4);

INSERT INTO bodybuilder_performance VALUES

22

Under review as a conference paper at ICLR 2026

(1. 300.0), (2, 320.0), (3. 340.0);

Data Dictionary

The data dictionary provides a comprehensive mapping of tables and columns to their business purposes and optimization roles. The
body-builder table stores individual lift data for bodybuilders, with columns representing the weight lifted in Snatch and Clean
& Jerk, the total weight lifted, and the impact coefficients for training. These columns serve as decision variables and objective
coefficients in the optimization model. The bodybuilder_performance table stores performance metrics and targets for each
bodybuilder, linking performance data to individual bodybuilders and serving as a constraint in the optimization model.

\. J

Mathematical Optimization Formulation

Decision Variables - Let 1 be the weight lifted in the Snatch event for a bodybuilder. - Let 25 be the weight lifted in the Clean &
Jerk event for a bodybuilder.

Objective Function

Maximize the total weight lifted:

Maximize Z = x1 + x2

Constraints

For each bodybuilder, we have the following constraints:

1. Performance Target Constraint: The total weight lifted should not exceed the performance target for each bodybuilder. - For
Bodybuilder 1: z1 + x2 < 300.0 - For Bodybuilder 2: 1 + x2 < 320.0 - For Bodybuilder 3: 1 4+ z2 < 340.0

2. Training Impact Constraints: These constraints ensure that the training impact coefficients are considered in the optimization.
- For Bodybuilder 1: 1.2 X 1 + 1.5 X z2 < 190.0 - For Bodybuilder 2: 1.3 X 1 4+ 1.6 X 22 < 210.0 - For Bodybuilder
3:1.1 x 21 + 1.4 X 2 < 220.0

3. Non-negativity Constraints: The weights lifted must be non-negative. 1 > 0, z2 > 0

Cross-Solver Analysis and Final Recommendation

Solver Results Comparison

Solver Status Optimal Value Execution Time
Gurobipy OPTIMAL 519.87 1.21s
Docplex OPTIMAL 519.87 6.89s
Pyomo OPTIMAL 519.87 6.11s

Solver Consistency Analysis

Result: All solvers produced consistent results v

Consistent Solvers: gurobipy, docplex, pyomo

Majority Vote Optimal Value: 519.8717948717948

Final Recommendation

Recommended Optimal Value: 519.8717948717948

Confidence Level: HIGH

Preferred Solver(s): gurobipy

Reasoning: Gurobipy is recommended due to its faster execution time and precise results, making it suitable for time-sensitive
applications.

The final two examples explore resource scheduling in the entertainment industry, focusing on cin-
ema operations. These demonstrate more complex constraint structures involving capacity limi-
tations, temporal scheduling, and revenue maximization across multiple venues, highlighting the
framework’s ability to discover sophisticated optimization opportunities in service operations.

C.5 EXAMPLE 5: CINEMA SCHEDULING OPTIMIZATION (DEEPSEEK—-V3-GENERATED)

This scheduling problem demonstrates how temporal constraints and capacity limitations com-
bine with pricing structures to form a revenue maximization model, validated by Gurobipy and
DOCplex consensus.

Problem Context, Goals and Constraints

1. Problem Context and Goals

Context

A cinema chain is focused on maximizing its revenue by optimizing the scheduling of films across its cinemas. The key decision
involves determining the number of showings per film per cinema per day, which directly impacts revenue. The cinema operates
under specific operational parameters, including the price per showing, the capacity of each cinema, and the maximum number of
showings allowed per day per cinema. These parameters are critical in ensuring that the scheduling aligns with both business goals
and operational constraints.

The business configuration includes two key scalar parameters: 1. Maximum number of showings allowed per day per cinema:
This parameter ensures that the total number of showings per day does not exceed a realistic limit, which is set to 12 based on
typical cinema operating hours. 2. Total capacity of the cinema per day: This parameter ensures that the total number of seats

23

Under review as a conference paper at ICLR 2026

available across all showings in a day does not exceed the cinema’s daily capacity, which is calculated based on the cinema’s seating
capacity and the maximum number of showings.

The optimization problem is designed to maximize revenue by leveraging these parameters in a linear manner, ensuring that the
relationships between decision variables and constraints remain straightforward and avoid any nonlinear complexities.

Goals

The primary goal of this optimization problem is to maximize the total revenue generated from film showings across all cinemas.
Revenue is calculated by multiplying the price per showing, the number of showings per film per cinema per day, and the capacity
of the cinema. Success is measured by achieving the highest possible revenue while adhering to the operational constraints, such as
the maximum number of showings and the total capacity of the cinema. The optimization process ensures that these goals are met
through a linear formulation, avoiding any nonlinear relationships that could complicate the decision-making process.

Constraints

The optimization problem is subject to the following constraints, which are designed to reflect realistic operational limitations:
1. Maximum showings per day per cinema: The total number of showings per day in a cinema cannot exceed the maximum
allowed, which is set to 12. This ensures that the cinema’s operating hours are not overextended. 2. Total capacity per day: The
total number of seats available across all showings in a day must not exceed the cinema’s daily capacity. This ensures that the
cinema does not overbook its available seating. 3. Minimum showings per film: Each film must be shown at least once per day in
each cinema. This ensures that all films receive adequate exposure and that the cinema’s schedule remains balanced.

Available Data - Database Schema

CREATE TABLE schedule (
Price FLOAT,
Show_times_per-day INTEGER
):

CREATE TABLE cinema (
Capacity INTEGER
)

INSERT INTO schedule (Price, Show_times_per_day) VALUES

(12.99, 3):

INSERT INTO schedule (Price, Show_times_per_-day) VALUES
(9.99, 2);

INSERT INTO schedule (Price, Show_times.-per-day) VALUES
(7.99, 1);

INSERT INTO cinema (Capacity) VALUES (150);
INSERT INTO cinema (Capacity) VALUES (200);
INSERT INTO cinema (Capacity) VALUES (100);

Data Dictionary

The data dictionary provides a clear mapping of the tables and columns to their business purposes and optimization roles: - schedule:
This table stores information about film showings, including the price per showing and the number of showings per film per cinema
per day. - Price: Represents the price per showing of a film. This value is used as a coefficient in the revenue calculation. -
Show_times_per_day: Represents the number of showings per film per cinema per day. This is the primary decision variable in
the optimization problem. - cinema: This table stores information about cinemas, including their seating capacity. - Capacity:
Represents the seating capacity of the cinema. This value is used as a coefficient in the revenue calculation.

Mathematical Optimization Formulation

Decision Variables
Let x ¢ . be the number of showings per day for film f in cinema c.
This is the primary decision variable, representing the number of showings per film per cinema per day.
Objective Function
Maximize the total revenue:
Maximize Z Z(Pricef x Capacity, X xf)
f c

Where: - Price; is the price per showing for film f (from schedule.Price). - Capacity,, is the seating capacity of cinema c
(from cinema.Capacity). - ¢ . is the number of showings per day for film f in cinema c.

Constraints

1. Maximum showings per day per cinema: (18)

S wpe <12 Ve (19)
f

This ensures the total number of showings per day in each cinema does not exceed 12. (20)

2. Total capacity per day: 21)

> (Capacity,, x z,c) < Capacity,, x 12 Ve (22)
f

This ensures the total number of seats available across all showings in a day does not exceed the cinema’s daily capacity. (23)

3. Minimum showings per film: 24)

. >1 Vf,c (25)

This ensures each film is shown at least once per day in each cinema. (26)

24

Under review as a conference paper at ICLR 2026

Cross Solver Analysis and Final Recommendation

Solver Results Comparison

Solver Status Optimal Value Execution Time
Gurobipy =~ OPTIMAL 66546.00 0.20s
Docplex OPTIMAL 66546.00 1.44s
Pyomo ERROR N/A 0.74s

Solver Consistency Analysis

Result: All solvers produced consistent results

Consistent Solvers: gurobipy, docplex

Majority Vote Optimal Value: 66546.0

Final Recommendation

Recommended Optimal Value: 66546.0

Confidence Level: HIGH

Preferred Solver(s): gurobipy

Reasoning: Gurobipy is recommended due to its optimal solution, high reliability, and fastest execution time. DOCplex also found
the same optimal solution but was less efficient. Pyomo is not recommended due to its execution error.

C.6 EXAMPLE 6: CINEMA SCHEDULING OPTIMIZATION (GPT-40-GENERATED)

A variant scheduling formulation that explores different constraint structures for the same business
domain, showing how our framework can generate diverse valid formulations from similar opera-
tional contexts.

Problem Context, Goals and Constraints

Context

The cinema chain is focused on maximizing its revenue by strategically scheduling films across its various locations. Each cinema
has a specific capacity and a limited number of show times available per day. The decision-making process involves determining the
number of times each film should be shown in each cinema. This decision is represented by integer variables, where each variable
corresponds to the number of screenings for a particular film in a specific cinema. The primary objective is to maximize the total
revenue generated from these screenings. This is achieved by considering the price per screening for each film in each cinema,
which serves as the coefficient in the revenue calculation. The operational parameters include the maximum number of screenings
allowed per day for each cinema and the seating capacity, which must not be exceeded. These constraints ensure that the scheduling
decisions remain feasible and align with the cinema’s operational capabilities.

Goals

The primary goal of this optimization problem is to maximize the total revenue from film screenings across all cinemas. The metric
for optimization is the total revenue, which is calculated by summing the product of the number of screenings and the price per
screening for each film in each cinema. Success in this context is measured by the ability to achieve the highest possible revenue
while adhering to the operational constraints of each cinema. The optimization goal is clearly defined in linear terms, focusing on
maximizing revenue without involving complex mathematical operations.

Constraints

The scheduling decisions are subject to several constraints that ensure the feasibility of the solution: - Each cinema has a maximum
number of screenings it can accommodate per day. The total number of screenings scheduled in a cinema must not exceed this limit.
- The number of attendees for each screening, based on average attendance, must not exceed the seating capacity of the cinema.
This ensures that the cinema does not overbook and maintains a comfortable viewing experience for patrons.

Available Data - Database Schema

CREATE TABLE cinema (

Cinema.ID INTEGER,

Capacity INTEGER,
Max_Screenings_Per_Day INTEGER
)

CREATE TABLE film_schedule (
Cinema_ID_Film_ID INTEGER,
Show_Times INTEGER

)

CREATE TABLE film_pricing (
Cinema.ID_Film_ID INTEGER,
Price FLOAT

)s

INSERT INTO cinema VALUES
(1, 120, 5), (2, 180, 6), (3, 250, 7);

INSERT INTO film_schedule VALUES
(101, 3), (102, 4), (103, 2);

INSERT INTO film_pricing VALUES

25

Under review as a conference paper at ICLR 2026

(101, 12.0), (102, 15.0), (103, 10.0);

Data Dictionary

The data dictionary provides a business-oriented view of the tables and columns, highlighting their roles in the optimization process:
- Cinema Table: This table contains information about each cinema, including its unique identifier, seating capacity, and the
maximum number of screenings allowed per day. These attributes are crucial for defining the constraints related to capacity and
scheduling limits. - Film Schedule Table: This table records the number of times each film is shown in each cinema. The entries in
this table represent the decision variables in the optimization problem, determining the scheduling strategy for maximizing revenue.
- Film Pricing Table: This table provides the pricing information for each film in each cinema. The price per screening serves as
the coefficient in the revenue calculation, directly influencing the optimization objective.

Mathematical Optimization Formulation

Decision Variables

- Let z;; be the number of screenings for film j in cinema . - =;; is an integer variable representing the decision of how many
times film 7 is shown in cinema 4.

Objective Function

Maximize the total revenue from all screenings across all cinemas:

Maximize Z = E Price;; X x4

L)

where Price; ; is the price per screening for film j in cinema 7.

Constraints
1. Maximum Screenings per Cinema: 27)
For each cinema 7, the total number of screenings must not exceed the maximum allowed: (28)
Z ;5 < Max_Screenings_Per_Day; 29)

J

2. Seating Capacity Constraint: (30)
For each cinema ¢ and film j, the expected number of attendees per screening must not exceed the cinema’s capacity. 31)
Assuming average attendance per screening is a known parameter Avg-Attendance, ; : (32)
Avg_Attendance, ; X x;; < Capacity, (33)
3. Non-negativity and Integer Constraints: (34)
x;; > 0 and integer for all ¢, j. (35)

Data Source Verification:

- Price;; comes from the filmpricing.Price column. - Max_Screenings_Per_Day, comes from the
cinema.Max_Screenings_Per_Day column. - Capacity, comes from the cinema.Capacity column. - Avg_Altendanceij
is assumed to be a known parameter from business configuration or historical data.

This linear programming model is designed to maximize the total revenue from film screenings while adhering to the operational
constraints of each cinema. The decision variables, objective function, and constraints are all expressed in linear terms, ensuring
the model is suitable for linear or mixed-integer programming solvers.

and Final Recommendation

Solver Results Comparison

Solver Status Optimal Value Execution Time
Gurobipy ~ OPTIMAL 88.00 0.51s
Docplex OPTIMAL 12.00 7.74s
Pyomo OPTIMAL 88.00 4.29s

Solver Consistency Analysis

Result: Solvers produced inconsistent results

Consistent Solvers: gurobipy, pyomo

Inconsistent Solvers: docplex

Potential Issues: - DOCplex may have encountered a different local optimum or misinterpreted constraints. - Possible data input
errors or solver configuration issues specific to DOCplex.

Majority Vote Optimal Value: 88.0

Final Recommendation

Recommended Optimal Value: 88.0

Confidence Level: HIGH

Preferred Solver(s): multiple

Reasoning: Both Gurobipy and Pyomo provided consistent and high objective values, indicating a reliable solution. Using multiple
solvers can validate results and ensure robustness.

These examples collectively shows that our bottom-up approach successfully discovers a wide range
of optimization patterns directly from database structures. The consistent achievement of solver
consensus across diverse problem types validates both our generation methodology and the quality of

26

Under review as a conference paper at ICLR 2026

the resulting benchmark. The natural emergence of linear programming formulations from relational
data structures suggests that many real-world business databases inherently encode optimization
opportunities waiting to be discovered through systematic analysis.

D ALGORITHMIC DETAILS OF ScHEMA20P T GENERATION

The Schema20pt generation framework employs an alternating optimization approach that itera-
tively refines both database schemas and optimization formulations through structured dialogue be-
tween specialized agents. This section provides the core algorithmic specifications and key prompt
engineering strategies that enable automatic discovery of optimization opportunities from database
structures.

D.1 ALTERNATING OPTIMIZATION ALGORITHM

Our generation process alternates between two types of analysis until convergence. First, an OR
Expert examines the current database schema to identify what optimization problem could be solved
with the available data. Then, a Data Engineer modifies the schema to better support the optimization
requirements identified by the OR Expert. This back-and-forth continues until the schema contains
all necessary information to formulate a complete optimization problem.

Algorithm 1 Schema20pt Alternating Generation

Input: Spider database schema with at most 5 tables
Output: Business document, database content, verified optimal value
Parameters: Maximum 5 iterations, convergence threshold 0.99
// Phase 1: Iterative schema refinement
Initialize with original database schema
OR Expert analyzes schema to design optimization problem
while not converged and iterations | 5 do
/I Data Engineer modifies schema based on OR analysis
Identify missing data elements from OR Expert feedback
Create new tables or columns for decision variables
Add fields for objective coefficients and constraints
Move single-value parameters to configuration file
/I OR Expert evaluates improved schema
Check if all optimization components have data sources
Calculate mapping adequacy score (0 to 1)
Mark complete if adequacy exceeds 0.99
end while
// Phase 2: Generate realistic business scenario
Triple Expert creates realistic data values for all tables
Generate natural language business description
Extract mathematical formulation from business context
// Phase 3: Validate with multiple solvers
Generate code for Gurobi, DOCplex, and Pyomo
Execute each solver and collect optimal values
Accept if at least 2 solvers agree on the solution
Otherwise discard as invalid instance

The convergence process typically completes within three to four iterations. The mapping adequacy
score combines assessments of three key components: whether objective function coefficients can
be found in the data (weighted at 35 percent), whether decision variables are properly represented
(35 percent), and whether constraint parameters are available (30 percent). When this combined
score exceeds 99 percent, we consider the schema sufficiently complete for optimization.

D.2 KEY PROMPT ENGINEERING STRATEGIES
The success of Schema20pt generation relies heavily on carefully designed prompts that enforce

agent specialization and maintain mathematical rigor. We present the core strategies that enable
effective agent collaboration.

27

Under review as a conference paper at ICLR 2026

D.2.1 OR EXPERT PROMPT DESIGN

The OR Expert prompt enforces strict linearity constraints while discovering optimization opportu-
nities from database structures. The prompt explicitly prohibits nonlinear operations and guides the
agent to identify how business scenarios naturally map to linear formulations. A critical innovation
is the row count awareness mechanism, where the agent understands that tables requiring fewer than
3 meaningful rows will be moved to configuration files, influencing parameter mapping decisions.

OR Expert Core Instructions:

CRITICAL MATHEMATICAL CONSTRAINTS:

* The optimization MUST be Linear Programming (LP) or Mixed-Integer (MIP)
* Objective: minimize/maximize) (coefficient x variable) ONLY

* Constraints: >_(coefficient x variable) </>/= constant

* NO variable products (xXy), divisions (x/y), or nonlinear terms

* Generate between 3-10 constraints for optimization feasibility

MAPPING EVALUATION:

For each optimization component, assess mapping adequacy [0.0-1.0]:
* 1.0: Directly available in current schema

* 0.5 — 0.9: Can be derived from existing data

* < 0.5: Missing, requires schema modification

D.2.2 DATA ENGINEER PROMPT DESIGN

The Data Engineer prompt implements schema modifications while maintaining database normal-
ization principles. A key design principle embedded in the prompt is the distinction between tabular
and scalar data. The prompt instructs that collections naturally forming multiple rows belong in
database tables, while single-value parameters belong in configuration files. This separation ensures
proper data organization and prevents the creation of single-row tables that would complicate the
optimization model.

Data Engineer Core Instructions:

DATA ORGANIZATION PRINCIPLES:

e TABULAR DATA (database): Collections of similar items
— Multiple products, locations, time periods
— Individual costs, demands per entity
— Many-to-many relationships

* SCALAR PARAMETERS (config): Single business values
— Global limits: "daily_capacity”: 1000
— Thresholds: “min_stock _ratio”: 0.2
— Business rules: “max_activities”: 2

IMPLEMENTATION RULES:
Apply 3-row minimum: If optimization data cannot generate >3 meaningful rows, move to configura-
tion instead of creating sparse tables.

D.2.3 TRIPLE EXPERT DATA GENERATION

The Triple Expert combines three domains of expertise to generate realistic data that ensures opti-
mization solvability. The prompt instructs the agent to consider business norms, maintain cross-table
consistency, and create meaningful trade-offs in the optimization problem. Values must reflect in-
dustry standards while ensuring the problem remains neither trivial nor infeasible.

Triple Expert Core Instructions:

EXPERTISE SYNTHESIS:

* Business Operations: Values reflect industry norms and realistic scenarios
» Data Management: Maintain referential integrity and cross-table consistency

28

Under review as a conference paper at ICLR 2026

* Optimization Modeling: Ensure feasible solutions with meaningful trade-offs

DATA GENERATION CONSTRAINTS:

Generate 3-100 rows per table based on business context

Coefficients create non-trivial optimization (avoid dominant solutions)
Constraint bounds allow feasible region but force trade-offs
Configuration parameters use realistic business values

E IMPLEMENTATION DETAILS OF DATA2DECISION

Following the Schema20pt generation framework, we present the algorithmic details
and implementation strategies of our Data2Decision prescriptive analytics data agent.
While Schema20pt creates the benchmark through alternating optimization between agents,
Data2Decision solves these problems through parallel test-time scaling with multi-solver con-
sensus.

E.1 DaTa2DECISION ALGORITHM

The Data2Decision system processes each prescriptive analytics problem through multiple par-
allel attempts, each exploring different interpretations of the data-to-optimization mapping. The
algorithm orchestrates these attempts and aggregates results through majority voting to produce ro-
bust solutions.

Algorithm 2 Data2Decision Parallel Solving with Consensus

Input: Business document, database schema, database content
Output: Optimal value with confidence score
Parameters: Number of attempts N = 10
// Execute N parallel solution attempts
Initialize empty result set for storing successful attempts
for each attempt 7 from 1 to IV in parallel do
/I Stage 1: Extract data from database
Set SQL temperature based on attempt number
Generate SQL queries to extract optimization parameters
Execute queries and create enhanced problem description
/I Stage 2: Generate and execute solver code
Set code temperature based on attempt number
Select solver cyclically (Gurobi, DOCplex, Pyomo)
Generate solver-specific optimization code
Execute solver with 300-second timeout
Extract optimal value from solver output
if execution successful then
Add optimal value to result set
end if
end for
/I Aggregate results through majority voting
if no successful attempts then
return failure
end if
Count frequency of each unique optimal value
Select most frequent value as final result
Calculate confidence as fraction of attempts agreeing
return optimal value and confidence score

The algorithm achieves robustness through systematic exploration of the solution space. By varying
temperatures and rotating solvers across attempts, we capture diverse valid interpretations of the
prescriptive analytics problem. The majority voting mechanism identifies the most reliable solution,
with the consensus strength providing a confidence measure. Temperature ranges from 0.05 to 0.50
for SQL generation and 0.00 to 0.18 for code generation, with linear increments across attempts.

29

Under review as a conference paper at ICLR 2026

E.2 SQL QUERY GENERATION STRATEGY

The SQL generation process in Stage 1 employs a structured prompting approach that guides the
language model to identify relevant data for optimization. Unlike traditional Text-to-SQL systems
that answer specific questions, our approach requires the model to proactively discover what data
elements map to optimization components.

The prompt structure instructs the model to analyze the problem through an optimization lens, identi-
fying data needed for decision variables (what to optimize), objective coefficients (what to maximize
or minimize), and constraint parameters (limitations and requirements). The temperature-controlled
generation explores different interpretations of these mappings, particularly valuable when business
requirements use ambiguous terminology or implicit relationships.

We implement a query extraction mechanism that parses the LLM response to identify valid SQL
statements. The system handles both structured responses with SQL code blocks and unstructured
responses where queries are embedded in natural language explanations. Each extracted query is
validated for syntactic correctness before execution against an in-memory SQLite database created
from the provided schema and data files.

E.3 DIRECT CODE GENERATION STRATEGY

Stage 2 implements direct optimization code generation without intermediate mathematical model-
ing. This design choice, validated through our ablation studies, reduces error propagation and allows
the language model to leverage its internalized optimization knowledge more effectively.

The solver-specific code generation uses template-guided prompting that provides concise imple-
mentation patterns for each framework. For Gurobi, we emphasize the use of quicksum for efficient
constraint aggregation and proper variable bounds specification. For DOCplex, we highlight the
framework’s functional API and constraint naming conventions. For Pyomo, we demonstrate the
rule-based constraint definition pattern that differs from imperative approaches.

30

	Introduction
	Related Work
	From Text-to-SQL to Data Agents: Evolution and Limitations
	Text-to-OPT Methods and Prescriptive Analytics

	Schema2Opt: Synthetic Data Generation Pipeline
	Schema Initialization and Analysis
	Alternating Expert Dialogue for Benchmark Generation
	OR Expert Analysis
	Data Engineer Implementation

	Data Generation and Problem Formulation
	Solution Generation and Verification
	Dataset Format and Components

	Data2Decision: A prescriptive analytics data agent for Enterprise Decision-Making
	Test-Time Scaling through Self-Consistency
	Temperature-Controlled Exploration
	Direct Optimization Code Generation
	Multi-Solver Diversification

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Parameter Analysis
	Component Ablation

	Conclusion
	Extended Related Work
	From Text-to-SQL to Data Agents: Evolution and Limitations
	Text-to-OPT Methods and Prescriptive Analytics
	Test-time Scaling for Complex Reasoning

	Dataset Classification and Analysis
	Representative Dataset Examples from Schema2Opt
	Example 1: University Activity Allocation (DeepSeek-V3-Generated)
	Example 2: Faculty Activity Optimization (GPT-4o-Generated)
	Example 3: Bodybuilder Team Selection (DeepSeek-V3-Generated)
	Example 4: Bodybuilder Performance Optimization (GPT-4o-Generated)
	Example 5: Cinema Scheduling Optimization (DeepSeek-V3-Generated)
	Example 6: Cinema Scheduling Optimization (GPT-4o-Generated)

	Algorithmic Details of Schema2Opt Generation
	Alternating Optimization Algorithm
	Key Prompt Engineering Strategies

	Implementation Details of Data2Decision
	Data2Decision Algorithm
	SQL Query Generation Strategy
	Direct Code Generation Strategy

