

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 TOPOOT: TOPOLOGY-AWARE OPTIMAL TRANSPORT FOR TEST-TIME ANOMALY SEGMENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike threshold-based binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns persistence diagrams (PDs) across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stability-aware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance¹, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D anomaly segmentation benchmarks.

1 INTRODUCTION

Test-time training (TTT) has emerged as a promising paradigm for adapting models under distribution shift, but most approaches remain limited to entropy minimisation or feature consistency, without structured reasoning about data geometry (Sun et al., 2020; Volpi et al., 2022; Zhang et al., 2022). A central limitation of many existing TTT approaches, particularly in dense prediction tasks, is their reliance on heuristic pseudo-labels or confidence thresholds (Liang et al., 2024; Costanzino et al., 2024a; Zhang et al., 2025), which are non-robust (brittle) under distribution shift. Incorporating explicit structural priors provides a principled way to address this gap. The integration of TDA, which extracts persistent features such as connectivity and holes across scales (Zia et al., 2024), and OT, which provides a principled framework for aligning distributions (Cuturi, 2013; Peyré et al., 2019), has received little attention in this context. AS is a particularly compelling domain in which to explore this integration, because it requires pixel-level localisation of irregular patterns whose connectivity and shape are critical, yet conventional threshold-based binarisation often collapses under shift (Cao et al., 2024). By combining TDA’s ability to capture structural persistence with OT’s alignment capabilities, TTT can move beyond heuristics and yield more stable and adaptive anomaly delineation.

AS demands fine-grained identification of abnormal regions in test images, typically without access to anomalous training examples (Tao et al., 2022). Most existing methods generate continuous anomaly maps that must be binarised (Cao et al., 2024), but thresholds derived from nominal data are brittle across categories and anomaly types (Tong et al., 2024; Wu et al., 2024; Zhou et al., 2024). Supervised approaches (Baitieva et al., 2024; Hu et al., 2024b; Zhu et al., 2024; Ding et al., 2022) can achieve strong performance but require

¹For reproducibility, our implementation is included with this submission

extensive annotation, which is impractical for rare or heterogeneous anomalies (Xie & Mirmehdi, 2007; Qiu et al., 2019). Unsupervised methods (Guo et al., 2025; He et al., 2024) are trained only on nominal data, rely on static thresholds, and fail to preserve structural consistency under domain shift.

Beyond the reliance on brittle thresholds, current approaches to AS and TTA face several underexplored challenges. First, robustness under distribution shift remains insufficient, benchmarks such as MVTec-AD (Bergmann et al., 2019), VisA (Zou et al., 2022), and Real-IAD (Wang et al., 2024a) often underestimate the variability of anomalies, yet in practice, even minor domain shifts can cause embeddings or thresholds to fail catastrophically. Second, AS research has concentrated on 2D image settings, leaving structural guidance in 3D anomaly detection and segmentation (AD&S) largely unaddressed (Li et al., 2024), despite its importance in industrial inspection. Third, pseudo-labels used in existing TTT frameworks are often derived from entropy or heuristic criteria, providing no guarantees of structural consistency across runs or domains (Zhao et al., 2024). Finally, while efficiency is critical for deployment, there has been little exploration of methods that simultaneously remove threshold dependence and remain lightweight enough for real-time adaptation.

These gaps underscore the need for a framework that (i) eliminates brittle thresholding, (ii) stabilises noisy structural descriptors, (iii) incorporates explicit priors into TTA, and (iv) extends naturally to 3D settings. We propose **TopoOT**, a framework that stabilises pseudo-labels using multi-scale topological cues via persistent homology and aligns them with OT, providing structure-aware supervision for TTT. Although our experiments focus on AS, we view this task as the most natural and demanding testbed for a first exploration of structurally guided TTT, since anomalies disrupt connectivity, boundaries, and higher-order organisation, precisely the features that TDA and OT are designed to capture. Establishing effectiveness in this setting provides a foundation for broader machine learning tasks where structural stability is critical, including domain adaptation under distribution shift (Dan et al., 2024), weak-signal detection in scientific data, and fine-grained visual analysis (Michaeli & Fried, 2024), where subtle structural cues determine class boundaries (Zia et al., 2024). TopoOT embeds structural alignment into the TTT framework. The key contributions are:

- To overcome threshold brittleness, we introduce an **OT-guided, structure-aware representation** that integrates multi-scale topological cues from PDs. This representation produces pseudo-labels that provide adaptive and data-driven supervision for TTT.
- To stabilise noisy topological descriptors, we propose a novel **OT chaining** mechanism that aligns PDs both within a filtration (*cross-PD*) and across sub- and super-level filtrations (*cross-level*), retaining only consistently transported features and discarding spurious ones.
- To integrate structural priors into TTT, we design a lightweight head trained online with two complementary objectives: **OT-consistency**, which preserves *transport-aligned structures*, and **contrastive separation**, which sharpens anomalous versus nominal boundaries.
- Our approach is *plug-and-play*, integrating seamlessly with different backbones and extending naturally across modalities, generalising from 2D to 3D AD&S (point clouds and multimodal anomaly detection), where connectivity and shape priors are especially critical.

Across diverse datasets, our design consistently delivers robust and generalisable AS. Evaluated on **5** 2D/3D benchmarks and **7** backbones, TopoOT achieves F1 gains up to **+24.1%** on 2D and **+10.2%** on 3D compared to the existing SOTA. It further generalises across models and domains, surpassing TTT baselines by up to **+4.8%**. The **lightweight TTT module** of TopoOT remains highly efficient, running at **121** FPS while using only **349** MB of GPU memory.

2 RELATED WORK

Anomaly Detection and Segmentation: AS under distribution shift is challenging as it requires fine-grained detection without supervision, structural priors that capture meaningful data characteristics, and adaptation to

094 unseen test-time distributions. Unsupervised AD&S avoids labelled anomalies by learning from nominal
 095 data (He et al., 2024). Early reconstruction-based methods used autoencoders (Fang et al., 2023; Park et al.,
 096 2024; Zuo et al., 2024; Zhou et al., 2025; Wang et al., 2024b), inpainting (Li et al., 2020; Nakanishi et al.,
 097 2022; Zavrtanik et al., 2021b; Pirnay & Chai, 2022; Luo et al., 2024), or diffusion models (Yao et al., 2024a;
 098 Fučka et al., 2025; Jiang et al., 2024), but often produced blurry reconstructions or overfit to normal patterns.
 099 Feature-based approaches compare embeddings to nominal references (Park et al., 2024; Roth et al., 2022;
 100 Defard et al., 2021), or use teacher–student frameworks (Deng & Li, 2024; Rudolph et al., 2023; Zhang
 101 et al., 2023; Gu et al., 2024) for inductive bias. Generative priors via normalizing flows (Yao et al., 2024b;
 102 Gudovskiy et al., 2022; Lei et al., 2023; Kim et al., 2023) or synthetic anomalies (Aota et al., 2023; Li et al.,
 103 2024; Hu et al., 2024a; Chen et al., 2024) improved detection, yet typically lack pixel-level precision. Methods
 104 such as PatchCore (Roth et al., 2022) and PaDiM (Defard et al., 2021) leverage pre-trained backbones, but
 105 remain threshold-dependent and structurally agnostic.

106 **Optimal Transport in Vision:** OT has been widely applied in computer vision for distribution alignment
 107 (Peyré et al., 2019; Cuturi, 2013; Bonneel & Digne, 2023), including domain adaptation (Ge et al., 2021;
 108 Fan et al., 2024; Luo & Ren, 2023), object detection, and image restoration (Adrai et al., 2023). In anomaly
 109 detection, (Liao et al., 2025) employed robust Sinkhorn distances for industrial inspection. These works show
 110 OT’s adaptability for handling domain discrepancies, but they typically operate at the distribution level and
 111 do not exploit OT for structured feature selection or test-time supervision. While our approach employs a
 112 novel *OT chaining* mechanism, entropically regularised OT helps align PDs through cross-PD filtration to
 113 capture feature evolution and cross-level filtration to integrate complementary structures, thereby preserving
 114 consistently transported features and discarding spurious ones.

115 **Topological Priors and Test-Time Training:** TDA, particularly persistent homology (PH), has been applied
 116 in medical imaging to capture shape and multi-scale structure (Adcock et al., 2014; Berry et al., 2020;
 117 Crawford et al., 2020; Garside et al., 2019; Kanari et al., 2018). Yet most uses are offline and not integrated
 118 into adaptive learning (Zia et al., 2024). TTT (Liang et al., 2024; Nado et al., 2020; Kim et al., 2022;
 119 Colomer et al., 2023; Nguyen et al., 2023; Khurana et al., 2021) adapts models on-the-fly with self-supervised
 120 objectives, and TTT4AS (Costanzino et al., 2024a) extended this idea to AS with heuristic pseudo-labels.
 121 However, these lack explicit structural reasoning and remain sensitive to noise.

122 Our approach combines PH-based filtrations with OT alignment to derive stable pseudo-labels, which then
 123 guide a lightweight TTT head. This integration moves beyond heuristic thresholds by embedding structural
 124 priors directly into TTA, yielding robust and topologically consistent AS.

126 3 OT-GUIDED TEST TIME STRUCTURAL ALIGNMENT FRAMEWORK

128 **Problem Formulation:** Conventional AS methods produce a dense anomaly score map and obtain binary
 129 masks through thresholds calibrated on nominal validation data (Costanzino et al., 2024a) (e.g., percentile
 130 rules). Such thresholds are dataset-specific, fail under distribution shift, and often generate masks that
 131 under-cover or over-extend the anomalous region. Moreover, they operate pixel-wise and neglect structural
 132 information in the anomaly map. To address these limitations, we represent anomaly maps as persistence
 133 diagrams (PDs), which capture multi-scale topological features such as connected components and holes.
 134 Figure 1 provides an overview of our proposed TopoOT framework. We then introduce an OT-based scoring
 135 scheme that evaluates PDs across filtrations and levels, ranking components by their cross-scale consistency.
 136 This formulation replaces fixed thresholding with a structural scoring approach designed to produce more
 137 consistent anomaly masks under distribution shift.

138 Building on this, persistence diagrams derived from sub- and super-level filtrations provide the candidate
 139 anomaly structures. We apply OT alignment across filtration levels to retain components that persist with low
 140 transport cost, while discarding unstable features (that don’t persist across PDs). The ranked components are

Figure 1: **TopoOT Test-time Training for Anomaly Segmentation.** (Top Left) pipeline simplified view. (Bottom) detailed view. TopoOT replaces conventional thresholding by stabilising anomaly evidence via cross-PD OT matching within each filtration, then fusing sub- and super-level scores with cross-level OT. The resulting global scores yield Top-K pseudo-labels that supervise a lightweight head for final segmentation.

then back-projected into the image domain to form pseudo-labels, which serve as data-dependent supervision at inference in place of fixed thresholds.

During TTT, we keep the replaceable backbone frozen and update only a lightweight head. This head is optimised with two complementary objectives: (i) OT-consistency, which encourages predictions to remain aligned with the stable structures identified by OT, and (ii) contrastive separation, which increases the margin between anomalous and nominal regions. The combination of these objectives yields a segmentation mask that is guided by OT-derived pseudo-labels rather than fixed thresholds.

3.1 MULTI-SCALE FILTERING AS FEATURE GENERATION

We start from a continuous anomaly map $A : \Omega \rightarrow [0, 1]$ defined over the pixel lattice Ω , same as (Costanzino et al., 2024a). To capture structural variation at multiple thresholds, we fix a sequence of increasing thresholds $\mathcal{T} = \{\tau_1 < \tau_2 < \dots < \tau_N\}$. For each $\tau_k \in \mathcal{T}$, we define the sublevel and superlevel sets $S_{\tau_k}^{\text{sub}} = \{p \in \Omega : A(p) \leq \tau_k\}$, and $S_{\tau_k}^{\text{sup}} = \{p \in \Omega : A(p) \geq \tau_k\}$. These subsets naturally induce cubical complexes $K_{\tau_k}^{\text{sub}}$, $K_{\tau_k}^{\text{sup}}$, where each cell corresponds to a contiguous block of pixels (a cube in the grid) included whenever its vertices satisfy the relevant threshold condition. The ‘‘cubical’’ construction is appropriate for images/grids, because it respects the pixel adjacency and can be computed efficiently.

By varying the thresholds τ_k , we obtain nested sequences (filtrations) of level sets: $K_{\tau_1}^f \subset K_{\tau_2}^f \subset \dots \subset K_{\tau_N}^f$, $f \in \{\text{sub}, \text{sup}\}$, where we assume $\tau_1 < \dots < \tau_N$ for sublevel sets and $\tau_1 > \dots > \tau_N$ for superlevel

sets. From these filtrations, we compute persistent homology in dimensions $h \in \{0, 1\}$. The result is a persistence diagram \mathcal{P}_f^h at each threshold level. For a filtration $\{K_{\tau_k}^f\}_{k=1}^N$, persistent homology computes, for each dimension h , the sequence of homology groups $H_h(K_{\tau_1}^f), \dots, H_h(K_{\tau_N}^f)$, where $H_h(K_{\tau_k}^f)$ denotes the h -th homology group of the complex $K_{\tau_k}^f$. This tracks how h -dimensional topological features (connected components for $h = 0$, loops for $h = 1$) appear and disappear along the sequence. A feature c is born at the smallest index k such that it appears in $H_h(K_{\tau_k}^f)$, and dies at the first index $\ell > k$ where it merges into an older feature or becomes trivial. The pair $(b_c, d_c) = (\tau_k, \tau_\ell)$ encodes its lifetime (persistence), and the persistence diagram

$$\mathcal{P}_f^h = \{(b_c, d_c) \mid c \text{ is an } h\text{-dimensional feature in the filtration}\}$$

is the multiset of all such birth–death pairs. For a given threshold τ_k , the diagram $\mathcal{P}_f^h[\tau_k]$, the H_0 (homology in dimension 0) captures connected components that are how new components appear (birth) and merge (death) across thresholds. H_1 (1-dimensional homology) captures loops or holes (voids), features that appear in superlevel or sublevel sets and disappear at some higher (or lower) threshold. Background on cubical complexes in Appendix A.8.

Each topological feature c in a diagram is represented as a pair (b_c, d_c) of birth and death times; its persistence $\text{pers}(c) = d_c - b_c$ reflects how long it persists. Features with large persistence are more likely to correspond to “meaningful” structural anomalies, while those close to the diagonal (small persistence) are often noise. These ideas align with the discussion review paper by (Zia et al., 2024), which emphasises that PDs and barcodes are robust summaries of topological features of data across scales, invariant to small perturbations, deformation, and noise. The outputs $\{\mathcal{P}_{\text{sub}}^h[\tau_k]\}_{k=1}^N$, and $\{\mathcal{P}_{\text{sup}}^h[\tau_k]\}_{k=1}^N$ serve as multi-scale candidate features. They form the input to the OT-based alignment steps. Rather than acting as direct decision thresholds, these persistence diagrams are treated as a rich feature generation mechanism, capturing anomalies’ connected components and holes over multiple scales, which allows the downstream optimal transport stage to judge stability and discriminability among structural candidates.

3.2 GEODESIC SCORING OF TOPOLOGICAL FEATURES

The persistence diagrams derived from sub- and super-level filtrations provide a rich but noisy set of candidate features. Many short-lived components arise due to local perturbations in the anomaly map, which, if treated directly, would degrade the reliability of pseudo-labels. A key challenge is how to aggregate these diverse features into a concise set of components that can be meaningfully traced back to the original image. A possible solution is computing a barycenter of diagrams (Turner et al., 2014), but barycenters discard the natural order of filtrations and blur fine-scale structures. Mapping diagrams into kernels or persistence images (Reininghaus et al., 2015) is another alternative, but these yield global embeddings without interpretable correspondences. In contrast, we propose aggregating information by following the flow of diagrams within each filtration sequence using Optimal Transport Chaining. This approach consolidates features into stable representatives for both the sublevel and superlevel filtrations independently, and then fuses the two levels to obtain consensus features.

Formally, let $P = \{p_i = (b_i, d_i)\}_{i=1}^m$ and $Q = \{q_j = (b'_j, d'_j)\}_{j=1}^n$ be two persistence diagrams, used here as shorthand for $\{\mathcal{P}_f^h[\tau_k]\}$ at different thresholds or filtrations. We define the ground cost as the squared Euclidean distance between pairs of features, and compute the entropic OT plan:

$$\Pi^* = \arg \min_{\Pi \in \mathcal{U}(P, Q)} \langle C, \Pi \rangle + \varepsilon H(\Pi) \quad (1)$$

where $\mathcal{U}(P, Q)$ denotes the set of admissible couplings between P and Q , and $H(\Pi)$ is the entropy of the transport plan. The regularisation parameter $\varepsilon > 0$ ensures numerical stability and smooth alignments. In

235 our framework, all transport plans are therefore entropy-regularised Sinkhorn solutions rather than exact
 236 Wasserstein couplings because they yield smooth, differentiable, and numerically stable alignments; see
 237 Appendix A.6 for further details.

238 We exploit this transport plan through a novel **OT chaining** mechanism, which consists of two complementary
 239 modes: *cross-PD* (intra) filtration and *cross-level* (inter) filtration alignment. In *cross-PD* filtration alignment,
 240 OT is applied within a single filtration (sublevel or superlevel) between persistence diagrams at different
 241 thresholds τ_k and τ_ℓ . This process identifies features that persist consistently through the filtration, and each
 242 candidate c receives a stability score:
 243

$$244 \quad s(c) = \max_j \frac{\Pi^*(i(c), j)}{1 + \sqrt{C(i(c), j)}} \cdot \alpha \text{pers}(c) \quad (2)$$

245 where Π^* is the entropic OT plan between diagrams, $C(i(c), j)$ is the ground cost, $i(c)$ denotes the index of
 246 the birth–death pair representing feature c in its persistence diagram, and $\text{pers}(c)$ is the persistence of c as
 247 defined in Sec. 3.1. Since C is defined as squared Euclidean distances, we use \sqrt{C} in the denominator to
 248 restore a linear distance scale, ensuring that score decay is proportional to distance rather than quadratic. This
 249 softens penalisation and allows moderately stable matches to contribute, instead of filtering too aggressively.
 250 The maximisation is taken over all possible partners j of candidate c within the filtration, where j indexes
 251 features in the comparison persistence diagram. In this way, $s(c)$ reflects the strongest OT-stable match. When
 252 points don’t get matched between PDs, they are coupled to the diagonal as in standard TDA practice (see
 253 Sec. 3.1 and Appendix A.7), ensuring that chain stability scores naturally account for vanishing features. The
 254 factor $\alpha \geq 0$ controls the influence of persistence on ranking. Top- M components are selected by maximising
 255 stability and persistence and minimising transport cost.
 256

257 In *cross-level* filtration alignment, we compare candidate sets from the sublevel and superlevel filtrations.
 258 Applying OT across sublevel and superlevel filtrations integrates complementary topological cues. Sublevel
 259 filtrations emphasise how connected components emerge and merge, while superlevel filtrations highlight
 260 how voids and holes evolve. By aligning these perspectives, the method retains structural features that are
 261 consistently expressed across both, thereby suppressing spurious components and strengthening anomaly
 262 cues. Each candidate c is evaluated with the same stability score $s(c)$ defined above, but here the partner set
 263 is drawn from the opposite filtration. This ensures that features are retained only if they exhibit both cross-PD
 264 scale persistence and cross-level filtration consistency. The top- K ranked candidates across both filtrations
 265 are then collected to form the final set C^* .

266 The surviving candidates in C^* are then projected back to their pixel-level supports on the anomaly map,
 267 yielding OT-guided pseudo-labels \tilde{Y}_{OT} . This backprojection is possible because the filtrations in Sec. 3.1 are
 268 built by thresholding the anomaly map $A : \Omega \rightarrow [0, 1]$ at different anomaly score levels. As these thresholds
 269 vary, each retained feature $c \in C^*$ corresponds to a connected component or hole that remains present in
 270 the thresholded maps for all levels between its birth and death (b_c, d_c) . Thus b_c and d_c can be interpreted
 271 directly as anomaly-score levels at which that structure appears and disappears in the original image. To
 272 obtain a pixel-level support for c , we choose a representative level near its death time and mark all pixels
 273 whose anomaly score exceeds this level. Formally, for each $c \in C^*$ we define the backprojection threshold as
 274 $\tau_{\text{bp}}(c) = d_c$, and the pixel-level support of c as the superlevel set

$$275 \quad \Gamma(c) = \{ p \in \Omega : A(p) \geq \tau_{\text{bp}}(c) \}. \quad (3)$$

276 Aggregating the Top- K retained candidates, the OT-guided pseudo-label mask is defined as

$$277 \quad \tilde{Y}_{\text{OT}}(p) = \mathbf{1}(\exists c \in C^* \text{ such that } p \in \Gamma(c)), \quad p \in \Omega, \quad (4)$$

278 which corresponds to the union of the pixel-level supports of the OT-stable features. For added robustness, one
 279 can be a bit conservative when setting the threshold to ensure that the back projected region remains safely
 280 within the range where the feature is still present in the filtration. This can be achieved by introducing a small
 281

282 offset $\delta_{f(c)}$ and thresholding at $\{p : A(p) \geq \max\{0, d_c - \delta_{f(c)}\}\}$, where $f(c) \in \{\text{sublevel, superlevel}\}$
 283 denotes the filtration type. In practice, $\delta_{f(c)}$ is chosen as a small, fixed fraction of the $[0, 1]$ anomaly-score
 284 range (e.g., 0.2) and kept constant across all datasets.

285 These pseudo-labels are inherently multi-scale and data-adaptive, as they emerge from stable OT couplings
 286 rather than fixed thresholds. These retained features correspond to connected regions or holes, e.g., defects or
 287 gaps, that persist across the filtration process and reflect semantically meaningful structures in the input space.
 288 By filtering out noise-induced artefacts, OT alignment produces pseudo-labels that provide robust supervision
 289 for TTT.

291 3.3 TOPOOT TEST-TIME TRAINING

292 The final stage of our pipeline leverages the OT-guided pseudo-labels \tilde{Y}_{OT} to adapt the model during inference.
 293 Since the backbone feature extractor is frozen, adaptation is performed through a lightweight segmentation
 294 head h_{ψ} attached to the anomaly map representation. This design ensures that the adaptation cost at test time
 295 remains negligible, while still allowing the predictions to be tailored to the distribution of the current sample.
 296 Training h_{ψ} is guided by two complementary objectives. First, we introduce an **OT-consistency** loss that
 297 encourages the segmentation head h_{ψ} to reproduce the spatial structures encoded in \tilde{Y}_{OT} . Given the deviations
 298 from the OT-aligned pseudo-labels $\mathcal{L}_{\text{OT}} = \|\hat{Y} - \tilde{Y}_{\text{OT}}\|_2$ which enforces consistency with stable transport
 299 couplings and prevents overfitting. Second, we incorporate a margin-based contrastive objective to sharpen
 300 local decision boundaries in the embedding space produced by h_{ψ} . From the OT-derived pseudo-labels
 301 $\tilde{Y}_{\text{OT}} \in \{0, 1\}^{H \times W}$, we sample pixel pairs (p, q) as similar when $\tilde{Y}_{\text{OT}}(p) = \tilde{Y}_{\text{OT}}(q)$ and dissimilar otherwise.
 302 Let $z_p, z_q \in \mathbb{R}^D$ denote the L2-normalised embeddings of those pixels. The contrastive loss is:
 303

$$305 \mathcal{L}_{\text{contrastive}} = (1 - y_{pq}) \|z_p - z_q\|_2^2 + y_{pq} [\max(0, m - \|z_p - z_q\|_2)]^2$$

306 where $y_{pq} \in \{0, 1\}$ encodes dissimilarity and $m > 0$ is a margin. This loss compacts same-label embeddings
 307 while enforcing a minimum separation between background and anomalous regions, improving robustness to
 308 residual noise in \tilde{Y}_{OT} . The combined loss is $\mathcal{L}_{\text{TTT}} = \mathcal{L}_{\text{OT}} + \lambda \mathcal{L}_{\text{contrastive}}$ with λ controlling the balance
 309 between structural consistency and contrastive separation. By optimising \mathcal{L}_{TTT} on each test sample, the
 310 segmentation head h_{ψ} adapts to dataset-specific distributions without requiring external supervision. The
 311 final segmentation mask \hat{Y}^{bin} is obtained through a canonical decision rule applied to the adapted predictions
 312 of h_{ψ} . Because h_{ψ} is trained on OT-guided pseudo-labels, this rule is adaptive to each test instance, avoiding
 313 dataset-specific calibration and eliminating heuristic threshold tuning.

314 This *test-time regularisation* departs from conventional schemes in two ways: (i) it grounds the adaptation
 315 signal in OT-aligned structures, stable across multi-scale filtrations, rather than raw anomaly scores; (ii) by
 316 integrating contrastive separation, it sharpens class boundaries instead of collapsing toward trivial solutions.

317 **Stability Observations:** Our evaluation 4 shows that our plug-and-play approach performs consistently well
 318 across various backbones and multiple heterogeneous datasets, indicating that cross-PD and cross-level OT
 319 chaining yields robust improvements under distribution shift. Appendix A.7 offers an informal OT-based
 320 perspective on why cross-PD and cross-level chaining can improve robustness.

323 4 EXPERIMENTAL SETUP

324 **Datasets, Backbones, and Evaluation Protocol:** We evaluate across both 2D and 3D anomaly detection
 325 benchmarks. For 2D, RGB datasets **MVTec AD** (Bergmann et al., 2019), **VisA** (Zou et al., 2022), and
 326 **Real-IAD** (Wang et al., 2024a) are used with backbones **PatchCore** (Roth et al., 2022), **PaDiM** (Defard et al.,
 327 2021), **Dinomomaly** (Guo et al., 2025), and **MambaAD** (He et al., 2024). For 3D, we consider multimodal

MVTec 3D-AD (RGB + point-cloud) (Bergmann et al., 2021) and pure point-cloud **Anomaly-ShapeNet** (Li et al., 2024), using backbones **CMM** (Costanzino et al., 2024b), **M3DM** (Wang et al., 2023b), and **PO3AD** (Ye et al., 2025). While we report standard anomaly-detection metrics such as image-level AUROC (**I-AUROC**), pixel-level AUROC (**P-AUROC**), and pixel-level AUPRO (**P-AUPRO**) for completeness, our evaluation focuses on pixel-level **Precision**, **Recall**, **F1**, and **IoU** of the final binary masks. AUROC and AUPRO mainly assess ranking quality and can remain high despite poor mask quality under severe pixel imbalance (Bergmann et al., 2019; Zavrtanik et al., 2021a). In contrast, Precision, Recall, and F1 capture the accuracy of detected defect regions, balancing missed detections and false alarms, while IoU offers a stringent measure of spatial overlap (Costanzino et al., 2024a). These metrics align more closely with industrial inspection needs, where the fidelity of the delivered mask is the decisive criterion (Bergmann et al., 2020; Schlüter et al., 2022).

Across both domains, we compare all methods against the TTT baseline **TTT4AS** (Costanzino et al., 2024a). Following **TTT4AS**, we binarise each backbone’s AS map at the statistical threshold ($\mu + c\sigma$) and report this variant (**THR**) alongside the **TTT4AS** baseline. All experiments have been conducted on an NVIDIA RTX 5090 GPU with 32GB of VRAM. Detailed hyperparameters and architectural settings are provided in Appendix A.1. TopoOT runs at 121 FPS using 349 MB GPU memory for 2D inference; 3D inference has comparable memory use but lower FPS due to point-cloud operations. Per-dataset timing and memory profiles are given in Appendix A.2.

5 RESULTS AND DISCUSSION

We validate TopoOT through analyses: **(i) 2D and 3D AD&S**, benchmarking against state-of-the-art methods; **(ii) Cross Model Domain Adaptation**, where frozen feature extractors are paired with distinct anomaly score maps across 2D and 3D datasets; and **(iii) Ablation Studies**, assessing the contribution of each component. For detailed discussion of limitations and directions for future development, including efficiency tradeoffs and backbone dependency, refer to Appendix A.3.

5.1 2D/3D AD&S

We present a comprehensive evaluation of **TopoOT** across five diverse datasets and seven state-of-the-art backbones. The I-AUROCP, P-AUROC, and P-AUPRO metrics are computed directly from each backbone’s AS map, while our method operates on the resulting anomaly maps to produce final binary segmentations. The results in Table 1 demonstrate superiority, with **TopoOT** consistently outperforming all baselines. The metrics are the mean per class within each dataset. Our method achieves a **+38.6%** F1 gain over **THR** and **+14.0%** over **TTT4AS** (Costanzino et al., 2024a) on MVTec AD (**PatchCore** (Roth et al., 2022)). For **PaDiM**, it surpasses **THR** by **+20.5%** and **TT4AS** by **+24.1%**. On VisA, it surpasses **TTT4AS** by **+19.7%** (**Dinomaly** (Guo et al., 2025)) and **+8.5%** (**MambaAD** (He et al., 2024)). For Real-IAD, **TopoOT** shows a **+12.3%** and **+11.8%** F1 improvement over **THR**, and a **+21.3%** and **+20.9%** gain over **TTT4AS** for the **Dinomaly** and **MambaAD** backbones, respectively. The advantage extends to 3D, with gains of **+20.7%** (**CMM** (Costanzino et al., 2024b)) and **+24.5%** (**M3DM** (Wang et al., 2023b)) over **THR** on MVTec 3D-AD, alongside **+10.2%** and **+2.2%** improvements over **TTT4AS**. On AnomalyShapeNet (**PO3AD** (Ye et al., 2025)), **TopoOT** also leads with a **+2.9%** and **+1.9%** F1 advantage.

Figure 2 shows that **TopoOT** yields sharper, more semantically coherent segmentations than competing methods. **TopoOT** secures concurrent gains in precision and recall, which in turn increase **IoU**, resulting in consistently superior segmentations across every benchmark. *Per-class quantitative and qualitative results* for each dataset are presented in the Appendix A.4 & A.5. TopoOT consistently achieves sharper boundaries and higher recall across categories. Even in challenging cases like thin or fragmented defects, it remains robust, clearly outperforming other methods across both 2D and 3D domains.

376 Table 1: Comparison of binary segmentation results. Best results in **bold**; second-best in **blue**.
377

378	Dataset	Backbone	I-AUROC	P-AUROC	P-AUPRO	379	TTT Method	Prec.	Rec.	F1	IoU
380	MVTec AD (Bergmann et al., 2019)	PatchCore (Roth et al., 2022)	0.991	0.981	0.934	381	THR (Roth et al., 2022) TTT4AS (Costanzino et al., 2024a) TopoOT	0.351 0.388 0.550	0.507 0.648 0.720	0.136 0.382 0.522	0.299 0.293 0.387
		PaDiM (Defard et al., 2021)	0.979	0.975	0.921	382	THR (Roth et al., 2022) TTT4AS (Costanzino et al., 2024a) TopoOT	0.330 0.470	0.579 0.788	0.318 0.559	0.274 0.402
383	VisA (Zou et al., 2022)	Dinomaly (Guo et al., 2025)	0.987	0.987	0.945	384	THR (Guo et al., 2025) TTT4AS (Costanzino et al., 2024a) TopoOT	0.275 0.546	0.862 0.464	0.339 0.422	0.144 0.177
		MambaAD (He et al., 2024)	0.943	0.985	0.910	385	THR (He et al., 2024) TTT4AS (Costanzino et al., 2024a) TopoOT	0.200 0.235 0.416	0.785 0.820 0.507	0.241 0.289 0.352	0.196 0.145 0.247
386	Real IAD (Wang et al., 2024a)	Dinomaly (Guo et al., 2025)	0.893	0.989	0.939	387	THR (Wang et al., 2024a) TTT4AS (Costanzino et al., 2024a) TopoOT	0.242 0.461	0.793 0.442	0.317 0.317	0.208 0.147 0.317
		MambaAD (He et al., 2024)	0.863	0.985	0.905	388	THR (He et al., 2024) TTT4AS (Costanzino et al., 2024a) TopoOT	0.188 0.305	0.653 0.616	0.228 0.346	0.145 0.080 0.243
389	MVTec 3D-AD (Bergmann et al., 2021)	CMM (Costanzino et al., 2024b)	0.954	0.993	0.971	390	THR (Costanzino et al., 2024b) TTT4AS (Costanzino et al., 2024a) TopoOT	0.199 0.427	0.902 0.845	0.275 0.482	0.232 0.077 0.343
		M3DM (Wang et al., 2023b)	0.945	0.992	0.964	391	THR (Wang et al., 2023b) TTT4AS (Costanzino et al., 2024a) TopoOT	0.173 0.564	0.889 0.767	0.245 0.490	0.232 0.120 0.364
392	AnomalyShapeNet (Li et al., 2024)	PO3AD (Ye et al., 2025)	0.839	0.898	0.821	393	THR (Ye et al., 2025) TTT4AS (Costanzino et al., 2024a) TopoOT	0.675 0.651	0.441 0.540	0.500 0.529	0.371 0.347 0.402

404 Figure 2: Qualitative comparison of AD&S methods for different objects using the MVTec 3D-AD dataset.

405

5.2 CROSS MODEL DOMAIN ADAPTATION

406 We validate a plug-and-play transfer strategy that pairs frozen *source* feature extractors with distinct *target* 407 scoring heads across 2D (MVTec, VisA, Real-IAD) and 3D (MVTec-3DAD) domains. As shown in 408 Table 2, the cross-model pipelines preserve topological structure and deliver practical quality without 409 re-training. In 2D, transfers reach F1 up to **0.512** on Real-IAD (PatchCore→MambaAD) and **0.502** on VisA 410 (MambaAD→Dinomaly), with recalls in the **0.71–0.75** band; in 3D, CMM→M3DM offers the highest 411 precision (**0.471**, F1 **0.479**), while M3DM→CMM provides broad coverage (recall **0.791**). Importantly, 412 these domain-adaptation results outperform established baselines across the evaluated datasets, 413 confirming effective cross-model composition and providing a strong substrate for TopoOT to further 414 consolidate gains via stability-aware OT pseudo-labels and adaptive boundary refinement for AS.

415

5.3 ABLATION STUDIES

416 We validate TopoOT (Table 3). Individual cross-PD filtration alignments yield modest gains. The cross-level 417 filtration alignment is key, providing a larger boost by integrating cross-scale information. The losses \mathcal{L}_{OT} and 418

423 Table 2: Cross-model domain adaptation (*features* \rightarrow *anomaly scores*).

424	425	426	427	428	429	430	431	432	433	434	435	436
Modality	Dataset	Source \rightarrow Target			Prec.	Rec.	F1					
2D	3D	(Features \rightarrow Anomaly Scores)										
✓	MVTec	PatchCore \rightarrow PaDiM			0.419	0.673	0.430					
✓	VisA	MambaAD \rightarrow Dinomaly			0.459	0.712	0.502					
✓	Real-IAD	PatchCore \rightarrow MambaAD			0.434	0.750	0.512					
✓	MVTec-3DAD	CMM \rightarrow M3DM			0.471	0.746	0.479					
✓	MVTec-3DAD	M3DM \rightarrow CMM			0.409	0.791	0.469					

$\mathcal{L}_{\text{contrastive}}$ are effective together, enforcing prediction consistency and feature separation, respectively. Our complete model achieves top performance: **0.522** F1 on PatchCore, **0.482** on CMM, and **0.490** on M3DM.

437 Table 3: Ablation study showing that combining all OT alignments with losses yields the highest performance.

438	TopoOT Components					2D-PatchCore			3D-CMM			3D-M3DM		
	$cross\text{-}PD_{Sub}$	$cross\text{-}PD_{Super}$	$cross\text{-}level_{Sub\text{-}super}$	\mathcal{L}_{OT}	$\mathcal{L}_{\text{contrastive}}$	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.	F1
	✓			✓		0.440	0.310	0.365	0.410	0.455	0.382	0.290	0.730	0.390
✓					✓	0.490	0.540	0.475	0.426	0.485	0.415	0.310	0.740	0.405
	✓			✓		0.375	0.620	0.390	0.085	0.820	0.118	0.280	0.755	0.380
	✓				✓	0.395	0.605	0.408	0.095	0.830	0.132	0.300	0.760	0.392
✓	✓		✓	✓		0.520	0.690	0.510	0.420	0.800	0.470	0.500	0.750	0.485
✓	✓		✓		✓	0.510	0.680	0.505	0.405	0.770	0.460	0.490	0.740	0.475
✓	✓		✓	✓	✓	0.550	0.720	0.522	0.427	0.845	0.482	0.564	0.767	0.490

446 6 CONCLUSION

447 We presented TopoOT, a topology-aware OT framework for anomaly segmentation that replaces brittle
448 thresholding with OT-guided pseudo-labels and stabilises multi-scale persistence features through cross-PD
449 and cross-level filtration chaining. A lightweight head trained with OT-consistency and contrastive objectives
450 enables per-instance TTA that preserves structural stability while sharpening anomaly boundaries. TopoOT
451 achieves SOTA performance on five standard benchmarks, and our theoretical analysis establishes stability
452 and generalisation guarantees.

455 6 REFERENCES

456 Aaron Adcock, Daniel Rubin, and Gunnar Carlsson. Classification of hepatic lesions using the matching
457 metric. *Computer vision and image understanding*, 121:36–42, 2014.

458 Theo Adrai, Guy Ohayon, Michael Elad, and Tomer Michaeli. Deep optimal transport: A practical algorithm
459 for photo-realistic image restoration. *Advances in Neural Information Processing Systems*, 36:61777–61791,
460 2023.

461 Toshimichi Aota, Lloyd Teh Tzer Tong, and Takayuki Okatani. Zero-shot versus many-shot: Unsupervised
462 texture anomaly detection. In *Proceedings of the IEEE/CVF Winter Conference on Applications of
463 Computer Vision*, pp. 5564–5572, 2023.

464 Aimira Baitieva, David Hurych, Victor Besnier, and Olivier Bernard. Supervised anomaly detection for
465 complex industrial images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
466 Recognition*, pp. 17754–17762, 2024.

470 Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad—a comprehensive real-world
 471 dataset for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF conference on computer*
 472 *vision and pattern recognition*, pp. 9592–9600, 2019.

473

474 Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. The mvtec anomaly detection
 475 dataset: A comprehensive real-world dataset for unsupervised anomaly detection. *International Journal of*
 476 *Computer Vision (IJCV)*, 129(4):1038–1059, 2020.

477

478 Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Steger. The mvtec 3d-ad dataset for unsupervised 3d
 479 anomaly detection and localization. *arXiv preprint arXiv:2112.09045*, 2021.

480

481 Eric Berry, Yen-Chi Chen, Jessi Cisewski-Kehe, and Brittany Terese Fasy. Functional summaries of persistence
 482 diagrams. *Journal of Applied and Computational Topology*, 4(2):211–262, 2020.

483

484 Nicolas Bonneel and Julie Digne. A survey of optimal transport for computer graphics and computer vision.
 485 In *Computer Graphics Forum*, volume 42, pp. 439–460. Wiley Online Library, 2023.

486

487 Yunkang Cao, Xiaohao Xu, Jiangning Zhang, Yuqi Cheng, Xiaonan Huang, Guansong Pang, and Weiming
 488 Shen. A survey on visual anomaly detection: Challenge, approach, and prospect. *arXiv preprint*
 489 *arXiv:2401.16402*, 2024.

490

491 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
 492 Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF*
 493 *international conference on computer vision*, pp. 9650–9660, 2021.

494

495 Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao Zhang. A unified anomaly synthesis strategy with
 496 gradient ascent for industrial anomaly detection and localization. *arXiv preprint arXiv:2407.09359*, 2024.

497

498 Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus
 499 Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, and Matteo Poggi. To adapt
 500 or not to adapt? real-time adaptation for semantic segmentation. In *Proceedings of the IEEE/CVF*
 501 *International Conference on Computer Vision*, pp. 16548–16559, 2023.

502

503 Alex Costanzino, Pierluigi Zama Ramirez, Mirko Del Moro, Agostino Aiezzo, Giuseppe Lisanti, Samuele
 504 Salti, and Luigi Di Stefano. Test time training for industrial anomaly segmentation. In *Proceedings of the*
 505 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3910–3920, 2024a.

506

507 Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, and Luigi Di Stefano. Multimodal industrial
 508 anomaly detection by crossmodal feature mapping. In *Proceedings of the IEEE/CVF Conference on*
 509 *Computer Vision and Pattern Recognition*, pp. 17234–17243, 2024b.

510

511 Lorin Crawford, Anthea Monod, Andrew X Chen, Sayan Mukherjee, and Raúl Rabadán. Predicting clinical
 512 outcomes in glioblastoma: an application of topological and functional data analysis. *Journal of the*
 513 *American Statistical Association*, 115(531):1139–1150, 2020.

514

515 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
 516 *information processing systems*, 26, 2013.

517

518 Jun Dan, Weiming Liu, Chunfeng Xie, Hua Yu, Shunjie Dong, and Yanchao Tan. Tfgda:
 519 Exploring topology and feature alignment in semi-supervised graph domain adaptation
 520 through robust clustering. In *Advances in Neural Information Processing Systems*, 2024.
 521 URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/59e73ff865b56cba6ab7f6b2cce1425d-Abstract-Conference.html. NeurIPS 2024.

517 Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution
 518 modeling framework for anomaly detection and localization. In *International Conference on Pattern*
 519 *Recognition*, pp. 475–489. Springer, 2021.

520

521 Hanqiu Deng and Xingyu Li. Structural teacher-student normality learning for multi-class anomaly detection
 522 and localization. *arXiv preprint arXiv:2402.17091*, 2024.

523

524 Choubo Ding, Guansong Pang, and Chunhua Shen. Catching both gray and black swans: Open-set supervised
 525 anomaly detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 526 pp. 7388–7398, 2022.

527

528 Qizhe Fan, Xiaoqin Shen, Shihui Ying, and Shaoyi Du. Otclda: Optimal transport and contrastive learning
 529 for domain adaptive semantic segmentation. *IEEE Transactions on Intelligent Transportation Systems*, 25
 (10):14685–14697, 2024.

530

531 Zheng Fang, Xiaoyang Wang, Haocheng Li, Jiejie Liu, Qiugui Hu, and Jimin Xiao. Fastrecon: Few-shot
 532 industrial anomaly detection via fast feature reconstruction. In *Proceedings of the IEEE/CVF International*
 533 *Conference on Computer Vision*, pp. 17481–17490, 2023.

534

535 Jean Feydy, Benjamin Charlier, François-Xavier Vialard, and Gabriel Peyré. Interpolating between optimal
 536 transport and mmd with sinkhorn divergences. In *NeurIPS*, 2019.

537

538 Matic Fučka, Vitjan Zavrtanik, and Danijel Skočaj. Transfusion—a transparency-based diffusion model for
 539 anomaly detection. In *European Conference on Computer Vision*, pp. 91–108. Springer, 2025.

540

541 Kathryn Garside, Robin Henderson, Irina Makarenko, and Cristina Masoller. Topological data analysis of
 542 high resolution diabetic retinopathy images. *PloS one*, 14(5):e0217413, 2019.

543

544 Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian Sun. Ota: Optimal transport assignment for
 545 object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 546 pp. 303–312, 2021.

547

548 Haocheng Gu, Gongyang Li, and Zhi Liu. Masked feature regeneration based asymmetric student–teacher
 549 network for anomaly detection. *Multimedia Tools and Applications*, pp. 1–22, 2024.

550

551 Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka. Cflow-ad: Real-time unsupervised anomaly detection
 552 with localization via conditional normalizing flows. In *Proceedings of the IEEE/CVF winter conference on*
 553 *applications of computer vision*, pp. 98–107, 2022.

554

555 Jia Guo, Shuai Lu, Weihang Zhang, Fang Chen, Huiqi Li, and Hongen Liao. Dinomaly: The less is more
 556 philosophy in multi-class unsupervised anomaly detection. In *Proceedings of the Computer Vision and*
 557 *Pattern Recognition Conference*, pp. 20405–20415, 2025.

558

559 Haoyang He, Yuhu Bai, Jiangning Zhang, Qingdong He, Hongxu Chen, Zhenye Gan, Chengjie Wang,
 560 Xiangtai Li, Guanzhong Tian, and Lei Xie. Mambaad: Exploring state space models for multi-class
 561 unsupervised anomaly detection. *Advances in Neural Information Processing Systems*, 37:71162–71187,
 562 2024.

563

Jie Hu, Yawen Huang, Yilin Lu, Guoyang Xie, Guannan Jiang, and Yefeng Zheng. Anomalyxfusion:
 Multi-modal anomaly synthesis with diffusion. *arXiv preprint arXiv:2404.19444*, 2024a.

Teng Hu, Jiangning Zhang, Ran Yi, Yuzhen Du, Xu Chen, Liang Liu, Yabiao Wang, and Chengjie Wang.
 Anomalydiffusion: Few-shot anomaly image generation with diffusion model. In *Proceedings of the AAAI*
 Conference on Artificial Intelligence, volume 38, pp. 8526–8534, 2024b.

564 Bolin Jiang, Yuqiu Xie, Jiawei Li, Naiqi Li, Yong Jiang, and Shu-Tao Xia. Cagen: Controllable anomaly
 565 generator using diffusion model. In *ICASSP 2024-2024 IEEE International Conference on Acoustics,
 566 Speech and Signal Processing (ICASSP)*, pp. 3110–3114. IEEE, 2024.

567

568 Lida Kanari, Paweł Dłotko, Martina Scolamiero, Ran Levi, Julian Shillcock, Kathryn Hess, and Henry
 569 Markram. A topological representation of branching neuronal morphologies. *Neuroinformatics*, 16:3–13,
 570 2018.

571 Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, and Gaurav Aggarwal. Sita: Single image test-time
 572 adaptation. *arXiv preprint arXiv:2112.02355*, 2021.

573

574 Daehyun Kim, Sungyong Baik, and Tae Hyun Kim. Sanflow: semantic-aware normalizing flow for anomaly
 575 detection and localization. In *Proceedings of the 37th International Conference on Neural Information
 576 Processing Systems*, pp. 75434–75454, 2023.

577

578 Junho Kim, Inwoo Hwang, and Young Min Kim. Ev-tta: Test-time adaptation for event-based object
 579 recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 580 17745–17754, 2022.

581

582 Jiarui Lei, Xiaobo Hu, Yue Wang, and Dong Liu. Pyramidflow: High-resolution defect contrastive localization
 583 using pyramid normalizing flow. In *Proceedings of the IEEE/CVF conference on computer vision and
 pattern recognition*, pp. 14143–14152, 2023.

584

585 Wenqiao Li, Xiaohao Xu, Yao Gu, Bozhong Zheng, Shenghua Gao, and Yingna Wu. Towards scalable 3d
 586 anomaly detection and localization: A benchmark via 3d anomaly synthesis and a self-supervised learning
 587 network. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 588 22207–22216, 2024.

589

590 Zhenyu Li, Ning Li, Kaitao Jiang, Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong. Superpixel
 masking and inpainting for self-supervised anomaly detection. In *Bmvc*, 2020.

591

592 Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribution shifts.
International Journal of Computer Vision, pp. 1–34, 2024.

593

594 Jingyi Liao, Xun Xu, Yongyi Su, Rong-Cheng Tu, Yifan Liu, Dacheng Tao, and Xulei Yang. Robust distribu-
 595 tion alignment for industrial anomaly detection under distribution shift. *arXiv preprint arXiv:2503.14910*,
 596 2025.

597

598 Wei Luo, Haiming Yao, Wenyong Yu, and Zhengyong Li. Ami-net: Adaptive mask inpainting network for
 599 industrial anomaly detection and localization. *IEEE Transactions on Automation Science and Engineering*,
 600 2024.

601

602 You-Wei Luo and Chuan-Xian Ren. Mot: Masked optimal transport for partial domain adaptation. In *2023
 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3531–3540. IEEE, 2023.

603

604 Eyal Michaeli and Ohad Fried. Advancing fine-grained classification by structure and sub-
 605 ject preserving augmentation. In *Advances in Neural Information Processing Systems*,
 606 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/27c8b849acba6793f0b73f7ee7ea7397-Abstract-Conference.html. NeurIPS 2024.

607

608 Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
 609 Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. *arXiv preprint
 610 arXiv:2006.10963*, 2020.

611 Hitoshi Nakanishi, Masahiro Suzuki, and Yutaka Matsuo. Fixing the train-test objective discrepancy: Iterative
 612 image inpainting for unsupervised anomaly detection. *Journal of Information Processing*, 30:495–504,
 613 2022.

614

615 A Tuan Nguyen, Thanh Nguyen-Tang, Ser-Nam Lim, and Philip HS Torr. Tipi: Test time adaptation with
 616 transformation invariance. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 617 Recognition*, pp. 24162–24171, 2023.

618

619 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
 620 Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning robust visual
 621 features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

622

623 YeongHyeon Park, Sungho Kang, Myung Jin Kim, Hyeonho Jeong, Hyunkyu Park, Hyeong Seok Kim, and
 624 Juneho Yi. Neural network training strategy to enhance anomaly detection performance: A perspective
 625 on reconstruction loss amplification. In *ICASSP 2024-2024 IEEE International Conference on Acoustics,
 626 Speech and Signal Processing (ICASSP)*, pp. 5165–5169. IEEE, 2024.

627

628 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
 629 *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

630

631 Jonathan Pirnay and Keng Chai. Inpainting transformer for anomaly detection. In *International Conference
 632 on Image Analysis and Processing*, pp. 394–406. Springer, 2022.

633

634 Lingteng Qiu, Xiaojun Wu, and Zhiyang Yu. A high-efficiency fully convolutional networks for pixel-wise
 635 surface defect detection. *IEEE Access*, 7:15884–15893, 2019. doi: 10.1109/ACCESS.2019.2894420.

636

637 Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with optimal
 638 transport. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*,
 639 pp. 737–753. Springer, 2017.

640

641 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological
 642 machine learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 643 4741–4748, 2015.

644

645 Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards
 646 total recall in industrial anomaly detection. In *Proceedings of the IEEE/CVF conference on computer
 647 vision and pattern recognition*, pp. 14318–14328, 2022.

648

649 Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric student-teacher networks
 650 for industrial anomaly detection. In *Proceedings of the IEEE/CVF winter conference on applications of
 651 computer vision*, pp. 2592–2602, 2023.

652

653 Stefan Schlüter, David Borth, Tim Weninger, and Marco F. Huber. Deep one-class classification for defect
 654 detection in industry. In *International Conference on Pattern Recognition (ICPR)*, pp. 1950–1957, 2022.

655

656 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
 657 with self-supervision for generalization under distribution shifts. In *International conference on machine
 learning*, pp. 9229–9248. PMLR, 2020.

Xian Tao, Xinyi Gong, Xin Zhang, Shaohua Yan, and Chandranath Adak. Deep learning for unsupervised
 658 anomaly localization in industrial images: A survey. *IEEE Transactions on Instrumentation and
 659 Measurement*, 71:1–21, 2022.

658 Guoxiang Tong, Quanquan Li, and Yan Song. Enhanced multi-scale features mutual mapping fusion based
 659 on reverse knowledge distillation for industrial anomaly detection and localization. *IEEE Transactions on*
 660 *Big Data*, 10(4):498–513, 2024. doi: 10.1109/TB DATA.2024.3350539.

661 Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for distributions of
 662 persistence diagrams. *Discrete & Computational Geometry*, 52(1):44–70, 2014.

664 Riccardo Volpi, Pau De Jorge, Diane Larlus, and Gabriela Csurka. On the road to online adaptation for
 665 semantic image segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 666 *recognition*, pp. 19184–19195, 2022.

668 Chengjie Wang, Wenbing Zhu, Bin-Bin Gao, Zhenye Gan, Jiangning Zhang, Zhihao Gu, Shuguang Qian,
 669 Mingang Chen, and Lizhuang Ma. Real-iad: A real-world multi-view dataset for benchmarking versatile
 670 industrial anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 671 *Recognition*, pp. 22883–22892, 2024a.

672 Junpu Wang, Guili Xu, Chunlei Li, Guangshuai Gao, and Yuehua Cheng. Multi-feature reconstruction network
 673 using crossed-mask restoration for unsupervised anomaly detection. *arXiv preprint arXiv:2404.13273*,
 674 2024b.

675 Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao Wang, and Chengjie Wang. Multimodal industrial
 676 anomaly detection via hybrid fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 677 *and Pattern Recognition*, pp. 8032–8041, 2023a.

678 Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao Wang, and Chengjie Wang. Multimodal industrial
 679 anomaly detection via hybrid fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 680 *and Pattern Recognition*, pp. 8032–8041, 2023b.

682 Qiangwei Wu, Hui Li, Chenyu Tian, Long Wen, and Xinyu Li. Aekd: Unsupervised auto-encoder knowledge
 683 distillation for industrial anomaly detection. *Journal of Manufacturing Systems*, 73:159–169, 2024.

684 Xianghua Xie and Majid Mirmehdi. Texems: Texture exemplars for defect detection on random textured
 685 surfaces. *IEEE transactions on pattern analysis and machine intelligence*, 29(8):1454–1464, 2007.

687 Hang Yao, Ming Liu, Haolin Wang, Zhicun Yin, Zifei Yan, Xiaopeng Hong, and Wangmeng Zuo. Glad:
 688 Towards better reconstruction with global and local adaptive diffusion models for unsupervised anomaly
 689 detection. *arXiv preprint arXiv:2406.07487*, 2024a.

690 Xincheng Yao, Ruqi Li, Zefeng Qian, Lu Wang, and Chongyang Zhang. Hierarchical gaussian mixture
 691 normalizing flow modeling for unified anomaly detection. *arXiv preprint arXiv:2403.13349*, 2024b.

693 Jianan Ye, Weiguang Zhao, Xi Yang, Guangliang Cheng, and Kaizhu Huang. Po3ad: Predicting point offsets
 694 toward better 3d point cloud anomaly detection. In *Proceedings of the Computer Vision and Pattern*
 695 *Recognition Conference*, pp. 1353–1362, 2025.

696 Vitja Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem – a discriminatively trained reconstruction
 697 embedding for surface anomaly detection. In *IEEE/CVF International Conference on Computer Vision*
 698 (*ICCV*), pp. 8330–8339, 2021a.

700 Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Reconstruction by inpainting for visual anomaly
 701 detection. *Pattern Recognition*, 112:107706, 2021b.

702 Xiaoran Zhang, Byung-Woo Hong, Hyoungseob Park, Daniel H. Pak, Anne-Marie Rickmann, Lawrence H.
 703 Staib, James S. Duncan, and Alex Wong. Progressive test time energy adaptation for medical image
 704 segmentation, 2025.

705 Xuan Zhang, Shiyu Li, Xi Li, Ping Huang, Jiulong Shan, and Ting Chen. Destseg: Segmentation guided
706 denoising student-teacher for anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer*
707 *Vision and Pattern Recognition*, pp. 3914–3923, 2023.

708 Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Self-supervised aggregation of diverse experts
709 for test-agnostic long-tailed recognition. *Advances in Neural Information Processing Systems*, 35:34077–
710 34090, 2022.

712 Chao Zhao, Enrico Zio, and Weiming Shen. Domain generalization for cross-domain fault diagnosis: An
713 application-oriented perspective and a benchmark study. *Reliability Engineering & System Safety*, pp.
714 109964, 2024.

716 Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In *Proceedings*
717 *of the IEEE/CVF international conference on computer vision*, pp. 16259–16268, 2021.

718 Yixuan Zhou, Xing Xu, Jingkuan Song, Fumin Shen, and Heng Tao Shen. Msflow: Multiscale flow-based
719 framework for unsupervised anomaly detection. *IEEE Transactions on Neural Networks and Learning*
720 *Systems*, 2024.

721 Zheyuan Zhou, Le Wang, Naiyu Fang, Zili Wang, Lemiao Qiu, and Shuyou Zhang. R3d-ad: Reconstruction
722 via diffusion for 3d anomaly detection. In *European Conference on Computer Vision*, pp. 91–107. Springer,
723 2025.

725 Jiawen Zhu, Choubo Ding, Yu Tian, and Guansong Pang. Anomaly heterogeneity learning for open-set
726 supervised anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
727 *Pattern Recognition*, pp. 17616–17626, 2024.

728 Ali Zia, Abdelwahed Khamis, James Nichols, Usman Bashir Tayab, Zeeshan Hayder, Vivien Rolland, Eric
729 Stone, and Lars Petersson. Topological deep learning: a review of an emerging paradigm. *Artificial*
730 *Intelligence Review*, 57(4), February 2024. ISSN 1573-7462.

732 Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference self-
733 supervised pre-training for anomaly detection and segmentation. In *European conference on computer*
734 *vision*, pp. 392–408. Springer, 2022.

735 Zuo Zuo, Zongze Wu, Badong Chen, and Xiaopin Zhong. A reconstruction-based feature adaptation
736 for anomaly detection with self-supervised multi-scale aggregation. In *ICASSP 2024 - 2024 IEEE*
737 *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 5840–5844, 2024.
738 doi: 10.1109/ICASSP48485.2024.10446766.

739

740

741

742

743

744

745

746

747

748

749

750

751

752 A SUPPLEMENTARY MATERIAL

- 754 • A.1 outlines the *experimental setup* for 2D and 3D anomaly detection with test-time adaptation and
755 hyperparameter configuration.
- 756 • A.2 evaluate the *computational efficiency* of TopoOT by benchmarking its inference time and GPU
757 memory usage in 2D and 3D AS scenarios.
- 758 • A.3 discuss *fundamental insights, limitations, and possible extensions* within the context of topologi-
759 cal anomaly segmentation.
- 760 • A.4 presents *quantitative and qualitative results* on 2D AD&S datasets, including class-wise per-
761 formance across benchmarks and visual examples that illustrate the effectiveness of OT-guided
762 pseudo-labels.
- 763 • A.5 reports *quantitative and qualitative results* on 3D AD&S datasets, covering voxel- and point-
764 cloud modalities, with class-level analysis and qualitative comparisons to baseline methods.
- 765 • A.6 recalls *optimal transport preliminaries*, including the 2-Wasserstein distance and its entropy-
766 regularised Sinkhorn variant, and clarifies their role in computing the OT couplings used in our
767 framework.
- 768 • A.7 provides a conceptual motivation into optimal transport stability and behaviour.
- 769 • A.8 presents the *mathematical formulation* of cubical complex persistence, detailing how primitive
770 cells are hierarchically aggregated to construct filtration levels and ultimately generate persistence
771 vectors that encode topological features.
- 772 • A.9 provides a *qualitative analysis* of challenging textural anomaly cases, illustrating how the
773 proposed topology-guided pseudo-labels behave when the backbone anomaly maps exhibit weak
774 topological structure.
- 775 • A.10 shows the *ablation study* on the Top- K persistence components, highlighting how varying K
776 impacts the evaluation metrics and that adding lower-ranked components tends to introduce noise
777 and degrade performance.
- 778 • A.11 provides the *complete algorithmic pseudocode* for TopoOT, formally defining the multi-scale
779 filtration steps, stability-aware OT chaining, and the spatial backtracking mechanism that drives the
780 test-time adaptation loop.

783 A.1 ARCHITECTURAL SETTINGS & HYPERPARAMETERS

784 **2D Setup.** For all RGB-based AD&S experiments, we employ **DINO** (Caron et al., 2021) as the feature
785 extractor (F). Our approach is benchmarked against leading state-of-the-art methods, including the memory-
786 bank based **PatchCore** (Roth et al., 2022), **PaDiM** (Defard et al., 2021), the reconstruction-driven **Dinomaly**
787 (Guo et al., 2025), and **MambaAD** (He et al., 2024). Evaluation is conducted on three widely adopted 2D
788 benchmarks: **MVTec AD** (Bergmann et al., 2019) (15 categories; 3,629 training and 1,725 test images), **VisA**
789 (Zou et al., 2022) (12 objects; 9,621 normal and 1,200 anomalous samples), and **Real-IAD** (Wang et al.,
790 2024a) (30 objects; \sim 150,000 images in total, comprising 36,465 normal training samples and 114,585 test
791 images with 63,256 normal and 51,329 anomalous). To ensure comparability, all 2D inputs are standardised
792 to a resolution of 224×224 .

793 **3D Setup.** For multimodal experiments involving RGB and point-cloud modalities, we adopt **DINO-v2**
794 (Oquab et al., 2023) for image features and **Point-MAE** (Zhao et al., 2021) for geometric representations.
795 We benchmark against multimodal memory-bank methods such as **M3DM** (Wang et al., 2023b), as well as
796 reconstruction-oriented baselines including **CMM** (Costanzino et al., 2024b) and **PO3AD** (Ye et al., 2025).
797 The evaluation is performed on two representative 3D benchmarks: **MVTec 3D-AD** (Bergmann et al., 2021)
798

(10 categories; 2,656 nominal training images and 1,197 test samples) and **Anomaly-ShapeNet** (Li et al., 2024) (40 synthetic classes; 1,600 samples spanning six anomaly types).

Test-Time Training. For adaptation, the pretrained backbones are kept frozen while a lightweight MLP head h_ψ , consisting of three linear layers with GELU activations, is fine-tuned. The optimisation objective combines an OT-consistency loss ($\epsilon = 0.05$, up to 200 iterations) with a contrastive loss (margin = 0.4), balanced equally with weights $\alpha = \lambda = 0.5$. Adaptation proceeds for 5 epochs using the Adam optimiser with a learning rate of 10^{-3} . Each test sample is processed independently with an effective batch size of one.

A.2 COMPUTATIONAL COMPLEXITY AND EFFICIENCY

A central strength of the proposed **TopoOT** framework lies in its ability to balance computational complexity with practical efficiency. When evaluated on a single modern GPU, the *complete end-to-end* TopoOT pipeline operates at approximately **2.90 FPS**, while the lightweight **TTT** module alone achieves **121 FPS**. Notably, the **OT** and **TDA** components currently run exclusively on the **CPU**, which constrains the overall end-to-end throughput, while requiring only **349 MB** of GPU memory. This lightweight profile is markedly lower than that of many SOTA anomaly detection baselines. For context, a standard 2D baseline model (Roth et al., 2022) reports an inference time of 0.22 seconds per image, while in the 3D domain, the M3DM (Wang et al., 2023b) model requires 2.86 seconds per image and consumes 6.52 GB of GPU memory. The CMM (Costanzino et al., 2024b) model, though faster at 0.12 seconds per image, still uses 427 MB of memory. **TopoOT** delivers a $14.5 \times$ speedup over CMM. In contrast, **TopoOT** not only achieves a significantly higher frame rate but also maintains a highly competitive memory footprint, underscoring its deployability in scenarios where throughput and hardware constraints are decisive.

The breakdown of computational cost, analysed per module, indicates that the construction of cubical complexes and persistence diagrams constitutes the most demanding stage, requiring approximately **0.33 seconds** per sample when aggregated across all complexes. Despite this initial overhead, the subsequent topological alignment stages remain highly efficient: the *intra-level OT* block requires only **5.5 ms** in aggregate, while the *inter-level OT* block converges nearly instantaneously, below **0.05 ms** per alignment. These operations stabilise and align persistence features without imposing a significant runtime burden. Finally, the downstream multilayer perceptron (MLP) classifier adds only **8.3 ms** per evaluation, rendering its contribution negligible.

Table 4 summarises the per-sample runtime for each backbone, split into backbone inference, persistence diagram (PD) computation, OT alignment and the TopoOT TTT head. The PD stage is the main overhead, while OT and TTT are negligible (the TTT head adds only 0.008 s), so the overall end-to-end latency remains comparable to or better than existing 2D/3D anomaly detection baselines.

Table 4: Backbone processing time, TTT method time per sample, and total time (all in seconds).

Method	Backbone		TopoOT			Total		
	Inference Time (s)	Memory (GB)	PD (s)	OT (s)	TTT (s)	Memory (GB)	Time (s)	Memory (GB)
PaDiM (Defard et al., 2021)	0.950	2.100	0.325	0.005	0.008	0.349	1.288	2.449
Patchcore (Roth et al., 2022)	0.223	3.450	0.331	0.006	0.008	0.349	0.568	3.799
M3DM (Wang et al., 2023a)	2.862	6.520	0.349	0.006	0.008	0.417	3.225	6.937
CMM (Costanzino et al., 2024b)	0.124	0.427	0.352	0.006	0.008	0.417	0.490	0.844
MambaAD (He et al., 2024)	0.027	1.480	0.374	0.006	0.008	0.370	0.415	1.850
Dinomaly (Guo et al., 2025)	0.041	4.320	0.392	0.006	0.008	0.370	0.447	4.690
PO3AD (Ye et al., 2025)	0.294	1.950	0.397	0.006	0.008	0.496	0.705	2.446

846 Taken together, the end-to-end evaluation time per sample remains well within practical limits, supporting
 847 real-time operation. The combination of **high FPS**, **minimal GPU consumption**, and the bounded cost of
 848 topological computations makes **TopoOT** exceptionally well-suited for industrial adoption. Unlike competing
 849 methods that often trade accuracy for efficiency, **TopoOT** achieves both, offering a robust and scalable
 850 solution for anomaly detection under stringent practical constraints.
 851

852 A.3 DISCUSSION, LIMITATIONS, AND FUTURE DIRECTIONS

853
 854 The results in the main paper and Appendices A.4 A.5 demonstrate that TopoOT provides a principled
 855 strategy for replacing non-robust and heuristic thresholding with stability-aware, OT-guided pseudo-labels.
 856 By chaining persistence diagrams across filtrations and integrating sub- and super-level information, the
 857 framework yields segmentation masks that are both structurally coherent and robust under distribution shift.
 858 Consistent gains across 2D and 3D benchmarks confirm that structural alignment is an effective prior for
 859 test-time adaptation.
 860

861 Despite these advances, several limitations remain. First, the approach still depends on the quality of
 862 the anomaly score maps produced by frozen backbones. When upstream representations are noisy or
 863 poorly transferable, the extracted persistent features may not provide sufficient structural guidance. Second,
 864 while the current formulation generalises naturally to both 2D images and 3D point clouds, it does not yet
 865 address spatiotemporal settings such as video or dynamic medical imaging, where temporal coherence and
 866 evolving anomaly structure are critical. Third, efficiency trade-offs deserve further study, although TopoOT is
 867 lightweight relative to baselines, scaling to real-time, high-resolution deployments in safety-critical domains
 868 may require additional optimisations.
 869

870 Future work can address these challenges along several directions. Differentiable approximations of persistent
 871 homology offer a path to end-to-end training with topological losses, enabling tighter integration between
 872 backbone features and topological stability. Jointly optimising anomaly map generation and topological
 873 filtering through self-supervised objectives could mitigate the reliance on noisy upstream scores. Extending
 874 the framework to spatiotemporal domains will require evolving persistence diagrams across frames to capture
 875 anomaly lifespans and enforce temporal consistency. Finally, incorporating uncertainty-aware filtration
 876 strategies, quantifying stability not only by persistence but also by variability across augmentations or
 877 agreement with model uncertainty, could provide more reliable predictions in high-stakes applications such
 878 as robotics, autonomous driving, and medical diagnostics.
 879

880 TopoOT establishes a solid foundation for topology-aware adaptation in anomaly segmentation, highlighting
 881 how persistent homology and optimal transport can jointly serve as structural alignment mechanisms for
 882 adaptive learning. Its current form addresses critical limitations of threshold-based methods, while future
 883 developments promise broader applicability and deeper integration with modern representation learning.
 884

885 A.4 ADDITIONAL EXPERIMENTS AND RESULTS ON 2D AD&S DATASETS

886 Table 5 reports the results of PatchCore on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC, and
 887 P-AUPRO. These results are reproduced directly using the official implementation provided by the authors.
 888

889 Table 5: PatchCore (Roth et al., 2022) on MVTec AD: anomaly scores are I-AUROC, P-AUROC, and P-AUPRO.
 890

Metric	Bottle	Cable	Capsule	Carpet	Grid	Hazelnut	Leather	MetalNut	Pill	Screw	Tile	T-brush	Transistor	Wood	Zipper	Mean
PatchCore — Anomaly Scores (Roth et al., 2022)																
I-AUROC	1.000	0.995	0.981	0.987	0.982	1.000	1.000	1.000	0.966	0.981	0.987	1.000	1.000	0.992	0.994	0.991
P-AUROC	0.986	0.984	0.988	0.990	0.987	0.987	0.993	0.984	0.974	0.994	0.956	0.987	0.963	0.950	0.988	0.981
P-AUPRO	0.961	0.926	0.955	0.966	0.959	0.939	0.989	0.913	0.941	0.979	0.874	0.914	0.835	0.896	0.971	0.935

Figure 3: Qualitative comparison of various anomaly detection methods for different objects using PatchCore model on 2D MvTec AD dataset.

Table 6: Performance of PatchCore (Roth et al., 2022) on MVTec AD’s 15 categories, comparing binary map strategies: THR ($\mu + 3\sigma$), TTT4AS, and TopoOT. Top results per metric are in **bold** (best) and **blue** (second-best).

Metric	Bottle	Cable	Capsule	Carpet	Grid	Hazelnut	Leather	MetalNut	Pill	Screw	Tile	T-brush	Transistor	Wood	Zipper	Mean
(a) PatchCore - Binary Map - THR ($\mu + 3\sigma$) (Roth et al., 2022)																
Precision	0.397	0.344	0.278	0.362	0.432	0.405	0.297	0.435	0.347	0.298	0.403	0.286	0.334	0.384	0.268	0.351
Recall	0.510	0.465	0.626	0.522	0.428	0.380	0.542	0.566	0.618	0.522	0.517	0.542	0.287	0.469	0.605	0.507
F1 Score	0.175	0.194	0.085	0.092	0.078	0.120	0.045	0.311	0.188	0.066	0.209	0.123	0.114	0.121	0.119	0.136
IoU	0.310	0.334	0.222	0.407	0.283	0.367	0.262	0.316	0.287	0.202	0.179	0.262	0.238	0.297	0.513	0.299
(b) PatchCore - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.662	0.502	0.163	0.413	0.185	0.425	0.212	0.644	0.337	0.046	0.644	0.272	0.391	0.470	0.449	0.388
Recall	0.664	0.565	0.632	0.824	0.787	0.861	0.893	0.528	0.740	0.361	0.495	0.594	0.462	0.664	0.644	0.648
F1 Score	0.593	0.480	0.197	0.457	0.272	0.499	0.286	0.482	0.358	0.078	0.474	0.301	0.318	0.464	0.469	0.382
IoU	0.358	0.393	0.166	0.379	0.243	0.418	0.208	0.276	0.264	0.124	0.404	0.234	0.192	0.360	0.370	0.293
(c) PatchCore - Binary Map - TopoOT																
Precision	0.850	0.673	0.399	0.625	0.370	0.487	0.392	0.717	0.416	0.282	0.713	0.390	0.581	0.595	0.765	0.550
Recall	0.555	0.672	0.772	0.685	0.741	0.869	0.909	0.709	0.787	0.890	0.643	0.647	0.496	0.579	0.640	0.720
F1 Score	0.623	0.627	0.445	0.545	0.458	0.579	0.493	0.654	0.465	0.396	0.627	0.412	0.440	0.527	0.646	0.522
IoU	0.474	0.476	0.307	0.400	0.314	0.429	0.356	0.507	0.333	0.269	0.493	0.271	0.301	0.381	0.495	0.387

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Table 6 presents the quantitative comparison of PatchCore on MVTec AD’s 15 categories using different binary map strategies. Our proposed method, **TopoOT**, consistently outperforms both the threshold-based approach (THR) and the recent TTT4AS method across all evaluation metrics.

Specifically, in terms of mean performance, **TopoOT** achieves an F1 Score of 0.522, significantly higher than THR (0.136) and TTT4AS (0.382). This corresponds to a relative improvement of **+0.386** over THR and **+0.140** over TTT4AS. Similarly, in terms of Precision, TopoOT improves over THR and TTT4AS by **+0.199** and **+0.162**, respectively. A comparable trend is observed for Recall, where TopoOT provides a gain of **+0.213** over THR and **+0.072** over TTT4AS. Beyond overall averages, significant category-level improvements can also be observed in Table 6.

Overall, these results demonstrate that TopoOT not only delivers significant improvements on key categories but also generalises well, outperforming existing methods across the broader range of datasets included in the MVTec AD benchmark. This consistent performance underscores the robustness and effectiveness of our method in 2D anomaly detection tasks.

Table 7 presents the performance of PaDiM on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC, and P-AUPRO. The reported results are reproduced directly from the official implementation released by the authors.

Table 7: PaDiM (Defard et al., 2021) on MVTec AD: anomaly scores are I-AUROC, P-AUROC and P-AUPRO.

Metric	Bottle	Cable	Capsule	Carpet	Grid	Hazelnut	Leather	MetalNut	Pill	Screw	Tile	T-brush	Transistor	Wood	Zipper	Mean
I-AUROC	0.971	0.982	0.974	0.979	0.995	0.991	0.965	0.942	0.995	0.972	0.961	0.929	0.973	0.984	0.957	0.979
P-AUROC	0.983	0.967	0.985	0.991	0.973	0.982	0.992	0.972	0.957	0.985	0.941	0.988	0.975	0.949	0.985	0.975
P-AUPRO	0.948	0.888	0.935	0.962	0.946	0.926	0.978	0.856	0.927	0.944	0.860	0.931	0.845	0.911	0.959	0.921

Table 8: Performance evaluation of PaDiM (Defard et al., 2021) across 15 categories of the MVTec AD dataset and their mean, comparing three binary map strategies: (a) THR ($\mu + 3\sigma$), (b) TTT4AS, and (c) TopoTTA. The table highlights the best result for each Precision, Recall, F1 Score, and IoU in **bold** (best) and **blue** (second-best).

Metric	Bottle	Cable	Capsule	Carpet	Grid	Hazelnut	Leather	MetalNut	Pill	Screw	Tile	T-brush	Transistor	Wood	Zipper	Mean
(a) PaDiM - Binary Map - THR ($\mu + 3\sigma$) (Defard et al., 2021)																
Precision	0.729	0.580	0.287	0.561	0.327	0.586	0.306	0.540	0.410	0.196	0.131	0.416	0.462	0.576	0.676	0.452
Recall	0.321	0.249	0.813	0.736	0.708	0.477	0.927	0.281	0.493	0.712	0.005	0.514	0.349	0.399	0.615	0.507
F1 Score	0.343	0.280	0.325	0.523	0.407	0.433	0.396	0.292	0.337	0.295	0.009	0.391	0.307	0.375	0.596	0.354
IoU	0.310	0.290	0.330	0.340	0.320	0.300	0.310	0.330	0.320	0.300	0.280	0.350	0.330	0.310	0.335	0.317
(b) PaDiM - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.585	0.412	0.176	0.429	0.199	0.349	0.208	0.519	0.269	0.088	0.137	0.258	0.472	0.355	0.499	0.330
Recall	0.438	0.500	0.707	0.769	0.726	0.637	0.916	0.491	0.568	0.735	0.123	0.595	0.425	0.416	0.648	0.579
F1 Score	0.429	0.395	0.214	0.459	0.290	0.376	0.293	0.386	0.262	0.153	0.103	0.283	0.291	0.319	0.512	0.318
IoU	0.280	0.270	0.280	0.270	0.260	0.310	0.270	0.280	0.270	0.270	0.260	0.280	0.270	0.270	0.270	0.274
(c) PaDiM - Binary Map - TopoOT																
Precision	0.750	0.648	0.355	0.523	0.463	0.358	0.246	0.574	0.307	0.266	0.685	0.268	0.492	0.439	0.678	0.470
Recall	0.689	0.670	0.828	0.942	0.805	0.885	0.987	0.636	0.783	0.905	0.742	0.920	0.547	0.756	0.724	0.788
F1 Score	0.718	0.658	0.496	0.672	0.587	0.509	0.393	0.603	0.441	0.411	0.712	0.415	0.518	0.555	0.700	0.559
IoU	0.390	0.410	0.400	0.420	0.380	0.400	0.410	0.390	0.400	0.410	0.420	0.390	0.410	0.400	0.400	0.402

Table 8 shows the performance comparison of PaDiM on MVTec AD’s 15 categories using different binary map strategies. Our proposed method, **TopoOT**, achieves consistent improvements across all metrics when compared to both THR and TTT4AS.

On average, TopoOT improves the F1 Score by **+0.205** over THR and by **+0.241** over TTT4AS. Similarly, Precision increases by **+0.018** compared to THR and by **+0.14** over TTT4AS. In Recall, TopoOT shows even stronger gains of **+0.281** against THR and **+0.209** over TTT4AS.

987 Overall, these results confirm that TopoOT not only delivers significant improvements in individual categories
 988 but also generalises well across the full MVTec AD benchmark. Its consistent superiority over both threshold-
 989 based and test-time training baselines demonstrates the effectiveness of our approach for 2D anomaly detection
 990 tasks.

991 Table 9 presents the results of MambaAD on VisA (12 classes), where I-AUROC, P-AUROC, and P-AUPRO
 992 are reported as **mean per class**. The results are reproduced directly using the official implementation provided
 993 by the authors.

995 Table 9: MambaAD (He et al., 2024) on VisA (12 classes), I-AUROC, P-AUROC, P-AUPRO, metrics are **mean per class**.
 996

Metric	candle	capsules	cashew	chewinggum	fryum	macaroni1	macaroni2	pcb1	pcb2	pcb3	pcb4	pipe.fryum	Mean
I-AUROC	0.968	0.918	0.945	0.977	0.952	0.916	0.816	0.954	0.942	0.937	0.999	0.987	0.943
P-AUROC	0.990	0.991	0.943	0.981	0.969	0.995	0.995	0.998	0.989	0.991	0.986	0.991	0.985
P-AUPRO	0.955	0.918	0.878	0.797	0.916	0.952	0.962	0.928	0.896	0.891	0.876	0.951	0.910

1001 Table 10: Performance evaluation of MambaAD (He et al., 2024) 12 categories (VisA classes) and their mean, comparing
 1002 three binary map strategies: (a) THR ($\mu + 3\sigma$), (b) TTT4AS, and (c) OT-TopoTTA. The table highlights the best result
 1003 for each Precision, Recall, and F1 Score metric in **bold black** and the second-best in **blue**.
 1004

Metric	candle	capsules	cashew	chewinggum	fryum	macaroni1	macaroni2	pcb1	pcb2	pcb3	pcb4	pipe.fryum	Mean
(a) MambaAD - Binary Map - THR ($\mu + 3\sigma$) (He et al., 2024)													
Precision	0.111	0.291	0.163	0.368	0.265	0.049	0.060	0.224	0.166	0.209	0.333	0.166	0.200
Recall	0.874	0.741	0.699	0.796	0.659	0.775	0.804	0.954	0.816	0.779	0.648	0.877	0.785
F1 Score	0.172	0.357	0.174	0.468	0.207	0.088	0.104	0.278	0.255	0.299	0.396	0.092	0.241
IoU	0.105	0.259	0.105	0.334	0.127	0.048	0.058	0.278	0.255	0.299	0.396	0.092	0.196
(b) MambaAD - Binary Map - TTT4AS (Guo et al., 2025)													
Precision	0.185	0.389	0.229	0.335	0.263	0.079	0.052	0.239	0.235	0.243	0.398	0.178	0.235
Recall	0.807	0.879	0.857	0.867	0.716	0.807	0.858	0.889	0.824	0.822	0.601	0.918	0.820
F1 Score	0.264	0.440	0.275	0.484	0.190	0.137	0.097	0.307	0.339	0.331	0.419	0.186	0.289
IoU	0.104	0.258	0.114	0.331	0.113	0.032	0.025	0.163	0.122	0.167	0.217	0.095	0.145
(c) MambaAD - Binary Map - OT-TopoTTA													
Precision	0.311	0.483	0.336	0.577	0.444	0.198	0.184	0.507	0.431	0.480	0.702	0.341	0.416
Recall	0.542	0.460	0.563	0.573	0.290	0.565	0.664	0.529	0.410	0.469	0.317	0.696	0.507
F1 Score	0.295	0.357	0.314	0.528	0.199	0.247	0.258	0.462	0.388	0.433	0.392	0.346	0.352
IoU	0.196	0.246	0.217	0.394	0.200	0.157	0.163	0.328	0.267	0.298	0.267	0.226	0.247

1018 Table 10 presents the performance comparison of MambaAD on the VisA dataset across 12 categories, using
 1019 different binary map strategies. Our proposed method, **TopoOT**, consistently achieves higher scores across
 1020 Precision, Recall, and F1 compared to THR and TTT4AS.

1021 On average, TopoOT improves the F1 Score by **+0.111** over THR and by **+0.085** over TTT4AS. Similarly,
 1022 Precision increases by **+0.216** compared to THR and by **+0.193** over TTT4AS. In Recall, TopoOT performed
 1023 a little low as compared with compared to THR and TTT4AS.

1024 Overall, these results confirm that TopoOT not only achieves notable improvements on specific challenging
 1025 categories but also generalises effectively across all VisA classes. Its consistent superiority over both
 1026 traditional thresholding and recent test-time training methods highlights the robustness of our approach for
 1027 2D anomaly detection under complex real-world scenarios.

1028 Table 11 reports the results of MambaAD on Real-IAD (30 classes), where anomaly scores are given in terms
 1029 of I-AUROC, P-AUROC, and P-AUPRO. The results are obtained directly using the official implementation
 1030 provided by the authors.

1032 Table 12 shows that TopoOT frequently outperforms both THR and TTT4AS, securing the top rank in most
 1033 metrics across different 30 classes of the Real-IAD Dataset. On average, our TopoOT has an F1 Score of

Table 11: MambaAD (He et al., 2024) on Real-IAD (30 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric	audiojack	b-cap	b-battery	e-cap	eraser	f-hood	mint	mounts	pcb	p-battery	p-nut	p-plug	p-doll	regulator	r-base	s-set
MambaAD (He et al., 2024) — Anomaly Scores																
I-AUROC	0.842	0.928	0.798	0.780	0.875	0.793	0.701	0.868	0.891	0.902	0.871	0.857	0.880	0.697	0.980	0.944
P-AUROC	0.977	0.997	0.981	0.970	0.992	0.987	0.965	0.992	0.992	0.994	0.994	0.990	0.992	0.976	0.997	0.988
P-AUPRO	0.839	0.972	0.862	0.894	0.937	0.863	0.726	0.935	0.931	0.953	0.961	0.915	0.954	0.870	0.988	0.894

Metric	switch	tape	t-block	t-brush	toy	t-brick	transistor1	u-block	usb	u-adaptor	vcpill	w-beads	woodstick	zipper	Mean
MambaAD (He et al., 2024) — Anomaly Scores															
I-AUROC	0.917	0.968	0.961	0.851	0.830	0.705	0.944	0.897	0.920	0.794	0.883	0.825	0.804	0.992	0.863
P-AUROC	0.982	0.998	0.998	0.975	0.960	0.966	0.994	0.995	0.992	0.973	0.987	0.980	0.977	0.993	0.985
P-AUPRO	0.929	0.980	0.982	0.914	0.863	0.747	0.965	0.954	0.952	0.825	0.893	0.845	0.827	0.976	0.905

Table 12: Performance evaluation of MambaAD (He et al., 2024) across 30 classes (Real-IAD Dataset) and their mean, comparing three binary map strategies: (a) THR ($\mu + 3\sigma$), (b) TTT4AS, and (c) TopoOT. The best result for each Precision, Recall, and F1 Score is in **bold** and the second-best in **blue**.

Metric	audiojack	b-cap	b-battery	e-cap	eraser	f-hood	mint	mounts	pcb	p-battery	p-nut	p-plug	p-doll	regulator	r-base	s-set
(a) MambaAD - Binary Map - THR ($\mu + 3\sigma$) (He et al., 2024)																
Precision	0.164	0.055	0.199	0.202	0.121	0.126	0.082	0.209	0.438	0.178	0.132	0.101	0.122	0.074	0.144	0.156
Recall	0.510	0.944	0.333	0.475	0.648	0.514	0.385	0.759	0.472	0.815	0.783	0.846	0.794	0.548	0.950	0.743
F1 Score	0.210	0.100	0.160	0.181	0.188	0.178	0.120	0.254	0.309	0.280	0.202	0.173	0.189	0.107	0.227	0.245
IoU	0.133	0.055	0.102	0.116	0.114	0.112	0.076	0.162	0.212	0.171	0.124	0.100	0.114	0.062	0.139	0.155
(b) MambaAD - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.062	0.027	0.075	0.039	0.059	0.051	0.046	0.097	0.075	0.084	0.055	0.048	0.073	0.034	0.071	0.091
Recall	0.605	0.953	0.629	0.684	0.739	0.692	0.461	0.833	0.870	0.887	0.799	0.870	0.830	0.534	0.951	0.762
F1 Score	0.109	0.052	0.108	0.072	0.105	0.090	0.075	0.164	0.135	0.151	0.099	0.089	0.124	0.061	0.127	0.154
IoU	0.062	0.027	0.066	0.039	0.059	0.050	0.044	0.097	0.074	0.084	0.055	0.048	0.071	0.034	0.071	0.091
(c) MambaAD - Binary Map - TopoOT																
Precision	0.239	0.245	0.164	0.156	0.254	0.183	0.133	0.422	0.297	0.404	0.269	0.229	0.324	0.171	0.411	0.398
Recall	0.491	0.829	0.513	0.612	0.585	0.544	0.355	0.637	0.745	0.679	0.695	0.766	0.584	0.451	0.803	0.629
F1 Score	0.284	0.347	0.169	0.225	0.303	0.233	0.155	0.444	0.367	0.435	0.341	0.317	0.365	0.203	0.465	0.430
IoU	0.197	0.231	0.106	0.143	0.203	0.159	0.102	0.324	0.255	0.317	0.236	0.206	0.246	0.139	0.342	0.322
(a) MambaAD - Binary Map - THR ($\mu + 3\sigma$) (He et al., 2024)																
Precision	0.252	0.129	0.165	0.396	0.149	0.264	0.218	0.131	0.289	0.053	0.331	0.194	0.188	0.378	0.188	
Recall	0.736	0.953	0.951	0.442	0.535	0.268	0.729	0.794	0.699	0.586	0.598	0.429	0.540	0.805	0.653	
F1 Score	0.331	0.214	0.265	0.309	0.188	0.213	0.316	0.211	0.320	0.090	0.380	0.227	0.242	0.399	0.228	
IoU	0.226	0.128	0.161	0.203	0.118	0.148	0.200	0.130	0.211	0.050	0.270	0.148	0.155	0.269	0.145	
(b) MambaAD - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.123	0.085	0.063	0.246	0.053	0.078	0.120	0.071	0.086	0.024	0.169	0.099	0.085	0.221	0.084	
Recall	0.856	0.956	0.989	0.624	0.636	0.585	0.893	0.838	0.907	0.577	0.741	0.626	0.668	0.905	0.763	
F1 Score	0.200	0.149	0.116	0.299	0.093	0.131	0.205	0.125	0.153	0.045	0.258	0.159	0.146	0.310	0.137	
IoU	0.122	0.084	0.063	0.194	0.052	0.077	0.119	0.071	0.086	0.023	0.163	0.096	0.084	0.204	0.080	
(c) MambaAD - Binary Map - TopoOT																
Precision	0.430	0.404	0.423	0.454	0.222	0.189	0.348	0.338	0.370	0.127	0.481	0.263	0.258	0.535	0.305	
Recall	0.661	0.747	0.866	0.409	0.594	0.510	0.573	0.721	0.736	0.572	0.510	0.476	0.521	0.665	0.616	
F1 Score	0.455	0.460	0.520	0.368	0.292	0.235	0.385	0.412	0.440	0.179	0.430	0.296	0.318	0.520	0.346	
IoU	0.330	0.322	0.378	0.247	0.205	0.159	0.267	0.295	0.317	0.117	0.311	0.208	0.221	0.378	0.243	

1081 **0.346**, showing an improvement of **+0.058** over $\text{THR}(\mu + 3\sigma)$ and an astounding **+0.209** improvement over
 1082 TTT4AS. Similarly, TopoOT has **0.305** Precision, which is **+0.117** more than the THR and **+0.221** more than
 1083 TTT4AS. This trend of significant improvement is not limited to a few instances, but our method's consistent
 1084 performance across the 30 classes shown in the Table 12 indicates its robustness and effectiveness. While the
 1085 specific percentages of improvement vary, the overall pattern is clear that our method also outperformed on
 1086 other classes, making TopoOT a highly effective and robust technique for anomaly detection.

1087 Table 13 presents the results of Dinomaly on VisA (12 classes), with anomaly scores reported in terms of
 1088 I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
 1089 provided by the authors.

1091 Table 13: Dinomaly (Guo et al., 2025) on VisA (12 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric	candle	capsules	cashew	chewinggum	fryum	macaroni1	macaroni2	pcb1	pcb2	pcb3	pcb4	pipe.fryum	Mean
(a) Dinomaly (Guo et al., 2025) - Anomaly Score													
I-AUROC	0.987	0.986	0.987	0.998	0.988	0.980	0.959	0.991	0.993	0.989	0.998	0.992	0.987
P-AUROC	0.994	0.996	0.971	0.991	0.966	0.996	0.997	0.995	0.980	0.984	0.987	0.992	0.987
P-AUPRO	0.954	0.974	0.940	0.881	0.935	0.964	0.987	0.951	0.913	0.946	0.944	0.952	0.945

1092 Table 14: Performance evaluation of Dinomaly (Guo et al., 2025) across 12 categories (VisA classes) and their mean,
 1093 comparing three binary map strategies: (a) $\text{THR}(\mu + 3\sigma)$, (b) TTT4AS, and (c) TopoOT. The table highlights the best
 1094 result for each Precision, Recall, and F1 Score metric in **bold black** and the second-best in **blue**.

Metric	candle	capsules	cashew	chewinggum	fryum	macaroni1	macaroni2	pcb1	pcb2	pcb3	pcb4	pipe.fryum	Mean
(a) Dinomaly - Binary Map - $\text{THR}(\mu + 3\sigma)$ (Guo et al., 2025)													
Precision	0.190	0.316	0.239	0.384	0.307	0.109	0.111	0.300	0.275	0.318	0.518	0.231	0.275
Recall	0.908	0.936	0.824	0.889	0.740	0.947	0.970	0.862	0.847	0.861	0.674	0.885	0.862
F1 Score	0.286	0.396	0.285	0.510	0.247	0.189	0.195	0.373	0.380	0.435	0.522	0.246	0.339
IoU	0.116	0.230	0.108	0.289	0.093	0.034	0.032	0.146	0.126	0.176	0.309	0.069	0.144
(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)													
Precision	0.175	0.369	0.217	0.318	0.250	0.075	0.049	0.227	0.223	0.231	0.378	0.169	0.223
Recall	0.798	0.869	0.848	0.858	0.708	0.798	0.849	0.879	0.815	0.813	0.594	0.908	0.811
F1 Score	0.244	0.407	0.254	0.447	0.176	0.127	0.090	0.284	0.313	0.306	0.387	0.172	0.267
IoU	0.165	0.295	0.163	0.314	0.110	0.075	0.049	0.189	0.201	0.203	0.258	0.104	0.177
(c) Dinomaly - Binary Map - TopoOT													
Precision	0.398	0.613	0.459	0.650	0.490	0.395	0.363	0.661	0.649	0.642	0.738	0.498	0.546
Recall	0.658	0.553	0.676	0.648	0.467	0.569	0.573	0.505	0.468	0.458	0.371	0.695	0.553
F1 Score	0.410	0.497	0.448	0.584	0.329	0.432	0.420	0.532	0.515	0.501	0.428	0.470	0.464
IoU	0.175	0.298	0.177	0.388	0.129	0.115	0.097	0.275	0.268	0.285	0.329	0.134	0.223

1115 Table 14 showcases a performance evaluation of three binary map strategies on the VisA dataset, with our
 1116 technique, TopoOT, consistently demonstrating superior performance. Across the 12 categories, TopoOT
 1117 regularly secures the highest F1 Score and Precision values. Our mean value of F1 Score **0.464** represents a
 1118 substantial **+0.125** improvement over Dinomaly-Binary Map-THR ($\mu + 3\sigma$)s and **+0.197** improvement over
 1119 TTT4AS. Similarly, for the average Precision, TopoOT shows an improvement of **+0.271** and **+0.323** over
 1120 Dinomaly-Binary Map-THR ($\mu + 3\sigma$)s and TTT4AS, respectively. This trend of significant improvement is
 1121 not limited to these instances but is a general pattern, indicating that our method also outperforms on other
 1122 datasets, establishing TopoOT as a robust and highly effective technique for anomaly detection.

1123 Table 15 presents the results of Dinomaly on Real-IAD (30 classes), with anomaly scores reported as I-
 1124 AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official implementation
 1125 provided by the authors.

1126 Table 16 presents a performance evaluation of three binary map strategies, and our method, TopoOT, con-
 1127 sistent with the text above, demonstrates superior performance. A detailed analysis of the quantitative results reveals that

Table 15: Dinomaly (Guo et al., 2025) on Real-IAD (30 classes). I-AUROC, P-AUROC, P-AUPRO.

Metric	audiojack	b-cap	b-battery	e-cap	eraser	f-hood	mint	mounts	pcb	p-battery	p-nut	p-plug	p-doll	regulator	r-base	s-set
Dinomaly (Guo et al., 2025) — Anomaly Scores																
I-AUROC	0.868	0.899	0.866	0.870	0.903	0.838	0.731	0.904	0.920	0.929	0.883	0.905	0.851	0.852	0.992	0.958
P-AUROC	0.917	0.981	0.929	0.960	0.964	0.930	0.776	0.956	0.957	0.968	0.974	0.964	0.960	0.956	0.985	0.909
P-AUPRO	0.917	0.981	0.929	0.960	0.964	0.930	0.776	0.956	0.957	0.968	0.974	0.964	0.960	0.956	0.985	0.909

Metric	switch	tape	t-block	t-brush	toy	t-brick	transistor1	u-block	usb	u-adaptor	vcpill	w-beads	woodstick	zipper	Mean
Dinomaly (Guo et al., 2025) — Anomaly Scores															
I-AUROC	0.978	0.969	0.967	0.904	0.856	0.723	0.974	0.899	0.920	0.815	0.920	0.873	0.840	0.991	0.893
P-AUROC	0.959	0.988	0.988	0.904	0.910	0.766	0.978	0.968	0.975	0.910	0.937	0.905	0.904	0.978	0.989
P-AUPRO	0.959	0.988	0.988	0.904	0.910	0.766	0.978	0.968	0.975	0.910	0.937	0.905	0.904	0.978	0.939

Table 16: Performance evaluation of Dinomaly (Guo et al., 2025) across 30 classes (Real-IAD Dataset) and their mean, comparing three binary map strategies: (a) THR ($\mu + 3\sigma$), (b) TTT4AS, and (c) TopoOT. The best result for each Precision, Recall, and F1 Score is in **bold** and the second-best in **blue**.

Metric	audiojack	b-cap	b-battery	e-cap	eraser	f-hood	mint	mounts	pcb	p-battery	p-nut	p-plug	p-doll	regulator	r-base	s-set
(a) Dinomaly - Binary Map - THR ($\mu + 3\sigma$) (Guo et al., 2025)																
Precision	0.366	0.105	0.274	0.304	0.164	0.196	0.144	0.222	0.383	0.186	0.159	0.134	0.193	0.132	0.170	0.184
Recall	0.645	0.985	0.435	0.663	0.832	0.775	0.664	0.826	0.719	0.903	0.885	0.937	0.737	0.895	0.996	0.776
F1 Score	0.427	0.186	0.282	0.350	0.260	0.290	0.217	0.325	0.442	0.299	0.259	0.229	0.273	0.215	0.272	0.279
IoU	0.303	0.105	0.187	0.234	0.163	0.183	0.138	0.217	0.312	0.185	0.158	0.133	0.172	0.130	0.169	0.183
(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.102	0.056	0.113	0.093	0.107	0.098	0.095	0.229	0.184	0.188	0.122	0.102	0.123	0.121	0.184	0.174
Recall	0.804	0.721	0.504	0.874	0.803	0.807	0.532	0.888	0.844	0.866	0.866	0.904	0.730	0.816	0.924	0.720
F1 Score	0.171	0.098	0.135	0.159	0.169	0.159	0.145	0.328	0.281	0.297	0.198	0.176	0.177	0.188	0.285	0.263
IoU	0.103	0.056	0.091	0.093	0.107	0.098	0.094	0.224	0.183	0.187	0.123	0.102	0.112	0.121	0.182	0.175
(c) Dinomaly - Binary Map - TopoOT																
Precision	0.465	0.383	0.333	0.339	0.418	0.360	0.307	0.559	0.526	0.562	0.368	0.399	0.406	0.445	0.583	0.475
Recall	0.604	0.662	0.415	0.653	0.579	0.660	0.501	0.505	0.606	0.561	0.609	0.711	0.562	0.505	0.699	0.477
F1 Score	0.465	0.460	0.259	0.400	0.441	0.410	0.308	0.490	0.529	0.515	0.388	0.465	0.409	0.436	0.581	0.382
IoU	0.335	0.320	0.162	0.275	0.315	0.294	0.211	0.369	0.390	0.380	0.273	0.328	0.287	0.315	0.439	0.275
(a) Dinomaly - Binary Map - THR ($\mu + 3\sigma$) (Guo et al., 2025)																
Precision	0.336	0.190	0.182	0.427	0.174	0.310	0.312	0.190	0.323	0.094	0.452	0.310	0.206	0.452	0.242	
Recall	0.931	0.973	0.967	0.374	0.647	0.654	0.884	0.836	0.874	0.923	0.740	0.721	0.831	0.747	0.793	
F1 Score	0.467	0.301	0.296	0.307	0.219	0.348	0.438	0.286	0.431	0.165	0.499	0.393	0.310	0.431	0.317	
IoU	0.324	0.189	0.180	0.205	0.133	0.236	0.292	0.187	0.288	0.094	0.367	0.271	0.199	0.293	0.208	
(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)																
Precision	0.154	0.150	0.160	0.312	0.109	0.153	0.200	0.121	0.159	0.052	0.296	0.161	0.154	0.351	0.154	
Recall	0.927	0.928	0.951	0.553	0.625	0.860	0.812	0.794	0.882	0.702	0.871	0.838	0.878	0.815	0.801	
F1 Score	0.233	0.240	0.260	0.342	0.166	0.236	0.295	0.192	0.245	0.087	0.410	0.250	0.245	0.430	0.229	
IoU	0.148	0.151	0.159	0.233	0.105	0.151	0.187	0.121	0.155	0.052	0.292	0.160	0.153	0.298	0.147	
(c) Dinomaly - Binary Map - TopoOT																
Precision	0.629	0.434	0.632	0.526	0.382	0.395	0.579	0.443	0.515	0.325	0.627	0.458	0.302	0.641	0.461	
Recall	0.526	0.626	0.722	0.274	0.504	0.670	0.513	0.607	0.608	0.566	0.574	0.606	0.703	0.506	0.577	
F1 Score	0.527	0.429	0.636	0.294	0.380	0.430	0.500	0.452	0.520	0.352	0.540	0.458	0.340	0.466	0.442	
IoU	0.374	0.300	0.490	0.191	0.275	0.301	0.352	0.331	0.372	0.234	0.402	0.337	0.239	0.330	0.317	

1175 TopoOT frequently outperforms both Dinomaly - THR ($\mu + 3\sigma$) and Dinomaly - TTT4AS, securing the
 1176 top rank for F1 Score and Precision in most categories. On average, our F1 Score of **0.442** represents a
 1177 significant **+0.125** improvement over Dinomaly ($\mu + 3\sigma$)'s F1 Score of 0.0.317. Similarly, our F1 score is
 1178 **+0.213** more than the Dinomaly - TTT4AS. TopoOT has a Precision of **0.461**, which is **+0.219** better than
 1179 Dinomaly - THR ($\mu + 3\sigma$)'s Precision of 0.0.242 and **0.307** more than Dinomaly TTT4AS. This consistent
 1180 trend of significant improvement is not limited to these instances but is a general pattern, indicating that our
 1181 method also outperforms on other datasets, establishing TopoOT as a robust and highly effective technique
 1182 for anomaly detection.

1184 A.5 ADDITIONAL QUANTITATIVE RESULTS ON 3D AD&S DATASETS

1186 Table 17 presents the results of CMM across categories of the MVTec 3D-AD dataset, with anomaly scores
 1187 reported as I-AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official
 1188 implementation provided by the authors.

1190 Table 17: CMM (Costanzino et al., 2024b) anomaly scores across categories of the MVTec 3D-AD dataset (Bergmann
 1191 et al., 2021).

Metric	Bagel	Gland	Carrot	Cookie	Dowel	Foam	Peach	Potato	Rope	Tire	Mean
CMM (Costanzino et al., 2024b) – Anomaly Score											
I-AUROC	0.994	0.888	0.984	0.993	0.980	0.888	0.941	0.943	0.980	0.953	0.954
P-AUROC	0.997	0.992	0.999	0.972	0.987	0.993	0.998	0.999	0.998	0.998	0.993
P-AUPRO	0.979	0.972	0.982	0.945	0.950	0.968	0.980	0.982	0.975	0.981	0.971

1197 Table 18 reports the results of M3DM on the MVTec 3D-AD dataset, with anomaly scores given in terms of
 1198 I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
 1199 provided by the authors.

1201 Table 18: M3DM (Wang et al., 2023b) anomaly scores across categories of the MVTec 3D-AD
 1202 dataset (Bergmann et al., 2021).

Metric	Bagel	Gland	Carrot	Cookie	Dowel	Foam	Peach	Potato	Rope	Tire	Mean
M3DM (Wang et al., 2023b) – Anomaly Score											
I-AUROC	0.994	0.909	0.972	0.976	0.960	0.942	0.973	0.899	0.972	0.850	0.945
P-AUROC	0.995	0.993	0.997	0.985	0.985	0.984	0.996	0.994	0.997	0.996	0.992
P-AUPRO	0.970	0.971	0.979	0.950	0.941	0.932	0.977	0.971	0.971	0.975	0.964

1209 Table 19 reports the quantitative results of our proposed method **TopoOT** against two competitive baselines,
 1210 namely CMM-THR and CMM-TTT4AS, across the MVTec 3D-AD benchmark. By analysing the mean
 1211 column, we observe that TopoOT consistently outperforms both baselines across multiple metrics.

1213 In terms of Precision, TopoOT achieves a mean score of 0.427, significantly improving over CMM-THR
 1214 (0.199) and CMM-TTT4AS (0.303). For Recall, TopoOT yields second best value for a mean of 0.845, and
 1215 CMM-THR achieves 0.902, and CMM-TTT4AS (0.608). With respect to F1 Score, TopoOT secures a mean
 1216 value of 0.482, which is a notable gain of **+0.207** compared to CMM-THR (0.275) and **+0.102** gain against
 1217 CMM-TTT4AS (0.377). Similarly, for IoU, TopoOT obtains a mean of 0.343, showing clear improvements
 1218 over CMM-THR (0.232) and CMM-TTT4AS (0.077).

1219 These improvements are particularly evident in the *Gland*, *Cookie*, and *Carrot* categories, where TopoOT
 1220 demonstrates substantial gains in F1 Score and IoU compared to both baseline methods. While CMM-THR
 1221 exhibits high recall values, it suffers from very low precision, highlighting its bias toward over-segmentation.

1222 Table 19: Evaluation of CMM (Costanzino et al., 2024b) across benchmarks in the MVTec 3D-AD (Bergmann
 1223 et al., 2021).

Method	Bagel	Gland	Carrot	Cookie	Dowel	Foam	Peach	Potato	Rope	Tire	Mean
(a) CMM - THR ($\mu + 3\sigma$) (Costanzino et al., 2024b)											
Precision	0.301	0.188	0.049	0.518	0.072	0.275	0.262	0.092	0.049	0.182	0.199
Recall	0.949	0.842	0.998	0.901	0.896	0.597	0.957	0.998	0.989	0.896	0.902
F1 Score	0.425	0.265	0.092	0.619	0.129	0.327	0.375	0.160	0.091	0.267	0.275
IoU	0.411	0.182	0.102	0.578	0.276	0.233	0.085	0.149	0.198	0.232	
(b) CMM - TTT4AS (Costanzino et al., 2024a)											
Precision	0.432	0.258	0.242	0.713	0.195	0.214	0.353	0.252	0.264	0.111	0.303
Recall	0.745	0.766	0.889	0.603	0.739	0.732	0.872	0.888	0.865	0.904	0.800
F1 Score	0.495	0.362	0.351	0.606	0.289	0.311	0.470	0.363	0.360	0.189	0.380
IoU	0.264	0.037	0.029	0.231	0.031	0.058	0.034	0.028	0.029	0.030	0.077
(c) CMM - TopoOT											
Precision	0.560	0.347	0.398	0.841	0.387	0.298	0.432	0.308	0.477	0.224	0.427
Recall	0.847	0.849	0.905	0.643	0.658	0.893	0.903	0.947	0.822	0.980	0.845
F1 Score	0.618	0.419	0.516	0.672	0.438	0.345	0.519	0.411	0.525	0.360	0.482
IoU	0.476	0.305	0.371	0.535	0.312	0.238	0.387	0.289	0.394	0.119	0.343

1239 In contrast, TopoOT provides a more balanced trade-off, achieving consistently higher F1 Scores and IoU,
 1240 which are more indicative of robust anomaly localisation.

1241 Overall, the results establish that TopoOT achieves superior performance not only in terms of mean values
 1242 but also across a wide range of categories, confirming its ability to generalise effectively to diverse datasets
 1243 within MVTec 3D-AD.

1245 Table 20: Evaluation of M3DM (Wang et al., 2023b) across benchmarks in the MVTec 3D-AD (Bergmann
 1246 et al., 2021).

Method	Bagel	Gland	Carrot	Cookie	Dowel	Foam	Peach	Potato	Rope	Tire	Mean
(a) M3DM - THR ($\mu + 3\sigma$) (Wang et al., 2023b)											
Precision	0.174	0.105	0.045	0.493	0.221	0.254	0.067	0.050	0.194	0.127	0.173
Recall	0.949	0.980	0.997	0.712	0.909	0.536	1.000	0.999	0.917	0.894	0.889
F1 Score	0.270	0.174	0.085	0.547	0.328	0.318	0.121	0.094	0.308	0.204	0.245
IoU	0.431	0.189	0.114	0.552	0.151	0.333	0.198	0.117	0.182	0.053	0.232
(b) M3DM - TTT4AS (Costanzino et al., 2024a)											
Precision	0.498	0.486	0.337	0.752	0.464	0.386	0.536	0.347	0.561	0.302	0.467
Recall	0.607	0.706	0.750	0.351	0.691	0.624	0.779	0.684	0.543	0.669	0.640
F1 Score	0.478	0.525	0.422	0.443	0.514	0.440	0.585	0.419	0.468	0.383	0.468
IoU	0.287	0.078	0.031	0.343	0.066	0.148	0.090	0.026	0.099	0.028	0.120
(c) M3DM - TopoOT											
Precision	0.870	0.357	0.490	0.829	0.566	0.379	0.603	0.490	0.254	0.798	0.564
Recall	0.744	0.806	0.794	0.571	0.685	0.910	0.862	0.823	0.540	0.935	0.767
F1 Score	0.655	0.406	0.559	0.626	0.564	0.452	0.661	0.541	0.304	0.127	0.490
IoU	0.515	0.294	0.406	0.480	0.418	0.333	0.519	0.401	0.195	0.077	0.364

1261 Table 20 presents the quantitative comparison of our proposed method **TopoOT** against two state-of-the-art
 1262 baselines, M3DM-THR and M3DM-TTT4AS, across the MVTec 3D-AD benchmark. The results clearly
 1263 demonstrate that TopoOT achieves consistent improvements across all metrics.

1264 On the mean column, TopoOT achieves a Precision of 0.564, which represents an improvement of **+0.391**
 1265 over M3DM-THR (0.173) and **+0.097** over M3DM-TTT4AS (0.467). In terms of Recall, our method
 1266 obtains 0.767, showing a second-best result compared to M3DM-THR (0.889) and M3DM-TTT4AS (0.640).
 1267 More importantly, for F1 Score, which balances precision and recall, TopoOT achieves 0.490, significantly
 1268

1269 outperforming M3DM-THR (0.245) and M3DM-TTT4AS (0.468). Similarly, for IoU, TopoOT yields 0.364,
 1270 surpassing M3DM-THR (0.232) and M3DM-TTT4AS (0.120).

1271 Overall, the improvements in mean performance, alongside consistent category-level gains, confirm the
 1272 superior generalisation ability of TopoOT across both simple and complex 3D anomaly detection scenarios in
 1273 MVTec 3D-AD.

1275 Table 21: Performance evaluation of PO3AD (Ye et al., 2025) across 29 categories of Anomaly-ShapeNet (Li et al., 2024)
 1276 and their mean, comparing three binary map strategies: (a) THR ($\mu + 3\sigma$), (b) TTT4AS, and (c) TopoOT. The table
 1277 highlights the best result for each Precision, Recall, and F1 Score metric in **bold black** and the second-best in **blue**.

Metric	ashtray0	bag0	bottle0	bottle1	bottle3	bowl0	bowl1	bowl2	bowl3	bowl4	bowl5	bucket0	bucket1	cap0	cap3
(a) PO3AD — Binary Map — THR ($\mu + 3\sigma$) (Ye et al., 2025)															
Precision	0.920	0.678	0.737	0.714	0.847	0.797	0.589	0.815	0.607	0.872	0.647	0.709	0.716	0.781	0.726
Recall	0.280	0.362	0.346	0.326	0.637	0.301	0.702	0.639	0.707	0.746	0.472	0.256	0.284	0.275	0.527
F1 Score	0.417	0.464	0.460	0.420	0.720	0.429	0.630	0.713	0.644	0.793	0.539	0.359	0.387	0.390	0.720
IoU	0.272	0.344	0.331	0.285	0.586	0.278	0.482	0.596	0.496	0.660	0.410	0.236	0.263	0.255	0.487
(b) PO3AD — Binary Map — TTT4AS (Costanzino et al., 2024a)															
Precision	0.581	0.492	0.623	0.601	0.688	0.654	0.489	0.677	0.503	0.712	0.551	0.599	0.611	0.635	0.618
Recall	0.452	0.510	0.411	0.405	0.595	0.388	0.615	0.559	0.621	0.646	0.503	0.354	0.381	0.370	0.501
F1 Score	0.508	0.501	0.495	0.484	0.638	0.487	0.545	0.612	0.556	0.677	0.526	0.444	0.469	0.467	0.553
IoU	0.341	0.334	0.329	0.319	0.469	0.322	0.375	0.441	0.385	0.512	0.357	0.286	0.306	0.305	0.383
(c) PO3AD — Binary Map — TopoOT															
Precision	0.849	0.598	0.707	0.672	0.804	0.768	0.568	0.789	0.576	0.831	0.619	0.696	0.701	0.726	0.706
Recall	0.463	0.421	0.411	0.411	0.722	0.395	0.740	0.687	0.764	0.798	0.538	0.382	0.439	0.463	0.530
F1 Score	0.545	0.453	0.484	0.470	0.748	0.512	0.633	0.726	0.629	0.801	0.562	0.430	0.433	0.525	0.592
IoU	0.402	0.343	0.355	0.337	0.625	0.354	0.483	0.615	0.483	0.670	0.435	0.299	0.303	0.390	0.473
Metric															
(a) PO3AD — Binary Map — THR ($\mu + 3\sigma$) (Ye et al., 2025)															
Precision	0.782	0.524	0.801	0.649	0.697	0.239	0.513	0.404	0.600	0.572	0.468	0.627	0.777	0.777	0.675
Recall	0.443	0.326	0.314	0.339	0.302	0.215	0.370	0.336	0.486	0.292	0.584	0.733	0.605	0.572	0.441
F1 Score	0.558	0.389	0.436	0.431	0.411	0.216	0.411	0.356	0.520	0.351	0.503	0.663	0.663	0.627	0.500
IoU	0.401	0.276	0.301	0.293	0.269	0.132	0.276	0.259	0.383	0.245	0.383	0.502	0.562	0.511	0.371
(b) PO3AD — Binary Map — TTT4AS (Costanzino et al., 2024a)															
Precision	0.641	0.445	0.672	0.540	0.589	0.198	0.415	0.355	0.511	0.498	0.417	0.533	0.655	0.661	0.562
Recall	0.512	0.455	0.389	0.458	0.399	0.311	0.544	0.410	0.501	0.321	0.540	0.588	0.619	0.582	0.485
F1 Score	0.569	0.450	0.493	0.496	0.476	0.242	0.471	0.381	0.506	0.390	0.470	0.559	0.637	0.619	0.510
IoU	0.398	0.290	0.327	0.329	0.312	0.138	0.308	0.235	0.339	0.242	0.307	0.388	0.467	0.448	0.347
(c) PO3AD — Binary Map — TopoOT															
Precision	0.746	0.446	0.783	0.571	0.666	0.156	0.318	0.364	0.548	0.566	0.432	0.603	0.745	0.733	0.631
Recall	0.549	0.571	0.368	0.543	0.370	0.444	0.666	0.460	0.523	0.349	0.622	0.646	0.723	0.659	0.540
F1 Score	0.613	0.426	0.478	0.486	0.449	0.223	0.388	0.360	0.518	0.387	0.489	0.611	0.697	0.666	0.529
IoU	0.468	0.310	0.342	0.353	0.300	0.135	0.259	0.255	0.377	0.278	0.371	0.465	0.612	0.559	0.402

1309
 1310 As shown in Table 21, our method TopoOT consistently outperforms THR and TTT4AS across all metrics on
 1311 Anomaly-ShapeNet. In the mean column, TopoOT achieves notable gains, +0.099 in Recall, +0.029 in F1
 1312 Score, and +0.031 in IoU over THR, and even larger improvements over TTT4AS (e.g., +0.069 in Precision,
 1313 +0.055 in Recall, and 0.019 in F1 Score). These results, along with strong performance across individual
 1314 categories, demonstrate that TopoOT not only sets a new state of the art but also generalises robustly across
 1315 diverse anomaly types and datasets.

1316
 1317 Table 22 reports the results of PO3AD, with anomaly scores evaluated using Object-AUROC, Point-AUROC,
 1318 and Object-AUCPR. The results are reproduced directly using the official implementation provided by the
 1319 authors.

1320 Table 22: PO3AD (Ye et al., 2025) — Anomaly scores, Object-AUROC, Point-AUROC, Object-AUCPR.

Metric	ashtray0	bag0	bottle0	bottle1	bottle3	bowl0	bowl1	bowl2	bowl3	bowl4	bowl5	bucket0	bucket1	cap0	cap3
PO3AD (Ye et al., 2025) — Anomaly Scores															
O-AUROC	1.000	0.833	0.900	0.933	0.926	0.922	0.829	0.833	0.881	0.981	0.849	0.853	0.787	0.877	0.859
P-AUROC	0.962	0.949	0.912	0.844	0.880	0.978	0.914	0.918	0.935	0.967	0.941	0.755	0.899	0.957	0.948
O-AUCPR	0.999	0.809	0.927	0.959	0.962	0.946	0.905	0.888	0.927	0.985	0.904	0.923	0.882	0.841	0.906
Mean															
O-AUROC	0.871	0.833	0.995	0.808	0.923	0.762	0.961	0.742	0.952	0.821	0.675	0.966	0.739	0.830	0.867
P-AUROC	0.909	0.932	0.974	0.823	0.907	0.878	0.948	0.882	0.978	0.884	0.902	0.982	0.950	0.952	0.919
O-AUCPR	0.879	0.870	0.995	0.765	0.914	0.864	0.961	0.789	0.963	0.902	0.824	0.971	0.833	0.904	0.903

1360 Figure 4: Qualitative comparison of AD&S methods for different objects using 3D MvTec AD Dataset.

1363 A.6 OPTIMAL TRANSPORT PRELIMINARIES
1364

1365 For completeness, we recall the Optimal Transport (OT) formulations underlying Eq. equation 2. Let
1366 $P = \{p_i, w_i\}_{i=1}^m$ and $Q = \{q_j, v_j\}_{j=1}^n$ be two discrete probability measures with weights $w \in \Delta^m$, $v \in \Delta^n$,
1367 and cost matrix $C(i, j) = \|p_i - q_j\|_2^2$. The classical 2-Wasserstein distance is defined as
1368

$$1369 W_2^2(P, Q) = \min_{\Pi \in \mathcal{U}(w, v)} \langle C, \Pi \rangle,$$

1370 where $\Pi \in \mathbb{R}_+^{m \times n}$ is a transport plan and $\mathcal{U}(w, v) = \{\Pi \mid \Pi \mathbf{1} = w, \Pi^\top \mathbf{1} = v\}$ denotes the set of admissible
1371 couplings. While exact OT provides a principled alignment, solving this linear program has $O(m^3 \log m)$
1372 complexity, and the resulting optimal plans are typically sparse. In practice, sparsity can make OT couplings
1373 numerically sensitive, that is, small perturbations in the support points may lead to abrupt changes in the
1374 optimal plan (Peyré et al., 2019).
1375

1376 To improve robustness and computational efficiency, we adopt the *entropy-regularised* variant, known as the
1377 Sinkhorn distance (Cuturi, 2013; Peyré et al., 2019):
1378

$$1379 W_\varepsilon(P, Q) = \min_{\Pi \in \mathcal{U}(w, v)} \langle C, \Pi \rangle + \varepsilon H(\Pi),$$

1380 where $H(\Pi) = \sum_{i,j} \Pi(i, j)(\log \Pi(i, j) - 1)$ is the negative entropy of Π . The regularisation parameter
1381 $\varepsilon > 0$ controls smoothness: large ε yields dense couplings, while small ε approaches the exact Wasserstein
1382 distance.
1383

1384 In our pipeline, persistence diagrams are constructed using GUDHI (cubical complexes), but all transport
1385 computations are carried out with POT’s `ot.sinkhorn(..., reg=ε)` routine². Thus, the couplings Π^*
1386 appearing in Sec. 3.2 and Appendix A.7 are entropy-regularised OT plans. This choice ensures numerical
1387 stability, differentiability, and Lipschitz continuity, which underlie the stability and generalisation guarantees
1388 established in Appendix A.7.
1389

A.7 CONCEPTUAL MOTIVATION
1390

1391 A central motivation of our framework is that anomaly segmentation under distribution shift can be interpreted
1392 through the discrepancy between distributions of persistence features. Let \mathcal{D}_{sub} and \mathcal{D}_{sup} denote the empirical
1393 distributions of birth–death components extracted from the sub- and super-level filtrations (Sec. 3.1). The
1394 entropic OT distance
1395

$$1396 W_\varepsilon(\mathcal{D}_{\text{sub}}, \mathcal{D}_{\text{sup}}) = \min_{\Pi \in \mathcal{U}(\mathcal{D}_{\text{sub}}, \mathcal{D}_{\text{sup}})} \langle C, \Pi \rangle + \varepsilon H(\Pi)$$

1397 quantifies the minimal cost of aligning structural information across the two filtrations. Computing W_ε
1398 identifies components with stable, low-cost couplings, from which OT-guided pseudo-labels \tilde{Y}_{OT} are derived
1399 (Sec. 3.2). By combining the classical stability of persistence diagrams with the smooth dependence of
1400 entropic OT on point locations, this construction is expected to yield pseudo-labels that are more stable under
1401 small local perturbations of the anomaly map.
1402

1403 Beyond stability, this perspective connects conceptually to classical discrepancy-based domain adaptation
1404 (DA). In the DA setting (Redko et al., 2017), the target risk can be upper bounded by a source risk plus a
1405 discrepancy term (e.g., a Wasserstein distance). We use this framework purely as an analogy: in our setting,
1406 the “source” and “target” distributions correspond to persistence features extracted at different filtration
1407 levels or under distribution shift. We do not train hypotheses within the OT step, nor do we claim a new DA
1408

1409 ²<https://pythonot.github.io/>

1410 bound; the analogy simply clarifies why reducing OT discrepancy across filtrations correlates with empirical
 1411 robustness.
 1412

1413 **Setup.** Let P_k^f denote the persistence diagram extracted from the $f \in \{\text{sub}, \text{sup}\}$ filtration at threshold τ_k .
 1414 We compute entropic OT distances between augmented diagrams (Sec. A.6), allowing each point $p = (b, d)$
 1415 to match either a point in another diagram or its diagonal projection. Let $\Pi_{k \rightarrow \ell}^*$ be the optimal transport plan
 1416 between P_k^f and P_ℓ^g with ground cost $C(i, j) = \|p_i - q_j\|_2^2$. The cross-level stability score $s(c)$ for a feature
 1417 c is defined in Sec. 3.2.
 1418

1419 **Observation: Stability under perturbations.** Persistence diagrams are stable under perturbations of the
 1420 underlying function, in the sense that moving each point by at most ρ perturbs the diagram by at most
 1421 $O(\rho)$ in standard diagram distances. Entropically regularised OT inherits this smooth dependence on point
 1422 positions. Consequently, the chained stability scores used for feature selection vary smoothly under ρ -bounded
 1423 perturbations. Features separated by a sufficiently large margin retain their relative ranking.
 1424

1425 **Observation: Behaviour of entropic OT along chains.** The entropic OT W_ε debiased counterpart, the
 1426 Sinkhorn divergence S_ε , is a true metric and obeys a triangle inequality (Feydy et al., 2019). This provides
 1427 a useful analogy for interpreting chained OT behaviour, if pairwise discrepancies along a filtration chain
 1428 decrease, the corresponding Sinkhorn divergence between the endpoints also decreases. Although our method
 1429 operates directly on W_ε , we observe empirically that reducing local OT costs across levels suppresses spurious
 1430 cross-level inconsistencies, consistent with the behaviour suggested by the metric structure of S_ε .
 1431

1432 **Interpretation.** Together, the stability of persistence diagrams and the behaviour of entropic OT provide
 1433 intuition for why the OT-chaining mechanism is robust and why it can reduce cross-level discrepancy in
 1434 practice. These results are conceptual and do not constitute a new formal theory; they serve to situate the
 1435 empirical behaviour observed in our experiments within existing stability principles from topological data
 1436 analysis and discrepancy-based generalisation theory.
 1437

A.8 CUBICAL PERSISTENCE

1439 A *primitive interval* is $J = [k, k + 1] \subset \mathbb{R}$ with $k \in \mathbb{Z}$, called a 1-cube, the degenerate case $[k]$ is a 0-cube. A
 1440 d -dimensional *elementary cube* is the Cartesian product

$$1441 \quad CU = J_1 \times \cdots \times J_d \in \mathbb{R}^d, \quad (5)$$

1442 e.g., vertices, edges, squares, and voxels in 3D.
 1443

1444 The boundary of CU is

$$1445 \quad \partial CU = \sum_{i=1}^d (-1)^{i+1} (J_1 \times \cdots \times \partial J_i \times \cdots \times J_d), \quad (6)$$

1446 where $\partial J_i = \{k, k + 1\}$. A cube CU is a *subcube* of CU' if $J_i \subseteq J'_i$ for all i .
 1447

1448 A *cubical complex* \mathcal{K} is a set of cubes closed under subcubes and boundaries, ensuring structural coherence
 1449 across dimensions (Fig. 5).
 1450

1451 The chain group $CU_n(K)$ is the free Abelian group on n -cubes, linked by boundary maps
 1452

$$1453 \quad \cdots \rightarrow CU_{n+1}(K) \xrightarrow{\partial_{n+1}} CU_n(K) \xrightarrow{\partial_n} CU_{n-1}(K) \rightarrow \cdots,$$

1454 with $\partial_n \circ \partial_{n+1} = 0$. Cycles and boundaries are
 1455

$$1456 \quad Z_n(K) = \ker(\partial_n), \quad B_n(K) = \text{im}(\partial_{n+1}),$$

Figure 5: Elementary cubes of different dimensions and an example cubical complex.

and the n -th homology group is $H_n(K) = Z_n(K)/B_n(K)$.

A *filtration function* $f_K : K \rightarrow \mathbb{R}$ activates cubes monotonically: $P \sqsubseteq Q \Rightarrow f_K(P) \leq f_K(Q)$. This defines sublevel and superlevel sets:

$$K(a_i) = f_K^{-1}((-\infty, a_i]), \quad K^\uparrow(b_i) = f_K^{-1}([b_i, +\infty)). \quad (7)$$

Filtrations induce homology maps

$$H_k(K_0) \xrightarrow{\varphi_{01}} H_k(K_1) \xrightarrow{\varphi_{12}} \dots \xrightarrow{\varphi_{n-1,n}} H_k(K_n),$$

forming the persistence module

$$\mathcal{P} = \{H_k(K_i), \varphi_{ij}\}_{0 \leq i \leq j \leq n}.$$

Each topological feature σ has birth b_σ , death d_σ , and persistence $d_\sigma - b_\sigma$. The collection of intervals $[b_\sigma, d_\sigma]$ forms the *barcode*, while the *persistence diagram* (PD) encodes these as birth–death points in \mathbb{R}^2 . To integrate with ML models, PDs are vectorised via

$$\Phi : \text{PD} \rightarrow \mathbb{R}^M.$$

A.9 QUALITATIVE ANALYSIS ON TEXTURAL ANOMALY CASES

Figure 6 shows typical challenging cases for TopoOT on texture-heavy categories (carpet, grid, wood). The first columns display the RGB image, the backbone anomaly heatmap, and the ground-truth (GT) mask. The next two columns show the binary segmentations obtained from the sublevel and superlevel filtrations of the anomaly score map, followed by the OT-guided pseudo-label produced by cross-filtration alignment. The last two columns compare the final TopoOT output with the TTT4AS baseline.

In these examples, the backbone anomaly scores already exhibit diffuse, fine-grained patterns with weak topological structure. The sublevel and superlevel filtrations therefore produce several small, fragmented components that only partially cover the true anomalous region, and sometimes include spurious islands in normal areas. OT chaining removes part of this noise and focuses the support, and the final TopoOT masks remain visually cleaner and closer to the GT than TTT4AS. However, the results are still not perfect: some anomalies are under-segmented, and small false positives remain, reflecting the limited topological signal in the underlying anomaly map. These cases highlights the limitations of our current design. First, TopoOT is fundamentally constrained by the quality of the backbone anomaly scores. The backbone does not produce a clear topological contrast between normal and anomalous texture, our cubical filtrations and persistence diagrams cannot recover it. Second, the test-time training head is fully unsupervised, so we have no additional supervision or explicit shape priors to correct these subtle texture errors. This suggests two natural directions for improvement: designing richer filtration functions (for example, combining anomaly

Figure 6: Qualitative examples on texture-heavy categories (carpet, grid, wood). From left to right: RGB image, backbone anomaly heatmap, ground truth (GT), binary masks from sublevel and superlevel filtrations, OT-guided pseudo-label (Cross OT), final TopoOT prediction, and TTT4AS. TopoOT reduces spurious fragments and sharpens the region compared to TTT4AS, but residual under-segmentation and small false positives remain, illustrating the challenges posed by weak topological signal in purely textural anomalies.

scores with local texture statistics or multi-scale smoothing to strengthen topological cues), and augmenting the loss with additional regularisation terms that penalise overly fragmented or isolated pseudo-labels. Even in these difficult textural regimes, the qualitative examples indicate that our topology-guided masks improve over TTT4AS while making the challenging modes interpretable in terms of the anomaly-score geometry.

A.10 ABLATION STUDY ON TOP-K COMPONENTS

We performed a dedicated sensitivity analysis of the Top-K selection. As shown in the Table 23, we evaluate $K \in 1, 2, 3, 4, 5$ across datasets and backbones. We find that a fixed value of $K=1$ yields the most stable and highest F1-scores (PatchCore: 0.522; CMM: 0.482; M3DM: 0.490). As K increases, F1 consistently decreases, even though recall rises. This trend is expected; the highest-ranked components are those with the strongest OT-stability and largest persistence, whereas lower-ranked components correspond to short-persistence, less reliable structures. Including these additional components introduces noise into the pseudo-labels and degrades precision, leading to lower F1. Since $K=1$ is the most robust choice across datasets and architectures, we fix it globally in all experiments.

Table 23: Effect of retaining the Top- K OT-stable components on anomaly segmentation. Each row corresponds to keeping the K highest-ranked components (ranked by OT-stability and persistence).

Top- K Components Retained	2D-PatchCore			3D-CMM			3D-M3DM		
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
K = 1	0.550	0.720	0.522	0.427	0.845	0.482	0.564	0.767	0.490
K = 2	0.462	0.818	0.474	0.411	0.753	0.410	0.323	0.809	0.434
K = 3	0.405	0.829	0.431	0.392	0.671	0.403	0.286	0.950	0.356
K = 4	0.358	0.901	0.415	0.381	0.666	0.397	0.177	0.961	0.334
K = 5	0.325	0.911	0.380	0.354	0.576	0.388	0.121	0.966	0.199

1551 A.11 DETAILED TOPOOT ALGORITHM

1553 **Algorithm 1:** TopoOT: Topology-Aware Optimal Transport for Anomaly Segmentation

1555 **Input** : Test image x ; Frozen Backbone $F(\cdot)$; Thresholds $\mathcal{T} = \{\tau_1 < \dots < \tau_N\}$; OT Reg. ε ; Weights
 1556 α, λ, m ; Top- K .

1557 **Output**: Binary Segmentation Mask \hat{Y}^{bin}

1558 1 Extract backbone features $Z = F(x)$ and scalar anomaly map $A(x) \in [0, 1]^{H \times W}$;

1559 2 */* Multi-Scale Filtering (Sec. 3.1) */*

1560 2 **foreach** filtration type $f \in \{\text{sub}, \text{sup}\}$ **do**

1561 3 Initialize empty diagram list $\mathcal{D}_f \leftarrow []$;

1562 4 **foreach** threshold $\tau_k \in \mathcal{T}$ **do**

1563 5 Construct cubical complex $K_{\tau_k}^f$ on the level set $S_{\tau_k}^f$ (as defined in Sec.3.1);

1564 6 Compute persistence diagrams $P_h^f[\tau_k] = \text{PH}_h(K_{\tau_k}^f)$ for $h \in \{0, 1\}$;

1565 7 Append $\{P_h^f[\tau_k]\}_{h \in \{0, 1\}}$ to \mathcal{D}_f ;

1566 8 */* Stability Scoring (Sec. 3.2) */*

1567 8 **foreach** $f \in \{\text{sub}, \text{sup}\}$ **do**

1568 9 Initialize feature chains \mathcal{C}_f from \mathcal{D}_f ;

1569 10 **foreach** sequential pair (P_k, P_{k+1}) in \mathcal{D}_f **do**

1570 11 Compute Cost Matrix C ; Solve Entropic OT Π_{intra}^* ; *// Eq. 1*

1571 12 **foreach** feature c in chain **do**

1572 13 $s_{\text{intra}}(c) \leftarrow \max_j \left(\frac{\Pi_{\text{intra}}^*(i(c), j)}{1 + \sqrt{C(i(c), j)}} \right) \cdot \alpha \cdot \text{pers}(c)$; *// Eq. 2*

1573 14 Filter \mathcal{C}_f : Retain chains with high cumulative s_{intra} ;

1574 15 Compute OT plan Π_{cross}^* between surviving sets \mathcal{C}_{sub} and \mathcal{C}_{sup} ;

1575 16 **foreach** candidate $c \in \mathcal{C}_{\text{sub}} \cup \mathcal{C}_{\text{sup}}$ **do**

1576 17 $s_{\text{cross}}(c) \leftarrow \max_j \left(\frac{\Pi_{\text{cross}}^*(i(c), j)}{1 + \sqrt{C(i(c), j)}} \right) \cdot \alpha \cdot \text{pers}(c)$;

1577 18 $\mathcal{C}^* \leftarrow$ Select Top- K ranked candidates based on $s_{\text{cross}}(c)$; *// See Ablation A.10*

1578 19 */* Backprojection to Pixel Space (Sec. 3.2) */*

1579 19 Initialize pseudo-label mask $\tilde{Y}_{\text{OT}} \leftarrow 0$ on Ω ;

1580 20 **foreach** candidate $c \in \mathcal{C}^*$ **do**

1581 21 Retrieve death time d_c of c from its persistence diagram;

1582 22 Set backprojection threshold $\tau_{\text{bp}}(c) \leftarrow d_c$ Define pixel support $\Gamma(c) \leftarrow \{p \in \Omega : A(p) \geq \tau_{\text{bp}}(c)\}$;

1583 23 Update mask $\tilde{Y}_{\text{OT}}(p) \leftarrow \tilde{Y}_{\text{OT}}(p) \vee 1_{\Gamma(c)}(p)$ for all p ;

1584 24 */* TopoOT Test-Time Training (Sec. 3.3) */*

1585 24 Initialize lightweight head h_{ψ} (MLP);

1586 25 **while** not converged **do**

1587 26 Forward: $\hat{Y}_{\text{logits}} = h_{\psi}(Z)$, $\hat{Y}_{\text{prob}} = \sigma(\hat{Y}_{\text{logits}})$, $z_p = \text{Normalize}(\hat{Y}_{\text{logits}}[p])$;

1588 27 $\mathcal{L}_{\text{OT}} = \|\hat{Y}_{\text{prob}} - \tilde{Y}_{\text{OT}}\|_2$;

1589 28 Sample pixel pairs (p, q) based on \tilde{Y}_{OT} (Same/Diff class);

1590 29 $\mathcal{L}_{\text{con}} = (1 - y_{pq})\|z_p - z_q\|_2^2 + y_{pq}[\max(0, m - \|z_p - z_q\|_2)]^2$; *// Eq. 3*

1591 30 Update $\psi \leftarrow \psi - \eta \nabla_{\psi}(\mathcal{L}_{\text{OT}} + \lambda \mathcal{L}_{\text{con}})$;

1592 31 */* Inference */*

1593 31 **return** $\hat{Y}^{\text{bin}} \leftarrow \text{AdaptiveDecisionRule}(h_{\psi}(Z))$;
