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ABSTRACT

Deep topological data analysis (TDA) offers a principled framework for capturing struc-
tural invariants such as connectivity and cycles that persist across scales, making it a
natural fit for anomaly segmentation (AS). Unlike threshold-based binarisation, which
produces brittle masks under distribution shift, TDA allows anomalies to be characterised
as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a
topology-aware optimal transport (OT) framework that integrates multi-filtration persis-
tence diagrams with test-time adaptation (TTA). Our key innovation is Optimal Transport
Chaining, which sequentially aligns persistence diagrams (PDs) across thresholds and filtra-
tions, yielding geodesic stability scores that identify features consistently preserved across
scales. These stability-aware pseudo-labels supervise a lightweight head trained online
with OT-consistency and contrastive objectives, ensuring robust adaptation under domain
shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-
of-the-art performance1, outperforming the most competitive methods by up to +24.1%
mean F1 on 2D datasets and +10.2% on 3D anomaly segmentation benchmarks.

1 INTRODUCTION

Test-time training (TTT) has emerged as a promising paradigm for adapting models under distribution shift,
but most approaches remain limited to entropy minimisation or feature consistency, without structured
reasoning about data geometry (Sun et al., 2020; Volpi et al., 2022; Zhang et al., 2022). A central limitation
of many existing TTT approaches, particularly in dense prediction tasks, is their reliance on heuristic pseudo-
labels or confidence thresholds (Liang et al., 2024; Costanzino et al., 2024a; Zhang et al., 2025), which are
non-robust (brittle) under distribution shift. Incorporating explicit structural priors provides a principled way
to address this gap. The integration of TDA, which extracts persistent features such as connectivity and holes
across scales (Zia et al., 2024), and OT, which provides a principled framework for aligning distributions
(Cuturi, 2013; Peyré et al., 2019), has received little attention in this context. AS is a particularly compelling
domain in which to explore this integration, because it requires pixel-level localisation of irregular patterns
whose connectivity and shape are critical, yet conventional threshold-based binarisation often collapses under
shift (Cao et al., 2024). By combining TDA’s ability to capture structural persistence with OT’s alignment
capabilities, TTT can move beyond heuristics and yield more stable and adaptive anomaly delineation.

AS demands fine-grained identification of abnormal regions in test images, typically without access to
anomalous training examples (Tao et al., 2022). Most existing methods generate continuous anomaly maps
that must be binarised (Cao et al., 2024), but thresholds derived from nominal data are brittle across categories
and anomaly types (Tong et al., 2024; Wu et al., 2024; Zhou et al., 2024). Supervised approaches (Baitieva
et al., 2024; Hu et al., 2024b; Zhu et al., 2024; Ding et al., 2022) can achieve strong performance but require

1For reproducibility, our implementation is included with this submission
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extensive annotation, which is impractical for rare or heterogeneous anomalies (Xie & Mirmehdi, 2007; Qiu
et al., 2019). Unsupervised methods (Guo et al., 2025; He et al., 2024) are trained only on nominal data, rely
on static thresholds, and fail to preserve structural consistency under domain shift.

Beyond the reliance on brittle thresholds, current approaches to AS and TTA face several underexplored
challenges. First, robustness under distribution shift remains insufficient, benchmarks such as MVTec-AD
(Bergmann et al., 2019), VisA (Zou et al., 2022), and Real-IAD (Wang et al., 2024a) often understate the
variability of anomalies, yet in practice, even minor domain shifts can cause embeddings or thresholds to fail
catastrophically. Second, AS research has concentrated on 2D image settings, leaving structural guidance in
3D anomaly detection and segmentation (AD&S) largely unaddressed (Li et al., 2024), despite its importance
in industrial inspection. Third, pseudo-labels used in existing TTT frameworks are often derived from entropy
or heuristic criteria, providing no guarantees of structural consistency across runs or domains (Zhao et al.,
2024). Finally, while efficiency is critical for deployment, there has been little exploration of methods that
simultaneously remove threshold dependence and remain lightweight enough for real-time adaptation.

These gaps underscore the need for a framework that (i) eliminates brittle thresholding, (ii) stabilises noisy
structural descriptors, (iii) incorporates explicit priors into TTA, and (iv) extends naturally to 3D settings. We
propose TopoOT, a framework that stabilises pseudo-labels using multi-scale topological cues via persistent
homology and aligns them with OT, providing structure-aware supervision for TTT. Although our experiments
focus on AS, we view this task as the most natural and demanding testbed for a first exploration of structurally
guided TTT, since anomalies disrupt connectivity, boundaries, and higher-order organisation, precisely
the features that TDA and OT are designed to capture. Establishing effectiveness in this setting provides
a foundation for broader machine learning tasks where structural stability is critical, including domain
adaptation under distribution shift (Dan et al., 2024), weak-signal detection in scientific data, and fine-grained
visual analysis (Michaeli & Fried, 2024), where subtle structural cues determine class boundaries (Zia et al.,
2024). TopoOT embeds structural alignment into the TTT framework. The key contributions are:

• To overcome threshold brittleness, we introduce an OT-guided, structure-aware representation
that integrates multi-scale topological cues from PDs. This representation produces pseudo-labels
that provide adaptive and data-driven supervision for TTT.

• To stabilise noisy topological descriptors, we propose a novel OT chaining mechanism that aligns
PDs both within a filtration (cross-PD) and across sub- and super-level filtrations (cross-level),
retaining only consistently transported features and discarding spurious ones.

• To integrate structural priors into TTT, we design a lightweight head trained online with two
complementary objectives: OT-consistency, which preserves transport-aligned structures, and
contrastive separation, which sharpens anomalous versus nominal boundaries.

• Our approach is plug-and-play, integrating seamlessly with different backbones and extending
naturally across modalities, generalising from 2D to 3D AD&S (point clouds and multimodal
anomaly detection), where connectivity and shape priors are especially critical.

Across diverse datasets, our design consistently delivers robust and generalisable AS. Evaluated on 5 2D/3D
benchmarks and 7 backbones, TopoOT achieves F1 gains up to +24.1% on 2D and +10.2% on 3D compared
to the existing SOTA. It further generalises across models and domains, surpassing TTT baselines by up to
+4.8%. The lightweight TTT module of TopoOT remains highly efficient, running at 121 FPS while using
only 349 MB of GPU memory.

2 RELATED WORK

Anomaly Detection and Segmentation: AS under distribution shift is challenging as it requires fine-grained
detection without supervision, structural priors that capture meaningful data characteristics, and adaptation to
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unseen test-time distributions. Unsupervised AD&S avoids labelled anomalies by learning from nominal
data (He et al., 2024). Early reconstruction-based methods used autoencoders (Fang et al., 2023; Park et al.,
2024; Zuo et al., 2024; Zhou et al., 2025; Wang et al., 2024b), inpainting (Li et al., 2020; Nakanishi et al.,
2022; Zavrtanik et al., 2021b; Pirnay & Chai, 2022; Luo et al., 2024), or diffusion models (Yao et al., 2024a;
Fučka et al., 2025; Jiang et al., 2024), but often produced blurry reconstructions or overfit to normal patterns.
Feature-based approaches compare embeddings to nominal references (Park et al., 2024; Roth et al., 2022;
Defard et al., 2021), or use teacher–student frameworks (Deng & Li, 2024; Rudolph et al., 2023; Zhang
et al., 2023; Gu et al., 2024) for inductive bias. Generative priors via normalizing flows (Yao et al., 2024b;
Gudovskiy et al., 2022; Lei et al., 2023; Kim et al., 2023) or synthetic anomalies (Aota et al., 2023; Li et al.,
2024; Hu et al., 2024a; Chen et al., 2024) improved detection, yet typically lack pixel-level precision. Methods
such as PatchCore (Roth et al., 2022) and PaDiM (Defard et al., 2021) leverage pre-trained backbones, but
remain threshold-dependent and structurally agnostic.

Optimal Transport in Vision: OT has been widely applied in computer vision for distribution alignment
(Peyré et al., 2019; Cuturi, 2013; Bonneel & Digne, 2023), including domain adaptation (Ge et al., 2021;
Fan et al., 2024; Luo & Ren, 2023), object detection, and image restoration (Adrai et al., 2023). In anomaly
detection, (Liao et al., 2025) employed robust Sinkhorn distances for industrial inspection. These works show
OT’s adaptability for handling domain discrepancies, but they typically operate at the distribution level and
do not exploit OT for structured feature selection or test-time supervision. While our approach employs a
novel OT chaining mechanism, entropically regularised OT helps align PDs through cross-PD filtration to
capture feature evolution and cross-level filtration to integrate complementary structures, thereby preserving
consistently transported features and discarding spurious ones.

Topological Priors and Test-Time Training: TDA, particularly persistent homology (PH), has been applied
in medical imaging to capture shape and multi-scale structure (Adcock et al., 2014; Berry et al., 2020;
Crawford et al., 2020; Garside et al., 2019; Kanari et al., 2018). Yet most uses are offline and not integrated
into adaptive learning (Zia et al., 2024). TTT (Liang et al., 2024; Nado et al., 2020; Kim et al., 2022;
Colomer et al., 2023; Nguyen et al., 2023; Khurana et al., 2021) adapts models on-the-fly with self-supervised
objectives, and TTT4AS (Costanzino et al., 2024a) extended this idea to AS with heuristic pseudo-labels.
However, these lack explicit structural reasoning and remain sensitive to noise.

Our approach combines PH-based filtrations with OT alignment to derive stable pseudo-labels, which then
guide a lightweight TTT head. This integration moves beyond heuristic thresholds by embedding structural
priors directly into TTA, yielding robust and topologically consistent AS.

3 OT-GUIDED TEST TIME STRUCTURAL ALIGNMENT FRAMEWORK

Problem Formulation: Conventional AS methods produce a dense anomaly score map and obtain binary
masks through thresholds calibrated on nominal validation data (Costanzino et al., 2024a) (e.g., percentile
rules). Such thresholds are dataset-specific, fail under distribution shift, and often generate masks that
under-cover or over-extend the anomalous region. Moreover, they operate pixel-wise and neglect structural
information in the anomaly map. To address these limitations, we represent anomaly maps as persistence
diagrams (PDs), which capture multi-scale topological features such as connected components and holes.
Figure 1 provides an overview of our proposed TopoOT framework. We then introduce an OT–based scoring
scheme that evaluates PDs across filtrations and levels, ranking components by their cross-scale consistency.
This formulation replaces fixed thresholding with a structural scoring approach designed to produce more
consistent anomaly masks under distribution shift.

Building on this, persistence diagrams derived from sub- and super-level filtrations provide the candidate
anomaly structures. We apply OT alignment across filtration levels to retain components that persist with low
transport cost, while discarding unstable features (that don’t persist across PDs). The ranked components are
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Figure 1: TopoOT Test-time Training for Anomaly Segmentation. (Top Left) pipeline simplified view.
(Bottom) detailed view. TopoOT replaces conventional thresholding by stabilising anomaly evidence via
cross-PD OT matching within each filtration, then fusing sub- and super-level scores with cross-level OT. The
resulting global scores yield Top-K pseudo-labels that supervise a lightweight head for final segmentation.

then back-projected into the image domain to form pseudo-labels, which serve as data-dependent supervision
at inference in place of fixed thresholds.

During TTT, we keep the replaceable backbone frozen and update only a lightweight head. This head is
optimised with two complementary objectives: (i) OT-consistency, which encourages predictions to remain
aligned with the stable structures identified by OT, and (ii) contrastive separation, which increases the margin
between anomalous and nominal regions. The combination of these objectives yields a segmentation mask
that is guided by OT-derived pseudo-labels rather than fixed thresholds.

3.1 MULTI-SCALE FILTERING AS FEATURE GENERATION

We start from a continuous anomaly map A : Ω→ [0, 1] defined over the pixel lattice Ω, same as (Costanzino
et al., 2024a). To capture structural variation at multiple thresholds, we fix a sequence of increasing
thresholds T = {τ1 < τ2 < · · · < τN}. For each τk ∈ T , we define the sublevel and superlevel sets
Ssub
τk

= {p ∈ Ω : A(p) ≤ τk}, and Ssup
τk

= {p ∈ Ω : A(p) ≥ τk}. These subsets naturally induce
cubical complexes Ksub

τk
, Ksup

τk
, where each cell corresponds to a contiguous block of pixels (a cube in the

grid) included whenever its vertices satisfy the relevant threshold condition. The “cubical” construction is
appropriate for images/grids, because it respects the pixel adjacency and can be computed efficiently.

By varying the thresholds τk, we obtain nested sequences (filtrations) of level sets: Kf
τ1 ⊂ Kf

τ2 ⊂ · · · ⊂
Kf
τN , f ∈ {sub, sup}, where we assume τ1 < · · · < τN for sublevel sets and τ1 > · · · > τN for superlevel
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sets. From these filtrations, we compute persistent homology in dimensions h ∈ {0, 1}. The result is a
persistence diagram Phf at each threshold level. For a filtration {Kf

τk
}Nk=1, persistent homology computes, for

each dimension h, the sequence of homology groups Hh(K
f
τ1), . . . ,Hh(K

f
τN ), where Hh(K

f
τk
) denotes the

h-th homology group of the complex Kf
τk

. This tracks how h-dimensional topological features (connected
components for h = 0, loops for h = 1) appear and disappear along the sequence. A feature c is born at
the smallest index k such that it appears in Hh(K

f
τk
), and dies at the first index ℓ > k where it merges into

an older feature or becomes trivial. The pair (bc, dc) = (τk, τℓ) encodes its lifetime (persistence), and the
persistence diagram

Phf = {(bc, dc) | c is an h-dimensional feature in the filtration}

is the multiset of all such birth–death pairs. For a given threshold τk, the diagram Phf [τk], the H0 (homology
in dimension 0) captures connected components that are how new components appear (birth) and merge
(death) across thresholds. H1 (1-dimensional homology) captures loops or holes (voids), features that appear
in superlevel or sublevel sets and disappear at some higher (or lower) threshold. Background on cubical
complexes in Appendix A.8.

Each topological feature c in a diagram is represented as a pair (bc, dc) of birth and death times; its persistence
pers(c) = dc−bc reflects how long it persists. Features with large persistence are more likely to correspond to
“meaningful” structural anomalies, while those close to the diagonal (small persistence) are often noise. These
ideas align with the discussion review paper by (Zia et al., 2024), which emphasises that PDs and barcodes are
robust summaries of topological features of data across scales, invariant to small perturbations, deformation,
and noise. The outputs {Phsub[τk]}Nk=1, and {Phsup[τk]}Nk=1 serve as multi-scale candidate features. They form
the input to the OT-based alignment steps. Rather than acting as direct decision thresholds, these persistence
diagrams are treated as a rich feature generation mechanism, capturing anomalies’ connected components
and holes over multiple scales, which allows the downstream optimal transport stage to judge stability and
discriminability among structural candidates.

3.2 GEODESIC SCORING OF TOPOLOGICAL FEATURES

The persistence diagrams derived from sub- and super-level filtrations provide a rich but noisy set of candidate
features. Many short-lived components arise due to local perturbations in the anomaly map, which, if treated
directly, would degrade the reliability of pseudo-labels. A key challenge is how to aggregate these diverse
features into a concise set of components that can be meaningfully traced back to the original image. A
possible solution is computing a barycenter of diagrams (Turner et al., 2014), but barycenters discard the
natural order of filtrations and blur fine-scale structures. Mapping diagrams into kernels or persistence images
(Reininghaus et al., 2015) is another alternative, but these yield global embeddings without interpretable
correspondences. In contrast, we propose aggregating information by following the flow of diagrams within
each filtration sequence using Optimal Transport Chaining. This approach consolidates features into stable
representatives for both the sublevel and superlevel filtrations independently, and then fuses the two levels to
obtain consensus features.

Formally, let P = {pi = (bi, di)}mi=1 and Q = {qj = (b′j , d
′
j)}nj=1 be two persistence diagrams, used here

as shorthand for {Phf [τk]} at different thresholds or filtrations. We define the ground cost as the squared
Euclidean distance between pairs of features, and compute the entropic OT plan:

Π⋆ = argmin
Π∈U(P,Q)

⟨C,Π⟩+ εH(Π) (1)

where U(P,Q) denotes the set of admissible couplings between P and Q, and H(Π) is the entropy of the
transport plan. The regularisation parameter ε > 0 ensures numerical stability and smooth alignments. In
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our framework, all transport plans are therefore entropy-regularised Sinkhorn solutions rather than exact
Wasserstein couplings because they yield smooth, differentiable, and numerically stable alignments; see
Appendix A.6 for further details.

We exploit this transport plan through a novel OT chaining mechanism, which consists of two complementary
modes: cross-PD (intra) filtration and cross-level (inter) filtration alignment. In cross-PD filtration alignment,
OT is applied within a single filtration (sublevel or superlevel) between persistence diagrams at different
thresholds τk and τℓ. This process identifies features that persist consistently through the filtration, and each
candidate c receives a stability score:

s(c) = max
j

Π⋆(i(c), j)

1 +
√
C(i(c), j)

· α pers(c) (2)

where Π⋆ is the entropic OT plan between diagrams, C(i(c), j) is the ground cost, i(c) denotes the index of
the birth–death pair representing feature c in its persistence diagram, and pers(c) is the persistence of c as
defined in Sec. 3.1. Since C is defined as squared Euclidean distances, we use

√
C in the denominator to

restore a linear distance scale, ensuring that score decay is proportional to distance rather than quadratic. This
softens penalisation and allows moderately stable matches to contribute, instead of filtering too aggressively.
The maximisation is taken over all possible partners j of candidate c within the filtration, where j indexes
features in the comparison persistence diagram. In this way, s(c) reflects the strongest OT-stable match. When
points don’t get matched between PDs, they are coupled to the diagonal as in standard TDA practice (see
Sec. 3.1 and Appendix A.7), ensuring that chain stability scores naturally account for vanishing features. The
factor α ≥ 0 controls the influence of persistence on ranking. Top-M components are selected by maximising
stability and persistence and minimising transport cost.

In cross-level filtration alignment, we compare candidate sets from the sublevel and superlevel filtrations.
Applying OT across sublevel and superlevel filtrations integrates complementary topological cues. Sublevel
filtrations emphasise how connected components emerge and merge, while superlevel filtrations highlight
how voids and holes evolve. By aligning these perspectives, the method retains structural features that are
consistently expressed across both, thereby suppressing spurious components and strengthening anomaly
cues. Each candidate c is evaluated with the same stability score s(c) defined above, but here the partner set
is drawn from the opposite filtration. This ensures that features are retained only if they exhibit both cross-PD
scale persistence and cross-level filtration consistency. The top-K ranked candidates across both filtrations
are then collected to form the final set C⋆.

The surviving candidates in C⋆ are then projected back to their pixel-level supports on the anomaly map,
yielding OT-guided pseudo-labels ỸOT. This backprojection is possible because the filtrations in Sec. 3.1 are
built by thresholding the anomaly map A : Ω→ [0, 1] at different anomaly score levels. As these thresholds
vary, each retained feature c ∈ C⋆ corresponds to a connected component or hole that remains present in
the thresholded maps for all levels between its birth and death (bc, dc). Thus bc and dc can be interpreted
directly as anomaly-score levels at which that structure appears and disappears in the original image. To
obtain a pixel-level support for c, we choose a representative level near its death time and mark all pixels
whose anomaly score exceeds this level. Formally, for each c ∈ C⋆ we define the backprojection threshold as
τbp(c) = dc, and the pixel-level support of c as the superlevel set

Γ(c) = { p ∈ Ω : A(p) ≥ τbp(c) }. (3)

Aggregating the Top-K retained candidates, the OT-guided pseudo-label mask is defined as

ỸOT(p) = 1
(
∃ c ∈ C⋆ such that p ∈ Γ(c)

)
, p ∈ Ω, (4)

which corresponds to the union of the pixel-level supports of the OT-stable features. For added robustness, one
can be a bit conservative when setting the threshold to ensure that the back projected region remains safely
within the range where the feature is still present in the filtration. This can be achieved by introducing a small
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offset δf(c) and thresholding at {p : A(p) ≥ max{0, dc − δf(c)}}, where f(c) ∈ {sublevel, superlevel}
denotes the filtration type. In practice, δf(c) is chosen as a small, fixed fraction of the [0, 1] anomaly-score
range (e.g., 0.2) and kept constant across all datasets.

These pseudo-labels are inherently multi-scale and data-adaptive, as they emerge from stable OT couplings
rather than fixed thresholds. These retained features correspond to connected regions or holes, e.g., defects or
gaps, that persist across the filtration process and reflect semantically meaningful structures in the input space.
By filtering out noise-induced artefacts, OT alignment produces pseudo-labels that provide robust supervision
for TTT.

3.3 TOPOOT TEST-TIME TRAINING

The final stage of our pipeline leverages the OT-guided pseudo-labels ỸOT to adapt the model during inference.
Since the backbone feature extractor is frozen, adaptation is performed through a lightweight segmentation
head hψ attached to the anomaly map representation. This design ensures that the adaptation cost at test time
remains negligible, while still allowing the predictions to be tailored to the distribution of the current sample.
Training hψ is guided by two complementary objectives. First, we introduce an OT-consistency loss that
encourages the segmentation head hψ to reproduce the spatial structures encoded in ỸOT. Given the deviations
from the OT-aligned pseudo-labels LOT = ∥Ŷ − ỸOT∥2 which enforces consistency with stable transport
couplings and prevents overfitting. Second, we incorporate a margin-based contrastive objective to sharpen
local decision boundaries in the embedding space produced by hψ. From the OT-derived pseudo-labels
ỸOT ∈ {0, 1}H×W , we sample pixel pairs (p, q) as similar when ỸOT(p) = ỸOT(q) and dissimilar otherwise.
Let zp, zq ∈ RD denote the L2-normalised embeddings of those pixels. The contrastive loss is:

Lcontrastive = (1− ypq) ∥zp − zq∥22 + ypq
[
max

(
0, m− ∥zp − zq∥2

)]2
where ypq ∈ {0, 1} encodes dissimilarity and m > 0 is a margin. This loss compacts same-label embeddings
while enforcing a minimum separation between background and anomalous regions, improving robustness to
residual noise in ỸOT. The combined loss is LTTT = LOT + λLcontrastive with λ controlling the balance
between structural consistency and contrastive separation. By optimising LTTT on each test sample, the
segmentation head hψ adapts to dataset-specific distributions without requiring external supervision. The
final segmentation mask Ŷ bin is obtained through a canonical decision rule applied to the adapted predictions
of hψ . Because hψ is trained on OT-guided pseudo-labels, this rule is adaptive to each test instance, avoiding
dataset-specific calibration and eliminating heuristic threshold tuning.

This test-time regularisation departs from conventional schemes in two ways: (i) it grounds the adaptation
signal in OT-aligned structures, stable across multi-scale filtrations, rather than raw anomaly scores; (ii) by
integrating contrastive separation, it sharpens class boundaries instead of collapsing toward trivial solutions.

Stability Observations: Our evaluation 4 shows that our plug-and-play approach performs consistently well
across various backbones and multiple heterogeneous datasets, indicating that cross-PD and cross-level OT
chaining yields robust improvements under distribution shift. Appendix A.7 offers an informal OT-based
perspective on why cross-PD and cross-level chaining can improve robustness.

4 EXPERIMENTAL SETUP

Datasets, Backbones, and Evaluation Protocol: We evaluate across both 2D and 3D anomaly detection
benchmarks. For 2D, RGB datasets MVTec AD (Bergmann et al., 2019), VisA (Zou et al., 2022), and
Real-IAD (Wang et al., 2024a) are used with backbones PatchCore (Roth et al., 2022), PaDiM (Defard et al.,
2021), Dinomaly (Guo et al., 2025), and MambaAD (He et al., 2024). For 3D, we consider multimodal
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MVTec 3D-AD (RGB + point-cloud) (Bergmann et al., 2021) and pure point-cloud Anomaly-ShapeNet
(Li et al., 2024), using backbones CMM (Costanzino et al., 2024b), M3DM (Wang et al., 2023b), and
PO3AD (Ye et al., 2025). While we report standard anomaly-detection metrics such as image-level AUROC
(I-AUROC), pixel-level AUROC (P-AUROC), and pixel-level AUPRO (P-AUPRO) for completeness, our
evaluation focuses on pixel-level Precision, Recall, F1, and IoU of the final binary masks. AUROC and
AUPRO mainly assess ranking quality and can remain high despite poor mask quality under severe pixel
imbalance (Bergmann et al., 2019; Zavrtanik et al., 2021a). In contrast, Precision, Recall, and F1 capture
the accuracy of detected defect regions, balancing missed detections and false alarms, while IoU offers
a stringent measure of spatial overlap (Costanzino et al., 2024a). These metrics align more closely with
industrial inspection needs, where the fidelity of the delivered mask is the decisive criterion (Bergmann et al.,
2020; Schlüter et al., 2022).

Across both domains, we compare all methods against the TTT baseline TTT4AS (Costanzino et al., 2024a).
Following TTT4AS, we binarise each backbone’s AS map at the statistical threshold (µ+ cσ) and report
this variant (THR) alongside the TTT4AS baseline. All experiments have been conducted on an NVIDIA
RTX 5090 GPU with 32GB of VRAM. Detailed hyperparameters and architectural settings are provided
in Appendix A.1. TopoOT runs at 121 FPS using 349 MB GPU memory for 2D inference; 3D inference
has comparable memory use but lower FPS due to point-cloud operations. Per-dataset timing and memory
profiles are given in Appendix A.2.

5 RESULTS AND DISCUSSION

We validate TopoOT through analyses: (i) 2D and 3D AD&S, benchmarking against state-of-the-art methods;
(ii) Cross Model Domain Adaptation, where frozen feature extractors are paired with distinct anomaly score
maps across 2D and 3D datasets; and (iii) Ablation Studies, assessing the contribution of each component.
For detailed discussion of limitations and directions for future development, including efficiency tradeoffs
and backbone dependency, refer to Appendix A.3.

5.1 2D/3D AD&S

We present a comprehensive evaluation of TopoOT across five diverse datasets and seven state-of-the-art
backbones. The I-AUROCP, P-AUROC, and P-AUPRO metrics are computed directly from each backbone’s
AS map, while our method operates on the resulting anomaly maps to produce final binary segmentations.
The results in Table 1 demonstrate superiority, with TopoOT consistently outperforming all baselines. The
metrics are the mean per class within each dataset. Our method achieves a +38.6% F1 gain over THR
and +14.0% over TTT4AS (Costanzino et al., 2024a) on MVTec AD (PatchCore (Roth et al., 2022)). For
PaDiM, it surpasses THR by +20.5% and TT4AS by +24.1% . On VisA, it surpasses TTT4AS by +19.7%
(Dinomaly (Guo et al., 2025)) and +8.5% (MambaAD (He et al., 2024)). For Real-IAD, TopoOT shows a
+12.3% and +11.8% F1 improvement over THR, and a +21.3% and +20.9% gain over TTT4AS for the
Dinomaly and MambaAD backbones, respectively. The advantage extends to 3D, with gains of +20.7%
(CMM (Costanzino et al., 2024b)) and +24.5% (M3DM (Wang et al., 2023b)) over THR on MVTec 3D-AD,
alongside +10.2% and +2.2% improvements over TTT4AS. On AnomalyShapeNet (PO3AD (Ye et al.,
2025)), TopoOT also leads with a +2.9% and +1.9% F1 advantage.

Figure 2 shows that TopoOT yields sharper, more semantically coherent segmentations than competing
methods. TopoOT secures concurrent gains in precision and recall, which in turn increase IoU, resulting in
consistently superior segmentations across every benchmark. Per-class quantitative and qualitative results for
each dataset are presented in the Appendix A.4 & A.5. TopoOT consistently achieves sharper boundaries and
higher recall across categories. Even in challenging cases like thin or fragmented defects, it remains robust,
clearly outperforming other methods across both 2D and 3D domains.
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Table 1: Comparison of binary segmentation results. Best results in bold; second-best in blue.

Dataset Backbone I-AUROC P-AUROC P-AUPRO TTT Method Prec. Rec. F1 IoU

MVTec AD
(Bergmann et al., 2019)

PatchCore
(Roth et al., 2022)

0.991 0.981 0.934
THR (Roth et al., 2022) 0.351 0.507 0.136 0.299
TTT4AS (Costanzino et al., 2024a) 0.388 0.648 0.382 0.293
TopoOT 0.550 0.720 0.522 0.387

PaDiM
(Defard et al., 2021)

0.979 0.975 0.921
THR (Roth et al., 2022) 0.452 0.507 0.354 0.317
TTT4AS (Costanzino et al., 2024a) 0.330 0.579 0.318 0.274
TopoOT 0.470 0.788 0.559 0.402

VisA
(Zou et al., 2022)

Dinomaly
(Guo et al., 2025)

0.987 0.987 0.945
THR (Guo et al., 2025) 0.275 0.862 0.339 0.144
TTT4AS (Costanzino et al., 2024a) 0.223 0.811 0.267 0.177
TopoOT 0.546 0.553 0.464 0.223

MambaAD
(He et al., 2024)

0.943 0.985 0.910
THR (He et al., 2024) 0.200 0.785 0.241 0.196
TTT4AS (Costanzino et al., 2024a) 0.235 0.820 0.289 0.145
TopoOT 0.416 0.507 0.352 0.247

Real IAD
(Wang et al., 2024a)

Dinomaly
(Guo et al., 2025)

0.893 0.989 0.939
THR (Wang et al., 2024a) 0.242 0.793 0.317 0.208
TTT4AS (Costanzino et al., 2024a) 0.154 0.801 0.229 0.147
TopoOT 0.461 0.577 0.442 0.317

MambaAD
(He et al., 2024)

0.863 0.985 0.905
THR (He et al., 2024) 0.188 0.653 0.228 0.145
TTT4AS (Costanzino et al., 2024a) 0.084 0.763 0.137 0.080
TopoOT 0.305 0.616 0.346 0.243

MVTec 3D-AD
(Bergmann et al., 2021)

CMM
(Costanzino et al., 2024b)

0.954 0.993 0.971
THR (Costanzino et al., 2024b) 0.199 0.902 0.275 0.232
TTT4AS (Costanzino et al., 2024a) 0.303 0.800 0.380 0.077
TopoOT 0.427 0.845 0.482 0.343

M3DM
(Wang et al., 2023b)

0.945 0.992 0.964
THR (Wang et al., 2023b) 0.173 0.889 0.245 0.232
TTT4AS (Costanzino et al., 2024a) 0.467 0.640 0.468 0.120
TopoOT 0.564 0.767 0.490 0.364

AnomalyShapeNet
(Li et al., 2024)

PO3AD
(Ye et al., 2025)

0.839 0.898 0.821
THR (Ye et al., 2025) 0.675 0.441 0.500 0.371
TTT4AS (Costanzino et al., 2024a) 0.562 0.485 0.510 0.347
TopoOT 0.651 0.540 0.529 0.402

RGB PC GT CMM-AS THR TTT4AS TopoOT M3DM-AS THR TTT4AS TopoOT

C
oo

ki
e
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ac

h

Figure 2: Qualitative comparison of AD&S methods for different objects using the MVTec 3D-AD dataset.

5.2 CROSS MODEL DOMAIN ADAPTATION

We validate a plug-and-play transfer strategy that pairs frozen source feature extractors with distinct tar-
get scoring heads across 2D (MVTec, VisA, Real-IAD) and 3D (MVTec-3DAD) domains. As shown in
Table 2, the cross-model pipelines preserve topological structure and deliver practical quality without re-
training. In 2D, transfers reach F1 up to 0.512 on Real-IAD (PatchCore→MambaAD) and 0.502 on VisA
(MambaAD→Dinomaly), with recalls in the 0.71–0.75 band; in 3D, CMM→M3DM offers the highest
precision (0.471, F1 0.479), while M3DM→CMM provides broad coverage (recall 0.791). Importantly,
these domain-adaptation results outperform established baselines across the evaluated datasets, confirming
effective cross-model composition and providing a strong substrate for TopoOT to further consolidate gains
via stability-aware OT pseudo-labels and adaptive boundary refinement for AS.

5.3 ABLATION STUDIES

We validate TopoOT (Table 3). Individual cross-PD filtration alignments yield modest gains. The cross-level
filtration alignment is key, providing a larger boost by integrating cross-scale information. The losses LOT and
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Table 2: Cross-model domain adaptation (features → anomaly scores).

Modality Dataset Source → Target Prec. Rec. F1
2D 3D (Features → Anomaly Scores)
✓ MVTec PatchCore → PaDiM 0.419 0.673 0.430
✓ VisA MambaAD → Dinomaly 0.459 0.712 0.502
✓ Real-IAD PatchCore → MambaAD 0.434 0.750 0.512

✓ MVTec-3DAD CMM → M3DM 0.471 0.746 0.479
✓ MVTec-3DAD M3DM → CMM 0.409 0.791 0.469

Lcontrastive are effective together, enforcing prediction consistency and feature separation, respectively. Our
complete model achieves top performance: 0.522 F1 on PatchCore, 0.482 on CMM, and 0.490 on M3DM.

Table 3: Ablation study showing that combining all OT alignments with losses yields the highest performance.

TopoOT Components 2D-PatchCore 3D-CMM 3D-M3DM

cross-PDSub cross-PDSuper cross-levelSub-super LOT Lcontrastive Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

✓ ✓ 0.440 0.310 0.365 0.410 0.455 0.382 0.290 0.730 0.390
✓ ✓ 0.490 0.540 0.475 0.426 0.485 0.415 0.310 0.740 0.405

✓ ✓ 0.375 0.620 0.390 0.085 0.820 0.118 0.280 0.755 0.380
✓ ✓ 0.395 0.605 0.408 0.095 0.830 0.132 0.300 0.760 0.392

✓ ✓ ✓ ✓ 0.520 0.690 0.510 0.420 0.800 0.470 0.500 0.750 0.485
✓ ✓ ✓ ✓ 0.510 0.680 0.505 0.405 0.770 0.460 0.490 0.740 0.475
✓ ✓ ✓ ✓ ✓ 0.550 0.720 0.522 0.427 0.845 0.482 0.564 0.767 0.490

6 CONCLUSION

We presented TopoOT, a topology-aware OT framework for anomaly segmentation that replaces brittle
thresholding with OT-guided pseudo-labels and stabilises multi-scale persistence features through cross-PD
and cross-level filtration chaining. A lightweight head trained with OT-consistency and contrastive objectives
enables per-instance TTA that preserves structural stability while sharpening anomaly boundaries. TopoOT
achieves SOTA performance on five standard benchmarks, and our theoretical analysis establishes stability
and generalisation guarantees.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Jonathan Pirnay and Keng Chai. Inpainting transformer for anomaly detection. In International Conference
on Image Analysis and Processing, pp. 394–406. Springer, 2022.

Lingteng Qiu, Xiaojun Wu, and Zhiyang Yu. A high-efficiency fully convolutional networks for pixel-wise
surface defect detection. IEEE Access, 7:15884–15893, 2019. doi: 10.1109/ACCESS.2019.2894420.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with optimal
transport. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 737–753. Springer, 2017.

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological
machine learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4741–4748, 2015.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards
total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 14318–14328, 2022.

Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric student-teacher networks
for industrial anomaly detection. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 2592–2602, 2023.
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A SUPPLEMENTARY MATERIAL

• A.1 outlines the experimental setup for 2D and 3D anomaly detection with test-time adaptation and
hyperparameter configuration.

• A.2 evaluate the computational efficiency of TopoOT by benchmarking its inference time and GPU
memory usage in 2D and 3D AS scenarios.

• A.3 discuss fundamental insights, limitations, and possible extensions within the context of topologi-
cal anomaly segmentation.

• A.4 presents quantitative and qualitative results on 2D AD&S datasets, including class-wise per-
formance across benchmarks and visual examples that illustrate the effectiveness of OT-guided
pseudo-labels.

• A.5 reports quantitative and qualitative results on 3D AD&S datasets, covering voxel- and point-
cloud modalities, with class-level analysis and qualitative comparisons to baseline methods.

• A.6 recalls optimal transport preliminaries, including the 2-Wasserstein distance and its entropy-
regularised Sinkhorn variant, and clarifies their role in computing the OT couplings used in our
framework.

• A.7 provides a conceptual motivation into optimal transport stability and behaviour.

• A.8 presents the mathematical formulation of cubical complex persistence, detailing how primitive
cells are hierarchically aggregated to construct filtration levels and ultimately generate persistence
vectors that encode topological features.

• A.9 provides a qualitative analysis of challenging textural anomaly cases, illustrating how the
proposed topology-guided pseudo-labels behave when the backbone anomaly maps exhibit weak
topological structure.

• A.10 shows the ablation study on the Top-K persistence components, highlighting how varying K
impacts the evaluation metrics and that adding lower-ranked components tends to introduce noise
and degrade performance.

• A.11 provides the complete algorithmic pseudocode for TopoOT, formally defining the multi-scale
filtration steps, stability-aware OT chaining, and the spatial backtracking mechanism that drives the
test-time adaptation loop.

A.1 ARCHITECTURAL SETTINGS & HYPERPARAMETERS

2D Setup. For all RGB-based AD&S experiments, we employ DINO (Caron et al., 2021) as the feature
extractor (F ). Our approach is benchmarked against leading state-of-the-art methods, including the memory-
bank based PatchCore (Roth et al., 2022), PaDiM (Defard et al., 2021), the reconstruction-driven Dinomaly
(Guo et al., 2025), and MambaAD (He et al., 2024). Evaluation is conducted on three widely adopted 2D
benchmarks: MVTec AD (Bergmann et al., 2019) (15 categories; 3,629 training and 1,725 test images), VisA
(Zou et al., 2022) (12 objects; 9,621 normal and 1,200 anomalous samples), and Real-IAD (Wang et al.,
2024a) (30 objects; ∼150,000 images in total, comprising 36,465 normal training samples and 114,585 test
images with 63,256 normal and 51,329 anomalous). To ensure comparability, all 2D inputs are standardised
to a resolution of 224× 224.

3D Setup. For multimodal experiments involving RGB and point-cloud modalities, we adopt DINO-v2
(Oquab et al., 2023) for image features and Point-MAE (Zhao et al., 2021) for geometric representations.
We benchmark against multimodal memory-bank methods such as M3DM (Wang et al., 2023b), as well as
reconstruction-oriented baselines including CMM (Costanzino et al., 2024b) and PO3AD (Ye et al., 2025).
The evaluation is performed on two representative 3D benchmarks: MVTec 3D-AD (Bergmann et al., 2021)
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(10 categories; 2,656 nominal training images and 1,197 test samples) and Anomaly-ShapeNet (Li et al.,
2024) (40 synthetic classes; 1,600 samples spanning six anomaly types).

Test-Time Training. For adaptation, the pretrained backbones are kept frozen while a lightweight MLP
head hψ, consisting of three linear layers with GELU activations, is fine-tuned. The optimisation objective
combines an OT-consistency loss (ϵ = 0.05, up to 200 iterations) with a contrastive loss (margin = 0.4),
balanced equally with weights α = λ = 0.5. Adaptation proceeds for 5 epochs using the Adam optimiser
with a learning rate of 10−3. Each test sample is processed independently with an effective batch size of one.

A.2 COMPUTATIONAL COMPLEXITY AND EFFICIENCY

A central strength of the proposed TopoOT framework lies in its ability to balance computational complexity
with practical efficiency. When evaluated on a single modern GPU, the complete end-to-end TopoOT pipeline
operates at approximately 2.90 FPS, while the lightweight TTT module alone achieves 121 FPS. Notably,
the OT and TDA components currently run exclusively on the CPU, which constrains the overall end-to-end
throughput, while requiring only 349 MB of GPU memory. This lightweight profile is markedly lower than
that of many SOTA anomaly detection baselines. For context, a standard 2D baseline model (Roth et al., 2022)
reports an inference time of 0.22 seconds per image, while in the 3D domain, the M3DM (Wang et al., 2023b)
model requires 2.86 seconds per image and consumes 6.52 GB of GPU memory. The CMM (Costanzino
et al., 2024b) model, though faster at 0.12 seconds per image, still uses 427 MB of memory, TopoOT delivers
a 14.5× speedup over CMM. In contrast, TopoOT not only achieves a significantly higher frame rate but
also maintains a highly competitive memory footprint, underscoring its deployability in scenarios where
throughput and hardware constraints are decisive.

The breakdown of computational cost, analysed per module, indicates that the construction of cubical
complexes and persistence diagrams constitutes the most demanding stage, requiring approximately 0.33
seconds per sample when aggregated across all complexes. Despite this initial overhead, the subsequent
topological alignment stages remain highly efficient: the intra-level OT block requires only 5.5 ms in
aggregate, while the inter-level OT block converges nearly instantaneously, below 0.05 ms per alignment.
These operations stabilise and align persistence features without imposing a significant runtime burden.
Finally, the downstream multilayer perceptron (MLP) classifier adds only 8.3 ms per evaluation, rendering its
contribution negligible.

Table 4 summarises the per-sample runtime for each backbone, split into backbone inference, persistence
diagram (PD) computation, OT alignment and the TopoOT TTT head. The PD stage is the main overhead,
while OT and TTT are negligible (the TTT head adds only 0.008 s), so the overall end-to-end latency remains
comparable to or better than existing 2D/3D anomaly detection baselines.

Table 4: Backbone processing time, TTT method time per sample, and total time (all in seconds).

Backbone TopoOT Total

Method Inference Time (s) Memory (GB) PD (s) OT (s) TTT (s) Memory (GB) Time (s) Memory (GB)

PaDiM (Defard et al., 2021) 0.950 2.100 0.325 0.005 0.008 0.349 1.288 2.449

Patchcore (Roth et al., 2022) 0.223 3.450 0.331 0.006 0.008 0.349 0.568 3.799

M3DM (Wang et al., 2023a) 2.862 6.520 0.349 0.006 0.008 0.417 3.225 6.937

CMM (Costanzino et al., 2024b) 0.124 0.427 0.352 0.006 0.008 0.417 0.490 0.844

MambaAD (He et al., 2024) 0.027 1.480 0.374 0.006 0.008 0.370 0.415 1.850

Dinomaly (Guo et al., 2025) 0.041 4.320 0.392 0.006 0.008 0.370 0.447 4.690

PO3AD (Ye et al., 2025) 0.294 1.950 0.397 0.006 0.008 0.496 0.705 2.446
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Taken together, the end-to-end evaluation time per sample remains well within practical limits, supporting
real-time operation. The combination of high FPS, minimal GPU consumption, and the bounded cost of
topological computations makes TopoOT exceptionally well-suited for industrial adoption. Unlike competing
methods that often trade accuracy for efficiency, TopoOT achieves both, offering a robust and scalable
solution for anomaly detection under stringent practical constraints.

A.3 DISCUSSION, LIMITATIONS, AND FUTURE DIRECTIONS

The results in the main paper and Appendices A.4 A.5 demonstrate that TopoOT provides a principled
strategy for replacing non-robust and heuristic thresholding with stability-aware, OT-guided pseudo-labels.
By chaining persistence diagrams across filtrations and integrating sub- and super-level information, the
framework yields segmentation masks that are both structurally coherent and robust under distribution shift.
Consistent gains across 2D and 3D benchmarks confirm that structural alignment is an effective prior for
test-time adaptation.

Despite these advances, several limitations remain. First, the approach still depends on the quality of
the anomaly score maps produced by frozen backbones. When upstream representations are noisy or
poorly transferable, the extracted persistent features may not provide sufficient structural guidance. Second,
while the current formulation generalises naturally to both 2D images and 3D point clouds, it does not yet
address spatiotemporal settings such as video or dynamic medical imaging, where temporal coherence and
evolving anomaly structure are critical. Third, efficiency trade-offs deserve further study, although TopoOT is
lightweight relative to baselines, scaling to real-time, high-resolution deployments in safety-critical domains
may require additional optimisations.

Future work can address these challenges along several directions. Differentiable approximations of persistent
homology offer a path to end-to-end training with topological losses, enabling tighter integration between
backbone features and topological stability. Jointly optimising anomaly map generation and topological
filtering through self-supervised objectives could mitigate the reliance on noisy upstream scores. Extending
the framework to spatiotemporal domains will require evolving persistence diagrams across frames to capture
anomaly lifespans and enforce temporal consistency. Finally, incorporating uncertainty-aware filtration
strategies, quantifying stability not only by persistence but also by variability across augmentations or
agreement with model uncertainty, could provide more reliable predictions in high-stakes applications such
as robotics, autonomous driving, and medical diagnostics.

TopoOT establishes a solid foundation for topology-aware adaptation in anomaly segmentation, highlighting
how persistent homology and optimal transport can jointly serve as structural alignment mechanisms for
adaptive learning. Its current form addresses critical limitations of threshold-based methods, while future
developments promise broader applicability and deeper integration with modern representation learning.

A.4 ADDITIONAL EXPERIMENTS AND RESULTS ON 2D AD&S DATASETS

Table 5 reports the results of PatchCore on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC, and
P-AUPRO. These results are reproduced directly using the official implementation provided by the authors.

Table 5: PatchCore (Roth et al., 2022)on MVTec AD: anomaly scores are I-AUROC, P-AUROC, and P-AUPRO.

Metric Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper Mean

PatchCore — Anomaly Scores (Roth et al., 2022)

I-AUROC 1.000 0.995 0.981 0.987 0.982 1.000 1.000 1.000 0.966 0.981 0.987 1.000 1.000 0.992 0.994 0.991
P-AUROC 0.986 0.984 0.988 0.990 0.987 0.987 0.993 0.984 0.974 0.994 0.956 0.987 0.963 0.950 0.988 0.981
P-AUPRO 0.961 0.926 0.955 0.966 0.959 0.939 0.989 0.913 0.941 0.979 0.874 0.914 0.835 0.896 0.971 0.935
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Figure 3: Qualitative comparison of various anomaly detection methods for different objects using PatchCore
model on 2D MvTec AD dataset.

Table 6: Performance of PatchCore (Roth et al., 2022) on MVTec AD’s 15 categories, comparing binary map strategies:
THR (µ+ 3σ), TTT4AS, and TopoOT. Top results per metric are in bold (best) and blue (second-best).

Metric Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper Mean

(a) PatchCore - Binary Map - THR (µ+ 3σ) (Roth et al., 2022)

Precision 0.397 0.344 0.278 0.362 0.432 0.405 0.297 0.435 0.347 0.298 0.403 0.286 0.334 0.384 0.268 0.351
Recall 0.510 0.465 0.626 0.522 0.428 0.380 0.542 0.566 0.618 0.522 0.517 0.542 0.287 0.469 0.605 0.507
F1 Score 0.175 0.194 0.085 0.092 0.078 0.120 0.045 0.311 0.188 0.066 0.209 0.123 0.114 0.121 0.119 0.136
IoU 0.310 0.334 0.222 0.407 0.283 0.367 0.262 0.316 0.287 0.202 0.179 0.262 0.238 0.297 0.513 0.299

(b) PatchCore - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.662 0.502 0.163 0.413 0.185 0.425 0.212 0.644 0.337 0.046 0.644 0.272 0.391 0.470 0.449 0.388
Recall 0.664 0.565 0.632 0.824 0.787 0.861 0.893 0.528 0.740 0.361 0.495 0.594 0.462 0.664 0.644 0.648
F1 Score 0.593 0.480 0.197 0.457 0.272 0.499 0.286 0.482 0.358 0.078 0.474 0.301 0.318 0.464 0.469 0.382
IoU 0.358 0.393 0.166 0.379 0.243 0.418 0.208 0.276 0.264 0.124 0.404 0.234 0.192 0.360 0.370 0.293

(c) PatchCore - Binary Map -TopoOT

Precision 0.850 0.673 0.399 0.625 0.370 0.487 0.392 0.717 0.416 0.282 0.713 0.390 0.581 0.595 0.765 0.550
Recall 0.555 0.672 0.772 0.685 0.741 0.869 0.909 0.709 0.787 0.890 0.643 0.647 0.496 0.579 0.640 0.720
F1 Score 0.623 0.627 0.445 0.545 0.458 0.579 0.493 0.654 0.465 0.396 0.627 0.412 0.440 0.527 0.646 0.522
IoU 0.474 0.476 0.307 0.400 0.314 0.429 0.356 0.507 0.333 0.269 0.493 0.271 0.301 0.381 0.495 0.387
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Table 6 presents the quantitative comparison of PatchCore on MVTec AD’s 15 categories using different
binary map strategies. Our proposed method, TopoOT, consistently outperforms both the threshold-based
approach (THR) and the recent TTT4AS method across all evaluation metrics.

Specifically, in terms of mean performance, TopoOT achieves an F1 Score of 0.522, significantly higher than
THR (0.136) and TTT4AS (0.382). This corresponds to a relative improvement of +0.386 over THR and
+0.140 over TTT4AS. Similarly, in terms of Precision, TopoOT improves over THR and TTT4AS by +0.199
and +0.162, respectively. A comparable trend is observed for Recall, where TopoOT provides a gain of +0.213
over THR and +0.072 over TTT4AS. Beyond overall averages, significant category-level improvements can
also be observed in Table 6.

Overall, these results demonstrate that TopoOT not only delivers significant improvements on key categories
but also generalises well, outperforming existing methods across the broader range of datasets included in the
MVTec AD benchmark. This consistent performance underscores the robustness and effectiveness of our
method in 2D anomaly detection tasks.

Table 7 presents the performance of PaDiM on the MVTec AD dataset, evaluated using I-AUROC, P-AUROC,
and P-AUPRO. The reported results are reproduced directly from the official implementation released by the
authors.

Table 7: PaDiM (Defard et al., 2021) on MVTec AD: anomaly scores are I-AUROC, P-AUROC and P-AUPRO.

Metric Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper Mean

I-AUROC 0.971 0.982 0.974 0.979 0.995 0.991 0.965 0.942 0.995 0.972 0.961 0.929 0.973 0.984 0.957 0.979
P-AUROC 0.983 0.967 0.985 0.991 0.973 0.982 0.992 0.972 0.957 0.985 0.941 0.988 0.975 0.949 0.985 0.975
P-AUPRO 0.948 0.888 0.935 0.962 0.946 0.926 0.978 0.856 0.927 0.944 0.860 0.931 0.845 0.911 0.959 0.921

Table 8: Performance evaluation of PaDiM (Defard et al., 2021) across 15 categories of the MVTec AD dataset and their
mean, comparing three binary map strategies: (a) THR (µ+ 3σ), (b) TTT4AS, and (c) TopoTTA. The table highlights
the best result for each Precision, Recall, F1 Score, and IoU in bold (best) and blue (second-best).

Metric Bottle Cable Capsule Carpet Grid Hazelnut Leather MetalNut Pill Screw Tile T-brush Transistor Wood Zipper Mean

(a) PaDiM - Binary Map - THR (µ+ 3σ) (Defard et al., 2021)

Precision 0.729 0.580 0.287 0.561 0.327 0.586 0.306 0.540 0.410 0.196 0.131 0.416 0.462 0.576 0.676 0.452
Recall 0.321 0.249 0.813 0.736 0.708 0.477 0.927 0.281 0.493 0.712 0.005 0.514 0.349 0.399 0.615 0.507
F1 Score 0.343 0.280 0.325 0.523 0.407 0.433 0.396 0.292 0.337 0.295 0.009 0.391 0.307 0.375 0.596 0.354
IoU 0.310 0.290 0.330 0.340 0.320 0.300 0.310 0.330 0.320 0.300 0.280 0.350 0.330 0.310 0.335 0.317

(b) PaDiM - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.585 0.412 0.176 0.429 0.199 0.349 0.208 0.519 0.269 0.088 0.137 0.258 0.472 0.355 0.499 0.330
Recall 0.438 0.500 0.707 0.769 0.726 0.637 0.916 0.491 0.568 0.735 0.123 0.595 0.425 0.416 0.648 0.579
F1 Score 0.429 0.395 0.214 0.459 0.290 0.376 0.293 0.386 0.262 0.153 0.103 0.283 0.291 0.319 0.512 0.318
IoU 0.280 0.270 0.280 0.270 0.260 0.310 0.270 0.280 0.270 0.270 0.260 0.280 0.270 0.270 0.270 0.274

(c) PaDiM - Binary Map - TopoOT

Precision 0.750 0.648 0.355 0.523 0.463 0.358 0.246 0.574 0.307 0.266 0.685 0.268 0.492 0.439 0.678 0.470
Recall 0.689 0.670 0.828 0.942 0.805 0.885 0.987 0.636 0.783 0.905 0.742 0.920 0.547 0.756 0.724 0.788
F1 Score 0.718 0.658 0.496 0.672 0.587 0.509 0.393 0.603 0.441 0.411 0.712 0.415 0.518 0.555 0.700 0.559
IoU 0.390 0.410 0.400 0.420 0.380 0.400 0.410 0.390 0.400 0.410 0.420 0.390 0.410 0.400 0.400 0.402

Table 8 shows the performance comparison of PaDiM on MVTec AD’s 15 categories using different binary
map strategies. Our proposed method, TopoOT, achieves consistent improvements across all metrics when
compared to both THR and TTT4AS.

On average, TopoOT improves the F1 Score by +0.205 over THR and by +0.241 over TTT4AS. Similarly,
Precision increases by +0.018 compared to THR and by +0.14 over TTT4AS. In Recall, TopoOT shows even
stronger gains of +0.281 against THR and +0.209 over TTT4AS.
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Overall, these results confirm that TopoOT not only delivers significant improvements in individual categories
but also generalises well across the full MVTec AD benchmark. Its consistent superiority over both threshold-
based and test-time training baselines demonstrates the effectiveness of our approach for 2D anomaly detection
tasks.

Table 9 presents the results of MambaAD on VisA (12 classes), where I-AUROC, P-AUROC, and P-AUPRO
are reported as mean per class. The results are reproduced directly using the official implementation provided
by the authors.

Table 9: MambaAD (He et al., 2024) on VisA (12 classes), I-AUROC, P-AUROC, P-AUPRO, metrics are mean per class.

Metric candle capsules cashew chewinggum fryum macaroni1 macaroni2 pcb1 pcb2 pcb3 pcb4 pipe fryum Mean

I-AUROC 0.968 0.918 0.945 0.977 0.952 0.916 0.816 0.954 0.942 0.937 0.999 0.987 0.943
P-AUROC 0.990 0.991 0.943 0.981 0.969 0.995 0.995 0.998 0.989 0.991 0.986 0.991 0.985
P-AUPRO 0.955 0.918 0.878 0.797 0.916 0.952 0.962 0.928 0.896 0.891 0.876 0.951 0.910

Table 10: Performance evaluation of MambaAD (He et al., 2024) 12 categories (VisA classes) and their mean, comparing
three binary map strategies: (a) THR (µ+ 3σ), (b) TTT4AS, and (c) OT-TopoTTA. The table highlights the best result
for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric candle capsules cashew chewinggum fryum macaroni1 macaroni2 pcb1 pcb2 pcb3 pcb4 pipe fryum Mean

(a) MambaAD - Binary Map - THR (µ+ 3σ) (He et al., 2024)

Precision 0.111 0.291 0.163 0.368 0.265 0.049 0.060 0.224 0.166 0.209 0.333 0.166 0.200
Recall 0.874 0.741 0.699 0.796 0.659 0.775 0.804 0.954 0.816 0.779 0.648 0.877 0.785
F1 Score 0.172 0.357 0.174 0.468 0.207 0.088 0.104 0.278 0.255 0.299 0.396 0.092 0.241
IoU 0.105 0.259 0.105 0.334 0.127 0.048 0.058 0.278 0.255 0.299 0.396 0.092 0.196

(b) MambaAD - Binary Map - TTT4AS (Guo et al., 2025)

Precision 0.185 0.389 0.229 0.335 0.263 0.079 0.052 0.239 0.235 0.243 0.398 0.178 0.235
Recall 0.807 0.879 0.857 0.867 0.716 0.807 0.858 0.889 0.824 0.822 0.601 0.918 0.820
F1 Score 0.264 0.440 0.275 0.484 0.190 0.137 0.097 0.307 0.339 0.331 0.419 0.186 0.289
IoU 0.104 0.258 0.114 0.331 0.113 0.032 0.025 0.163 0.122 0.167 0.217 0.095 0.145

(c) MambaAD - Binary Map - OT-TopoTTA

Precision 0.311 0.483 0.336 0.577 0.444 0.198 0.184 0.507 0.431 0.480 0.702 0.341 0.416
Recall 0.542 0.460 0.563 0.573 0.290 0.565 0.664 0.529 0.410 0.469 0.317 0.696 0.507
F1 Score 0.295 0.357 0.314 0.528 0.199 0.247 0.258 0.462 0.388 0.433 0.392 0.346 0.352
IoU 0.196 0.246 0.217 0.394 0.200 0.157 0.163 0.328 0.267 0.298 0.267 0.226 0.247

Table 10 presents the performance comparison of MambaAD on the VisA dataset across 12 categories, using
different binary map strategies. Our proposed method, TopoOT, consistently achieves higher scores across
Precision, Recall, and F1 compared to THR and TTT4AS.

On average, TopoOT improves the F1 Score by +0.111 over THR and by +0.085 over TTT4AS. Similarly,
Precision increases by +0.216 compared to THR and by +0.193 over TTT4AS. In Recall, TopoOT performed
a little low as compared with compared to THR and TTT4AS.

Overall, these results confirm that TopoOT not only achieves notable improvements on specific challenging
categories but also generalises effectively across all VisA classes. Its consistent superiority over both
traditional thresholding and recent test-time training methods highlights the robustness of our approach for
2D anomaly detection under complex real-world scenarios.

Table 11 reports the results of MambaAD on Real-IAD (30 classes), where anomaly scores are given in terms
of I-AUROC, P-AUROC, and P-AUPRO. The results are obtained directly using the official implementation
provided by the authors.

Table 12 shows that TopoOT frequently outperforms both THR and TTT4AS, securing the top rank in most
metrics across different 30 classes of the Real-IAD Dataset. On average, our TopoOT has an F1 Score of
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Table 11: MambaAD (He et al., 2024) on Real-IAD (30 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric audiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set

MambaAD (He et al., 2024) — Anomaly Scores

I-AUROC 0.842 0.928 0.798 0.780 0.875 0.793 0.701 0.868 0.891 0.902 0.871 0.857 0.880 0.697 0.980 0.944
P-AUROC 0.977 0.997 0.981 0.970 0.992 0.987 0.965 0.992 0.992 0.994 0.994 0.990 0.992 0.976 0.997 0.988
P-AUPRO 0.839 0.972 0.862 0.894 0.937 0.863 0.726 0.935 0.931 0.953 0.961 0.915 0.954 0.870 0.988 0.894

Metric switch tape t-block t-brush toy t-brick transistor1 u-block usb u-adaptor vcpill w-beads woodstick zipper Mean

MambaAD (He et al., 2024) — Anomaly Scores

I-AUROC 0.917 0.968 0.961 0.851 0.830 0.705 0.944 0.897 0.920 0.794 0.883 0.825 0.804 0.992 0.863
P-AUROC 0.982 0.998 0.998 0.975 0.960 0.966 0.994 0.995 0.992 0.973 0.987 0.980 0.977 0.993 0.985
P-AUPRO 0.929 0.980 0.982 0.914 0.863 0.747 0.965 0.954 0.952 0.825 0.893 0.845 0.827 0.976 0.905

Table 12: Performance evaluation of MambaAD (He et al., 2024) across 30 classes (Real-IAD Dataset) and their mean,
comparing three binary map strategies: (a) THR (µ + 3σ), (b) TTT4AS, and (c) TopoOT. The best result for each
Precision, Recall, and F1 Score is in bold and the second-best in blue.

Metric audiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set

(a) MambaAD - Binary Map - THR (µ+ 3σ) (He et al., 2024)

Precision 0.164 0.055 0.199 0.202 0.121 0.126 0.082 0.209 0.438 0.178 0.132 0.101 0.122 0.074 0.144 0.156
Recall 0.510 0.944 0.333 0.475 0.648 0.514 0.385 0.759 0.472 0.815 0.783 0.846 0.794 0.548 0.950 0.743
F1 Score 0.210 0.100 0.160 0.181 0.188 0.178 0.120 0.254 0.309 0.280 0.202 0.173 0.189 0.107 0.227 0.245
IoU 0.133 0.055 0.102 0.116 0.114 0.112 0.076 0.162 0.212 0.171 0.124 0.100 0.114 0.062 0.139 0.155

(b) MambaAD - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.062 0.027 0.075 0.039 0.059 0.051 0.046 0.097 0.075 0.084 0.055 0.048 0.073 0.034 0.071 0.091
Recall 0.605 0.953 0.629 0.684 0.739 0.692 0.461 0.833 0.870 0.887 0.799 0.870 0.830 0.534 0.951 0.762
F1 Score 0.109 0.052 0.108 0.072 0.105 0.090 0.075 0.164 0.135 0.151 0.099 0.089 0.124 0.061 0.127 0.154
IoU 0.062 0.027 0.066 0.039 0.059 0.050 0.044 0.097 0.074 0.084 0.055 0.048 0.071 0.034 0.071 0.091

(c) MambaAD - Binary Map - TopoOT

Precision 0.239 0.245 0.164 0.156 0.254 0.183 0.133 0.422 0.297 0.404 0.269 0.229 0.324 0.171 0.411 0.398
Recall 0.491 0.829 0.513 0.612 0.585 0.544 0.355 0.637 0.745 0.679 0.695 0.766 0.584 0.451 0.803 0.629
F1 Score 0.284 0.347 0.169 0.225 0.303 0.233 0.155 0.444 0.367 0.435 0.341 0.317 0.365 0.203 0.465 0.430
IoU 0.197 0.231 0.106 0.143 0.203 0.159 0.102 0.324 0.255 0.317 0.236 0.206 0.246 0.139 0.342 0.322

Metric switch tape t-block t-brush toy t-brick transistor1 u-block usb u-adaptor vcpill w-beads woodstick zipper Mean

(a) MambaAD - Binary Map - THR (µ+ 3σ) (He et al., 2024)

Precision 0.252 0.129 0.165 0.396 0.149 0.264 0.218 0.131 0.289 0.053 0.331 0.194 0.188 0.378 0.188
Recall 0.736 0.953 0.951 0.442 0.535 0.268 0.729 0.794 0.699 0.586 0.598 0.429 0.540 0.805 0.653
F1 Score 0.331 0.214 0.265 0.309 0.188 0.213 0.316 0.211 0.320 0.090 0.380 0.227 0.242 0.399 0.228
IoU 0.226 0.128 0.161 0.203 0.118 0.148 0.200 0.130 0.211 0.050 0.270 0.148 0.155 0.269 0.145

(b) MambaAD - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.123 0.085 0.063 0.246 0.053 0.078 0.120 0.071 0.086 0.024 0.169 0.099 0.085 0.221 0.084
Recall 0.856 0.956 0.989 0.624 0.636 0.585 0.893 0.838 0.907 0.577 0.741 0.626 0.668 0.905 0.763
F1 Score 0.200 0.149 0.116 0.299 0.093 0.131 0.205 0.125 0.153 0.045 0.258 0.159 0.146 0.310 0.137
IoU 0.122 0.084 0.063 0.194 0.052 0.077 0.119 0.071 0.086 0.023 0.163 0.096 0.084 0.204 0.080

(c) MambaAD - Binary Map - TopoOT

Precision 0.430 0.404 0.423 0.454 0.222 0.189 0.348 0.338 0.370 0.127 0.481 0.263 0.258 0.535 0.305
Recall 0.661 0.747 0.866 0.409 0.594 0.510 0.573 0.721 0.736 0.572 0.510 0.476 0.521 0.665 0.616
F1 Score 0.455 0.460 0.520 0.368 0.292 0.235 0.385 0.412 0.440 0.179 0.430 0.296 0.318 0.520 0.346
IoU 0.330 0.322 0.378 0.247 0.205 0.159 0.267 0.295 0.317 0.117 0.311 0.208 0.221 0.378 0.243

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

0.346, showing an improvement of +0.058 over THR(µ+ 3σ) and an astounding +0.209 improvement over
TTT4AS. Similarly, TopoOT has 0.305 Precision, which is +0.117 more than the THR and +0.221 more than
TTT4AS. This trend of significant improvement is not limited to a few instances, but our method’s consistent
performance across the 30 classes shown in the Table 12 indicates its robustness and effectiveness. While the
specific percentages of improvement vary, the overall pattern is clear that our method also outperformed on
other classes, making TopoOT a highly effective and robust technique for anomaly detection.

Table 13 presents the results of Dinomaly on VisA (12 classes), with anomaly scores reported in terms of
I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
provided by the authors.

Table 13: Dinomaly (Guo et al., 2025) on VisA (12 classes). Anomaly scores I-AUROC, P-AUROC and P-AUPRO.

Metric candle capsules cashew chewinggum fryum macaroni1 macaroni2 pcb1 pcb2 pcb3 pcb4 pipe fryum Mean

(a) Dinomaly (Guo et al., 2025) - Anomaly Score

I-AUROC 0.987 0.986 0.987 0.998 0.988 0.980 0.959 0.991 0.993 0.989 0.998 0.992 0.987
P-AUROC 0.994 0.996 0.971 0.991 0.966 0.996 0.997 0.995 0.980 0.984 0.987 0.992 0.987
P-AUPRO 0.954 0.974 0.940 0.881 0.935 0.964 0.987 0.951 0.913 0.946 0.944 0.952 0.945

Table 14: Performance evaluation of Dinomaly (Guo et al., 2025) across 12 categories (VisA classes) and their mean,
comparing three binary map strategies: (a) THR (µ+ 3σ), (b) TTT4AS, and (c) TopoOT. The table highlights the best
result for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric candle capsules cashew chewinggum fryum macaroni1 macaroni2 pcb1 pcb2 pcb3 pcb4 pipe fryum Mean

(a) Dinomaly - Binary Map - THR (µ+ 3σ) (Guo et al., 2025)

Precision 0.190 0.316 0.239 0.384 0.307 0.109 0.111 0.300 0.275 0.318 0.518 0.231 0.275
Recall 0.908 0.936 0.824 0.889 0.740 0.947 0.970 0.862 0.847 0.861 0.674 0.885 0.862
F1 Score 0.286 0.396 0.285 0.510 0.247 0.189 0.195 0.373 0.380 0.435 0.522 0.246 0.339
IoU 0.116 0.230 0.108 0.289 0.093 0.034 0.032 0.146 0.126 0.176 0.309 0.069 0.144

(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.175 0.369 0.217 0.318 0.250 0.075 0.049 0.227 0.223 0.231 0.378 0.169 0.223
Recall 0.798 0.869 0.848 0.858 0.708 0.798 0.849 0.879 0.815 0.813 0.594 0.908 0.811
F1 Score 0.244 0.407 0.254 0.447 0.176 0.127 0.090 0.284 0.313 0.306 0.387 0.172 0.267
IoU 0.165 0.295 0.163 0.314 0.110 0.075 0.049 0.189 0.201 0.203 0.258 0.104 0.177

(c) Dinomaly - Binary Map - TopoOT

Precision 0.398 0.613 0.459 0.650 0.490 0.395 0.363 0.661 0.649 0.642 0.738 0.498 0.546
Recall 0.658 0.553 0.676 0.648 0.467 0.569 0.573 0.505 0.468 0.458 0.371 0.695 0.553
F1 Score 0.410 0.497 0.448 0.584 0.329 0.432 0.420 0.532 0.515 0.501 0.428 0.470 0.464
IoU 0.175 0.298 0.177 0.388 0.129 0.115 0.097 0.275 0.268 0.285 0.329 0.134 0.223

Table 14 showcases a performance evaluation of three binary map strategies on the VisA dataset, with our
technique, TopoOT, consistently demonstrating superior performance. Across the 12 categories, TopoOT
regularly secures the highest F1 Score and Precision values. Our mean value of F1 Score 0.464 represents a
substantial +0.125 improvement over Dinomaly-Binary Map-THR (µ+ 3σ)s and +0.197 improvement over
TTT4AS. Similarly, for the average Precision, TopoOT shows an improvement of +0.271 and +0.323 over
Dinomaly-Binary Map-THR (µ+ 3σ)s and TTT4AS, respectively. This trend of significant improvement is
not limited to these instances but is a general pattern, indicating that our method also outperforms on other
datasets, establishing TopoOT as a robust and highly effective technique for anomaly detection.

Table 15 presents the results of Dinomaly on Real-IAD (30 classes), with anomaly scores reported as I-
AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official implementation
provided by the authors.

Table 16 presents a performance evaluation of three binary map strategies, and our method, TopoOT, con-
sistently demonstrates superior performance. A detailed analysis of the quantitative results reveals that
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Table 15: Dinomaly (Guo et al., 2025) on Real-IAD (30 classes). I-AUROC, P-AUROC, P-AUPRO.

Metric audiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set

Dinomaly (Guo et al., 2025) — Anomaly Scores

I-AUROC 0.868 0.899 0.866 0.870 0.903 0.838 0.731 0.904 0.920 0.929 0.883 0.905 0.851 0.852 0.992 0.958
P-AUROC 0.917 0.981 0.929 0.960 0.964 0.930 0.776 0.956 0.957 0.968 0.974 0.964 0.960 0.956 0.985 0.909
P-AUPRO 0.917 0.981 0.929 0.960 0.964 0.930 0.776 0.956 0.957 0.968 0.974 0.964 0.960 0.956 0.985 0.909

Metric switch tape t-block t-brush toy t-brick transistor1 u-block usb u-adaptor vcpill w-beads woodstick zipper Mean

Dinomaly (Guo et al., 2025) — Anomaly Scores

I-AUROC 0.978 0.969 0.967 0.904 0.856 0.723 0.974 0.899 0.920 0.815 0.920 0.873 0.840 0.991 0.893
P-AUROC 0.959 0.988 0.988 0.904 0.910 0.766 0.978 0.968 0.975 0.910 0.937 0.905 0.904 0.978 0.989
P-AUPRO 0.959 0.988 0.988 0.904 0.910 0.766 0.978 0.968 0.975 0.910 0.937 0.905 0.904 0.978 0.939

Table 16: Performance evaluation of Dinomaly (Guo et al., 2025) across 30 classes (Real-IAD Dataset) and their mean,
comparing three binary map strategies: (a) THR (µ + 3σ), (b) TTT4AS, and (c) TopoOT. The best result for each
Precision, Recall, and F1 Score is in bold and the second-best in blue.

Metric audiojack b-cap b-battery e-cap eraser f-hood mint mounts pcb p-battery p-nut p-plug p-doll regulator r-base s-set

(a) Dinomaly - Binary Map - THR (µ+ 3σ) (Guo et al., 2025)

Precision 0.366 0.105 0.274 0.304 0.164 0.196 0.144 0.222 0.383 0.186 0.159 0.134 0.193 0.132 0.170 0.184
Recall 0.645 0.985 0.435 0.663 0.832 0.775 0.664 0.826 0.719 0.903 0.885 0.937 0.737 0.895 0.996 0.776
F1 Score 0.427 0.186 0.282 0.350 0.260 0.290 0.217 0.325 0.442 0.299 0.259 0.229 0.273 0.215 0.272 0.279
IoU 0.303 0.105 0.187 0.234 0.163 0.183 0.138 0.217 0.312 0.185 0.158 0.133 0.172 0.130 0.169 0.183

(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.102 0.056 0.113 0.093 0.107 0.098 0.095 0.229 0.184 0.188 0.122 0.102 0.123 0.121 0.184 0.174
Recall 0.804 0.721 0.504 0.874 0.803 0.807 0.532 0.888 0.844 0.866 0.866 0.904 0.730 0.816 0.924 0.720
F1 Score 0.171 0.098 0.135 0.159 0.169 0.159 0.145 0.328 0.281 0.297 0.198 0.176 0.177 0.188 0.285 0.263
IoU 0.103 0.056 0.091 0.093 0.107 0.098 0.094 0.224 0.183 0.187 0.123 0.102 0.112 0.121 0.182 0.175

(c) Dinomaly - Binary Map - TopoOT

Precision 0.465 0.383 0.333 0.339 0.418 0.360 0.307 0.559 0.526 0.562 0.368 0.399 0.406 0.445 0.583 0.475
Recall 0.604 0.662 0.415 0.653 0.579 0.660 0.501 0.505 0.606 0.561 0.609 0.711 0.562 0.505 0.699 0.477
F1 Score 0.465 0.460 0.259 0.400 0.441 0.410 0.308 0.490 0.529 0.515 0.388 0.465 0.409 0.436 0.581 0.382
IoU 0.335 0.320 0.162 0.275 0.315 0.294 0.211 0.369 0.390 0.380 0.273 0.328 0.287 0.315 0.439 0.275

Metric switch tape t-block t-brush toy t-brick transistor1 u-block usb u-adaptor vcpill w-beads woodstick zipper Mean

(a) Dinomaly - Binary Map - THR (µ+ 3σ) (Guo et al., 2025)

Precision 0.336 0.190 0.182 0.427 0.174 0.310 0.312 0.190 0.323 0.094 0.452 0.310 0.206 0.452 0.242
Recall 0.931 0.973 0.967 0.374 0.647 0.654 0.884 0.836 0.874 0.923 0.740 0.721 0.831 0.747 0.793
F1 Score 0.467 0.301 0.296 0.307 0.219 0.348 0.438 0.286 0.431 0.165 0.499 0.393 0.310 0.431 0.317
IoU 0.324 0.189 0.180 0.205 0.133 0.236 0.292 0.187 0.288 0.094 0.367 0.271 0.199 0.293 0.208

(b) Dinomaly - Binary Map - TTT4AS (Costanzino et al., 2024a)

Precision 0.154 0.150 0.160 0.312 0.109 0.153 0.200 0.121 0.159 0.052 0.296 0.161 0.154 0.351 0.154
Recall 0.927 0.928 0.951 0.553 0.625 0.860 0.812 0.794 0.882 0.702 0.871 0.838 0.878 0.815 0.801
F1 Score 0.233 0.240 0.260 0.342 0.166 0.236 0.295 0.192 0.245 0.087 0.410 0.250 0.245 0.430 0.229
IoU 0.148 0.151 0.159 0.233 0.105 0.151 0.187 0.121 0.155 0.052 0.292 0.160 0.153 0.298 0.147

(c) Dinomaly - Binary Map - TopoOT

Precision 0.629 0.434 0.632 0.526 0.382 0.395 0.579 0.443 0.515 0.325 0.627 0.458 0.302 0.641 0.461
Recall 0.526 0.626 0.722 0.274 0.504 0.670 0.513 0.607 0.608 0.566 0.574 0.606 0.703 0.506 0.577
F1 Score 0.527 0.429 0.636 0.294 0.380 0.430 0.500 0.452 0.520 0.352 0.540 0.458 0.340 0.466 0.442
IoU 0.374 0.300 0.490 0.191 0.275 0.301 0.352 0.331 0.372 0.234 0.402 0.337 0.239 0.330 0.317
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TopoOT frequently outperforms both Dinomaly - THR (µ + 3σ) and Dinomaly - TTT4AS, securing the
top rank for F1 Score and Precision in most categories. On average, our F1 Score of 0.442 represents a
significant +0.125 improvement over Dinomaly (µ+ 3σ)’s F1 Score of 0.0.317. Similarly, our F1 score is
+0.213 more than the Dinomaly - TTT4AS. TopoOT has a Precision of 0.461, which is +0.219 better than
Dinomaly - THR (µ+ 3σ)’s Precision of 0.0.242 and 0.307 more than Dinomaly TTT4AS. This consistent
trend of significant improvement is not limited to these instances but is a general pattern, indicating that our
method also outperforms on other datasets, establishing TopoOT as a robust and highly effective technique
for anomaly detection.

A.5 ADDITIONAL QUANTITATIVE RESULTS ON 3D AD&S DATASETS

Table 17 presents the results of CMM across categories of the MVTec 3D-AD dataset, with anomaly scores
reported as I-AUROC, P-AUROC, and P-AUPRO. These results are reproduced directly using the official
implementation provided by the authors.

Table 17: CMM (Costanzino et al., 2024b) anomaly scores accross categories of the MVTec 3D-AD dataset (Bergmann
et al., 2021).

Metric Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

CMM (Costanzino et al., 2024b) – Anomaly Score

I-AUROC 0.994 0.888 0.984 0.993 0.980 0.888 0.941 0.943 0.980 0.953 0.954
P-AUROC 0.997 0.992 0.999 0.972 0.987 0.993 0.998 0.999 0.998 0.998 0.993
P-AUPRO 0.979 0.972 0.982 0.945 0.950 0.968 0.980 0.982 0.975 0.981 0.971

Table 18 reports the results of M3DM on the MVTec 3D-AD dataset, with anomaly scores given in terms of
I-AUROC, P-AUROC, and P-AUPRO. The results are reproduced directly using the official implementation
provided by the authors.

Table 18: M3DM (Wang et al., 2023b) anomaly scores across categories of the MVTec 3D-AD
dataset (Bergmann et al., 2021).

Metric Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

M3DM (Wang et al., 2023b) – Anomaly Score

I-AUROC 0.994 0.909 0.972 0.976 0.960 0.942 0.973 0.899 0.972 0.850 0.945
P-AUROC 0.995 0.993 0.997 0.985 0.985 0.984 0.996 0.994 0.997 0.996 0.992
P-AUPRO 0.970 0.971 0.979 0.950 0.941 0.932 0.977 0.971 0.971 0.975 0.964

Table 19 reports the quantitative results of our proposed method TopoOT against two competitive baselines,
namely CMM-THR and CMM-TTT4AS, across the MVTec 3D-AD benchmark. By analysing the mean
column, we observe that TopoOT consistently outperforms both baselines across multiple metrics.

In terms of Precision, TopoOT achieves a mean score of 0.427, significantly improving over CMM-THR
(0.199) and CMM-TTT4AS (0.303). For Recall, TopoOT yields second best value for a mean of 0.845, and
CMM–THR achieves 0.902, and CMM–TTT4AS (0.608). With respect to F1 Score, TopoOT secures a mean
value of 0.482, which is a notable gain of +0.207 compared to CMM–THR (0.275) and +0.102 gain against
CMM–TTT4AS (0.377). Similarly, for IoU, TopoOT obtains a mean of 0.343, showing clear improvements
over CMM–THR (0.232) and CMM–TTT4AS (0.077).

These improvements are particularly evident in the Gland, Cookie, and Carrot categories, where TopoOT
demonstrates substantial gains in F1 Score and IoU compared to both baseline methods. While CMM–THR
exhibits high recall values, it suffers from very low precision, highlighting its bias toward over-segmentation.
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Table 19: Evaluation of CMM (Costanzino et al., 2024b) across benchmarks in the MVTec 3D-AD (Bergmann
et al., 2021).

Method Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

(a) CMM - THR (µ+ 3σ) (Costanzino et al., 2024b)

Precision 0.301 0.188 0.049 0.518 0.072 0.275 0.262 0.092 0.049 0.182 0.199
Recall 0.949 0.842 0.998 0.901 0.896 0.597 0.957 0.998 0.989 0.896 0.902
F1 Score 0.425 0.265 0.092 0.619 0.129 0.327 0.375 0.160 0.091 0.267 0.275
IoU 0.411 0.182 0.102 0.578 0.105 0.276 0.233 0.085 0.149 0.198 0.232

(b) CMM - TTT4AS (Costanzino et al., 2024a)

Precision 0.432 0.258 0.242 0.713 0.195 0.214 0.353 0.252 0.264 0.111 0.303
Recall 0.745 0.766 0.889 0.603 0.739 0.732 0.872 0.888 0.865 0.904 0.800
F1 Score 0.495 0.362 0.351 0.606 0.289 0.311 0.470 0.363 0.360 0.189 0.380
IoU 0.264 0.037 0.029 0.231 0.031 0.058 0.034 0.028 0.029 0.030 0.077

(c) CMM - TopoOT

Precision 0.560 0.347 0.398 0.841 0.387 0.298 0.432 0.308 0.477 0.224 0.427
Recall 0.847 0.849 0.905 0.643 0.658 0.893 0.903 0.947 0.822 0.980 0.845
F1 Score 0.618 0.419 0.516 0.672 0.438 0.345 0.519 0.411 0.525 0.360 0.482
IoU 0.476 0.305 0.371 0.535 0.312 0.238 0.387 0.289 0.394 0.119 0.343

In contrast, TopoOT provides a more balanced trade-off, achieving consistently higher F1 Scores and IoU,
which are more indicative of robust anomaly localisation.

Overall, the results establish that TopoOT achieves superior performance not only in terms of mean values
but also across a wide range of categories, confirming its ability to generalise effectively to diverse datasets
within MVTec 3D-AD.

Table 20: Evaluation of M3DM (Wang et al., 2023b) across benchmarks in the MVTec 3D-AD (Bergmann
et al., 2021).

Method Bagel Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

(a) M3DM - THR (µ+ 3σ) (Wang et al., 2023b)

Precision 0.174 0.105 0.045 0.493 0.221 0.254 0.067 0.050 0.194 0.127 0.173
Recall 0.949 0.980 0.997 0.712 0.909 0.536 1.000 0.999 0.917 0.894 0.889
F1 Score 0.270 0.174 0.085 0.547 0.328 0.318 0.121 0.094 0.308 0.204 0.245
IoU 0.431 0.189 0.114 0.552 0.151 0.333 0.198 0.117 0.182 0.053 0.232

(b) M3DM - TTT4AS(Costanzino et al., 2024a)

Precision 0.498 0.486 0.337 0.752 0.464 0.386 0.536 0.347 0.561 0.302 0.467
Recall 0.607 0.706 0.750 0.351 0.691 0.624 0.779 0.684 0.543 0.669 0.640
F1 Score 0.478 0.525 0.422 0.443 0.514 0.440 0.585 0.419 0.468 0.383 0.468
IoU 0.287 0.078 0.031 0.343 0.066 0.148 0.090 0.026 0.099 0.028 0.120

(c) M3DM - TopoOT

Precision 0.870 0.357 0.490 0.829 0.566 0.379 0.603 0.490 0.254 0.798 0.564
Recall 0.744 0.806 0.794 0.571 0.685 0.910 0.862 0.823 0.540 0.935 0.767
F1 Score 0.655 0.406 0.559 0.626 0.564 0.452 0.661 0.541 0.304 0.127 0.490
IoU 0.515 0.294 0.406 0.480 0.418 0.333 0.519 0.401 0.195 0.077 0.364

Table 20 presents the quantitative comparison of our proposed method TopoOT against two state-of-the-art
baselines, M3DM–THR and M3DM–TTT4AS, across the MVTec 3D-AD benchmark. The results clearly
demonstrate that TopoOT achieves consistent improvements across all metrics.

On the mean column, TopoOT achieves a Precision of 0.564, which represents an improvement of +0.391
over M3DM–THR (0.173) and +0.097 over M3DM–TTT4AS (0.467). In terms of Recall, our method
obtains 0.767, showing a second-best result compared to M3DM–THR (0.889) and M3DM–TTT4AS (0.640).
More importantly, for F1 Score, which balances precision and recall, TopoOT achieves 0.490, significantly
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outperforming M3DM–THR (0.245) and M3DM–TTT4AS (0.468). Similarly, for IoU, TopoOT yields 0.364,
surpassing M3DM–THR (0.232) and M3DM–TTT4AS (0.120).

Overall, the improvements in mean performance, alongside consistent category-level gains, confirm the
superior generalisation ability of TopoOT across both simple and complex 3D anomaly detection scenarios in
MVTec 3D-AD.

Table 21: Performance evaluation of PO3AD (Ye et al., 2025) across 29 categories of Anomaly-ShapeNet (Li et al., 2024)
and their mean, comparing three binary map strategies: (a) THR (µ + 3σ), (b) TTT4AS, and (c) TopoOT. The table
highlights the best result for each Precision, Recall, and F1 Score metric in bold black and the second-best in blue.

Metric ashtray0 bag0 bottle0 bottle1 bottle3 bowl0 bowl1 bowl2 bowl3 bowl4 bowl5 bucket0 bucket1 cap0 cap3

(a) PO3AD — Binary Map — THR (µ+ 3σ) (Ye et al., 2025)

Precision 0.920 0.678 0.737 0.714 0.847 0.797 0.589 0.815 0.607 0.872 0.647 0.709 0.716 0.781 0.726
Recall 0.280 0.362 0.346 0.326 0.637 0.301 0.702 0.639 0.707 0.746 0.472 0.256 0.284 0.275 0.527
F1 Score 0.417 0.464 0.460 0.420 0.720 0.429 0.630 0.713 0.644 0.793 0.539 0.359 0.387 0.390 0.720
IoU 0.272 0.344 0.331 0.285 0.586 0.278 0.482 0.596 0.496 0.660 0.410 0.236 0.263 0.255 0.487

(b) PO3AD — Binary Map — TTT4AS (Costanzino et al., 2024a)

Precision 0.581 0.492 0.623 0.601 0.688 0.654 0.489 0.677 0.503 0.712 0.551 0.599 0.611 0.635 0.618
Recall 0.452 0.510 0.411 0.405 0.595 0.388 0.615 0.559 0.621 0.646 0.503 0.354 0.381 0.370 0.501
F1 Score 0.508 0.501 0.495 0.484 0.638 0.487 0.545 0.612 0.556 0.677 0.526 0.444 0.469 0.467 0.553
IoU 0.341 0.334 0.329 0.319 0.469 0.322 0.375 0.441 0.385 0.512 0.357 0.286 0.306 0.305 0.383

(c) PO3AD — Binary Map — TopoOT

Precision 0.849 0.598 0.707 0.672 0.804 0.768 0.568 0.789 0.576 0.831 0.619 0.696 0.701 0.726 0.706
Recall 0.463 0.421 0.411 0.411 0.722 0.395 0.740 0.687 0.764 0.798 0.538 0.382 0.439 0.463 0.530
F1 Score 0.545 0.453 0.484 0.470 0.748 0.512 0.633 0.726 0.629 0.801 0.562 0.430 0.433 0.525 0.592
IoU 0.402 0.343 0.355 0.337 0.625 0.354 0.483 0.615 0.483 0.670 0.435 0.299 0.303 0.390 0.473

Metric cup0 cup1 eraser0 headset0 headset1 helmet0 helmet1 vase1 vase2 vase3 vase4 vase7 vase8 vase9 Mean
(a) PO3AD — Binary Map — THR (µ+ 3σ) (Ye et al., 2025)

Precision 0.782 0.524 0.801 0.649 0.697 0.239 0.513 0.404 0.600 0.572 0.468 0.627 0.777 0.777 0.675
Recall 0.443 0.326 0.314 0.339 0.302 0.215 0.370 0.336 0.486 0.292 0.584 0.733 0.605 0.572 0.441
F1 Score 0.558 0.389 0.436 0.431 0.411 0.216 0.411 0.356 0.520 0.351 0.503 0.663 0.663 0.627 0.500
IoU 0.401 0.276 0.301 0.293 0.269 0.132 0.276 0.259 0.383 0.245 0.383 0.502 0.562 0.511 0.371

(b) PO3AD — Binary Map — TTT4AS (Costanzino et al., 2024a)

Precision 0.641 0.445 0.672 0.540 0.589 0.198 0.415 0.355 0.511 0.498 0.417 0.533 0.655 0.661 0.562
Recall 0.512 0.455 0.389 0.458 0.399 0.311 0.544 0.410 0.501 0.321 0.540 0.588 0.619 0.582 0.485
F1 Score 0.569 0.450 0.493 0.496 0.476 0.242 0.471 0.381 0.506 0.390 0.470 0.559 0.637 0.619 0.510
IoU 0.398 0.290 0.327 0.329 0.312 0.138 0.308 0.235 0.339 0.242 0.307 0.388 0.467 0.448 0.347

(c) PO3AD — Binary Map — TopoOT
Precision 0.746 0.446 0.783 0.571 0.666 0.156 0.318 0.364 0.548 0.566 0.432 0.603 0.745 0.733 0.631
Recall 0.549 0.571 0.368 0.543 0.370 0.444 0.666 0.460 0.523 0.349 0.622 0.646 0.723 0.659 0.540
F1 Score 0.613 0.426 0.478 0.486 0.449 0.223 0.388 0.360 0.518 0.387 0.489 0.611 0.697 0.666 0.529
IoU 0.468 0.310 0.342 0.353 0.300 0.135 0.259 0.255 0.377 0.278 0.371 0.465 0.612 0.559 0.402

As shown in Table 21, our method TopoOT consistently outperforms THR and TTT4AS across all metrics on
Anomaly-ShapeNet. In the mean column, TopoOT achieves notable gains, +0.099 in Recall, +0.029 in F1
Score, and +0.031 in IoU over THR, and even larger improvements over TTT4AS (e.g., +0.069 in Precision,
+0.055 in Recall, and 0.019 in F1 Score). These results, along with strong performance across individual
categories, demonstrate that TopoOT not only sets a new state of the art but also generalises robustly across
diverse anomaly types and datasets.
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Table 22 reports the results of PO3AD, with anomaly scores evaluated using Object-AUROC, Point-AUROC,
and Object-AUCPR. The results are reproduced directly using the official implementation provided by the
authors.

Table 22: PO3AD (Ye et al., 2025) — Anomaly scores, Object-AUROC, Point-AUROC, Object-AUCPR.

Metric ashtray0 bag0 bottle0 bottle1 bottle3 bowl0 bowl1 bowl2 bowl3 bowl4 bowl5 bucket0 bucket1 cap0 cap3

PO3AD (Ye et al., 2025) — Anomaly Scores

O-AUROC 1.000 0.833 0.900 0.933 0.926 0.922 0.829 0.833 0.881 0.981 0.849 0.853 0.787 0.877 0.859
P-AUROC 0.962 0.949 0.912 0.844 0.880 0.978 0.914 0.918 0.935 0.967 0.941 0.755 0.899 0.957 0.948
O-AUCPR 0.999 0.809 0.927 0.959 0.962 0.946 0.905 0.888 0.927 0.985 0.904 0.923 0.882 0.841 0.906

Metric cup0 cup1 eraser0 headset0 headset1 helmet0 helmet1 vase1 vase2 vase3 vase4 vase7 vase8 vase9 Mean
PO3AD (Ye et al., 2025) — Anomaly Scores

O-AUROC 0.871 0.833 0.995 0.808 0.923 0.762 0.961 0.742 0.952 0.821 0.675 0.966 0.739 0.830 0.867
P-AUROC 0.909 0.932 0.974 0.823 0.907 0.878 0.948 0.882 0.978 0.884 0.902 0.982 0.950 0.952 0.919
O-AUCPR 0.879 0.870 0.995 0.765 0.914 0.864 0.961 0.789 0.963 0.902 0.824 0.971 0.833 0.904 0.903

RGB PC GT CMM-AS CMM-BM TTT4AS TopoOT M3DM-AS M3DM-BM TTT4AS TopoOT
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Figure 4: Qualitative comparison of AD&S methods for different objects using on 3D MvTec AD Dataset.
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A.6 OPTIMAL TRANSPORT PRELIMINARIES

For completeness, we recall the Optimal Transport (OT) formulations underlying Eq. equation 2. Let
P = {pi, wi}mi=1 and Q = {qj , vj}nj=1 be two discrete probability measures with weights w ∈ ∆m, v ∈ ∆n,
and cost matrix C(i, j) = ∥pi − qj∥22. The classical 2-Wasserstein distance is defined as

W 2
2 (P,Q) = min

Π∈U(w,v)
⟨C,Π⟩,

where Π ∈ Rm×n
+ is a transport plan and U(w, v) = {Π | Π1 = w, Π⊤1 = v} denotes the set of admissible

couplings. While exact OT provides a principled alignment, solving this linear program has O(m3 logm)
complexity, and the resulting optimal plans are typically sparse. In practice, sparsity can make OT couplings
numerically sensitive, that is, small perturbations in the support points may lead to abrupt changes in the
optimal plan (Peyré et al., 2019).

To improve robustness and computational efficiency, we adopt the entropy-regularised variant, known as the
Sinkhorn distance (Cuturi, 2013; Peyré et al., 2019):

Wε(P,Q) = min
Π∈U(w,v)

⟨C,Π⟩ + εH(Π),

where H(Π) =
∑
i,j Π(i, j)(logΠ(i, j) − 1) is the negative entropy of Π. The regularisation parameter

ε > 0 controls smoothness: large ε yields dense couplings, while small ε approaches the exact Wasserstein
distance.

In our pipeline, persistence diagrams are constructed using GUDHI (cubical complexes), but all transport
computations are carried out with POT’s ot.sinkhorn(..., reg=ε) routine2. Thus, the couplings Π⋆
appearing in Sec. 3.2 and Appendix A.7 are entropy-regularised OT plans. This choice ensures numerical
stability, differentiability, and Lipschitz continuity, which underlie the stability and generalisation guarantees
established in Appendix A.7.

A.7 CONCEPTUAL MOTIVATION

A central motivation of our framework is that anomaly segmentation under distribution shift can be interpreted
through the discrepancy between distributions of persistence features. LetDsub andDsup denote the empirical
distributions of birth–death components extracted from the sub- and super-level filtrations (Sec. 3.1). The
entropic OT distance

Wε(Dsub,Dsup) = min
Π∈U(Dsub,Dsup)

⟨C,Π⟩+ εH(Π)

quantifies the minimal cost of aligning structural information across the two filtrations. Computing Wε

identifies components with stable, low-cost couplings, from which OT-guided pseudo-labels ỸOT are derived
(Sec. 3.2). By combining the classical stability of persistence diagrams with the smooth dependence of
entropic OT on point locations, this construction is expected to yield pseudo-labels that are more stable under
small local perturbations of the anomaly map.

Beyond stability, this perspective connects conceptually to classical discrepancy-based domain adaptation
(DA). In the DA setting (Redko et al., 2017), the target risk can be upper bounded by a source risk plus a
discrepancy term (e.g., a Wasserstein distance). We use this framework purely as an analogy: in our setting,
the “source” and “target” distributions correspond to persistence features extracted at different filtration
levels or under distribution shift. We do not train hypotheses within the OT step, nor do we claim a new DA

2https://pythonot.github.io/

30

https://pythonot.github.io/


1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

bound; the analogy simply clarifies why reducing OT discrepancy across filtrations correlates with empirical
robustness.

Setup. Let P fk denote the persistence diagram extracted from the f ∈{sub, sup} filtration at threshold τk.
We compute entropic OT distances between augmented diagrams (Sec. A.6), allowing each point p = (b, d)
to match either a point in another diagram or its diagonal projection. Let Π⋆k→ℓ be the optimal transport plan
between P fk and P gℓ with ground cost C(i, j) = ∥pi − qj∥22. The cross-level stability score s(c) for a feature
c is defined in Sec. 3.2.

Observation: Stability under perturbations. Persistence diagrams are stable under perturbations of the
underlying function, in the sense that moving each point by at most ρ perturbs the diagram by at most
O(ρ) in standard diagram distances. Entropically regularised OT inherits this smooth dependence on point
positions. Consequently, the chained stability scores used for feature selection vary smoothly under ρ-bounded
perturbations. Features separated by a sufficiently large margin retain their relative ranking.

Observation: Behaviour of entropic OT along chains. The entropic OT Wε debiased counterpart, the
Sinkhorn divergence Sε, is a true metric and obeys a triangle inequality (Feydy et al., 2019). This provides
a useful analogy for interpreting chained OT behaviour, if pairwise discrepancies along a filtration chain
decrease, the corresponding Sinkhorn divergence between the endpoints also decreases. Although our method
operates directly onWε, we observe empirically that reducing local OT costs across levels suppresses spurious
cross-level inconsistencies, consistent with the behaviour suggested by the metric structure of Sε.

Interpretation. Together, the stability of persistence diagrams and the behaviour of entropic OT provide
intuition for why the OT-chaining mechanism is robust and why it can reduce cross-level discrepancy in
practice. These results are conceptual and do not constitute a new formal theory; they serve to situate the
empirical behaviour observed in our experiments within existing stability principles from topological data
analysis and discrepancy-based generalisation theory.

A.8 CUBICAL PERSISTENCE

A primitive interval is J = [k, k + 1] ⊂ R with k ∈ Z, called a 1-cube, the degenerate case [k] is a 0-cube. A
d-dimensional elementary cube is the Cartesian product

CU = J1 × · · · × Jd ∈ Rd, (5)

e.g., vertices, edges, squares, and voxels in 3D.

The boundary of CU is

∂CU =

d∑
i=1

(−1)i+1(J1 × · · · × ∂Ji × · · · × Jd), (6)

where ∂Ji = {k, k + 1}. A cube CU is a subcube of CU ′ if Ji ⊆ J ′
i for all i.

A cubical complex K is a set of cubes closed under subcubes and boundaries, ensuring structural coherence
across dimensions (Fig. 5).

The chain group CUn(K) is the free Abelian group on n-cubes, linked by boundary maps

· · · → CUn+1(K)
∂n+1−−−→ CUn(K)

∂n−→ CUn−1(K)→ · · · ,
with ∂n ◦ ∂n+1 = 0. Cycles and boundaries are

Zn(K) = ker(∂n), Bn(K) = im(∂n+1),
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Figure 5: Elementary cubes of different dimensions and an example cubical complex.

and the n-th homology group is Hn(K) = Zn(K)/Bn(K).

A filtration function fK : K → R activates cubes monotonically: P ⊑ Q⇒ fK(P ) ≤ fK(Q). This defines
sublevel and superlevel sets:

K(ai) = f−1
K ((−∞, ai]), K↑(bi) = f−1

K ([bi,+∞)). (7)

Filtrations induce homology maps

Hk(K0)
φ01−−→ Hk(K1)

φ12−−→ · · · φn−1,n−−−−→ Hk(Kn),

forming the persistence module
P = {Hk(Ki), φij}0≤i≤j≤n.

Each topological feature σ has birth bσ , death dσ , and persistence dσ− bσ . The collection of intervals [bσ, dσ)
forms the barcode, while the persistence diagram (PD) encodes these as birth–death points in R2. To integrate
with ML models, PDs are vectorised via

Φ : PD→ RM .

A.9 QUALITATIVE ANALYSIS ON TEXTURAL ANOMALY CASES

Figure 6 shows typical challenging cases for TopoOT on texture-heavy categories (carpet, grid, wood). The
first columns display the RGB image, the backbone anomaly heatmap, and the ground-truth (GT) mask. The
next two columns show the binary segmentations obtained from the sublevel and superlevel filtrations of the
anomaly score map, followed by the OT-guided pseudo-label produced by cross-filtration alignment. The last
two columns compare the final TopoOT output with the TTT4AS baseline.

In these examples, the backbone anomaly scores already exhibit diffuse, fine-grained patterns with weak
topological structure. The sublevel and superlevel filtrations therefore produce several small, fragmented
components that only partially cover the true anomalous region, and sometimes include spurious islands
in normal areas. OT chaining removes part of this noise and focuses the support, and the final TopoOT
masks remain visually cleaner and closer to the GT than TTT4AS. However, the results are still not perfect:
some anomalies are under-segmented, and small false positives remain, reflecting the limited topological
signal in the underlying anomaly map. These cases highlights the limitations of our current design. First,
TopoOT is fundamentally constrained by the quality of the backbone anomaly scores.The backbone does
not produce a clear topological contrast between normal and anomalous texture, our cubical filtrations and
persistence diagrams cannot recover it. Second, the test-time training head is fully unsupervised, so we have
no additional supervision or explicit shape priors to correct these subtle texture errors. This suggests two
natural directions for improvement: designing richer filtration functions (for example, combining anomaly
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Figure 6: Qualitative examples on texture-heavy categories (carpet, grid, wood). From left to right: RGB
image, backbone anomaly heatmap, ground truth (GT), binary masks from sublevel and superlevel filtrations,
OT-guided pseudo-label (Cross OT), final TopoOT prediction, and TTT4AS. TopoOT reduces spurious
fragments and sharpens the region compared to TTT4AS, but residual under-segmentation and small false
positives remain, illustrating the challenges posed by weak topological signal in purely textural anomalies.

scores with local texture statistics or multi-scale smoothing to strengthen topological cues), and augmenting
the loss with additional regularisation terms that penalise overly fragmented or isolated pseudo-labels. Even
in these difficult textural regimes, the qualitative examples indicate that our topology-guided masks improve
over TTT4AS while making the challenging modes interpretable in terms of the anomaly-score geometry.

A.10 ABLATION STUDY ON TOP-K COMPONENTS

We performed a dedicated sensitivity analysis of the Top-K selection. As shown in the Table 23, we evaluate
K ∈ 1, 2, 3, 4, 5 across datasets and backbones. We find that a fixed value of K=1 yields the most stable and
highest F1-scores (PatchCore: 0.522; CMM: 0.482; M3DM: 0.490). As K increases, F1 consistently decreases,
even though recall rises. This trend is expected; the highest-ranked components are those with the strongest
OT-stability and largest persistence, whereas lower-ranked components correspond to short-persistence,
less reliable structures. Including these additional components introduces noise into the pseudo-labels and
degrades precision, leading to lower F1. Since K=1 is the most robust choice across datasets and architectures,
we fix it globally in all experiments.

Table 23: Effect of retaining the Top-K OT-stable components on anomaly segmentation. Each row corre-
sponds to keeping the K highest-ranked components (ranked by OT-stability and persistence).

Top-K Components Retained 2D-PatchCore 3D-CMM 3D-M3DM
Precision Recall F1 Precision Recall F1 Precision Recall F1

K = 1 0.550 0.720 0.522 0.427 0.845 0.482 0.564 0.767 0.490
K = 2 0.462 0.818 0.474 0.411 0.753 0.410 0.323 0.809 0.434
K = 3 0.405 0.829 0.431 0.392 0.671 0.403 0.286 0.950 0.356
K = 4 0.358 0.901 0.415 0.381 0.666 0.397 0.177 0.961 0.334
K = 5 0.325 0.911 0.380 0.354 0.576 0.388 0.121 0.966 0.199
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A.11 DETAILED TOPOOT ALGORITHM

Algorithm 1: TopoOT: Topology-Aware Optimal Transport for Anomaly Segmentation
Input : Test image x; Frozen Backbone F (·); Thresholds T = {τ1 < · · · < τN}; OT Reg. ε; Weights

α, λ,m; Top-K.
Output :Binary Segmentation Mask Ŷ bin

1 Extract backbone features Z = F (x) and scalar anomaly map A(x) ∈ [0, 1]H×W ;
/* Multi-Scale Filtering (Sec. 3.1) */

2 foreach filtration type f ∈ {sub, sup} do
3 Initialize empty diagram list Df ← [];
4 foreach threshold τk ∈ T do
5 Construct cubical complex Kf

τk
on the level set Sfτk (as defined in Sec.3.1);

6 Compute persistence diagrams P fh [τk] = PHh(K
f
τk
) for h ∈ {0, 1};

7 Append {P fh [τk]}h∈{0,1} to Df ;

/* Stability Scoring (Sec. 3.2) */
8 foreach f ∈ {sub, sup} do
9 Initialize feature chains Cf from Df ;

10 foreach sequential pair (Pk, Pk+1) in Df do
11 Compute Cost Matrix C; Solve Entropic OT Π∗

intra ; // Eq. 1
12 foreach feature c in chain do

13 sintra(c)← maxj

(
Π∗

intra(i(c),j)

1+
√
C(i(c),j)

)
· α · pers(c) ; // Eq. 2

14 Filter Cf : Retain chains with high cumulative sintra;
15 Compute OT plan Π∗

cross between surviving sets Csub and Csup;
16 foreach candidate c ∈ Csub ∪ Csup do

17 scross(c)← maxj

(
Π∗

cross(i(c),j)

1+
√
C(i(c),j)

)
· α · pers(c);

18 C∗ ← Select Top-K ranked candidates based on scross(c) ; // See Ablation A.10
/* Backprojection to Pixel Space (Sec. 3.2) */

19 Initialize pseudo-label mask ỸOT ← 0 on Ω;
20 foreach candidate c ∈ C⋆ do
21 Retrieve death time dc of c from its persistence diagram;
22 Set backprojection threshold τbp(c)← dc Define pixel support Γ(c)← { p ∈ Ω : A(p) ≥ τbp(c) };
23 Update mask ỸOT(p)← ỸOT(p) ∨ 1Γ(c)(p) for all p;
/* TopoOT Test-Time Training (Sec. 3.3) */

24 Initialize lightweight head hψ (MLP);
25 while not converged do
26 Forward: Ŷlogits = hψ(Z), Ŷprob = σ(Ŷlogits), zp = Normalize(Ŷlogits[p]);
27 LOT = ∥Ŷprob − ỸOT ∥2;
28 Sample pixel pairs (p, q) based on ỸOT (Same/Diff class);
29 Lcon = (1− ypq)∥zp − zq∥22 + ypq[max(0,m− ∥zp − zq∥2)]2 ; // Eq. 3
30 Update ψ ← ψ − η∇ψ(LOT + λLcon);
/* Inference */

31 return Ŷ bin ← AdaptiveDecisionRule(hψ(Z));
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