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ABSTRACT

Deep topological data analysis (TDA) offers a principled framework for capturing struc-
tural invariants such as connectivity and cycles that persist across scales, making it a
natural fit for anomaly segmentation (AS). Unlike threshold-based binarisation, which
produces brittle masks under distribution shift, TDA allows anomalies to be characterised
as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a
topology-aware optimal transport (OT) framework that integrates multi-filtration persis-
tence diagrams with test-time adaptation (TTA). Our key innovation is Optimal Transport
Chaining, which sequentially aligns persistence diagrams (PDs) across thresholds and filtra-
tions, yielding geodesic stability scores that identify features consistently preserved across
scales. These stability-aware pseudo-labels supervise a lightweight head trained online
with OT-consistency and contrastive objectives, ensuring robust adaptation under domain
shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-
of-the-art performanc outperforming the most competitive methods by up to +24.1%
mean F1 on 2D datasets and +10.2% on 3D anomaly segmentation benchmarks.

1 INTRODUCTION

Test-time training (TTT) has emerged as a promising paradigm for adapting models under distribution shift,
but most approaches remain limited to entropy minimisation or feature consistency, without structured
reasoning about data geometry [Sun et al.[(2020); [Volpi et al|(2022); [Zhang et al.|(2022). A central limitation
of many existing TTT approaches, particularly in dense prediction tasks, is their reliance on heuristic pseudo-
labels or confidence thresholds [Liang et al.| (2024); |Costanzino et al.| (2024a)); |[Zhang et al.| (2025), which
are non-robust (brittle) under distribution shift. Incorporating explicit structural priors provides a principled
way to address this gap. The integration of TDA, which extracts persistent features such as connectivity and
holes across scales |Zia et al.|(2024), and OT, which provides a principled framework for aligning distributions
Cuturi| (2013); [Peyré et al.| (2019)), has received little attention in this context. AS is a particularly compelling
domain in which to explore this integration, because it requires pixel-level localisation of irregular patterns
whose connectivity and shape are critical, yet conventional threshold-based binarisation often collapses under
shift|Cao et al.[(2024). By combining TDA’s ability to capture structural persistence with OT’s alignment
capabilities, TTT can move beyond heuristics and yield more stable and adaptive anomaly delineation.

AS demands fine-grained identification of abnormal regions in test images, typically without access to
anomalous training examples Tao et al.| (2022)). Most existing methods generate continuous anomaly maps
that must be binarised|Cao et al.|(2024), but thresholds derived from nominal data are brittle across categories
and anomaly types Tong et al.|(2024); [Wu et al.|(2024); |Zhou et al.|(2024). Supervised approaches |Baitieva
et al.| (2024); [Hu et al.| (2024b)); [Zhu et al.| (2024); Ding et al.| (2022)) can achieve strong performance but
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require extensive annotation, which is impractical for rare or heterogeneous anomalies Xie & Mirmehdi
(2007); |Q1u et al.| (2019). Unsupervised methods |Guo et al.| (2025); He et al.| (2024} are trained only on
nominal data, rely on static thresholds, and fail to preserve structural consistency under domain shift.

Beyond the reliance on brittle thresholds, current approaches to AS and TTA face several underexplored
challenges. First, robustness under distribution shift remains insufficient, benchmarks such as MVTec-AD
Bergmann et al| (2019), VisA Zou et al.| (2022), and Real-IAD |Wang et al.| (2024a)) often understate the
variability of anomalies, yet in practice, even minor domain shifts can cause embeddings or thresholds to fail
catastrophically. Second, AS research has concentrated on 2D image settings, leaving structural guidance in
3D anomaly detection and segmentation (AD&S) largely unaddressed |Li et al.[(2024), despite its importance
in industrial inspection. Third, pseudo-labels used in existing TTT frameworks are often derived from entropy
or heuristic criteria, providing no guarantees of structural consistency across runs or domains [Zhao et al.
(2024)). Finally, while efficiency is critical for deployment, there has been little exploration of methods that
simultaneously remove threshold dependence and remain lightweight enough for real-time adaptation.

These gaps underscore the need for a framework that (i) eliminates brittle thresholding, (ii) stabilises noisy
structural descriptors, (iii) incorporates explicit priors into TTA, and (iv) extends naturally to 3D settings. We
propose TopoOT, a framework that stabilises pseudo-labels using multi-scale topological cues via persistent
homology and aligns them with OT, providing structure-aware supervision for TTT. Although our experiments
focus on AS, we view this task as the most natural and demanding testbed for a first exploration of structurally
guided TTT, since anomalies disrupt connectivity, boundaries, and higher-order organisation, precisely
the features that TDA and OT are designed to capture. Establishing effectiveness in this setting provides
a foundation for broader machine learning tasks where structural stability is critical, including domain
adaptation under distribution shift|Dan et al.| (2024), weak-signal detection in scientific data, and fine-grained
visual analysis Michaeli & Fried|(2024)), where subtle structural cues determine class boundaries [Zia et al.
(2024)). TopoOT embeds structural alignment into the TTT framework. The key contributions are:

* To overcome threshold brittleness, we introduce an OT-guided, structure-aware representation
that integrates multi-scale topological cues from PDs. This representation produces pseudo-labels
that provide adaptive and data-driven supervision for TTT.

* To stabilise noisy topological descriptors, we propose a novel OT chaining mechanism that aligns
PDs both within a filtration (cross-PD) and across sub- and super-level filtrations (cross-level),
retaining only consistently transported features and discarding spurious ones.

* To integrate structural priors into TTT, we design a lightweight head trained online with two
complementary objectives: OT-consistency, which preserves transport-aligned structures, and
contrastive separation, which sharpens anomalous versus nominal boundaries.

* Our approach is plug-and-play, integrating seamlessly with different backbones and extending
naturally across modalities, generalising from 2D to 3D AD&S (point clouds and multimodal
anomaly detection), where connectivity and shape priors are especially critical.

Across diverse datasets, our design consistently delivers robust and generalisable AS. Evaluated on 5 2D/3D
benchmarks and 7 backbones, TopoOT achieves F1 gains up to +24.1% on 2D and +10.2% on 3D compared
to the existing SOTA. It further generalises across models and domains, surpassing TTT baselines by up to
+4.8% . TopoOT remains highly efficient, running at 121 FPS while using only 349 MB of GPU memory.

2 RELATED WORK

Anomaly Detection and Segmentation: AS under distribution shift is challenging as it requires fine-grained
detection without supervision, structural priors that capture meaningful data characteristics, and adaptation to
unseen test-time distributions. Unsupervised AD&S avoids labelled anomalies by learning from nominal data
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He et al.|(2024)). Early reconstruction-based methods used autoencoders |Fang et al.|(2023); [Park et al.| (2024));
Zuo et al.| (2024); |Zhou et al.[(2025); Wang et al.| (2024b), inpainting L1 et al.| (2020); Nakanishi et al.[ (2022);
Zavrtanik et al.|(2021b); [Pirnay & Chail (2022)); |Luo et al.| (2024]), or diffusion models |Yao et al.|(2024a);
Fucka et al.| (2025); Jiang et al.|(2024), but often produced blurry reconstructions or overfit to normal patterns.
Feature-based approaches compare embeddings to nominal references |Park et al.| (2024)); Roth et al.| (2022));
Defard et al.|(2021), or use teacher—student frameworks |Deng & Li|(2024)); Rudolph et al.|(2023); Zhang
et al.| (2023); |Gu et al.[(2024)) for inductive bias. Generative priors via normalizing flows [Yao et al.[(2024b));
Gudovskiy et al.|(2022); [Lei et al.| (2023)); [Kim et al.| (2023) or synthetic anomalies |Aota et al.| (2023); L1
et al.| (2024); |Hu et al.|(2024a); |Chen et al.| (2024) improved detection, yet typically lack pixel-level precision.
Methods such as PatchCore Roth et al.[(2022)) and PaDiM |Defard et al.|(2021) leverage pre-trained backbones,
but remain threshold-dependent and structurally agnostic.

Optimal Transport in Vision: OT has been widely applied in computer vision for distribution alignment
Peyré et al.|(2019); |Cuturi| (2013); Bonneel & Digne| (2023), including domain adaptation Ge et al.[(2021);
Fan et al.| (2024)); Luo & Ren|(2023)), object detection, and image restoration |Adrai et al.|(2023). In anomaly
detection, |Liao et al.| (2025) employed robust Sinkhorn distances for industrial inspection. These works show
OT’s adaptability for handling domain discrepancies, but they typically operate at the distribution level and
do not exploit OT for structured feature selection or test-time supervision. While our approach employs a
novel OT chaining mechanism, entropically regularised OT helps align PDs through cross-PD filtration to
capture feature evolution and cross-level filtration to integrate complementary structures, thereby preserving
consistently transported features and discarding spurious ones.

Topological Priors and Test-Time Training: TDA, particularly persistent homology (PH), has been applied
in medical imaging to capture shape and multi-scale structure |Adcock et al.|(2014); Berry et al.| (2020);
Crawford et al.[(2020); Garside et al.|(2019); Kanari et al.|(2018). Yet most uses are offline and not integrated
into adaptive learning|Zia et al.|(2024). TTT Liang et al.|(2024); Nado et al.|(2020); Kim et al.|(2022);|Colomer]
et al.| (2023)); Nguyen et al. (2023)); [Khurana et al.[| (2021) adapts models on-the-fly with self-supervised
objectives, and TTT4AS |Costanzino et al.|(2024a) extended this idea to AS with heuristic pseudo-labels.
However, these lack explicit structural reasoning and remain sensitive to noise.

Our approach combines PH-based filtrations with OT alignment to derive stable pseudo-labels, which then
guide a lightweight TTT head. This integration moves beyond heuristic thresholds by embedding structural
priors directly into TTA, yielding robust and topologically consistent AS.

3 OT-GUIDED TEST TIME STRUCTURAL ALIGNMENT FRAMEWORK

Problem Formulation: Conventional AS methods produce a dense anomaly score map and obtain binary
masks through thresholds calibrated on nominal validation data|Costanzino et al.|(2024a) (e.g., percentile
rules). Such thresholds are dataset-specific, fail under distribution shift, and often generate masks that
under-cover or over-extend the anomalous region. Moreover, they operate pixel-wise and neglect structural
information in the anomaly map. To address these limitations, we represent anomaly maps as persistence
diagrams (PDs), which capture multi-scale topological features such as connected components and holes.
Figure[I] provides an overview of our proposed TopoOT framework. We then introduce an OT—based scoring
scheme that evaluates PDs across filtrations and levels, ranking components by their cross-scale consistency.
This formulation replaces fixed thresholding with a structural scoring approach designed to produce more
consistent anomaly masks under distribution shift.

Building on this, persistence diagrams derived from sub- and super-level filtrations provide the candidate
anomaly structures. We apply OT alignment across filtration levels to retain components that persist with low
transport cost, while discarding unstable features (that don’t persist across PDs). The ranked components are
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Figure 1: TopoOT Test-time Training for Anomaly Segmentation. (Top Left) pipeline simplified view.
(Bottom) detailed view. TopoOT replaces conventional thresholding by stabilising anomaly evidence via
cross-PD OT matching within each filtration, then fusing sub- and super-level scores with cross-level OT. The
resulting global scores yield Top-K pseudo-labels that supervise a lightweight head for final segmentation.

then back-projected into the image domain to form pseudo-labels, which serve as data-dependent supervision
at inference in place of fixed thresholds.

During TTT, we keep the replaceable backbone frozen and update only a lightweight head. This head is
optimised with two complementary objectives: (i) OT-consistency, which encourages predictions to remain
aligned with the stable structures identified by OT, and (ii) contrastive separation, which increases the margin
between anomalous and nominal regions. The combination of these objectives yields a segmentation mask
that is guided by OT-derived pseudo-labels rather than fixed thresholds.

3.1 MULTI-SCALE FILTERING AS FEATURE GENERATION

We start from a continuous anomaly map A : @ — [0, 1] defined over the pixel lattice €2, same as|Costanzino
et al.| (2024a). To capture structural variation at multiple thresholds, we fix a sequence of increasing
thresholds 7 = {r; < 7 < -+ < 7n}. For each 7, € T, we define the sublevel and superlevel sets
Ssb = {p e Q: Alp) < 7}, and S5 = {p € Q : A(p) > 75}. These subsets naturally induce

cubical complexes Ki:b, K3, where each cell corresponds to a contiguous block of pixels (a cube in the

grid) included whenever its vertices satisfy the relevant threshold condition. The “cubical” construction is
appropriate for images/grids, because it respects the pixel adjacency and can be computed efficiently.

By varying 7, we obtain nested sequences (filtrations) for each kind of level set: Kfl - Kfz C---C
K/

PR f € {sub,sup}. From these filtrations, we compute persistent homology in dimensions

where
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h € {0,1}. The result is a persistence diagram PJ’} [7x] at each threshold level, where Hy (homology in
dimension 0) captures connected components that is how new components appear (birth) and merge (death)
across thresholds. H; (1-dimensional homology) captures loops or holes (voids), features that appear in
superlevel or sublevel sets and disappear at some higher (or lower) threshold. Background on cubical

complexes in Appendix

Each topological feature ¢ in a diagram is represented as a pair (b, d.) of birth and death times; its persistence
pers(c) = d.—b,. reflects how long it persists. Features with large persistence are more likely to correspond to
“meaningful” structural anomalies, while those close to the diagonal (small persistence) are often noise. These
ideas align with the discussion review paper by Zia et al.[(2024), which emphasises that PDs and barcodes are
robust summaries of topological features of data across scales, invariant to small perturbations, deformation,
and noise. The outputs {P2, [7]}+_,, and {PL []}1_, serve as multi-scale candidate features. They form
the input to the OT-based alignment steps. Rather than acting as direct decision thresholds, these persistence
diagrams are treated as a rich feature generation mechanism, capturing anomalies’ connected components
and holes over multiple scales, which allows the downstream optimal transport stage to judge stability and
discriminability among structural candidates.

3.2 GEODESIC SCORING OF TOPOLOGICAL FEATURES

The persistence diagrams derived from sub- and super-level filtrations provide a rich but noisy set of candidate
features. Many short-lived components arise due to local perturbations in the anomaly map, which, if treated
directly, would degrade the reliability of pseudo-labels. A key challenge is how to aggregate these diverse
features into a concise set of components that can be meaningfully traced back to the original image. A
possible solution is computing a barycenter of diagrams Turner et al.| (2014), but barycenters discard the
natural order of filtrations and blur fine-scale structures. Mapping diagrams into kernels or persistence images
Reininghaus et al.| (2015) is another alternative, but these yield global embeddings without interpretable
correspondences. In contrast, we propose aggregating information by following the flow of diagrams within
each filtration sequence using Optimal Transport Chaining. This approach consolidates features into stable
representatives for both the sublevel and superlevel filtrations independently, and then fuses the two levels to
obtain consensus features.

Formally, let P = {p; = (b;,d;)}~; and Q = {g; = (b}, d};)}}}_; be two persistence diagrams, used here
as shorthand for {P}L [7]} at different thresholds or filtrations. We define the ground cost as the squared
Euclidean distance between pairs of features, and compute the entropic OT plan:

II* = argmin (C,II) + cH(II) (1)
IIeU(P,Q)

where U (P, Q) denotes the set of admissible couplings between P and (), and H (II) is the entropy of the
transport plan. The regularisation parameter ¢ > 0 ensures numerical stability and smooth alignments. In
our framework, all transport plans are therefore entropy-regularised Sinkhorn solutions rather than exact
Wasserstein couplings because they yield smooth, differentiable, and numerically stable alignments; see
Appendix [A.6|for further details.

We exploit this transport plan through a novel OT chaining mechanism, which consists of two complementary
modes: cross-PD (intra) filtration and cross-level (inter) filtration alignment. In cross-PD filtration alignment,
OT is applied within a single filtration (sublevel or superlevel) between persistence diagrams at different
thresholds 75 and 7,. This process identifies features that persist consistently through the filtration, and each
candidate c receives a stability score:

o0 — e T0E).5)

i 144/C(i(e),7)

- apers(c) 2
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where II* is the entropic OT plan between diagrams, C(i(c), ) is the ground cost, and pers(c) is the
persistence of c as defined in Sec. Since C'is defined as squared Euclidean distances, we use v/C'in the
denominator to restore a linear distance scale, ensuring that score decay is proportional to distance rather
than quadratic. This softens penalisation and allows moderately stable matches to contribute, instead of
filtering too aggressively. The maximisation is taken over all possible partners j of candidate ¢ within the
filtration, where j indexes features in the comparison persistence diagram. In this way, s(c) reflects the
strongest OT-stable match. When points don’t get matched between PDs, they are coupled to the diagonal
as in standard TDA practice (see Sec. [3.Tand Appendix[A.7), ensuring that chain stability scores naturally
account for vanishing features. The factor o > 0 controls the influence of persistence on ranking. Top-M
components are selected by maximising stability and persistence and minimising transport cost.

In cross-level filtration alignment, we compare candidate sets from the sublevel and superlevel filtrations.
Applying OT across sublevel and superlevel filtrations integrates complementary topological cues. Sublevel
filtrations emphasise how connected components emerge and merge, while superlevel filtrations highlight
how voids and holes evolve. By aligning these perspectives, the method retains structural features that are
consistently expressed across both, thereby suppressing spurious components and strengthening anomaly
cues. Each candidate c is evaluated with the same stability score s(c) defined above, but here the partner set
is drawn from the opposite filtration. This ensures that features are retained only if they exhibit both cross-PD
scale persistence and cross-level filtration consistency. The top- K ranked candidates across both filtrations
are then collected to form the final set C*.

The surviving candidates in C* are projected back to their pixel-level supports on the anomaly map, yielding
OT-guided pseudo-labels Yor. These pseudo-labels are inherently multi-scale and data-adaptive, as they
emerge from stable OT couplings rather than fixed thresholds. These retained features correspond to connected
regions or holes, e.g., defects or gaps, that persist across the filtration process and reflect semantically
meaningful structures in the input space. By filtering out noise-induced artefacts, OT alignment produces
pseudo-labels that provide robust supervision for TTT.

3.3 ToroOT TEST-TIME TRAINING

The final stage of our pipeline leverages the OT-guided pseudo-labels Yot to adapt the model during inference.
Since the backbone feature extractor is frozen, adaptation is performed through a lightweight segmentation
head h,, attached to the anomaly map representation. This design ensures that the adaptation cost at test time
remains negligible, while still allowing the predictions to be tailored to the distribution of the current sample.
Training hy is guided by two complementary objectives. First, we introduce an OT-consistency loss that

encourages the segmentation head h.;, to reproduce the spatial structures encoded in Yor. Given the deviations

from the OT-aligned pseudo-labels Lo = ||Y — Yor||2 which enforces consistency with stable transport
couplings and prevents overfitting. Second, we incorporate a margin-based contrastive objective to sharpen
local decision boundaries in the embedding space produced by h,. From the OT-derived pseudo-labels
Yor € {0, 1}7#>W we sample pixel pairs (p, q) as similar when Yo (p) = Yor(g) and dissimilar otherwise.
Let 2,, 2, € RP denote the L2-normalised embeddings of those pixels. The contrastive loss is:

2
[fcontrastive = (1 - ypq) ||Zp - ZqH% + Ypq [maX(O, m — HZP - Zq||2)]

where y,q € {0, 1} encodes dissimilarity and m > 0 is a margin. This loss compacts same-label embeddings
while enforcing a minimum separation between background and anomalous regions, improving robustness to
residual noise in Yor. The combined loss is L1171 = LoT + Alcontrastive With A controlling the balance
between structural consistency and contrastive separation. By optimising L1 on each test sample, the
segmentation head h.;, adapts to dataset-specific distributions without requiring external supervision. The

final segmentation mask Y'Pin is obtained through a canonical decision rule applied to the adapted predictions
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of hy. Because hy, is trained on OT-guided pseudo-labels, this rule is adaptive to each test instance, avoiding
dataset-specific calibration and eliminating heuristic threshold tuning.

This test-time regularisation departs from conventional schemes in two ways: (i) it grounds the adaptation
signal in OT-aligned structures, stable across multi-scale filtrations, rather than raw anomaly scores; (ii) by
integrating contrastive separation, it sharpens class boundaries instead of collapsing toward trivial solutions.

Stability and Generalisation Bounds: Complementing our empirical results, we provide preliminary formal
analysis in Appendix showing that our scores are robust to perturbations, discrepancies accumulate
subadditively across filtrations, and OT-consistency objectives are connected to improved generalisation at
test time. They offer principled intuition for the design of cross-PD and cross-level OT chaining and its role
in structurally guided adaptation.

4 EXPERIMENTAL SETUP

Datasets, Backbones, and Evaluation Protocol: We evaluate across both 2D and 3D anomaly detection
benchmarks. For 2D, RGB datasets MVTec AD Bergmann et al.|(2019), VisA [Zou et al.| (2022), and
Real-TAD |Wang et al.[(2024a) are used with backbones PatchCore Roth et al.| (2022), PaDiM Defard et al.
(2021)), Dinomaly |Guo et al.| (2025)), and MambaAD |He et al.| (2024). For 3D, we consider multimodal
MVTec 3D-AD (RGB + point-cloud) [Bergmann et al.[(2021)) and pure point-cloud Anomaly-ShapeNet |L1
et al.[(2024), using backbones CMM |Costanzino et al.[(2024b)), M3DM |Wang et al.| (2023), and PO3AD |Ye
et al.[(2025). While we report standard anomaly-detection metrics such as image-level AUROC (I-AUROC),
pixel-level AUROC (P-AUROC), and pixel-level AUPRO (P-AUPRO) for completeness, our evaluation
focuses on pixel-level Precision, Recall, F1, and IoU of the final binary masks. AUROC and AUPRO mainly
assess ranking quality and can remain high despite poor mask quality under severe pixel imbalance Bergmann
et al.| (2019); Zavrtanik et al.|(2021a). In contrast, Precision, Recall, and F1 capture the accuracy of detected
defect regions, balancing missed detections and false alarms, while IoU offers a stringent measure of spatial
overlap (Costanzino et al.[(2024a)). These metrics align more closely with industrial inspection needs, where
the fidelity of the delivered mask is the decisive criterion|/Bergmann et al.| (2020); [Schliiter et al.| (2022).

Across both domains, we compare all methods against the TTT baseline TTT4AS |Costanzino et al.| (2024a).
Following TTT4AS, we binarise each backbone’s AS map at the statistical threshold (¢ + co) and report
this variant (THR) alongside the TTT4AS baseline. All experiments have been conducted on an NVIDIA
RTX 5090 GPU with 32GB of VRAM. Detailed hyperparameters and architectural settings are provided
in Appendix [A.I] TopoOT runs at 121 FPS using 349 MB GPU memory for 2D inference; 3D inference
has comparable memory use but lower FPS due to point-cloud operations. Per-dataset timing and memory
profiles are given in Appendix

5 RESULTS AND DISCUSSION

We validate TopoOT through analyses: (i) 2D and 3D AD&S, benchmarking against state-of-the-art methods;
(ii) Cross Model Domain Adaptation, where frozen feature extractors are paired with distinct anomaly score
maps across 2D and 3D datasets; and (iii) Ablation Studies, assessing the contribution of each component.
For detailed discussion of limitations and directions for future development, including efficiency tradeoffs
and backbone dependency, refer to Appendix [A.3]

5.1 2D/3D AD&S

We present a comprehensive evaluation of TopoOT across five diverse datasets and seven state-of-the-art
backbones. The I-AUROCP, P-AUROC, and P-AUPRO metrics are computed directly from each backbone’s
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AS map, while our method operates on the resulting anomaly maps to produce final binary segmentations.
The results in Table[I|demonstrate superiority, with TopoOT consistently outperforming all baselines. The
metrics are the mean per class within each dataset. Our method achieves a +38.6% F1 gain over THR
and +14.0% over TTT4AS |Costanzino et al.|(2024a) on MVTec AD (PatchCore Roth et al.[(2022)). For
PaDiM, it surpasses THR by +20.5% and TT4AS by +24.1% . On VisA, it surpasses TTT4AS by +19.7 %
(Dinomaly |Guo et al.| (2025)) and +8.5% (MambaAD He et al.|(2024)). For Real-IAD, TopoOT shows a
+12.3% and +11.8% F1 improvement over THR, and a +21.3% and +20.9% gain over TTT4AS for the
Dinomaly and MambaAD backbones, respectively. The advantage extends to 3D, with gains of +20.7 %
(CMM |Costanzino et al.|(2024b)) and +24.5% (M3DM Wang et al.| (2023))) over THR on MVTec 3D-AD,
alongside +10.2% and +2.2% improvements over TTT4AS. On AnomalyShapeNet (PO3AD |Ye et al.
(2025)), TopoOT also leads with a +2.9% and +1.9% F1 advantage.

Table 1: Comparison of binary segmentation results. Best results in bold; second-best in blue.

I Dataset I Backbone || IFAUROC P-AUROC P-AUPRO || TTT Method || Prec. Rec. F1  IoU ||
PatchCore THR [Roth et al.|(2022) 0351 0.507 0.136  0.299
PP 53 0.991 0.981 0.934 TTT4AS Costanzino et al.|(2024a) || 0.388 0.648 0.382 0.293
5 MVTec 1A]z)0 5 oneta e TopoOT 0.550 0.720 0.522 0.387
tgmnn oL P00 PabiM THR|Roth et al.|(2022) 0452 0507 0354 0317
Defard ot al {20211 0.979 0.975 0.921 TTT4AS|Costanzino et al.|(2024a) || 0.330 0.579 0.318 0.274
: d 2 TopoOT 0.470 0.788 0.559 0.402
Dinomaly THR|Guo et al.|(2025) 0275 0.862 0.339 0.144
) Y 0.987 0.987 0.945 TTT4AS Costanzino et al.|(2024a) || 0.223 0.811 0.267 0.177
VisA Sl 28 TopoOT 0.546 0.553 0.464 0.223
Zou et al. (2022 -
MambaAD THR[He et al.|(2024) ] 0200 0785 0241 0.196
oot ot 1poaa] 0.943 0.985 0.910 TTT4AS Costanzino et al.|(2024a) || 0.223 0.811 0.267 0.130
d 2 TopoOT 0.416 0.507 0.352 0.247
Dinomaly THR [Wang et al.|(2024a) 0.242 0793 0317 0.208
YT T 0.893 0.989 0.939 TTT4AS|Costanzino et al.|(2024a) || 0.154 0.801 0.229 0.147
Real IAD juo et al. {2025} TopoOT 0.461 0.577 0442 0.317
‘Wang et al. (2024a =
MambaAD THR|He et al.|(2024) ]| 0.188  0.653 0.228 0.145
T 0.863 0.985 0.905 TTT4AS|Costanzino et al.|(2024a) || 0.084 0.763 0.137 0.080
al TopoOT 0.305 0616 0346 0.243
CMM THR|[Costanzino et al.|(2024b) 0.199 0.902 0275 0.232
Costanzing et o 50275] 0.954 0.993 0.971 TTT4AS|Costanzino et al.|(2024a) || 0.303 0.800 0.380 0.077
MVTec 3D-AD slanzinoctan ] TopoOT 0.427 0.845 0.482 0343
Bergmann et al. (2021 =
M3DM THR [Wang et al.|(2023) ]| 0173 0.889 0.245 0.232
e o oo 0.945 0.992 0.964 TTT4AS|Costanzino et al.|(2024a) || 0.467 0.640 0.468 0.120
g et al.[2023] TopoOT 0.564 0.767 0.490 0.364
THRYe et al.|(2025) 0.675 0441 0500 0.371
AnomalyShapeNet _£03aD 0.839 0.898 0821 || TTT4AS[Costanzino et al|(20%4a) || 0.562 0485 0.510 0347
d ) d ) TopoOT 0.651 0.540 0.529 0.402

Figure [2| shows that TopoOT yields sharper, more semantically coherent segmentations than competing
methods. TopoOT secures concurrent gains in precision and recall, which in turn increase IoU, resulting in
consistently superior segmentations across every benchmark. Per-class quantitative and qualitative results for
each dataset are presented in the Appendix [A.4]&[A.5] TopoOT consistently achieves sharper boundaries and
higher recall across categories. Even in challenging cases like thin or fragmented defects, it remains robust,
clearly outperforming other methods across both 2D and 3D domains.

5.2 CROSS MODEL DOMAIN ADAPTATION

We validate a plug-and-play transfer strategy that pairs frozen source feature extractors with distinct tar-
get scoring heads across 2D (MVTec, VisA, Real-IAD) and 3D (MVTec-3DAD) domains. As shown in
Table [2} the cross-model pipelines preserve topological structure and deliver practical quality without re-
training. In 2D, transfers reach F1 up to 0.512 on Real-IAD (PatchCore—MambaAD) and 0.502 on VisA
(MambaAD—Dinomaly), with recalls in the 0.71-0.75 band; in 3D, CMM—M3DM offers the highest
precision (0.471, F1 0.479), while M3DM—CMM provides broad coverage (recall 0.791). Importantly,
these domain-adaptation results outperform established baselines across the evaluated datasets, confirming
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Figure 2: Qualitative comparison of AD&S methods for different objects using the MVTec 3D-AD dataset.
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effective cross-model composition and providing a strong substrate for TopoOT to further consolidate gains
via stability-aware OT pseudo-labels and adaptive boundary refinement for AS.

Table 2: Cross-model domain adaptation (features — anomaly scores).

Modality Dataset Source — Target Prec. Rec. F1
2D 3D (Features — Anomaly Scores)
v MVTec PatchCore — PaDiM 0.419 0.673 0.430
v VisA MambaAD — Dinomaly 0.459 0.712 0.502
v Real-IAD PatchCore — MambaAD 0.434 0.750 0.512
v MVTec-3DAD CMM — M3DM 0.471 0.746 0.479
v MVTec-3DAD M3DM — CMM 0.409 0.791 0.469

5.3 ABLATION STUDIES

We validate TopoOT (Table [3). Individual cross-PD filtration alignments yield modest gains. The cross-level
filtration alignment is key, providing a larger boost by integrating cross-scale information. The losses Lor and
Leontrastive are effective together, enforcing prediction consistency and feature separation, respectively. Our
complete model achieves top performance: 0.522 F1 on PatchCore, 0.482 on CMM, and 0.490 on M3DM.

Table 3: Ablation study showing that combining all OT alignments with losses yields the highest performance.

I TopoOT Components I 2D-PatchCore I 3D-CMM I 3D-M3DM I
|| cross-PDguy, — cross-PDgupe, — cross-levelsup-super Lo Leontrastive || Prec.  Rec. F1 || Prec. Rec. F1 || Prec. Rec. F1 ||

v v 0.440 0.310 0.365 || 0.410 0455 0.382 || 0.290 0.730 0.390

v v 0.490 0.540 0.475 || 0426 0.485 0415 || 0.310 0.740 0.405

v v 0.375 0.620 0.390 || 0.085 0.820 0.118 || 0.280 0.755 0.380

v v 0.395 0.605 0.408 || 0.095 0.830 0.132 || 0.300 0.760 0.392

v v v v 0.520 0.690 0.510 || 0.420 0.800 0.470 || 0.500 0.750 0.485

v v v v 0.510 0.680 0.505 || 0.405 0.770 0.460 || 0.490 0.740 0.475

v v v v v 0.550 0.720 0.522 || 0.427 0.845 0.482 || 0.564 0.767 0.490

6 CONCLUSION

We presented TopoOT, a topology-aware OT framework for anomaly segmentation that replaces brittle
thresholding with OT-guided pseudo-labels and stabilises multi-scale persistence features through cross-PD
and cross-level filtration chaining. A lightweight head trained with OT-consistency and contrastive objectives
enables per-instance TTA that preserves structural stability while sharpening anomaly boundaries. TopoOT
achieves SOTA performance on five standard benchmarks, and our theoretical analysis establishes stability
and generalisation guarantees.
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A SUPPLEMENTARY MATERIAL

d outlines the experimental setup for 2D and 3D anomaly detection with test-time adaptation and
hyperparameter configuration.

* [A2)evaluate the computational efficiency of TopoOT by benchmarking its inference time and GPU
memory usage in 2D and 3D AS scenarios.

* [A3|discuss fundamental insights, limitations, and possible extensions within the context of topologi-
cal anomaly segmentation.

. presents quantitative and qualitative results on 2D AD&S datasets, including class-wise per-
formance across benchmarks and visual examples that illustrate the effectiveness of OT-guided
pseudo-labels.

* [A.5|reports quantitative and qualitative results on 3D AD&S datasets, covering voxel- and point-
cloud modalities, with class-level analysis and qualitative comparisons to baseline methods.

* [A.qrecalls optimal transport preliminaries, including the 2-Wasserstein distance and its entropy-
regularised Sinkhorn variant, and clarifies their role in computing the OT couplings used in our
framework.

. provides theoretical insights into optimal transport and examines its stability and discrepancy
bounds.

. presents the mathematical formulation of cubical complex persistence, detailing how primitive
cells are hierarchically aggregated to construct filtration levels and ultimately generate persistence
vectors that encode topological features.

A.1 ARCHITECTURAL SETTINGS & HYPERPARAMETERS

2D Setup. For all RGB-based AD&S experiments, we employ DINO |Caron et al.|(2021)) as the feature
extractor (F'). Our approach is benchmarked against leading state-of-the-art methods, including the memory-
bank based PatchCore Roth et al.| (2022), PaDiM Defard et al.|(2021), the reconstruction-driven Dinomaly
Guo et al.|(2025), and MambaAD [He et al.| (2024). Evaluation is conducted on three widely adopted 2D
benchmarks: MVTec AD |Bergmann et al.[(2019) (15 categories; 3,629 training and 1,725 test images), VisA
Zou et al.|(2022) (12 objects; 9,621 normal and 1,200 anomalous samples), and Real-IAD Wang et al.| (2024a))
(30 objects; ~150,000 images in total, comprising 36,465 normal training samples and 114,585 test images
with 63,256 normal and 51,329 anomalous). To ensure comparability, all 2D inputs are standardised to a
resolution of 224 x 224.

3D Setup. For multimodal experiments involving RGB and point-cloud modalities, we adopt DINO-v2
Oquab et al.|(2023)) for image features and Point-MAE [Zhao et al.| (2021) for geometric representations.
We benchmark against multimodal memory-bank methods such as M3DM |Wang et al.| (2023), as well as
reconstruction-oriented baselines including CMM |Costanzino et al.| (2024b) and PO3AD |Ye et al.| (2025).
The evaluation is performed on two representative 3D benchmarks: MVTec 3D-AD Bergmann et al.[(2021)
(10 categories; 2,656 nominal training images and 1,197 test samples) and Anomaly-ShapeNet |Li et al.
(2024) (40 synthetic classes; 1,600 samples spanning six anomaly types).

Test-Time Training. For adaptation, the pretrained backbones are kept frozen while a lightweight MLP
head h, consisting of three linear layers with GELU activations, is fine-tuned. The optimisation objective
combines an OT-consistency loss (¢ = 0.05, up to 200 iterations) with a contrastive loss (margin = 0.4),
balanced equally with weights & = A = 0.5. Adaptation proceeds for 5 epochs using the Adam optimiser
with a learning rate of 10~3. Each test sample is processed independently with an effective batch size of one.
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A.2 COMPUTATIONAL COMPLEXITY AND EFFICIENCY

A central strength of the proposed TopoOT framework lies in its ability to balance computational complexity
with practical efficiency. On a single modern GPU, the system achieves an evaluation rate of approximately
121 FPS, while requiring only 349 MB of GPU memory. This lightweight profile is markedly lower than that
of many SOTA anomaly detection baselines. For context, a standard 2D baseline model Roth et al.|(2022)
reports an inference time of 0.22 seconds per image, while in the 3D domain, the M3DM |Wang et al.| (2023)
model requires 2.86 seconds per image and consumes 6.52 GB of GPU memory. The CMM |Costanzino et al.
(2024b) model, though faster at 0.12 seconds per image, still uses 427 MB of memory, TopoOT delivers
a 14.5x speedup over CMM. In contrast, TopoOT not only achieves a significantly higher frame rate but
also maintains a highly competitive memory footprint, underscoring its deployability in scenarios where
throughput and hardware constraints are decisive.

The breakdown of computational cost, analysed per module, indicates that the construction of cubical
complexes and persistence diagrams constitutes the most demanding stage, requiring approximately 0.33
seconds per sample when aggregated across all complexes. Despite this initial overhead, the subsequent
topological alignment stages remain highly efficient: the intra-level OT block requires only 5.5 ms in
aggregate, while the inter-level OT block converges nearly instantaneously, below 0.05 ms per alignment.
These operations stabilise and align persistence features without imposing a significant runtime burden.
Finally, the downstream multilayer perceptron (MLP) classifier adds only 8.3 ms per evaluation, rendering its
contribution negligible.

Taken together, the end-to-end evaluation time per sample remains well within practical limits, supporting
real-time operation. The combination of high FPS, minimal GPU consumption, and the bounded cost of
topological computations makes TopoOT exceptionally well-suited for industrial adoption. Unlike competing
methods that often trade accuracy for efficiency, TopoOT achieves both, offering a robust and scalable
solution for anomaly detection under stringent practical constraints.

A.3 DISCUSSION, LIMITATIONS, AND FUTURE DIRECTIONS

The results in the main paper and Appendices [A.4][A.5] demonstrate that TopoOT provides a principled
strategy for replacing non-robust and heuristic thresholding with stability-aware, OT-guided pseudo-labels.
By chaining persistence diagrams across filtrations and integrating sub- and super-level information, the
framework yields segmentation masks that are both structurally coherent and robust under distribution shift.
Consistent gains across 2D and 3D benchmarks confirm that structural alignment is an effective prior for
test-time adaptation.

Despite these advances, several limitations remain. First, the approach still depends on the quality of
the anomaly score maps produced by frozen backbones. When upstream representations are noisy or
poorly transferable, the extracted persistent features may not provide sufficient structural guidance. Second,
while the current formulation generalises naturally to both 2D images and 3D point clouds, it does not yet
address spatiotemporal settings such as video or dynamic medical imaging, where temporal coherence and
evolving anomaly structure are critical. Third, efficiency trade-offs deserve further study, although TopoOT is
lightweight relative to baselines, scaling to real-time, high-resolution deployments in safety-critical domains
may require additional optimisations.

Future work can address these challenges along several directions. Differentiable approximations of persistent
homology offer a path to end-to-end training with topological losses, enabling tighter integration between
backbone features and topological stability. Jointly optimising anomaly map generation and topological
filtering through self-supervised objectives could mitigate the reliance on noisy upstream scores. Extending
the framework to spatiotemporal domains will require evolving persistence diagrams across frames to capture
anomaly lifespans and enforce temporal consistency. Finally, incorporating uncertainty-aware filtration
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strategies—quantifying stability not only by persistence but also by variability across augmentations or
agreement with model uncertainty—could provide more reliable predictions in high-stakes applications such
as robotics, autonomous driving, and medical diagnostics.

TopoOT establishes a solid foundation for topology-aware adaptation in anomaly segmentation, highlighting
how persistent homology and optimal transport can jointly serve as structural alignment mechanisms for
adaptive learning. Its current form addresses critical limitations of threshold-based methods, while future
developments promise broader applicability and deeper integration with modern representation learning.

A.4 ADDITIONAL EXPERIMENTS AND RESULTS ON 2D AD&S DATASETS

HeatMap THR  TTT4AS TopoOT

o [Tl ]
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Figure 3: Qualitative comparison of various anomaly detection methods for different objects using PatchCore
model on 2D MvTec AD dataset.
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TableE]reports the results of PatchCore on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC, and
P-AUPRO. These results are reproduced directly using the official implementation provided by the authors.

Table 4: PatchCore Roth et al.{(2022)on MVTec AD: anomaly scores are I-AUROC, P-AUROC, and P-AUPRO.

Metric  ||Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper||Mean||
PatchCore — Anomaly Scores|Roth et al.|(2022)

I-AUROC || 1.000 0.995 0.981 0.987 0.982 1.000  1.000 1.000  0.966 0.981 0.987 1.000 1.000  0.992 0.994 ||0.991
P-AUROC||0.986 0.984 0.988 0.990 0.987 0.987 0.993  0.984 0.974 0.994 0.956 0.987 0.963  0.950 0.988 |[0.981
P-AUPRO||0.961 0.926 0.955 0.966 0.959 0.939 0989 0913 0.941 0.979 0.874 0.914 0.835 0.896 0.971 ||0.935
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Table 5: Performance of PatchCore Roth et al.|(2022) on MVTec AD’s 15 categories, comparing binary map strategies:
THR (u 4 30), TTT4AS, and TopoOT. Top results per metric are in bold (best) and blue (second-best).

Metric ||Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper||Mean||
(a) PatchCore - Binary Map - THR (1« 4+ 30) Roth et al.|(2022)

Precision|| 0.397 0.344 0.278 0.362 0.432 0405 0.297 0435 0.347 0.298 0.403 0.286 0.334  0.384 0.268 ||0.351
Recall 0.510 0.465 0.626 0.522 0428 0380 0.542  0.566 0.618 0.522 0.517 0.542 0.287  0.469 0.605 |[0.507
F1 Score |[0.175 0.194 0.085 0.092 0.078 0.120 0.045 0311 0.188 0.066 0.209 0.123 0.114  0.121 0.119 ||0.136
IoU 0.310 0.334 0.222 0.407 0.283 0367 0262 0316 0.287 0.202 0.179 0.262 0.238  0.297 0.513 ||0.299

(b) PatchCore - Binary Map - TTT4AS |Costanzino et al.|(2024a)

Precision|| 0.662 0.502 0.163 0.413 0.185 0425 0.212  0.644 0.337 0.046 0.644 0.272 0.391  0.470 0.449 |/0.388
Recall 0.664 0.565 0.632 0.824 0.787 0.861 0.893  0.528 0.740 0.361 0.495 0.594 0.462  0.664 0.644 ||0.648
F1 Score || 0.593 0.480 0.197 0457 0272 0499 0.286  0.482 0.358 0.078 0.474 0.301 0318  0.464 0.469 |[0.382
IoU 0.358 0.393 0.166 0.379 0.243 0.418 0208 0276 0.264 0.124 0.404 0.234 0.192  0.360 0.370 ||0.293

(c) PatchCore - Binary Map -TopoOT

Precision|| 0.850 0.673 0.399 0.625 0.370 0.487 0392  0.717 0.416 0.282 0.713 0.390 0.581  0.595 0.765 ||0.550
Recall 0.555 0.672 0.772 0.685 0.741 0.869  0.909  0.709 0.787 0.890 0.643 0.647 0.496  0.579 0.640 |[0.720
F1 Score || 0.623 0.627 0.445 0.545 0458 0.579 0493  0.654 0.465 0.396 0.627 0.412 0.440  0.527 0.646 ||0.522
IoU 0.474 0.476 0.307 0.400 0.314 0.429 0356 0.507 0.333 0.269 0.493 0.271 0.301  0.381 0.495 ||0.387

Table [5] presents the quantitative comparison of PatchCore on MVTec AD’s 15 categories using different
binary map strategies. Our proposed method, TopoOT, consistently outperforms both the threshold-based
approach (THR) and the recent TTT4AS method across all evaluation metrics.

Specifically, in terms of mean performance, TopoOT achieves an F1 Score of 0.522, significantly higher than
THR (0.136) and TTT4AS (0.382). This corresponds to a relative improvement of +0.386 over THR and
+0.140 over TTT4AS. Similarly, in terms of Precision, TopoOT improves over THR and TTT4AS by +0.199
and +0.162, respectively. A comparable trend is observed for Recall, where TopoOT provides a gain of +0.213
over THR and +0.072 over TTT4AS. Beyond overall averages, significant category-level improvements can
also be observed in Table

Overall, these results demonstrate that TopoOT not only delivers significant improvements on key categories
but also generalises well, outperforming existing methods across the broader range of datasets included in the
MVTec AD benchmark. This consistent performance underscores the robustness and effectiveness of our
method in 2D anomaly detection tasks.

Table@presents the performance of PaDiM on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC,
and P-AUPRO. The reported results are reproduced directly from the official implementation released by the
authors.

Table 6: PaDiM |Defard et al.{(2021) on MVTec AD: anomaly scores are -AUROC, P-AUROC and P-AUPRO.

Metric  ||Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper||Mean||

I-AUROC || 0.971 0.982 0.974 0.979 0.995 0.991 0965 0.942 0.995 0.972 0.961 0.929 0.973  0.984 0.957 ||0.979
P-AUROC||0.983 0.967 0.985 0.991 0.973 0982 0.992 0.972 0.957 0.985 0.941 0.988 0.975  0.949 0.985 |[0.975
P-AUPRO||0.948 0.888 0.935 0962 0946 0.926 0978  0.856 0.927 0.944 0.860 0.931 0.845 0911 0.959 ||0.921

Table[/|shows the performance comparison of PaDiM on MVTec AD’s 15 categories using different binary
map strategies. Our proposed method, TopoOT, achieves consistent improvements across all metrics when
compared to both THR and TTT4AS.

On average, TopoOT improves the F1 Score by +0.205 over THR and by +0.241 over TTT4AS. Similarly,
Precision increases by +0.018 compared to THR and by +0.14 over TTT4AS. In Recall, TopoOT shows even
stronger gains of +0.281 against THR and +0.209 over TTT4AS.
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Table 7: Performance evaluation of PaDiM Defard et al.|(2021) across 15 categories of the MVTec AD dataset and their
mean, comparing three binary map strategies: (a) THR (i + 30), (b) TTT4AS, and (c) TopoTTA. The table highlights
the best result for each Precision, Recall, F1 Score, and IoU in bold (best) and blue (second-best).

Metric |Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper||Mean||
(a) PaDiM - Binary Map - THR (x2 4 30)|Defard et al.|(2021)

Precision| 0.729 0.580 0.287 0.561 0.327 0.586  0.306  0.540 0.410 0.196 0.131 0.416 0.462  0.576 0.676 |0.452
Recall [0.321 0.249 0.813 0.736 0.708 0.477 0927 0281 0.493 0.712 0.005 0.514 0.349 0399 0.615 ||0.507
F1 Score [ 0.343 0.280 0.325 0.523 0407 0433 0396 0292 0.337 0.295 0.009 0.391 0.307  0.375 0.596 ||0.354
IoU 0.310 0.290 0.330 0.340 0.320 0.300 0.310  0.330 0.320 0.300 0.280 0.350 0.330  0.310 0.335([0.317

(b) PaDiM - Binary Map - TTT4AS |Costanzino et al.|(2024a)

Precision| 0.585 0.412 0.176 0429 0.199 0.349 0208  0.519 0.269 0.088 0.137 0.258 0472 0.355 0.499 |10.330
Recall [0.438 0.500 0.707 0.769 0.726 0.637 0916  0.491 0.568 0.735 0.123 0.595 0.425  0.416 0.648 ||0.579
F1 Score | 0.429 0.395 0.214 0.459 0.290 0376 0293  0.386 0.262 0.153 0.103 0.283 0291  0.319 0.512 {(0.318
IoU 0.280 0.270 0.280 0.270 0.260 0.310  0.270  0.280 0.270 0.270 0.260 0.280 0.270  0.270 0.270 ||0.274

(¢) PaDiM - Binary Map - TopoOT

Precision| 0.750 0.648 0.355 0.523 0.463 0.358 0.246  0.574 0.307 0.266 0.685 0.268 0.492 0439 0.678 ||0.470
Recall |0.689 0.670 0.828 0.942 0.805 0.885 0.987  0.636 0.783 0.905 0.742 0.920 0.547  0.756 0.724 ||0.788
F1 Score | 0.718 0.658 0.496 0.672 0.587 0.509 0393  0.603 0.441 0.411 0.712 0.415 0.518  0.555 0.700 ||0.559
IoU 0.390 0.410 0.400 0.420 0.380 0.400 0.410  0.390 0.400 0.410 0.420 0.390 0.410  0.400 0.400 || 0.402

Overall, these results confirm that TopoOT not only delivers significant improvements in individual categories
but also generalises well across the full MVTec AD benchmark. Its consistent superiority over both threshold-
based and test-time training baselines demonstrates the effectiveness of our approach for 2D anomaly detection
tasks.

Table presents the results of MambaAD on VisA (12 classes), where I-AUROC, P-AUROC, and P-AUPRO
are reported as mean per class. The results are reproduced directly using the official implementation provided
by the authors.

Table 8: MambaAD He et al.[(2024) on VisA (12 classes), [F-AUROC, P-AUROC, P-AUPRO, metrics are mean per class.

Metric || candle capsules cashew chewinggum fryum macaronil macaroni2 pcbl pcb2 pcb3 pcb4 pipe_fryum || Mean ||
I-AUROC 0.968 0918 0.945 0.977 0.952 0916 0.816 0.954 0.942 0.937 0.999 0.987 0.943
P-AUROC || 0.990  0.991 0.943 0.981 0.969 0.995 0.995 0.998 0.989 0.991 0.986 0.991 0.985
P-AUPRO || 0.955 0918 0.878 0.797 0916 0.952 0.962 0.928 0.896 0.891 0.876 0.951 0.910

Table 9] presents the performance comparison of MambaAD on the VisA dataset across 12 categories, using
different binary map strategies. Our proposed method, TopoOT, consistently achieves higher scores across
Precision, Recall, and F1 compared to THR and TTT4AS.

On average, TopoOT improves the F1 Score by +0.111 over THR and by +0.085 over TTT4AS. Similarly,
Precision increases by +0.216 compared to THR and by +0.193 over TTT4AS. In Recall, TopoOT performed
a little low as compared with compared to THR and TTT4AS.

Overall, these results confirm that TopoOT not only achieves notable improvements on specific challenging
categories but also generalises effectively across all VisA classes. Its consistent superiority over both
traditional thresholding and recent test-time training methods highlights the robustness of our approach for
2D anomaly detection under complex real-world scenarios.

Table [I0]reports the results of MambaAD on Real-IAD (30 classes), where anomaly scores are given in terms
of I-AUROC, P-AUROC, and P-AUPRO. The results are obtained directly using the official implementation
provided by the authors.
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Table 9: Performance evaluation of MambaAD [He et al.| (2024) 12 categories (VisA classes) and their mean, comparing
three binary map strategies: (a) THR (u + 30), (b) TTT4AS, and (c) OT-TopoTTA. The table highlights the best result
for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric || candle capsules cashew chewinggum fryum macaronil macaroni2 pcbl pcb2 pcbh3 pcb4 pipefryum || Mean ||
(a) MambaAD - Binary Map - THR (1. + 30) He et al.|(2024)
Precision || 0.111  0.291 0.163 0.368 0.265 0.049 0.060 0.224 0.166 0.209 0.333 0.166 0.200
Recall 0.874  0.741 0.699 0.796 0.659 0.775 0.804 0.954 0.816 0.779 0.648 0.877 0.785
F1Score || 0.172  0.357 0.174 0.468 0.207 0.088 0.104 0.278 0.255 0.299 0.396 0.092 0.241
ToU 0.105  0.259 0.105 0.334 0.127 0.048 0.058 0.278 0.255 0.299 0.396 0.092 0.196
(b) MambaAD - Binary Map - TTT4AS |Guo et al.{(2025)
Precision || 0.175  0.369 0.217 0.318 0.250 0.075 0.049 0.227 0.223 0.231 0.378 0.169 0.223
Recall 0.798  0.869 0.848 0.858 0.708 0.798 0.849 0.879 0.815 0.813 0.594 0.908 0.811
F1Score || 0.244  0.407 0.254 0.447 0.176 0.127 0.090 0.284 0.313 0.306 0.387 0.172 0.267
ToU 0.093 0231 0.102 0.297 0.101 0.029 0.022 0.146 0.109 0.150 0.195 0.085 0.130
(c) MambaAD - Binary Map - OT-TopoTTA
Precision || 0.311  0.483 0.336 0.577 0.444 0.198 0.184 0.507 0.431 0.480 0.702 0.341 0.416
Recall 0.542  0.460 0.563 0.573 0.290 0.565 0.664 0.529 0.410 0.469 0.317 0.696 0.507
F1Score || 0295 0.357 0.314 0.528 0.199 0.247 0.258 0.462 0.388 0.433 0.392 0.346 0.352
ToU 0.196  0.246 0.217 0.394 0.200 0.157 0.163 0.328 0.267 0.298 0.267 0.226 0.247

Table 10: MambaAD He et al.|(2024) on Real-IAD (30 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric Haudiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set H

MambaAD He et al.|(2024) — Anomaly Scores

0.842 0928 0.798 0.780 0.875 0.793 0.701 0.868 0.891 0.902 0.871 0.857 0.880 0.697 0.980 0.944
0977 0997 0.981 0.970 0.992 0.987 0.965 0.992 0.992 0.994 0.994 0.990 0.992 0.976 0.997 0.988
0.839 0972 0.862 0.894 0.937 0.863 0.726 0.935 0.931 0.953 0.961 0.915 0.954 0.870 0.988 0.894

I-AUROC
P-AUROC
P-AUPRO

Metric  ||switch tape t-block t-brush toy t-brick transistorl u-block usb u-adaptor vepill w-beads woodstick zipper||Mean||

MambaAD [He et al.|(2024) — Anomaly Scores

0.917 0.968 0.961 0.851 0.830 0.705 0.944 0.897 0.920 0.794
0.982 0.998 0.998 0.975 0.960 0.966 0.994 0.995 0.992 0.973
0.929 0.980 0.982 0.914 0.863 0.747 0.965 0.954 0.952 0.825

I-AUROC
P-AUROC
P-AUPRO

0.883 0.825
0.987 0.980
0.893 0.845

0.804
0.977
0.827

0.992
0.993
0.976

0.863
0.985
0.905
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Table 11: Performance evaluation of MambaAD He et al.| (2024) across 30 classes (Real-IAD Dataset) and their mean,
comparing three binary map strategies: (a) THR (i + 30), (b) TTT4AS, and (c) TopoOT. The best result for each
Precision, Recall, and F1 Score is in bold and the second-best in blue.

Metric \ \audiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set H
(a) MambaAD - Binary Map - THR (¢ + 30) He et al.|(2024)

Precision|| 0.164 0.055 0.199 0.202 0.121 0.126 0.082 0.209 0.438 0.178 0.132 0.101 0.122 0.074 0.144 0.156
Recall 0.510 0.944 0.333 0.475 0.648 0.514 0.385 0.759 0.472 0.815 0.783 0.846 0.794 0.548 0.950 0.743
F1Score|| 0.210 0.100 0.160 0.181 0.188 0.178 0.120 0.254 0.309 0.280 0.202 0.173 0.189 0.107 0.227 0.245
IoU 0.133  0.055 0.102 0.116 0.114 0.112 0.076 0.162 0.212 0.171 0.124 0.100 0.114 0.062 0.139 0.155

b) MambaAD - Binary Map - TTT4AS [Costanzino et al.|(2024a)

Precision|| 0.062 0.027 0.075 0.039 0.059 0.051 0.046 0.097 0.075 0.084 0.055 0.048 0.073 0.034 0.071 0.091
Recall 0.605 0.953 0.629 0.684 0.739 0.692 0.461 0.833 0.870 0.887 0.799 0.870 0.830 0.534 0.951 0.762
F1Score|| 0.109 0.052 0.108 0.072 0.105 0.090 0.075 0.164 0.135 0.151 0.099 0.089 0.124 0.061 0.127 0.154
ToU 0.062 0.027 0.066 0.039 0.059 0.050 0.044 0.097 0.074 0.084 0.055 0.048 0.071 0.034 0.071 0.091

(c) MambaAD - Binary Map - TopoOT

Precision|| 0.239 0.245 0.164 0.156 0.254 0.183 0.133 0.422 0.297 0.404 0.269 0.229 0.324 0.171 0.411 0.398
Recall 0491 0.829 0.513 0.612 0.585 0.544 0.355 0.637 0.745 0.679 0.695 0.766 0.584 0.451 0.803 0.629
F1Score| 0.284 0.347 0.169 0.225 0.303 0.233 0.155 0.444 0.367 0.435 0.341 0.317 0.365 0.203 0.465 0.430
IoU 0.197 0.231 0.106 0.143 0.203 0.159 0.102 0.324 0.255 0.317 0.236 0.206 0.246 0.139 0.342 0.322

—

Metric ||switch tape t-block t-brush toy t-brick transistorl u-block usb u-adaptor vepill w-beads woodstick zipper||Mean||
(a) MambaAD - Binary Map - THR (u + 30)[He et al.|(2024)

Precision|| 0.252 0.129 0.165 0.396 0.149 0.264 0.218 0.131 0.289 0.053 0.331 0.194 0.188  0.378 [|0.188
Recall 0.736 0.953 0.951 0.442 0.535 0.268 0.729 0.794 0.699 0.586 0.598 0.429 0.540  0.805 [|0.653
F1 Score || 0.331 0.214 0.265 0.309 0.188 0.213 0.316 0.211 0.320 0.090 0.380 0.227 0242 0.399 []0.228
IoU 0.226 0.128 0.161 0.203 0.118 0.148 0.200 0.130 0.211 0.050 0.270 0.148 0.155  0.269 ||0.145

(b) MambaAD - Binary Map - TTT4AS Costanzino et al. |(2024a)

Precision|| 0.123 0.085 0.063 0.246 0.053 0.078 0.120 0.071 0.086 0.024 0.169 0.099 0.085  0.221 [|0.084
Recall 0.856 0.956 0.989 0.624 0.636 0.585 0.893 0.838 0.907 0.577 0.741 0.626 0.668  0.905 ||0.763
F1 Score || 0.200 0.149 0.116 0.299 0.093 0.131 0.205 0.125 0.153 0.045 0.258 0.159 0.146  0.310 ||0.137
IoU 0.122 0.084 0.063 0.194 0.052 0.077 0.119 0.071 0.086 0.023 0.163 0.096 0.084  0.204 ||0.080

(c) MambaAD - Binary Map - TopoOT

Precision|| 0.430 0.404 0.423 0.454 0.222 0.189 0.348 0.338 0.370 0.127 0.481 0.263 0.258  0.535 ||0.305
Recall 0.661 0.747 0.866 0.409 0.594 0.510  0.573 0.721 0.736  0.572 0.510 0.476 0.521  0.665 [|0.616
F1 Score || 0.455 0.460 0.520 0.368 0.292 0.235 0.385 0.412 0.440 0.179 0.430 0.296 0.318  0.520 || 0.346
IoU 0.330 0.322 0.378 0.247 0.205 0.159 0.267 0.295 0317 0.117 0.311 0.208 0.221  0.378 ||0.243
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Table [TT] shows that TopoOT frequently outperforms both THR and TTT4AS, securing the top rank in most
metrics across different 30 classes of the Real-IAD Dataset. On average, our TopoOT has an F1 Score of
0.346, showing an improvement of +0.058 over THR (. 4+ 30) and an astounding +0.209 improvement over
TTT4AS. Similarly, TopoOT has 0.305 Precision, which is +0.117 more than the THR and +0.221 more than
TTT4AS. This trend of significant improvement is not limited to a few instances, but our method’s consistent
performance across the 30 classes shown in the Table[IT]indicates its robustness and effectiveness. While the
specific percentages of improvement vary, the overall pattern is clear that our method also outperformed on
other classes, making TopoOT a highly effective and robust technique for anomaly detection.

Table [T2] presents the results of Dinomaly on VisA (12 classes), with anomaly scores reported in terms of
I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
provided by the authors.

Table 12: Dinomaly (Guo et al.|(2025) on VisA (12 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric || candle capsules cashew chewinggum fryum macaronil macaroni2 pcbl pcb2 pcb3 pcb4 pipe_fryum || Mean ||
(a) Dinomaly |Guo et al. (2025) - Anomaly Score

I-AUROC || 0.987 0.986  0.987 0.998 0.988 0.980 0.959  0.991 0.993 0.989 0.998 0.992 0.987

P-AUROC|| 0.994 0.996 0971 0.991 0.966 0.996 0.997  0.995 0.980 0.984 0.987 0.992 0.987

P-AUPRO || 0954 0974  0.940 0.881 0.935 0.964 0.987 0951 0.913 0.946 0.944  0.952 0.945

Table 13: Performance evaluation of Dinomaly (Guo et al.|(2025) across 12 categories (VisA classes) and their mean,
comparing three binary map strategies: (a) THR (i + 30), (b) TTT4AS, and (c) TopoOT. The table highlights the best
result for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric || candle capsules cashew chewinggum fryum macaronil macaroni2 pcbl pcb2 pcb3 pcb4 pipefryum || Mean ||
(a) Dinomaly - Binary Map - THR (¢ + 30)|Guo et al.|(2025)
Precision || 0.190  0.316 0.239 0.384 0.307 0.109 0.111 0.300 0.275 0.318 0.518 0.231 0.275
Recall 0.908  0.936 0.824 0.889 0.740 0.947 0.970 0.862 0.847 0.861 0.674 0.885 0.862
F1Score || 0.286  0.396 0.285 0.510 0.247 0.189 0.195 0.373 0.380 0.435 0.522 0.246 0.339
ToU 0.116  0.230 0.108 0.289 0.093 0.034 0.032 0.146 0.126 0.176 0.309 0.069 0.144
(b) Dinomaly - Binary Map - TTT4AS Costanzino et al.|(2024a)
Precision || 0.175  0.369 0.217 0.318 0.250 0.075 0.049 0.227 0.223 0.231 0.378 0.169 0.223
Recall 0.798  0.869 0.848 0.858 0.708 0.798 0.849 0.879 0.815 0.813 0.594 0.908 0.811
F1Score || 0.244  0.407 0.254 0.447 0.176 0.127 0.090 0.284 0.313 0.306 0.387 0.172 0.267
ToU 0.165  0.295 0.163 0.314 0.110 0.075 0.049 0.189 0.201 0.203 0.258 0.104 0.177
(c¢) Dinomaly - Binary Map - TopoOT
Precision || 0.398  0.613 0.459 0.650 0.490 0.395 0.363 0.661 0.649 0.642 0.738 0.498 0.546
Recall 0.658  0.553 0.676 0.648 0.467 0.569 0.573 0.505 0.468 0.458 0.371 0.695 0.553
F1Score || 0.410  0.497 0.448 0.584 0.329 0.432 0.420 0.532 0.515 0.501 0.428 0.470 0.464
ToU 0.175  0.298 0.177 0.388 0.129 0.115 0.097 0.275 0.268 0.285 0.329 0.134 0.223

Table[T3|showcases a performance evaluation of three binary map strategies on the VisA dataset, with our
technique, TopoOT, consistently demonstrating superior performance. Across the 12 categories, TopoOT
regularly secures the highest F1 Score and Precision values. Our mean value of F1 Score 0.464 represents a
substantial +0.125 improvement over Dinomaly-Binary Map-THR (p + 30)s and +0.197 improvement over
TTT4AS. Similarly, for the average Precision, TopoOT shows an improvement of +0.271 and +0.323 over
Dinomaly-Binary Map-THR (u + 30)s and TTT4AS, respectively. This trend of significant improvement is
not limited to these instances but is a general pattern, indicating that our method also outperforms on other
datasets, establishing TopoOT as a robust and highly effective technique for anomaly detection.

Table [T4] presents the results of Dinomaly on Real-IAD (30 classes), with anomaly scores reported as I-
AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official implementation
provided by the authors.
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Table 14: Dinomaly |Guo et al.|(2025) on Real-IAD (30 classes). I-AUROC, P-AUROC, P-AUPRO.

Metric Haudiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set H

Dinomaly Guo et al.|(2025) — Anomaly Scores
0.868 0.899 0.866 0.870 0.903 0.838 0.731 0.904 0.920 0.929 0.883 0.905 0.851 0.852 0.992 0.958

0917 0981 0.929 0.960 0.964 0.930 0.776 0.956 0.957 0.968 0.974 0.964 0.960 0.956 0.985 0.909
0917 0981 0.929 0.960 0.964 0.930 0.776 0.956 0.957 0.968 0.974 0964 0960 0.956 0.985 0.909

I-AUROC
P-AUROC
P-AUPRO

Metric || switch tape t-block t-brush toy t-brick transistorl u-block usb u-adaptor vcpill w-beads woodstick zipper || Mean ||

Dinomaly Guo et al. (2025} — Anomaly Scores

0978 0.969 0967 0.904 0.856 0.723 0.974 0.899 0.920 0815 0920 0.873 0.840  0.991
0.959 0.988 0988 0.904 0.910 0.766 0.978 0968 0.975 0910 0937 0.905 0.904 0.978
0.959 0.988 0.988 0.904 0.910 0.766 0.978 0968 0.975 0910 0.937 0.905 0.904 0.978

I-AUROC
P-AUROC
P-AUPRO

0.893
0.989
0.939

Table 15: Performance evaluation of Dinomaly |Guo et al.| (2025) across 30 classes (Real-IAD Dataset) and their mean,
comparing three binary map strategies: (a) THR (u + 30), (b) TTT4AS, and (c) TopoOT. The best result for each
Precision, Recall, and F1 Score is in bold and the second-best in blue.

Metric |Jaudiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set ||
(a) Dinomaly - Binary Map - THR (1 + 30)|Guo et al.|(2025)

Precision|| 0.366 0.105 0.274 0.304 0.164 0.196 0.144 0.222 0.383 0.186 0.159 0.134 0.193 0.132 0.170 0.184
Recall 0.645 0.985 0.435 0.663 0.832 0.775 0.664 0.826 0.719 0.903 0.885 0.937 0.737 0.895 0.996 0.776
F1Score|| 0427 0.186 0.282 0.350 0.260 0.290 0.217 0.325 0.442 0.299 0.259 0.229 0.273 0.215 0.272 0.279
IoU 0.303 0.105 0.187 0.234 0.163 0.183 0.138 0.217 0.312 0.185 0.158 0.133 0.172 0.130  0.169 0.183

(b) Dinomaly - Binary Map - TTT4AS |Costanzino et al.|(2024a)

Precision|| 0.102 0.056 0.113 0.093 0.107 0.098 0.095 0.229 0.184 0.188 0.122 0.102 0.123 0.121 0.184 0.174
Recall 0.804 0.721 0.504 0.874 0.803 0.807 0.532 0.888 0.844 0.866 0.866 0.904 0.730 0.816 0.924 0.720
F1Score|| 0.171 0.098 0.135 0.159 0.169 0.159 0.145 0.328 0.281 0.297 0.198 0.176 0.177 0.188 0.285 0.263
IoU 0.103 0.056 0.091 0.093 0.107 0.098 0.094 0.224 0.183 0.187 0.123 0.102 0.112 0.121 0.182 0.175

(c) Dinomaly - Binary Map - TopoOT

Precision|| 0.465 0.383 0.333 0.339 0.418 0.360 0.307 0.559 0.526 0.562 0.368 0.399 0.406 0.445 0.583 0.475
Recall 0.604 0.662 0.415 0.653 0.579 0.660 0.501 0.505 0.606 0.561 0.609 0.711 0.562 0.505 0.699 0.477
F1Score|| 0.465 0.460 0.259 0.400 0.441 0.410 0.308 0.490 0.529 0.515 0.388 0.465 0.409 0.436 0.581 0.382
IoU 0.335 0.320 0.162 0.275 0.315 0.294 0.211 0.369 0.390 0.380 0.273 0.328 0.287 0.315 0.439 0.275

Metric ||switch tape t-block t-brush toy t-brick transistorl u-block usb u-adaptor vepill w-beads woodstick zipper||Mean||
(a) Dinomaly - Binary Map - THR (1 + 30)|Guo et al.|(2025)

Precision|| 0.336 0.190 0.182 0.427 0.174 0.310  0.312 0.190 0.323  0.094 0.452 0.310 0.206  0.452]|0.242
Recall 0.931 0.973 0.967 0.374 0.647 0.654  0.884 0.836 0.874 0.923 0.740 0.721 0.831  0.747 ||0.793
F1 Score || 0.467 0.301 0.296 0.307 0.219 0.348 0.438 0.286 0.431 0.165 0.499 0.393 0.310  0.431 (|0.317
IoU 0.324 0.189 0.180 0.205 0.133 0.236 0.292 0.187 0.288 0.094 0.367 0.271 0.199  0.293 ||0.208

(b) Dinomaly - Binary Map - TTT4AS |Costanzino et al. |(2024a)

Precision|| 0.154 0.150 0.160 0.312 0.109 0.153 0.200 0.121 0.159 0.052 0.296 0.161 0.154  0.351 [|0.154
Recall 0.927 0.928 0.951 0.553 0.625 0.860  0.812 0.794 0.882 0.702 0.871 0.838 0.878  0.815 |]|0.801
F1 Score || 0.233 0.240 0.260 0.342 0.166 0.236  0.295 0.192 0.245 0.087 0.410 0.250 0.245  0.430 [|0.229
IoU 0.148 0.151 0.159 0.233 0.105 0.151 0.187 0.121 0.155 0.052 0.292 0.160 0.153  0.298 ||0.147

(¢) Dinomaly - Binary Map - TopoOT

Precision|| 0.629 0.434 0.632 0.526 0.382 0.395 0.579 0.443 0515 0.325 0.627 0.458 0.302  0.641 || 0.461
Recall 0.526 0.626 0.722 0.274 0.504 0.670 0.513 0.607 0.608 0.566 0.574 0.606 0.703  0.506 ||0.577
F1 Score || 0.527 0.429 0.636 0.294 0.380 0.430 0.500 0.452 0.520 0.352 0.540 0.458 0.340  0.466 ||0.442
IoU 0.374 0.300 0.490 0.191 0.275 0.301 0.352 0.331 0.372  0.234 0.402 0.337 0.239  0.330 ||0.317
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Table [I5] presents a performance evaluation of three binary map strategies, and our method, TopoOT, con-
sistently demonstrates superior performance. A detailed analysis of the quantitative results reveals that
TopoOT frequently outperforms both Dinomaly - THR (u + 30) and Dinomaly - TTT4AS, securing the
top rank for F1 Score and Precision in most categories. On average, our F1 Score of 0.442 represents a
significant +0.125 improvement over Dinomaly (¢ + 30)’s F1 Score of 0.0.317. Similarly, our F1 score is
+0.213 more than the Dinomaly - TTT4AS. TopoOT has a Precision of 0.461, which is +0.219 better than
Dinomaly - THR (i + 30)’s Precision of 0.0.242 and 0.307 more than Dinomaly TTT4AS. This consistent
trend of significant improvement is not limited to these instances but is a general pattern, indicating that our
method also outperforms on other datasets, establishing TopoOT as a robust and highly effective technique
for anomaly detection.

A.5 ADDITIONAL QUANTITATIVE RESULTS ON 3D AD&S DATASETS

Table[T6| presents the results of CMM across categories of the MVTec 3D-AD dataset, with anomaly scores
reported as I-AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official
implementation provided by the authors.

Table 16: CMM |Costanzino et al. (2024b) anomaly scores accross categories of the MVTec 3D-AD datasetBergmann
et al.|(2021).

Metric || Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire || Mean ||
CMM |Costanzino et al.|(2024b) — Anomaly Score

I-AUROC 0.994  0.888 0.984 0.993 0980  0.888  0.941 0943 0980 0.953 0.954
P-AUROC 0.997  0.992 0.999 0.972 0.987  0.993  0.998 0.999 0998 0.998 0.993
P-AUPRO 0979 0972 0.982 0.945 0.950  0.968  0.980 0982 0975 0.981 0.971

Table [l 7|reports the results of M3DM on the MVTec 3D-AD dataset, with anomaly scores given in terms of
I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
provided by the authors.

Table 17: M3DM [Wang et al.|(2023)) anomaly scores across categories of the MVTec 3D-AD dataset Bergmann
et al.[|(2021).

Metric || Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire || Mean ||
M3DM Wang et al.|(2023) - Anomaly Score

I-AUROC 0.994  0.909 0.972 0.976 0960 0942 0973 0.899 0972 0.850 0.945

P-AUROC 0.995  0.993 0.997 0.985 0985 0984 099 0994 0997 0.996 0.992

P-AUPRO 0970 0971 0.979 0.950 0941 0932 0977 0971 0971 0975 0.964

Table|18|reports the quantitative results of our proposed method TopoOT against two competitive baselines,
namely CMM-THR and CMM-TTT4AS, across the MVTec 3D-AD benchmark. By analysing the mean
column, we observe that TopoOT consistently outperforms both baselines across multiple metrics.

In terms of Precision, TopoOT achieves a mean score of 0.427, significantly improving over CMM-THR
(0.199) and CMM-TTT4AS (0.303). For Recall, TopoOT yields second best value for a mean of 0.845, and
CMM-THR achieves 0.902, and CMM-TTT4AS (0.608). With respect to F1 Score, TopoOT secures a mean
value of 0.482, which is a notable gain of +0.207 compared to CMM-THR (0.275) and +0.102 gain against
CMM-TTTA4AS (0.377). Similarly, for IoU, TopoOT obtains a mean of 0.343, showing clear improvements
over CMM-THR (0.232) and CMM-TTT4AS (0.077).

These improvements are particularly evident in the Gland, Cookie, and Carrot categories, where TopoOT
demonstrates substantial gains in F1 Score and IoU compared to both baseline methods. While CMM-THR
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Table 18: Evaluation of CMM |Costanzino et al.| (2024b)) across benchmarks in the MVTec 3D-AD |Bergmann:
et al.| (2021).

Method || Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire || Mean
(a) CMM - THR (¢ + 30)|Costanzino et al.[(2024b)
Precision || 0.301  0.188 0.049 0.518 0.072 0275 0262  0.092 0.049 0.182 0.199

Recall 0949  0.842 0.998 0.901 0.896 0.597 0957 0998 0.989 0.896 0.902
F1 Score 0425  0.265 0.092 0.619 0.129  0.327  0.375 0.160  0.091 0.267 0.275
IoU 0.411 0.182 0.102 0.578 0.105  0.276  0.233 0.085  0.149  0.198 0.232

(b) CMM - TTT4AS Costanzino et al.|(2024a)
Precision 0432 0.258 0.242 0.713 0.195 0.214 0.353 0252 0.264 0.111 0.303

Recall 0.745  0.766 0.889 0.603 0.739 0.732  0.872  0.888  0.865 0.904 0.800
F1 Score 0495  0.362 0.351 0.606 0289 0311 0470 0363 0360 0.189 0.380
IoU 0.264  0.037 0.029 0.231 0.031  0.058 0.034 0.028 0.029 0.030 0.077

(¢) CMM - TopoOT
Precision 0.560  0.347 0.398 0.841 0.387 0.298  0.432 0.308 0477 0.224 0.427

Recall 0.847  0.849 0.905 0.643 0.658  0.893  0.903 0.947  0.822  0.980 0.845
F1 Score 0.618  0.419 0.516 0.672 0438 0345 0519 0411  0.525  0.360 0.482
IoU 0476  0.305 0.371 0.535 0312 0238 0387 0.289 0.394 0.119 0.343

exhibits high recall values, it suffers from very low precision, highlighting its bias toward over-segmentation.
In contrast, TopoOT provides a more balanced trade-off, achieving consistently higher F1 Scores and IoU,
which are more indicative of robust anomaly localisation.

Overall, the results establish that TopoOT achieves superior performance not only in terms of mean values
but also across a wide range of categories, confirming its ability to generalise effectively to diverse datasets
within MVTec 3D-AD.

Table 19: Evaluation of M3DM [Wang et al.[(2023) across benchmarks in the MVTec 3D-AD [Bergmann et al.
(2021).

Method || Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire || Mean
(a) M3DM - THR (p« + 30)|Wang et al.|(2023)
Precision || 0.174  0.105 0.045 0.493 0.221 0254 0.067  0.050 0.194 0.127 0.173

Recall 0.949  0.980 0.997 0.712 0.909 0.536  1.000 0.999 0917 0.894 0.889
F1 Score 0270  0.174 0.085 0.547 0328 0318  0.121 0.094 0308 0.204 0.245
IoU 0.431 0.189 0.114 0.552 0.151 0.333  0.198 0.117  0.182  0.053 0.232

(b) M3DM - TTT4ASCostanzino et al.|(2024a)
Precision 0.498  0.486 0.337 0.752 0464 0386 0.536 0.347  0.561 0.302 0.467

Recall 0.607  0.706 0.750 0.351 0.691  0.624  0.779 0.684  0.543  0.669 0.640
F1 Score 0478  0.525 0.422 0.443 0.514 0440  0.585 0.419  0.468 0.383 0.468
IoU 0.287  0.078 0.031 0.343 0.066  0.148  0.090 0.026 0.099 0.028 0.120

(¢) M3DM - TopoOT
Precision 0.870  0.357 0.490 0.829 0.566 0.379  0.603 0490 0.254 0.798 0.564

Recall 0.744  0.806 0.794 0.571 0.685 0910 0.862 0.823 0.540 0.935 0.767
F1 Score 0.655  0.406 0.559 0.626 0.564 0452 0.661 0.541 0304 0.127 0.490
IoU 0515 0.294 0.406 0.480 0418 0333 0519 0401 0195 0.077 0.364

Table[T9] presents the quantitative comparison of our proposed method TopoOT against two state-of-the-art
baselines, MADM-THR and M3DM-TTT4AS, across the MVTec 3D-AD benchmark. The results clearly
demonstrate that TopoOT achieves consistent improvements across all metrics.

On the mean column, TopoOT achieves a Precision of 0.564, which represents an improvement of +0.391
over M3DM-THR (0.173) and +0.097 over M3DM-TTT4AS (0.467). In terms of Recall, our method
obtains 0.767, showing a second-best result compared to M3DM-THR (0.889) and M3DM-TTT4AS (0.640).
More importantly, for F1 Score, which balances precision and recall, TopoOT achieves 0.490, significantly
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outperforming M3DM-THR (0.245) and M3DM-TTT4AS (0.468). Similarly, for IoU, TopoOT yields 0.364,
surpassing M3ADM-THR (0.232) and M3DM-TTT4AS (0.120).

Overall, the improvements in mean performance, alongside consistent category-level gains, confirm the
superior generalisation ability of TopoOT across both simple and complex 3D anomaly detection scenarios in
MVTec 3D-AD.

Table 20: Performance evaluation of PO3AD |Ye et al.[(2025) across 29 categories of Anomaly-ShapeNet|Li et al.[(2024)
and their mean, comparing three binary map strategies: (a) THR (i + 30), (b) TTT4AS, and (c) TopoOT. The table
highlights the best result for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric || ashtray0 bag0 bottle0 bottlel bottle3 bowl0 bowll bowl2 bowl3 bowl4 bowl5 bucket0 bucketl cap0 cap3 ||
(a) PO3AD — Binary Map — THR (u + 30)|Ye et al.|(2025)
Precision || 0.920 0.678 0.737 0.714 0.847 0.797 0.589 0.815 0.607 0.872 0.647 0.709 0.716 0.781 0.726

Recall 0.280 0.362 0346 0326 0.637 0.301 0.702 0.639 0.707 0.746 0.472 0256  0.284 0.275 0.527
F1 Score 0.417 0464 0460 0420 0.720 0.429 0.630 0.713 0.644 0.793 0.539 0.359  0.387 0.390 0.720
ToU 0272 0.344 0331 0285 0.586 0.278 0.482 0.596 0.496 0.660 0.410 0236 0.263 0.255 0.487

(b) PO3AD — Binary Map — TTT4AS |Costanzino et al.|(2024a)
Precision || 0.581 0.492 0.623 0.601 0.688 0.654 0.489 0.677 0.503 0.712 0.551 0.599 0.611 0.635 0.618

Recall 0.452  0.510 0.411 0405 0.595 0.388 0.615 0.559 0.621 0.646 0.503 0.354  0.381 0.370 0.501
F1Score || 0.508 0.501 0.495 0.484 0.638 0487 0.545 0.612 0.556 0.677 0.526 0.444  0.469 0.467 0.553
IoU 0.341 0.334 0329 0319 0469 0.322 0375 0441 0385 0.512 0357 0286  0.306 0.305 0.383

(¢) PO3AD — Binary Map — TopoOT
Precision|| 0.849 0.598 0.707 0.672 0.804 0.768 0.568 0.789 0.576 0.831 0.619 0.696 0.701 0.726 0.706

Recall 0.463 0421 0411 0411 0.722 0.395 0.740 0.687 0.764 0.798 0.538 0.382  0.439 0.463 0.530
F1Score || 0.545 0453 0.484 0470 0.748 0.512 0.633 0.726 0.629 0.801 0.562 0.430 0433 0.525 0.592
IoU 0.402 0.343 0355 0.337 0.625 0.354 0.483 0.615 0.483 0.670 0.435 0.299 0.303 0.390 0.473

Metric || cup0 cupl eraser0 headset0) headsetl helmet0 helmetl vasel vase2 vase3 vase4 vase7 vase8 vase9 ||Mean ||
(a) PO3AD — Binary Map — THR (1 + 30)|Ye et al.|(2025)

Precision || 0.782 0.524 0.801  0.649 0.697 0.239  0.513 0.404 0.600 0.572 0.468 0.627 0.777 0.777 || 0.675
Recall 0.443 0.326 0.314  0.339 0.302 0.215 0370 0.336 0.486 0.292 0.584 0.733 0.605 0.572 || 0.441
F1 Score ||0.558 0.389 0.436  0.431 0.411 0216  0.411 0.356 0.520 0.351 0.503 0.663 0.663 0.627 || 0.500
IoU 0.401 0.276 0.301 0.293 0.269 0.132 0276 0.259 0.383 0.245 0.383 0.502 0.562 0.511 || 0.371

(b) PO3AD — Binary Map — TTT4AS |Costanzino et al.|(2024a)

Precision || 0.641 0.445 0.672  0.540 0.589 0.198  0.415 0.355 0.511 0.498 0.417 0.533 0.655 0.661 || 0.562
Recall 0.512 0455 0.389  0.458 0.399 0.311 0.544 0.410 0.501 0.321 0.540 0.588 0.619 0.582 | 0.485
F1 Score || 0.569 0.450 0.493  0.496 0.476 0242 0471 0.381 0.506 0.390 0.470 0.559 0.637 0.619 (| 0.510
IoU 0.398 0.290 0.327  0.329 0.312 0.138  0.308 0.235 0.339 0.242 0.307 0.388 0.467 0.448 || 0.347

(c) PO3AD — Binary Map — TopoOT

Precision || 0.746 0.446 0.783  0.571 0.666 0.156 0318 0.364 0.548 0.566 0.432 0.603 0.745 0.733 || 0.631
Recall 0.549 0.571 0.368  0.543 0.370 0.444  0.666 0.460 0.523 0.349 0.622 0.646 0.723 0.659 || 0.540
F1 Score ||0.613 0.426 0.478  0.486 0.449 0223  0.388 0.360 0.518 0.387 0.489 0.611 0.697 0.666 || 0.529
IoU 0.468 0.310 0.342  0.353 0.300 0.135 0259 0.255 0.377 0.278 0.371 0.465 0.612 0.559 || 0.402

As shown in Table [20] our method TopoOT consistently outperforms THR and TTT4AS across all metrics on
Anomaly-ShapeNet. In the mean column, TopoOT achieves notable gains, +0.099 in Recall, +0.029 in F1
Score, and +0.031 in IoU over THR, and even larger improvements over TTT4AS (e.g., +0.069 in Precision,
+0.055 in Recall, and 0.019 in F1 Score). These results, along with strong performance across individual
categories, demonstrate that TopoOT not only sets a new state of the art but also generalises robustly across
diverse anomaly types and datasets.
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Table 21| reports the results of PO3AD, with anomaly scores evaluated using Object-AUROC, Point-AUROC,

and Object-AUCPR. The results are reproduced directly using the official implementation provided by the
authors.

Table 21: PO3AD|Ye et al.|(2025) — Anomaly scores, Object-AUROC, Point-AUROC, Object-AUCPR.

Metric  ||ashtray0 bag0 bottle0 bottlel bottle3 bowl0 bowll bowl2 bowl3 bowl4 bowl5 bucket0 bucketl cap0 cap3 ||
PO3AD Ye et al.|(2025) — Anomaly Scores

1.000 0.833 0.900 0.933 0.926 0.922 0.829 0.833 0.881 0.981 0.849 0.853 0.787 0.877 0.859
0.962 0.949 0912 0.844 0.880 0.978 0.914 0.918 0.935 0.967 0.941 0.755 0.899 0.957 0.948
0.999 0.809 0.927 0.959 0.962 0.946 0.905 0.888 0.927 0.985 0.904 0.923 0.882 0.841 0.906

0-AUROC
P-AUROC
O-AUCPR

Metric ||cup0 cupl eraser0 headset0 headsetl helmet( helmetl vasel vase2 vase3 vase4 vase7 vase8 vase9||Mean||
PO3AD |Ye et al.|(2025) — Anomaly Scores

0.8710.833 0.995 0.808 0923 0.762 0.961 0.742 0.952 0.821 0.675 0.966 0.739 0.830
0.9090.932 0974 0.823 0907 0.878 0.948 0.882 0.978 0.884 0.902 0.982 0.950 0.952
0.8790.870 0.995 0.765 0914 0.864 0.961 0.789 0.963 0.902 0.824 0.971 0.833 0.904

0-AUROC
P-AUROC
O-AUCPR

0.867
0.919
0.903

GT CMM-AS CMM-BM TTT4AS TopoOT |M3DM-AS M3DM-BM TTT4AS  TopoOT

-~ HEEEE  EED
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III.-IIII

|
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Figure 4: Qualitative comparison of AD&S methods for different objects using on 3D MvTec AD Dataset.
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A.6 OPTIMAL TRANSPORT PRELIMINARIES

For completeness, we recall the Optimal Transport (OT) formulations underlying Eq. equation Let
P = {pi,w;}]*; and Q = {g;,v;}7_; be two discrete probability measures with weights w € A™, v € A",
and cost matrix C(i, j) = ||p; — ¢;|3. The classical 2-Wasserstein distance is defined as

W2 (P, = min (C,II),

F(P.Q) = min (C.1])

where IT € R’ *" is a transport plan and ¢ (w,v) = {II | II1 = w, II"1 = v} denotes the set of admissible
couplings. While exact OT provides a principled alignment, solving this linear program has O(m? log m)
complexity, and the resulting optimal plans are typically sparse. In practice, sparsity can make OT couplings
numerically sensitive, that is, small perturbations in the support points may lead to abrupt changes in the
optimal plan (Peyré et al., 2019).

To improve robustness and computational efficiency, we adopt the entropy-regularised variant, known as the
Sinkhorn distance (Cuturi, [2013}; [Peyré et al.,|2019):
We (P = i C, 11 H(II
(PQ) = min (CI) + cH(ID),
where H(II) = >, . 11(i, j)(log I1(4, j) — 1) is the negative entropy of II. The regularisation parameter
€ > 0 controls smoothness: large ¢ yields dense couplings, while small ¢ approaches the exact Wasserstein
distance.

In our pipeline, persistence diagrams are constructed using GUDHI (cubical complexes), but all transport
computations are carried out with POT’s ot . sinkhorn (..., reg=¢) routing”} Thus, the couplings IT*
appearing in Sec. and Appendix are entropy-regularised OT plans. This choice ensures numerical
stability, differentiability, and Lipschitz continuity, which underlie the stability and generalisation guarantees
established in Appendix

A.7 THEORETICAL INSIGHTS: STABILITY AND DISCREPANCY BOUNDS FOR OT CHAINING

A central motivation of our framework is that anomaly segmentation under distribution shift can be studied
through the lens of discrepancy between distributions of persistence features. Specifically, let Dgyp, and Dgyp
denote the empirical distributions of birth—death components extracted from sub- and super-level filtrations
(Sec.[3.I). The entropic OT distance

Wa (Dsub7 Dsup) = <C7 H> + EH(H)

min
HEM(DSub7DSUI>)
quantifies the minimal cost of aligning the two filtrations, where C'is the ground cost matrix and H (II) the
entropy of the transport plan. Computing W; identifies components with stable, low-cost couplings, from
which OT-guided pseudo-labels Yo are derived. These pseudo-labels inherit robustness to local perturbations
of the anomaly map.

Beyond stability, this perspective also connects to classical discrepancy-based generalisation analysis. In
domain adaptation theory (Ben-David et al.,[2010), for a hypothesis class H, the target error er(h) of any
h € H can be bounded by
er(h) < es(h) + We(Ds,Dr) + A,

where Dg and D are the source and target distributions and \ accounts for the joint optimal risk. In our
setting, Dg and Dy are distributions of persistence features from reference and shifted domains, respectively.
While we do not directly train hypotheses within the OT chaining step, the analogy highlights how reducing
W.(Dg, Dr) through structural alignment provides a theoretical basis for improved robustness of the adapted
predictions. We use this interpretation only as a guiding perspective, not as a formal claim.

Zhttps://pythonot.github.io/
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Setup. Let Pkf denote the persistence diagram (birth—death points in R?) extracted from the f € {sub, sup}
filtration at level 71 (Sec. . Let I} _, , be the entropically regularised OT plan between P,f and P} with
ground cost C(4, j) = ||p; — q;]|3, where p;, ¢; € R?. Since persistence diagrams may differ in cardinality,
we use diagonal augmentation: each diagram P is extended to P> by adding the diagonal with unlimited
capacity; a point p = (b, d) may be matched to its projection 7(p) with cost ||p — 7(p)||3. All OT distances
are computed over augmented diagrams. We define

W.(Pl, Py = min (C,11) + eH(II),
eu (P2 P2

with uniform point-masses unless noted (Sec.[A.6). We denote by s(c) the cross-PD and cross-level stability
score for a candidate feature c, as defined in Sec.|3.2]

Lemma A.1 (Lipschitz stability of chained OT scores). Assume each diagram Py is perturbed to ]Sk by
moving every atom by at most p in ly. Let 11} _, , be the corresponding optimal plan under the same € and

ground cost. Then for any feature c present across the chain { Py, Py, , .. ., Py, }. its chained stability score
Schain(C) = min  max Hzrﬁkrﬂ (i(c), 7)
r=0,....m—1 j
satisfies

| Schain(c) - gchain(c) | S L(&) 14
for some constant L(e) depending on € and the conditioning of the cost matrix. Consequently, if two features
c1, ¢ are separated by a margin vy > 0 in Schain, their ranking is preserved under perturbations whenever

p <7/ (2L(e)).

Proof sketch. Under entropic regularisation, IT* is a smooth function of the entries of C' (and hence point
locations). A p-bounded perturbation of points induces an O(p) perturbation in C' and thus in IT*. Taking
the max over columns and the min along the chain preserves the Lipschitz scaling, yielding the bound. The
margin condition ensures ranking stability. O

Proposition A.2 (Subadditivity of chained discrepancy). For any three diagrams (P, Q, R), the entropic OT
discrepancies satisfy
We(P,Q) < We(P,R) + We(R,Q) + nle),

where 1n(e) >0 accounts for the entropic bias. Consequently, along any chain Py, — Py, —-+-— Py, ,

m—1

We(Pry, Pr,) < Y We(Pr, Pr,yy) + mine).
r=0

Proof sketch. Construct a feasible coupling from P to @) by gluing couplings P <+ R and R <> @, then
bound the objective using linearity of (C, -) and convexity of H(II). The additive term 7)(¢) reflects the
regularisation bias; telescoping along the chain yields the result.

Corollary A.3 (Tightening of error bound under OT chaining). Let Dg, Dt be the source/target distributions
over persistence features. If the OT-consistency updates of hy, monotonically decrease the empirical chained
discrepancy

Z W.(Py,, Py,,,) and hence W.(Ds, Dr),

then the bound
er(h) < es(h) + W.(Ds,Dr) + A

tightens over test-time iterations. Every decrease AW, < 0 translates into the same decrease in the upper
bound on er(h).
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Proof sketch. The bound has the same form. By Prop. reducing pairwise chain costs reduces the end-
to-end discrepancy. The OT-consistency objective aligns predictions with OT-stable structures, empirically
lowering these costs; hence the right-hand side decreases. O

Remark A.4 (Why cross-PD+cross-level chaining helps). Cross-PD filtration links suppress short-lived noise
(local T-fluctuations), while cross-level filtration links fuse complementary cues between sub- and super-level
filtrations (components vs. holes). Lemmal[A.l|explains the ranking robustness of chained scores under noise,
and Proposition[A.2| shows why chaining cannot inflate global discrepancy more than additively. Together,
these justify the feature selection and discrepancy-reduction view in Sec .

A.8 CUBICAL PERSISTENCE

A primitive interval is J = [k, k + 1] C R with k € Z, called a 1-cube, the degenerate case [k] is a 0-cube. A
d-dimensional elementary cube is the Cartesian product

C=J x-xJgeRE (3)
e.g., vertices, edges, squares, and voxels in 3D.
The boundary of C'is
d
0C = (1) (Jy x o x D x o0 x ), (4)
i=1

where 8.J; = {k,k + 1}. A cube C'is a subcube of C' if J; C J/ for all 4.

A cubical complex K is a set of cubes closed under subcubes and boundaries, ensuring structural coherence
across dimensions (Fig. [3).

@ @ @

0-Cube 2-Cube

2-Cube 3-Cube Cubical Complex

Figure 5: Elementary cubes of different dimensions and an example cubical complex.

The chain group C,, (K) is the free Abelian group on n-cubes, linked by boundary maps
Ont1 n

with 9, o 0,41 = 0. Cycles and boundaries are
Zn(K) =ker(0,), Bnp(K)=1im(0ht1),
and the n-th homology group is H,,(K) = Z,,(K)/B,(K).

A filtration function fi : K — R activates cubes monotonically: P C @ = fx(P) < fk(Q). This defines
sublevel and superlevel sets:

K(a;) = fx'(—00,ai)),  K'(b;) = f"([bi, +0)). (5)
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Filtrations induce homology maps

Pn—1,n

Hip(Ko) 2% Hy(Kp) 22 .. 2220 1y (K),

forming the persistence module
P = {Hy(K;), @ij}ogigjgn-

Each topological feature o has birth b, death d,,, and persistence d, — b,. The collection of intervals [b,, d,, )
forms the barcode, while the persistence diagram (PD) encodes these as birth-death points in R?. To integrate
with ML models, PDs are vectorised via

®:PD — RM.
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