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ABSTRACT

Treatment effect estimation from imbalanced observational data is challenging,
requiring balanced latent representations to reduce selection bias and enable accu-
rate causal estimates. Many state-of-the-art methods employ VAEs with predeter-
mined latent dimensionality, but this often causes over- or underfitting since too
little relevant or too much irrelevant information is encoded. As cross-validating
latent dimensionality is impractical for complex models and high-dimensional
data, automatic determination is needed. We address this by learning sparsity-
inducing masks that sub-select dimensions for each task, using a differentiable
L0 objective to penalize active dimensions and a mutual exclusivity regularizer to
prevent overlap, ensuring independent and disentangled representations. Conflict-
ing goals of accuracy and sparsity are balanced via Generalized ELBO with Con-
strained Optimization (GECO), optimizing sparsity only once prediction quality
exceeds a threshold. Our method thus infers task-relevant latent factors, yields
compact representations, and isolates irrelevant variables in challenging high-
dimensional data. Experiments on real-world and synthetic datasets demonstrate
improved predictive accuracy, compactness, and disentanglement compared to
state-of-the-art baselines.

1 INTRODUCTION

Treatment effect estimation addresses causal reasoning questions such as: What would have been
the impact of a drug had an alternative treatment been administered? It is a challenging task, and
modern deep neural network methods involve learning latent factor representations that are essential
for mitigating selection bias—non-random treatment assignment due to covariates—and ensuring
robust, accurate estimates. Traditional propensity score-based methods to remove selection bias
(Rosenbaum & Rubin., 1983; Rosenbaum, 1987; Li et al., 2016) often struggle, particularly in high-
dimensional feature spaces where complex covariate–outcome relationships pose major challenges.

Therefore, deep neural network-based approaches (Johansson et al., 2016; Shalit et al., 2017; Yao
et al., 2018; Hassanpour & Greiner, 2019b) have emerged as a compelling choice, especially in high-
dimensional and large data settings. These methods learn balanced intermediate representations, en-
abling more precise predictions for the downstream prediction tasks associated with treatment effect
estimation. Specifically, VAE-based approaches (Louizos et al., 2017; Zhang et al., 2021; Vowels
et al., 2021) have been used to learn smooth and disentangled representations at the bottleneck.
These methods utilize separate inference networks and optimize a joint objective consisting of re-
construction, treatment prediction and outcome prediction which—if balanced correctly—together
can minimize selection bias in the learned latent representation.

However, a key issue in existing VAE-based approaches is predefined bottleneck width, i.e. the
number of dimensions for representation of the latent factors. An overly large width can lead to
overfitting, higher reconstruction error and spurious correlations between latent variables, while an
insufficient width risks underfitting. Both cases undermine the accuracy of the target task (Bonheme
& Grzes, 2023). Although cross-validation is a widely used solution, it is computationally expen-
sive and impractical for large datasets. This issue becomes even more pronounced in large models
with multiple encoders and irrelevant variables, where each encoder is tasked with representing a
distinct latent factor. While the presence of irrelevant variables in large-scale observational data is
inevitable, information leakage, redundancy and entanglement between distinct latent causal factors
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interferes with the model’s causal structure. In treatment effect estimation, suboptimal bottleneck
width, irrelevant variables and information leakage between latent factors can lead to inaccurate in-
ference of latent factors, resulting in spurious treatment effect estimates. We showcase this issue in
our results in Tables 1a and 1b and Figures 2 and 4, where competing methods yield higher errors
and entangled representations.

In this paper, we propose GLOVE-ITE (GECO and L0 Optimization for Variational Estimation of
Individual Treatment Effects), a novel VAE-based framework that estimates treatment effects while
automatically determining the dimensionality of the latent representation, thereby eliminating the
need for predefined or manually tuned bottleneck width. Furthermore, GLOVE-ITE also separates
irrelevant factors into a distinct latent subspace, and keeps the representation of different causal
factors separate to avoid redundancy and information leakage. To achieve this, we use a differen-
tiable L0 objective on the VAE bottleneck with a sparsity-inducing mask (Louizos et al., 2018).
However, enforcing sparsity alone without outcome prediction constraint as part of the joint objec-
tive is detrimental as shown in our results (Figure 2). For this reason, we use Generalized ELBO
with Constrained Optimization (GECO) (Rezende & Viola, 2018; Boom et al., 2020), which allows
us to prioritize the prediction task over sparsity. We address the challenge of irrelevant variables
with an additional, dedicated mask that separates irrelevant factors into a distinct latent subspace.
Finally, we propose a mutual exclusivity regularization across all masks that prevents information
leakage, yielding independent and disentangled representations, which is not achievable with tra-
ditional VAEs (see Figure 4). To the best of our knowledge, no existing method combines L0

regularization with GECO to optimize the VAE bottleneck for treatment effect estimation, and more
importantly, we address the overlap and information leakage between latent representations through
a novel exclusivity regularizer.

Our approach demonstrates superior performance compared to state-of-the-art VAE-based methods
on the two real-world datasets (IHDP, Jobs)(Brooks-Gunn et al., 1992; Hill, 2011; LaLonde, 1986;
Dehejia & Wahba, 1999) as well as a challenging synthetic dataset (Hassanpour & Greiner, 2019a;
Khan et al., 2024). We further provide valuable qualitative insights into our framework, enhancing
its practicality and stability for real-world applications.

The core contributions of our work are:

• We propose a novel VAE-based framework that integrates GECO and L0 regularization
to automatically learn sparsity masks for each latent factor, while enforcing an outcome-
prediction constraint to balance accuracy and sparsity, improving robustness in treatment
effect estimation.

• We address irrelevant variables through a learnable mask and a dedicated latent subspace,
yielding more accurate treatment effect estimation.

• We design a shared, compact encoder with an exclusivity regularizer that enforces indepen-
dent usage of latent dimensions, enabling efficient learning of distinct factor representations
and stronger disentanglement. Our method is validated via extensive qualitative analysis
on real-world and synthetic datasets.

2 RELATED WORK

Selection bias, which arises due to non-random treatment assignment, is a well-known challenge in
treatment effect estimation (Rosenbaum & Rubin., 1983), traditionally addressed through propen-
sity score-based techniques such as matching, stratification, and re-weighting (Rosenbaum & Ru-
bin., 1983; Rosenbaum, 1987; Li et al., 2016). However, these methods have limited effectiveness
in high-dimensional real-world scenarios (Kuang et al., 2019). For high-dimensional settings, deep
representation learning approaches have emerged as a powerful alternative for balancing individual
samples (Johansson et al., 2016; Shalit et al., 2017; Yao et al., 2018; Hassanpour & Greiner, 2019b).
These methods aim to mimic a Randomized Controlled Trial (RCT) by reducing bias between treat-
ment groups in a joint embedding space for all variables. However, they fail to consider that not all
covariates typically contribute to both the treatment and the outcome.

In contrast, disentanglement approaches further advance this idea by additionally separating instru-
mental, confounding, and adjustment latent factors to better capture underlying causal structures
and have proved effective in addressing selection bias (Kuang et al., 2017; Hassanpour & Greiner,
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2019a; Kuang et al., 2020; Wu et al., 2023; Cheng et al., 2022). Here, the latent space is often
learned with variational autoencoders, e.g. focussing solely on confounding factors (Louizos et al.,
2017) or separating all three latent factors (Zhang et al., 2021).

However, separating out irrelevant factors is highly relevant for treatment effect estimation because
they can lead to spurious effect estimation and it was observed that higher number of irrelevant
variables make state-of-the-art approaches fail (Khan et al., 2024). Therefore, models with four
separate encoders and suitable loss functions have been suggested to deal with irrelevant factors
(Vowels et al., 2021; Khan et al., 2024).

Despite their strengths, deep disentanglement and VAE-based approaches are sensitive to the num-
ber of latent factor dimensions, making determining the right latent dimensionality crucial to perfor-
mance and avoiding spurious treatment effect estimates. Existing methods for this often rely on the
elbow method or expensively training multiple models (Mai Ngoc & Hwang, 2020; Doersch, 2021;
Bonheme & Grzes, 2022).

In contrast to tedious and expensive search for suitable bottleneck dimensionality, we propose a
novel VAE-based solution leveraging a L0 sparsity and constrained optimization objective. This
approach is connected to intrinsic dimension estimation, which identifies effective latent size needed
to describe data and has been explored for other deep learning tasks (Levina & Bickel, 2004; Facco
et al., 2017; Gong et al., 2018; Ansuini et al., 2019; Pope et al., 2021).

Finally, the way Boom et al. (2020) induces sparsities in VAE bottlenecks unrelated to the treatment
effect estimation problem serves as an inspiration for this work. Conversely, we address the problem
by learning multiple masks from a shared latent space with disentangled representations and our L0

sparsity objective is computationally simpler and avoids multiple forward passes per data point.

3 PROBLEM FORMULATION

An observational dataset D = {xi, ti, yi}Ni=1 consists of pre-treatment variables xi ∈ X ⊆ RK ,
binary treatments ti ∈ T (e.g., 0: medication, 1: surgery), and real-valued observed outcomes
yi ∈ Y ⊆ R (e.g., recovery time). However, only the factual outcomes ytii are observed, while
the counterfactual outcomes y1−ti

i remain unobserved. Selection bias is present when treatment
assignment depends on xi, violating the randomized controlled trial assumption P (T | X ) = P (T ).
The objective is to estimate the Individual Treatment Effect (ITE), defined as δi = y1i − y0i , by
learning a function f : X × T → Y (Hassanpour & Greiner, 2019a).

δ̂i =

{
y1i − f(xi, 1− ti), if ti = 1

f(xi, 1− ti)− y0i , if ti = 0
(1)

To mitigate selection bias for reliable treatment effect estimates, it is essential to infer the under-
lying entangled latent factors that generate D (Hassanpour & Greiner, 2019a): instrumental (Γ:
affect treatment), confounding (∆: affect both treatment and outcome), and adjustment (Υ: affect
outcome only). In high-dimensional settings, irrelevant variables (Ω) are common, and their entan-
glement with relevant factors induces spurious dependencies. This issue is amplified in large latent
spaces, biasing representations and worsening treatment effect estimates if not explicitly addressed
(Kuang et al., 2017; Khan et al., 2024), as shown in Table 1a. Further details on the underlying ITE
assumptions and VAE background can be found in Appendix A.1.1 and A.1.2.

4 METHOD

Our approach builds on the VAE model as shown in Figure 1, where the observed pre-treatment
variables x are encoded into a shared latent space z = {zΓ,∆,Υ,Ω}. From this space, we derive task-
specific masked representations z′Γ, z′∆, z′Υ, and z′Ω (e.g., z′Γ = zΓ ⊙mΓ), collectively denoted as
z′ = {z′Γ,∆,Υ,Ω}. The standard VAE objective (equation 12) is extended with two components: (i) a
treatment prediction term log p(t | z′Γ,∆), implemented as Binary Cross-Entropy (BCE), guiding Γ

and ∆; (ii) a constraint outcome prediction term C
(
ŷ′∆,Υ, t

)
implemented as Mean Squared Error

with constraint (MSEC), to learn ∆ and Υ; and the reconstruction term log p(x | z′Γ,∆,Υ,Ω), together
with the exclusivity loss Lexcl , helps to learn Ω. We denote t̂′Γ,∆ and ŷ′∆,Υ as the predicted treatment
and outcome, respectively.
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Figure 1: Architecture of GLOVE-ITE: Four latent subspaces are learned from a shared embedding
via separate masks (∥mΓ∥0, ∥m∆∥0, ∥mΥ∥0, ∥mΩ∥0). These subspaces serve distinct roles: Γ,∆
for treatment prediction (log p(t | z′Γ,∆)), ∆,Υ for outcome prediction and constraint enforcement
(C(ŷ′∆,Υ, t)), Υ for discrepancy loss (Ldisc), and Ω for irrelevant variables. The exclusivity loss
(Lexcl ) promotes disentanglement by discouraging overlap across latent dimensions. All subspaces
jointly optimize the reconstruction objective (log p(x | z′Γ,∆,Υ,Ω)).

Our objective is principled, extending the ELBO with an L0 sparsity term (Louizos et al., 2018),
GECO-based constraints (Rezende & Viola, 2018), and an exclusivity penalty. This formulation,
detailed in equation 8 and equation 9, provides a novel and theoretically grounded approach for ro-
bust treatment effect estimation. Below, we first explain our approach to minimizing the number of
active latent dimensions in zΓ,∆,Υ,Ω with a differentiable L0 objective (Section 4.1), then address
the conflict between prediction and sparsity objectives using GECO (Section 4.2), enforce indepen-
dence and disentanglement via mutual exclusivity loss (Section 4.3), and detail the overall objective
implementation in Section 4.4.

4.1 L0 SPARSITY OBJECTIVE

Our goal is to reduce the causal factors zΓ,∆,Υ,Ω to their true dimensions for downstream prediction
tasks to avoid bias and irrelevant factors. We introduce binary masks mΓ, m∆, mΥ, and mΩ to
define masked latent representations (e.g., z′Γ = zΓ ⊙ mΓ). While L1 and L2 regularizers are
gradient-friendly and lead to small weights, the L0 objective

∥m∥0 =

|m|∑
j=1

I[mj ̸= 0]

induces actual sparsity by counting non-zero mask elements, yet is non-differentiable. To over-
come this, we adopt a probabilistic relaxation: m ∼ Bernoulli(π) with sparsity objective

∑|m|
j=1 πj ,

where π are activation probabilities (Louizos et al., 2018). Since m remains discrete, we apply the
reparameterization trick with the Binary Concrete distribution (Maddison et al., 2017). Sampling
ui ∼ Uniform(0, 1), we set

si = sigmoid
(

logui−log(1−ui)+logαi

β

)
, (2)

where αi and β are location and temperature. As β → 0, this converges to Bernoulli. We further
obtain m by stretching the distribution with s̃i = si(ζ − γ) + γ using γ < 0 and ζ > 1. The
differentiable sparsity objective becomes

∥m∥0 ≈
|m|∑
j=1

sigmoid
(
logαj − β log

(
−γ

ζ

))
. (3)

However, combining this sparsity with reconstruction and prediction losses causes conflicts: overly
strict sparsity hurts prediction, while weak sparsity retains redundant dimensions, increasing bias
and reliance on irrelevant factors. It is not trivial to set good constant weights to balance the objec-
tives as seen in Figure 2.
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Figure 2: Visualization of three key training metrics: Mean Squared Error with constraint
(MSEC:can be negative) relative to the threshold τ , the Lagrange multiplier (λ), and the number
of active latent dimensions on synthetic data with an 8×8×8 dimensional structure. Dimmed lines
represent fixed λ, while brighter lines indicate learnable λ (best viewed in color).

4.2 PRIORITIZING PREDICTION PERFORMANCE OVER SPARSITY

During the training of the VAE model, the reconstruction and outcome prediction objectives natu-
rally conflict with the sparsity objective from the previous Section (4.1). We address this problem
by prioritization and only optimize sparsity as long as other tasks perform better than a threshold τ .
Generalized ELBO with Constrained Optimization (GECO) Rezende & Viola (2018) achieves this
effect for standard VAEs by replacing the reconstruction loss with a constrained expression C(. . . )
and introducing a Lagrange multiplier λ that is adapted during learning based on the constraint
value. We adopt this approach for the outcome prediction loss:

LELBO = Eq(zΓ,∆,Υ,Ω|x)

[
· · ·+ λC

(
ŷ′∆,Υ, t

) ]
−DKL(. . . ), (4)

where the predicted outcome ŷ′∆,Υ only has access to the masked sections of the latent repre-
sentation z′∆ and z′Υ. This loss minimizes the KL divergence while enforcing the constraint
Eq(zΓ,∆,Υ,Ω|x)

[
C
(
ŷ′∆,Υ, t

)]
≤ 0. We define the constraint expression to enforce an upper bound on

the masked outcome prediction task,

C
(
ŷ′∆,Υ, t

)
=

∥∥y − ŷ′∆,Υ

∥∥2 − τ, (5)

where y is the factual outcome (from the dataset) and ŷ′∆,Υ is predicted from a regressor ht(y′∆,Υ).
The modified ELBO form equation 9 is optimized via a min-max optimization scheme (i.e. dual
gradient decent), balancing the objectives and constraints effectively by adjusting λ during training.
The influence of this constraint and the value of λ during training can be observed in Figure 2.

4.3 MUTUAL EXCLUSIVITY REGULARIZATION

While standard VAEs encourage disentanglement, learning multiple representations from a shared
latent space can cause information leakage and duplication, leading to entangled representations
shown in Figure 4. We introduce a principled softmax-entropy based exclusivity loss to smoothly
penalizes overlap across representations. Let M ∈ R4×d be the stacked mask logits (d: latent
dimensionality). A temperature-controlled softmax yields normalized assignments:

S = softmax
(M

κ

)
, (6)

where κ > 0 controls assignment sharpness. The loss is the mean column-wise entropy of S:

Lexcl = − 1
d

d∑
j=1

4∑
i=1

Si,j logSi,j . (7)

Minimizing Lexcl drives each dimension toward a single mask, reducing redundancy and promoting
disentanglement in latent representations.

4.4 IMPLEMENTATION DETAILS

The overall loss combines: (i) the L0 sparsity objective on masks mΓ, m∆, mΥ, and mΩ (Sec-
tion 4.1); (ii) the modified ELBO with outcome-prediction constraint (Section 4.2); (iii) the mutual
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exclusivity loss (Section 4.3); and (iv) the discrepancy loss Ldisc on latent representation across
treatment groups.

LGLOVE−ITE = LELBO + ∥mΓ,∆,Υ,Ω∥0 + Lexcl + Ldisc . (8)

With all terms, the modified ELBO has the following form,

LELBO =Eq(zΓ,∆,Υ,Ω|x)

[
log p

(
x|z′Γ,∆,Υ,Ω

)
+ log p

(
t|z′Γ,∆

)
+ λC

(
ŷ′∆,Υ, t

) ]
−DKL(q(z

′
Γ,∆,Υ,Ω|x) ∥ p(zΓ,∆,Υ,Ω))

(9)

Finally, the discrepancy loss is defined between the masked representations of adjustment latent
factor (z′Υ) under the two treatment assignments, i.e., z′Υ | t = 0 and z′Υ | t = 1.

Ldisc = wass[z′Υ|t = 0, z′Υ|t = 1], (10)

Ldisc ensures that Υ remains independent of Γ, effectively reducing the influence of Γ on Υ. This
mitigates selection bias introduced by Γ, enabling unbiased predictions for the downstream task.
To achieve this, we employ the Wasserstein distance as the discrepancy loss as proposed by (Shalit
et al., 2017).

5 EXPERIMENTS

In this section, we present the evaluation criteria for treatment effect estimation, describe the datasets
utilized in our experiments, experiment details, results and conclude with a qualitative analysis of
the proposed method.

5.1 EVALUATION CRITERIA

A widely used metric for evaluating individual treatment effect estimation is the Precision in Esti-
mation of Heterogeneous Effect (PEHE):

PEHE =

√√√√ 1
N

N∑
i=1

(êi − ei)2, (11)

where êi = ŷ1i − ŷ0i is the predicted effect and ei = y1i − y0i the true effect. We also employ a policy
risk (Rpol) criterion for the Jobs dataset (details in Appendix B.2).

5.2 DATASETS AND EXPERIMENT DETAILS

We evaluate our approach on two real-world datasets and one synthetic dataset. Synthetic data en-
ables qualitative analysis of the model while assessing its performance in treatment effect estimation.

Infant Health and Development Program (IHDP): The IHDP dataset, derived from an RCT by
Brooks-Gunn et al. (1992) and adapted by Hill (2011) to introduce selection bias, contains 25 covari-
ates describing child and mother characteristics. It includes 747 instances (139 treated, 608 control)
and evaluates the effect of specialist home visits on children’s cognitive health. We augment it with
artificial contrasts to introduce irrelevant variables (Khan et al., 2024). Details of the Jobs dataset
are provided in Appendix B.1.

Synthetic: We use the same settings of syntehtic datasets as used by Hassanpour & Greiner (2019a);
Khan et al. (2024), generated with a sample size N , dimensions [dΓ, d∆, dΥ, dΩ], and specified mean
and covariance matrices (µL,

∑
L) for each latent factor L ∈ [Γ,∆,Υ,Ω]. Data is sampled from

a multivariate normal distribution, forming a covariate matrix of size N × (dΓ + d∆ + dΥ + dΩ).
Irrelevant variables are added by permuting values from other factors to ensure realistic complexity.
Further details about network architectures, hyperparameters, and other experimental settings used
for the experiments are provided in Appendix A.2 and B.3.
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Table 1: PEHE (mean(std)) on IHDP (left) and synthetic (right) datasets with varying numbers of
irrelevant variables (#Ω). Lower PEHE is better. Reported values also include the learned active
latent dimensions per method.

Method #Ω Γ
-a

ct
iv

e
∆

-a
ct

iv
e

Υ
-a

ct
iv

e
Ω

-a
ct

iv
e

To
ta

l-a
ct

iv
e

PEHE

CEVAE 5 NA 35 NA NA 35 1.26 (0.13)
DR-CFR 5 35 35 35 NA 105 1.09 (0.51)
TEDVAE 5 35 35 35 NA 105 0.88 (0.62)
TVAE 5 35 35 35 35 140 0.87 (0.47)
DRI-ITE 5 35 35 35 35 140 1.09 (0.53)
GLOVE-ITE 5 7 9 9 7 32 0.70 (0.07)

CEVAE 10 NA 35 NA NA 35 1.54 (0.14)
DR-CFR 10 35 35 35 NA 105 1.15 (0.61)
TEDVAE 10 35 35 35 NA 105 1.11 (0.80)
TVAE 10 35 35 35 35 140 1.10 (0.49)
DRI-ITE 10 35 35 35 35 140 1.15 (0.51)
GLOVE-ITE 10 7 9 9 8 33 0.74 (0.08)

CEVAE 15 NA 35 NA NA 35 1.66 (0.18)
DR-CFR 15 35 35 35 NA 105 1.19 (0.58)
TEDVAE 15 35 35 35 NA 105 1.27 (0.87)
TVAE 15 35 35 35 35 140 1.23 (0.52)
DRI-ITE 15 35 35 35 35 140 1.18 (0.58)
GLOVE-ITE 15 7 8 8 7 30 0.75 (0.08)

(a) IHDP dataset

Method #Ω Γ
-a

ct
iv

e
∆

-a
ct

iv
e

Υ
-a

ct
iv

e
Ω

-a
ct

iv
e

To
ta

l-a
ct

iv
e

PEHE

CEVAE 5 NA 30 NA NA 30 0.60 (0.019)
DR-CFR 5 30 30 30 NA 90 0.23 (0.001)
TEDVAE 5 30 30 30 NA 90 0.22 (0.012)
TVAE 5 30 30 30 30 120 0.23 (0.003)
DRI-ITE 5 30 30 30 30 120 0.26 (0.024)
GLOVE-ITE 5 7 8 7 7 29 0.15 (0.005)

CEVAE 10 NA 30 NA NA 30 0.60 (0.001)
DR-CFR 10 30 30 30 NA 90 0.27 (0.016)
TEDVAE 10 30 30 30 NA 90 0.50 (0.054)
TVAE 10 30 30 30 30 120 0.28 (0.004)
DRI-ITE 10 30 30 30 30 120 0.27 (0.027)
GLOVE-ITE 10 7 7 7 7 28 0.16 (0.003)

CEVAE 15 NA 30 NA NA 30 0.56 (0.005)
DR-CFR 15 30 30 30 NA 90 0.28 (0.019)
TEDVAE 15 30 30 30 NA 90 0.49 (0.010)
TVAE 15 30 30 30 30 120 0.34 (0.003)
DRI-ITE 15 30 30 30 30 120 0.28 (0.021)
GLOVE-ITE 15 8 8 8 7 31 0.17 (0.005)

(b) Synthetic dataset

5.3 RESULTS

We compare against four state-of-the-art and VAE-based disentanglement methods that address ir-
relevant variables, ensuring methodological relevance and fair evaluation of latent compactness:
CEVAE (Louizos et al., 2017), DR-CFR (Hassanpour & Greiner, 2019a), TEDVAE (Zhang et al.,
2021), TVAE (Vowels et al., 2021), and DRI-ITE (Khan et al., 2024).

The Table 1a presents a comprehensive evaluation of treatment effect estimation methods on the
IHDP dataset, highlighting the superior performance of our approach across varying dimensions of
irrelevant variables (Ω). GLOVE-ITE consistently achieves the lowest Precision in Estimation of
Heterogeneous Effect (PEHE) values: 0.70 (0.07), 0.74 (0.08), and 0.75 (0.08) for Ω = 5, 10, 15,
respectively. Notably, GLOVE-ITE achieves this accuracy with significantly reduced total dimen-
sionality (e.g., 32 vs. 140 for Ω = 5), showcasing its ability to narrow down the VAE bottleneck
and discard unnecessary latent dimensions. Furthermore, GLOVE-ITE demonstrates remarkable
robustness to increasing irrelevant dimensions, exhibiting minimal degradation in PEHE compared
to other methods. In contrast, baselines either rely on higher dimensional representations or exhibit
inferior accuracy, underscoring the efficiency and effectiveness of our approach in solving complex
treatment effect estimation tasks.

Table 1b highlights the effectiveness of various methods on a synthetic dataset structured with in-
strumental, confounding, adjustment, and irrelevant features (8×8×8×Ω), focusing on the ability
to estimate treatment effects while identifying and leveraging the true underlying data dimensions.
GLOVE-ITE demonstrates its ability to learn optimal latent representations, achieving the lowest
PEHE values: 0.15 (0.005), 0.16 (0.003), and 0.17 (0.005) for Ω = 5, 10, 15, respectively. Im-
portantly, it uses only 28–31 latent dimensions, closely aligning with the actual data regardless of
Ω, in contrast to baselines methods, which rely on significantly larger total dimensionalities (90–
120). This dimensional efficiency underscores our method’s ability to disentangle relevant factors
from irrelevant ones while maintaining robust performance. As Ω increases, GLOVE-ITE effec-
tively adapts to the true dimensions of the data, showing minimal degradation in PEHE compared
to other methods. These results demonstrate the capability of our approach to optimize the use of
latent dimensions in variational autoencoders, achieving state-of-the-art accuracy with an efficient
and interpretable representation. On the Jobs dataset, GLOVE-ITE consistently outperforms com-
peting VAE-based methods by achieving both lower policy risk and more compact representations
(see Appendix B.4).
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5.4 QUALITATIVE EVALUATION OF MODEL PERFORMANCE

Figure 2 illustrates the learning dynamics of our model, focusing on three key
quantities: (1) Mean Squared Error with constraint (MSEC), (2) the Lagrange
multiplier (λ), and (3) the number of active latent dimensions during training.

Table 2: Ablation study on IHDP (5 irrele-
vant variables). Bold indicates best PEHE
(lower is better).

Loss PEHE

LELBO + Ldisc 0.81(0.39)
LELBO + ∥m∥0 0.77(0.40)
LELBO + ∥m∥0 + Ldisc 0.75(0.39)
LELBO + ∥m∥0 + Ldisc + Lexcl 0.70(0.07)

Table 3: Compression analysis on synthetic
8×8×8×5 data under varying initial dimen-
sionality. The learned representations con-
sistently compress to ∼29–31 active dimen-
sions, closely matching the true underlying
size of 29.

Initial Γ ∆ Υ Ω Total

60 8 9 8 6 31
68 7 8 8 5 28
76 5 9 9 6 29
84 9 7 8 5 29

To ensure stability and a reliable estimate, we show the
average of the last five active dimension values after each
epoch instead of the final value alone. Early in train-
ing, the L0 regularizer aggressively reduces the num-
ber of active latent dimensions, causing an initial rise in
MSEC around the 200th epoch. Simultaneously, λ in-
creases steadily to enforce the MSE constraint. As train-
ing progresses, the MSEC gradually decreases toward the
specified tolerance (τ ), while the number of active latent
dimensions increases to balance dimensional efficiency
with predictive accuracy. By the end of training, the
MSEC stabilizes near τ , the number of active dimensions
converges, and λ reaches a stable value, indicating suc-
cessful convergence. Notably, models with fixed λ fail
to achieve comparable results, struggling to balance the
trade-off between the two objectives effectively.

Ablation study: Table 2 presents the results of
an ablation study on the loss function, evalu-
ated on the IHDP dataset with five irrelevant
variables. Starting with the baseline objective
LELBO + Ldisc, we observe a PEHE of 0.81 (0.39).
Introducing the sparsity-inducing term ∥mΓ,∆,Υ,Ω∥0 reduces the error to 0.77 (0.40), highlighting
the benefit of explicit dimension selection. Combining both the sparsity term and the discrepancy
loss further improves performance to 0.75 (0.39). Finally, adding the exclusivity loss Lexcl yields
the best result with a PEHE of 0.70 (0.07), demonstrating that encouraging non-overlapping activa-
tion across masks enhances the model’s ability to isolate relevant latent dimensions and improves
treatment effect estimation accuracy.

Figure 3: Feature permutation analysis demon-
strating the inference and disentanglement of la-
tent across BCE, MSE, and PEHE tasks.

Compression analysis: Table 3 presents a compres-
sion analysis of the proposed method on synthetic
data with an 8×8×8×5 dimensional structure, evalu-
ated across varying initial dimensionality settings. De-
spite starting with different initial dimensions (ranging
from 60 to 84), the method consistently compresses
the data to a compact latent representation, utilizing
only 29–31 total dimensions, closely matching the true
underlying size of 29. This highlights the model’s abil-
ity to adaptively allocate dimensions among Γ,∆,Υ
and Ω encoders, with minor variations depending on
the initial latent dimensionality. For instance, with ini-
tial dimensions of 76 or 84, the method converges to
29 latent dimensions, while for 60 and 68, it stabilizes
at 31 and 28 dimensions. These results emphasize the
model’s robustness in achieving efficient compression
irrespective of the initial input dimensionality, while
preserving the underlying data structure.

Inference and Disentanglement: Figure 3 highlights
the inference of latent factors using the permutation
feature importance theory (Fisher et al., 2018; Khan
et al., 2024). Specifically, it demonstrates that only Γ
and ∆ features contribute to an increase in the BCE loss, validating our method’s ability to accurately
infer these factors within the data. Similarly, it confirms the successful learning of ∆ and Υ factors,
as evidenced by their impact on the MSE when permuted. Finally, it illustrates that GLOVE-ITE
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(a) Auto encoder (b) Standard VAE (c) GLOVE-ITE (−Lexcl ) (d) Full GLOVE-ITE

Figure 4: Pairwise mutual information heat maps: autoencoder and VAE show leakage, GLOVE-ITE
without Lexcl already reduces redundancy, and full GLOVE-ITE achieves disentangled, independent
representations (dark = independence, light = leakage; best viewed in color).

effectively disentangles and infers Ω, as permuting irrelevant features does not affect the PEHE,
while permuting relevant features leads to a significant increase. This analysis underscores the
robustness of GLOVE-ITE in inferring and disentangling the critical latent factors. Louizos et al.
(2017); Löwe et al. (2022); Vowels et al. (2021) show that when latent factors are correctly inferred,
causal effects can be identified and the reliance on the unconfoundedness assumption (see Appendix
A.1.1) is reduced.

Figure 5: Learned mask matrix S with ac-
tive dimensions (red: Γ, green: ∆, blue:
Υ, orange: Ω), inactive in white, and over-
laps in black. The exclusivity loss Lexcl

enforces non-overlapping activations, and
a dotted box marks an example of a di-
mension assigned to a single mask.

Figure 6: Active dimensionality and
PEHE as functions of MSE tolerance.

Figure 4 compares mutual information across latent repre-
sentations for different approaches. Subfigure 4a shows that
a simple autoencoder fails to separate factors, with sub-
stantial information leakage. Introducing VAEs (Subfig-
ure 4b) reduces this leakage and improves disentanglement.
Subfigure 4c demonstrates that GLOVE-ITE without Lexcl

already mitigates redundancy within and across represen-
tations, while the full GLOVE-ITE model (Subfigure 4d)
achieves complete independence, yielding fully disentan-
gled representations. Complementing this, Figure 5 visu-
alizes the mechanism behind these results by showing the
learned masks over four latent subspaces. Active dimen-
sions are color-coded (red: Γ, green: ∆, blue: Υ, orange:
Ω), inactive ones are white, and overlaps (if any) appear in
black. The exclusivity loss Lexcl drives non-overlapping
activations, ensuring each mask isolates only the dimen-
sions relevant to its factor. This allocation prevents infor-
mation leakage, reduces redundancy, and enhances inter-
pretability.

Tolerance (τ ) effect: Figure 6 shows that MSE tolerance
(τ ) inversely affects the number of active latent dimen-
sions—higher τ yields fewer dimensions—while directly
increasing PEHE. This trade-off underscores the need to
carefully select τ to balance efficiency and estimation ac-
curacy.

6 CONCLUSION

In this work, we introduced a novel VAE-based framework that integrates the Generalized ELBO
with Constrained Optimization (GECO) and an L0 sparsity objective to automatically determine
the effective latent dimensionality for treatment effect estimation. A mutual exclusivity regularizer
further enforces independence across representations, strengthening disentanglement. By learning
compact representations and isolating irrelevant variables, our method enhances accuracy, inter-
pretability, and computational efficiency. Extensive experiments on real-world and synthetic datasets
demonstrate that it consistently outperforms state-of-the-art baselines in predictive accuracy and ro-
bustness, particularly in high-dimensional settings with many irrelevant variables.
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we believe no specific ethical issues apply.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide:

• Complete descriptions of datasets in Section 5.2 and Appendix B.1.
• Detailed model architectures, hyperparameters, and optimization procedures in Ap-

pendix A.2 and B.3.
• Code, public and synthetic datasets, scripts, instructions for reproducing all experiments

and to generate synthetic dateset are provided in supplementary material.
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A APPENDIX

A.1 BACKGROUND KNOWLEDGE

In this section, we provide a cursory explanation of the Treatment Effect Estimation problem as-
sumptions and the Variational Autoencoder (VAE) model.

A.1.1 ASSUMPTIONS

Treatment effect estimation relies on the following widely adopted assumptions (Rosenbaum &
Rubin., 1983; Rubin, 2005b; Imbens & Rubin, 2015).

• Stable Unit Treatment Value: The treatment assigned to one unit does not influence the
potential outcomes of any other unit (i.e. patient).

• Unconfoundedness: There are no unmeasured confounders; all factors affecting both the
treatment T and the outcome Y have been observed, formally, Y ⊥⊥ T | X .

• Overlap: The probability of receiving any treatment given covariates x is strictly positive
for all treatments.. Formally, P (t | x) > 0 ∀t ∈ T ,∀x ∈ X (Rubin, 2005a).

• Consistency: Let yt denote the potential outcome under treatment t ∈ {0, 1}, and let T be
the actual treatment received. The consistency assumption states that the observed outcome
y equals the potential outcome corresponding to the treatment actually received:

y = yt if T = t

12
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A.1.2 VARIATIONAL AUTOENCODERS

Variational Autoencoders (VAEs) (Kingma & Welling, 2014) are deep generative models with a
latent representation bottleneck. The generative process uses a prior distribution over the latent
variables, p(z) (commonly a Gaussian N (0, I), and a likelihood function p(x | z), parameterized
by a neural network. The objective is to maximize the marginal likelihood p(x) =

∫
p(x|z)p(z)dz,

which is generally intractable. Instead, we optimize the Evidence Lower Bound (ELBO) on the
marginal likelihood,

LELBO = Eq(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)), (12)

where q(z|x) is the learned variational posterior (encoder) that approximates the true posterior
p(z|x). The reconstruction loss in the expectation ensures that the latent representation preserves
sufficient information and the Kullback-Leibler (KL) divergence induces a structured and smooth
latent space. The encoder maps x to the parameters of a Gaussian

q(z|x) = N (µ(x), diag(σ2(x))), (13)

while the decoder reconstructs x from sampled z.

A.2 EXPERIMENT DETAILS

IHDP Dataset: We utilized a single representational network with three layers and an input of 60
dimensions. The hidden and output layers contained 100 and 60 neurons respectively. The network
was trained using the Adam optimizer with ELU activation, a batch size of 500, and a learning
rate of 1e−5 over a maximum of 7000 epochs. The best model was selected using PEHE on the
validation set, following the approach in Shalit et al. (2017). Data splitting for training, validation,
and testing matched the protocol with 20% of the training data reserved for validation. For GECO,
we set λmin = 0, λmax = 200, λinit = 1, α = 0.99, and an MSE tolerance (τ ) of 0.4. For L0

regularization, we used beta = 0.6, γ = −0.1, ζ = 1.1 and κ = 0.05.

Synthetic Dataset: The same settings were applied with the following modifications: input and
output dimensions for the encoder were 60, batch size was 512, maximum epochs were limited to
1500,MSE tolerance was set to 0.01 and κ = 0.05.

B JOBS EXPERIMENTS

B.1 DATASET

Jobs is an observational dataset based on the Lalonde experiment (LaLonde, 1986), containing eight
pre-treatment covariates (age, educ, black, hisp, married, nodegr, re74, re75). The binary treatment
indicates participation in job training, while the outcome is post-training earnings in 1978. The
dataset has 614 instances (185 treated, 429 control) (Hill, 2011; Dehejia & Wahba, 1999), and we
use artificial contrasts for evaluation.

B.2 POLICY RISK: EVALUATION CRITERIA

Policy Risk (Rpol) is defined as:

Rpol(πf ) = 1−
(
E[Y 1 | πf (x) = 1] p(πf = 1) + E[Y 0 | πf (x) = 0] p(πf = 0)

)
, (14)

where the treatment policy πf (x) is induced by the model f . Specifically, πf (x) = 1 (treat) if
ŷ1 − ŷ0 > λ and πf (x) = 0 otherwise. This criterion measures the expected loss in value of
following πf , with expectations weighted by the probability of treatment assignment (Shalit et al.,
2017).

B.3 EXPERIMENT DETAILS

For the Jobs dataset, we followed the same experimental protocol as for IHDP, except with an MSE
tolerance of 0.3 and a training budget of 3000 epochs. The representational network had three layers
with input dimension 60, hidden layer size 100, and output size 60, trained with Adam (learning rate

13
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1e−5, batch size 500, ELU activations). The best model was selected using validation Rpol (Shalit
et al., 2017), with 20% of training data held out for validation. For GECO, we used λmin = 0,
λmax = 200, λinit = 1, α = 0.99, and τ = 0.4; for L0 regularization, β = 0.6, γ = −0.1, ζ = 1.1,
and κ = 0.05.

B.4 RESULTS

Table 4: Rpol (mean(std)) on Jobs dataset under varying numbers of irrelevant variables (#Ω)–
Lower is better. Reported values include active latent dimensionalities per method.

Method #Ω Γ
-a

ct
iv

e

∆
-a

ct
iv

e

Υ
-a

ct
iv

e

Ω
-a

ct
iv

e

To
ta

l-a
ct

iv
e

Rpol

DR-CFR 5 15 15 15 NA 45 0.18 (0.06)
TEDVAE 5 15 15 15 NA 45 0.20 (0.03)
TVAE 5 15 15 15 15 60 0.14 (0.01)
DRI-ITE 5 15 15 15 15 60 0.16 (0.05)
GLOVE-ITE 5 8 9 7 8 32 0.13 (0.006)

DR-CFR 15 15 15 15 NA 45 0.17 (0.06)
TEDVAE 15 15 15 15 NA 45 0.21 (0.04)
TVAE 15 15 15 15 15 60 0.15 (0.01)
DRI-ITE 15 15 15 15 15 60 0.14 (0.03)
GLOVE-ITE 15 8 9 7 8 32 0.13 (0.006)

DR-CFR 20 15 15 15 NA 45 0.17 (0.06)
TEDVAE 20 15 15 15 NA 45 0.19 (0.03)
TVAE 20 15 15 15 15 60 0.22 (0.08)
DRI-ITE 20 15 15 15 15 60 0.14 (0.03)
GLOVE-ITE 20 8 9 7 8 32 0.13 (0.006)

On the Jobs dataset (Table 4), competing VAE-based methods either retain the full latent dimension-
ality or fail to disentangle irrelevant variables, leading to consistently higher policy risk across all
settings. For example, TVAE and DRI-ITE keep 60 active dimensions and still yield higher Rpol val-
ues, while TEDVAE underperforms despite fewer dimensions. In contrast, GLOVE-ITE maintains
a compact representation (about 32 active dimensions) and achieves the lowest policy risk (0.13)
across all cases. These results confirm that our method simultaneously reduces dimensionality, iso-
lates irrelevant variables, and improves policy robustness by preventing spurious dependencies.

14


	Introduction
	Related Work
	Problem formulation
	Method
	L0 sparsity objective
	Prioritizing prediction performance over sparsity
	Mutual Exclusivity Regularization
	Implementation Details

	Experiments
	Evaluation criteria
	Datasets and Experiment Details
	Results
	Qualitative Evaluation of Model Performance

	Conclusion
	Appendix
	Background Knowledge
	Assumptions
	Variational Autoencoders

	Experiment Details

	Jobs Experiments
	Dataset
	Policy Risk: evaluation criteria
	Experiment details
	Results


