
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DOLPHIN: A PROGRAMMABLE FRAMEWORK FOR
SCALABLE NEUROSYMBOLIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neurosymbolic learning has emerged as a promising paradigm to incorporate sym-
bolic reasoning into deep learning models. However, existing frameworks are
limited in scalability with respect to both the training data and the complexity of
symbolic programs. We propose DOLPHIN, a framework to scale neurosymbolic
learning at a fundamental level by mapping both forward chaining and backward
gradient propagation in symbolic programs to vectorized computations. For this
purpose, DOLPHIN introduces a set of abstractions and primitives directly on top
of a high-performance deep learning framework like PyTorch. It thereby enables
neurosymbolic programs to be written in a language like Python that is familiar to
developers and compile them to computation graphs that are amenable to end-to-
end differentiation on GPUs. We evaluate DOLPHIN on a suite of 13 benchmarks
across 5 tasks that combine deep learning models for text, image, or video pro-
cessing with symbolic programs that involve multi-hop reasoning, recursion, and
black-box functions like Python eval(). DOLPHIN achieves comparable or bet-
ter accuracy on all benchmarks while taking 0.3%-61.7% of the time (and 23.2%
on average) to train these models on the largest input per task compared to base-
lines Scallop, ISED, and IndeCateR+, which time out on most of these inputs.

1 INTRODUCTION

Deep learning has made great strides in tasks such as image classification, speech recognition, and
natural language processing. With the emergence of foundation models like GPT-4 and CLIP, deep
learning is increasingly applied to more complex tasks. While such models work well for prediction
and generation tasks, they are limited in their ability to perform reasoning required for tasks involv-
ing structure, logic, and planning, where symbolic approaches traditionally excel (Kambhampati
et al.). Neurosymbolic programming (Chaudhuri et al., 2021) has emerged as a promising paradigm
to incorporate symbolic reasoning into deep learning models, providing the best of both worlds.

Various frameworks have been developed to improve the programmability and accessibility of neu-
rosymbolic applications (Manhaeve et al., 2018; Li et al., 2023; Solko-Breslin et al., 2024). These
frameworks support complex symbolic reasoning features like recursion and black-box functions,
implement efficient differentiable reasoning algorithms, and provide bindings for deep learning
frameworks like PyTorch. However, these frameworks incur significant overhead during training.

Consider a typical workflow of such a framework in Figure 1(a). We have a supervised learning
task with labeled data (x, y), a neural network M✓ that processes input x, and a symbolic program
Psymbolic that takes the network’s output r and produces final output y. Existing frameworks, such
as Scallop (Li et al., 2023), execute the neural model on GPU but use a separate CPU-based backend
(implemented in Rust in Scallop’s case) for the symbolic program. Moreover, they introduce inter-
process latency in transferring state between the neural and symbolic sub-systems.

x r y x r y

Python
Environment

Rust
Environment

symbolic program

Python
Environment

neural model symbolic programneural model

unbatched CPU computationsbatched GPU computations batched GPU computations

sl
ow

 in
te

r-
pr

oc
es

s
da

ta
 tr

an
sf

er

(a) Typical neurosymbolic framework (e.g. Scallop).

x r y x r y

Python
Environment

Rust
Environment

symbolic program

Python
Environment

neural model symbolic programneural model

unbatched CPU computationsbatched GPU computations batched GPU computations

sl
ow

 in
te

r-
pr

oc
es

s
da

ta
 tr

an
sf

er

(b) Our neurosymbolic framework DOLPHIN.

Figure 1: Comparison of system architectures of neurosymbolic frameworks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Together, these issues hinder the scalability of neurosymbolic learning with respect to problem com-

plexity and data complexity. First, the symbolic computation engine must derive a set of all possible
results and their associated probabilities in a manner that is differentiable with respect to the net-
work’s parameters ✓. As the complexity of the symbolic program increases, the number of possible
results and their associated weights also grows exponentially, leading to a combinatorial explosion
in the number of required computations. However, the symbolic computations are discrete and not
easily parallelizable on modern hardware like GPUs. Second, larger datasets also compound the
computational cost of neurosymbolic learning. Deep learning typically addresses this challenge
by batching computations across multiple data samples. However, in neurosymbolic learning, the
computations may differ across data samples, making it difficult to batch them effectively.

To address these challenges, we need to fundamentally rethink the design of a neurosymbolic frame-
work. One approach is to develop specialized and low-level primitives that scale specific bench-
marks but make it time-intensive for developers to write neurosymbolic programs tailored to partic-
ular tasks. Alternatively, providing high-level primitives—such as a logic programming language
like Scallop (Li et al., 2023) or DeepProbLog (Manhaeve et al., 2018)—simplifies the development
of symbolic programs but limits the fine-grained control needed to scale specific applications. Fi-
nally, to truly democratize neurosymbolic programming, it is crucial to develop a framework that
seamlessly integrates into the everyday deep learning workflows that developers already use.

In this work, we propose DOLPHIN, a novel framework for scalable neurosymbolic learning. In
DOLPHIN, we build three key components that effectively tackle the scalability and programmabil-
ity challenges described above. First, we develop a general symbolic representation that efficiently
captures the relationships between neural network outputs and associated discrete symbols. Sec-
ond, we introduce a set of primitives to map forward chaining in symbolic programs to vectorized
computations over these representations. Third, we develop a set of vectorized provenance semir-

ings (Green et al., 2007) that are easily pluggable into DOLPHIN and enable to efficiently compute
symbolic gradients. As illustrated in Figure 1b, these components together allow DOLPHIN to build
a computation graph that spans both symbolic and neural operations, is highly parallelizable, and
end-to-end differentiable on GPUs. Finally, DOLPHIN is implemented as a library that is integrated
with PyTorch, allowing users to easily incorporate it into their existing deep learning pipelines.

We evaluate DOLPHIN on a diverse set of neurosymbolic tasks that involve text, image, video, and
multi-modal data, and use rich reasoning features such as recursion and black-box Python functions.
Neurosymbolic programs written using DOLPHIN only require 0.3%-61.7% (23.2% on average) of
the time to train compared to state-of-the-art baselines including differentiable reasoning frame-
works like Scallop, and sampling-based frameworks like ISED and IndeCateR+ while maintaining
similar levels of accuracy. We also observe that DOLPHIN efficiently scales to more complex bench-
marks and larger datasets whereas the baselines either time out after 10 hours or fail to converge.

We make the following contributions in this work:

• We propose DOLPHIN, a novel neurosymbolic programming framework for end-to-end differen-
tiable symbolic reasoning in a scalable manner.

• We develop novel abstractions to represent symbolic and neural computations and introduce vec-
torized primitives for neurosymbolic programs.

• We develop vectorized provenances that can be plugged into DOLPHIN for efficient computation
of symbolic gradients on parallelizable hardware such as GPUs.

• We evaluate DOLPHIN on a diverse range of challenging neurosymbolic tasks across different
domains and show that it effectively scales with increasing problem complexity and dataset size.

2 OVERVIEW

We illustrate our approach using the MNIST Sum-N task from (De Smet et al., 2024). The goal
is to train a model that takes as input N images of MNIST digits and returns the sum of the digits
represented by the images. During learning, supervision is provided only on the sum instead of the
labels of the digits. The difficulty of the problem scales exponentially as there are 10N states in the
input space. Further, there are only 9N + 1 possible labels, resulting in very sparse supervision.

Figure 2a shows the code for this task using DOLPHIN with PyTorch. The neural module is a
convolutional neural network (CNN) called MNISTNet. It takes in a batch of image tuples imgs
where each sample contains N MNIST images. MNISTNet classifies each image into one of 10

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1 class MNISTNet(nn.Module):
2 def __init__(self):
3 super(MNISTNet, self).__init__()
4 ...
5
6 class SumNNet(nn.Module):
7 def __init__(self):
8 super(SumNNet, self).__init__()
9 self.CNN = MNISTNet()

10
11 def forward(self, imgs):
12 digits = range(10)
13 D_res = Distribution(self.CNN(imgs[0]), digits)
14 for i in range(1, len(imgs)):
15 D_i = Distribution(self.CNN(imgs[i]), digits)
16 D_res = apply(D_res, D_i, lambda x,y: x + y)
17 l_res = get_logits(D_res)
18 return l_res

(a) Code using DOLPHIN primitives with PyTorch. (b) Components of the SumNNet model.

Figure 2: A neurosymbolic program for the MNIST Sum-N task written using DOLPHIN.

(a) MNIST Sum-N. (b) PathFinder.
Figure 3: Computation graphs for two neurosymbolic programs written using DOLPHIN.

classes representing the digits 0-9. The logits produced by MNISTNet, representing probability
distributions over the digits, are then passed as inputs to the symbolic program. Lines 13-17 depict
a symbolic program written in Python using DOLPHIN primitives.

In order to support training, the symbolic program must reason over all the outputs of the CNN, and
return probability distributions over all the possible results (0 to 9N). This involves tracking the
probabilities of individual symbols (here, digits or numbers), combinatorially evaluating the results
of complex symbolic functions, and calculating the probabilities of each intermediate result, all
while tracking their gradients to allow for accurate backpropagation while optimizing the training
objective. The batched nature of data in machine learning further complicates these calculations
since the probabilities of symbols can be different across samples within the same batch. As a
result, writing neurosymbolic programs in native PyTorch is tedious even for simple tasks.

To address these issues, DOLPHIN provides primitives that allow programmers to express symbolic
programs without worrying about the underlying computations. Lines 13 and 15 of Figure 2a show
how the CNN’s output can be captured within Distribution objects. Each Distribution as-
sociates the digits with the corresponding batched logits produced by the CNN, along with any
gradients and associated metadata. Figure 2b shows the internal structure of these objects.

The programmer can now express the symbolic program in terms of operations that manipulate
Distributions. For instance, in line 16, the apply function is used to perform an operation on
two distributions. Here, the apply function takes two Distributions as arguments, along with
a lambda function that specifies the addition operation. Under the hood, apply combinatorially
explores all the possible sums of the symbols from D res and D i and calculates their associated
probabilities using an appropriate provenance. The result of apply is a new Distribution over
the calculated sums, and is stored back into D res. This is repeated iteratively until all the outputs
of the CNN are summed appropriately. Once the final Distribution is calculated, it is simply a
matter of getting its logits which can be used to calculate the loss of the predictions.

DOLPHIN provides additional primitives to support more complex symbolic programs. Figure 3b,
for instance, shows the computation graph for the PathFinder task (Tay et al., 2021), which involves

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Symbol :: s 2 S (objects)
Tag :: t 2 T (tensors)

Distribution :: D 2 D = S ! T

APPLY : DK ⇥ (SK ! S) ! D
FILTER : D⇥ (S ! B) ! D

APPLYIF : DK ⇥ (SK ! S)⇥ (SK ! B) ! D
UNION : D⇥ D ! D

GETPROBS : D ! [0, 1]N

Figure 4: Formal definition of DOLPHIN’s programming abstractions and primitives.

recursively building paths to identify if two points in a maze are connected. The union primitive is
used to support the recursive nature of this program. As with apply, DOLPHIN maps the symbolic
operations denoted within these primitives to probability computations. Given that Distribution
objects associate symbols with the batched logits themselves, these computations are vectorized
and directly operate over PyTorch tensors. This deep integration of DOLPHIN into PyTorch allows
programmers to write symbolic programs as symbolic layers that interact with standard PyTorch
neural layers within a neurosymbolic model. DOLPHIN can thus leverage the hardware acceleration
supported by PyTorch to scale to large and complex programs. This contrasts with systems like Scal-
lop (Li et al., 2023), where tensors are converted into Scallop-friendly tags transferred to a process
outside the Python environment with CPU-bound probability computations, restricting scalability.

3 THE DOLPHIN FRAMEWORK

3.1 DOLPHIN CORE DESIGN PRINCIPLES

We based DOLPHIN’s framework design on the following core principles:

• Flexible programmability: The framework should allow developers to write neurosymbolic ap-
plications in Python with minimal effort, providing intuitive primitives that seamlessly integrate
with Python’s rich and expressive language features.

• End-to-end differentiability on GPUs: The framework should allow any neurosymbolic pro-
gram to be end-to-end differentiable on GPUs irrespective of the task characteristics.

• Scalable: The framework should easily scale with greater problem and data complexity.
• Tunable: Similar to hyperparameters in deep learning, the framework should provide a simple

interface for developers to choose provenances (and their configurations) or define new ones.

Together, these principles help address the challenges of scaling neurosymbolic frameworks. The
flexible programmability and tunability allow us to write complex neurosymbolic programs, while
GPU differentiability and scalability work towards addressing data complexity. We show how we
realize these principles by describing the key components of DOLPHIN.

3.2 THE DOLPHIN SYNTAX

DOLPHIN provides a programming interface that developers can use to express symbolic programs
in a Pythonic manner. DOLPHIN maps each operation of the symbolic program to PyTorch
which enables end-to-end GPU-accelerated differentiable reasoning. Figure 4 presents DOLPHIN’s
programming interface including the symbolic abstractions and operations over them.

3.2.1 ABSTRACTIONS

The three main abstractions provided by DOLPHIN for expressing differentiable symbolic programs
are shown on the left of Figure 4. Symbols S represent symbolic entities relevant to the program.
These entities can be any Pythonic object, such as hand-written digits in MNIST-SumN or coordi-
nates of points in PathFinder. Tags T are tensors that represent their likelihoods. Typically, tags for
symbols are derived from the outputs of machine learning models, such as the probability distribu-
tion over digits produced by the CNN classifier in MNIST-SumN. Finally, Distribution D represents
the likelihood of an input being classified as one of the pre-defined symbols.

Distributions serve as the fundamental datatype of a DOLPHIN program and act as its main interface
with a machine learning model. For instance, when the developer instantiates a Distribution object,
such as in the following code snippet from Figure 2a:

Dres = Distribution(self.CNN(imgs[0]), digits)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the output of the CNN model is directly passed to the Distribution object, effectively acting as
an input to the symbolic program. The Distribution object itself, as shown in Figure 2b, contains
batches of tags extracted from the model outputs, and maintains the set of corresponding symbols.

To enable such a seamless integration between the PyTorch model and the symbolic program, Distri-
butions are designed to operate directly over PyTorch tensors. This has two main advantages. First,
it preserves the gradients of the model output throughout the symbolic program, enabling end-to-
end differentiability. Second, it allows DOLPHIN to perform operations over an entire batch of tags,
leveraging the vectorized operations provided by PyTorch. DOLPHIN can thus operate efficiently on
specialized hardware like GPUs, allowing the symbolic program to scale effectively.

3.2.2 OPERATIONS

Figure 4 shows the five operations supported by DOLPHIN that developers can use to manipulate
Distributions and express complex symbolic programs. We now expand on these operations.

APPLY. This is the primary operation that developers can use to manipulate Distributions. It takes
as inputs K Distributions, where K � 1, along with a function f of the same arity. This function
defines operations over the symbols of K distributions. APPLY then computes the results of f over
all possible combinations of arguments sourced from the symbols of the Distributions as well as
their associated tags, and returns a new Distribution with these results and tags.

This operation occurs in two stages akin to the popular map-reduce pattern. In the map stage, APPLY
computes the results of f over the symbols of the input Distributions and their associated tags:

R = { (f(s1, s2, . . . , sk), (t1 ⌦ t2 ⌦ . . .⌦ tk)) | Di(si) = ti, i = 1, . . . , k } (1)

Here, the tag of each result symbol f(s1, s2, . . . , sk) is the conjunction ⌦ of the tags (t1, t2, . . . , tk)
of the input symbols it was derived from. While the tag computations are performed on the GPU, the
function f is executed sequentially on the CPU for each combination of symbols. This is because
function f can be any user-defined Python function, including complex control flows and operations
like regex parsing, image processing, or Python’s eval(). It may also be a many-to-one function
and the tags shared by a resulting symbol must be aggregated to form the final tags of the output
Distribution. We, therefore, shuffle the results from the map stage to compute a function M from
each symbol to tags from R associated with it:

M = � s . { t | (s, t) 2 R } (2)

We then proceed to the reduce stage, where we aggregate the tags of each symbol in M using
disjunction � to produce the final Distribution Dres:

Dres = � s .
M

{ t | t 2 M(s) } (3)

Since the tags here are PyTorch tensors representing probabilities, the implementations of the con-
junction and disjunction operations are dictated by the underlying provenance used by the program.
A more detailed explanation of the provenances is provided in Section 3.4.

FILTER. The FILTER operation is used to filter out symbols from a Distribution based on some
condition. It takes in a single Distribution, along with a user-defined function that returns a boolean
value, which acts as the condition. This operation then returns a new Distribution that contains only
the symbols that satisfy the condition, along with their tags.

APPLYIF. This operation is a conditional version of APPLY. It takes in K Distributions and func-
tions fapply and fcond of the same arity. For each combination of symbols from the K Distributions,
APPLYIF computes fapply and its associated tags only if the condition fcond is satisfied over that
combination of symbols. The operation then returns a new Distribution with these results and tags.

UNION. The UNION operation is used to combine two Distributions. It takes in two Distributions
and returns a new Distribution that contains the union of the symbols from the two input Distri-
butions, along with their tags. Any symbols common to both input Distributions have their tags
merged via a disjunction operation. UNION is especially useful when writing recursive programs in
DOLPHIN that require combining the results of multiple recursive calls, as described in Appendix D.

GETPROBS. The GETPROBS operation extracts the probabilities from the tags of a Distribution.
This is used mainly once the symbolic program has been executed to extract the final probabilities

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Provenance Domain 0 1 t � t0 t ⌦ t0

DAMP [0, 1] 0 1 clamp10(t + t0) t · t0

DTKP-AM [0, 1] [{1,�1} 0̂ij = �1 1̂ij =

(
1 i = 1

�1 i > 1
topk(cat(t, t0)) topk([min(|ti|, |t0j |) | (ti, t0j) 2 t ⇥ t0])

Table 1: DOLPHIN provenances implemented in PyTorch.

of the symbols in the output Distribution. These probabilities can then be used to compute the
loss function for training the neural model. The actual extraction of the probabilities from the tags
depends on the specific provenance used in the program.

3.3 CONTROL FLOW AND RECURSION

Expressing control flow and recursion in a DOLPHIN program can be done in one of two ways.
The simplest way is to specify any control flow operations within the user-defined functions sup-
plied to APPLY, APPLYIF, and FILTER, since these functions can contain arbitrary Python code.

def compute_paths(paths, edges):
new_paths = apply_if(paths, edges, \

lambda p1, p2: (p1[0], p2[1]), \
lambda p1, p2: p1[1] == p2[0])

merged = union(paths, new_paths)
checking for convergence via fix-
point
if merged.symbols == paths.symbols:

return merged
else:

return compute_paths(merged, edges)

edges = Distribution(model(img), points)
paths = compute_paths(edges, edges)

Figure 5: Transitive Closure in DOLPHIN.

Alternatively, one can specify control flow and re-
cursion outside of these functions by specifying all
branches separately and merging their results using
UNION. Figure 5 shows an example of transitive
closure in DOLPHIN, where the compute paths
function computes the transitive closure of the
graph by iteratively applying edges predicted by a
neural model to paths. The APPLYIF function ap-
plies the edges to the paths if the end of the first
path is the same as the start of the second path.
The UNION function merges the new paths with
the existing paths. The function compute paths is
called recursively until a fixpoint is reached, specif-
ically until no new paths can be added.

3.4 DOLPHIN PROVENANCES

As discussed earlier, each symbol in a distribution is associated with a batch of one or more tags.
The DOLPHIN primitives define how to manipulate certain tags. For instance, Equations (1) and (3)
specify the tags to be conjuncted or disjuncted. We now define the semantics of these operations.

The goal of such operations is to approximate the probabilities of the symbols in the output distri-
bution as accurately as possible. This is achieved by using a mathematical framework called prove-

nance semirings (Green et al., 2007). Provenance semirings provide generalized algebraic structure
to propagate tags when computing over tagged data. In the case of DOLPHIN distributions, we can
view the tags as representing the probabilities, and the data as the distribution’s symbols.

Designing and implementing provenances can be challenging since they must be accurate enough
to capture the semantics of the symbolic program, while at the same time being coarse enough to
maintain computational feasibility. Furthermore, the provenances must be differentiable to enable
end-to-end training for neurosymbolic tasks. While neurosymbolic frameworks like Scallop (Li
et al., 2023) implement differentiable provenances, they are not designed to leverage hardware ac-
celerations or batched optimizations due to the CPU-bound nature of their implementations. We thus
design vectorized provenances in DOLPHIN that are differentiable and enable GPU computations.

We simplify the definition of provenances from Scallop as a 5-tuple: (T,0,1,⌦,�). Here, T is the
tag space, ⌦ : T⇥T ! T is the conjunction operator with identity 0, and � : T⇥T ! T is the dis-
junction operator with identity 1. We then implement two differentiable provenances in DOLPHIN:
Differentiable Add-Mult Probabilities (DAMP) and Differentiable Top-K Proofs (DTKP). Table 1
summarizes the operations of these provenances.

Differentiable Add-Mult Probabilities. Differentiable Add-Mult Probabilities (DAMP) is a pop-
ular technique that uses the probability space as its tag space: T = [0, 1]. Its conjunction operation
⌦ is defined as the product of probabilities, clamped at 1, and its disjunction operation � is defined
as the sum of probabilities. The main assumption underlying the DAMP operations is that the input

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Distributions are mutually exclusive and independent. This assumption allows DAMP to compute
probabilities extremely efficiently, as the operations are simple and can be easily vectorized.

Differentiable Top-k Proofs. Differentiable Top-k Proofs (DTKP) (Huang et al., 2021) was pro-
posed to overcome the shortcomings of DAMP. This provenance tracks a set of up to k proofs for
each symbol. Each proof, in turn, denotes the set of input symbols necessary to derive the output
symbol. These proofs are then used to compute the probabilities of the output symbols. In Scal-
lop, DTKP tags are converted into probabilities via differentiable weighted model counting (WMC).
This form of DTKP, which we call DTKP-WMC, is computationally hard and is by nature difficult
to vectorize due to the varying sizes of proof sets and the WMC procedure. We hence design a
vectorized approximation of DTKP-WMC, called DTKP-AM (DTKP with Add-Mult), that can be
efficiently computed on GPUs.

We first define the structure of tags in DTKP-AM in a manner that conforms to the constraints of
PyTorch tensors. Each tag t for a symbol s is a 2-dimensional tensor of shape (k, |I|), where k is
the maximum number of proofs to be retained and I is an ordered list of all input symbols (symbols
that are present in the input Distributions). Each row ti of t corresponds to one of the tag’s k proofs.
Each element tij thus represents the probability of the jth input symbol in the ith proof:

tij =

(
pj if the jth symbol is present in the ith proof
0̂ij otherwise

where pj is the probability of the jth input symbol. The probability of each proof is then computed
by taking the product of the normal:

Pr(ti) =
Y

j

norm(tij) where norm(tij) =

8
><

>:

1 tij = +1
0 tij = �1
tij otherwise

We next define the operations of DTKP-AM in Table 1. The � operation is defined as the union of
two tag tensors t and t0 while ⌦ is defined as the element-wise minimum of the normalized elements
of all possible combinations of proofs in t and t0. In each case, the topk operation retains only upto
k proofs with the highest probabilities. These definitions thus allow us to take advantage of the
benefits of the DTKP provenance while enabling efficient computation on GPUs. To calculate the
probability of the entire tag, DTKP-AM adds the probabilities of the individual proofs and clamps
it at 1. We provide a detailed discussion of DTKP-AM in Appendix C.

3.5 BUILDING THE DOLPHIN PROGRAM

The programmer specifies the neurosymbolic task using a Python program P that uses DOLPHIN’s
programming interface to connect the neural components (e.g., neural networks) with the symbolic
components and operations. We call P the symbolic program. Because P is a Python program and
DOLPHIN interfaces with PyTorch, DOLPHIN supports any PyTorch-based neural network(s), most
Python language features, and custom user-defined functions. This feature enables greater flexibility
and expressiveness in neurosymbolic programs than existing frameworks.

In addition to P , the programmer provides one or more neural networks M1, . . . ,Mk, and a dataset
D. Given these inputs, DOLPHIN extracts the computation graph that encodes how the neural net-
work outputs are transformed using symbolic operations to produce a final result Dres. All com-
putations in DOLPHIN are expressed using distribution objects Di. Each DOLPHIN primitive (e.g.,
APPLY) takes one or more distribution objects as inputs and applies a transformation to produce an-
other distribution object. Because each distribution object Di only contains vectors of tags (or prob-
abilities), the entire computation graph (including the neural network(s)) can be ported to a GPU for
faster execution. During training, DOLPHIN optimizes over the standard objective function:

�(✓) = min
✓

X

(x,y)2D

L(P (M✓(x)), y) (4)

Here L is the loss function, such as binary cross entropy. While DOLPHIN allows P to take
multiple neural networks as inputs, we show only one neural network model M here for simplicity.

4 EXPERIMENTS

We evaluate DOLPHIN on a set of 13 benchmarks of varying complexity and scale across 5 neu-
rosymbolic tasks. Our evaluation addresses the following research questions:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• RQ1: Scalability. How does DOLPHIN scale to complex problems and large datasets?
• RQ2: Accuracy. Do models written in DOLPHIN converge to SOTA accuracies?
• RQ3: Provenance Comparisons. Which provenances are most effective for each benchmark?

4.1 BENCHMARKS

We evaluate DOLPHIN on the following benchmarks. We give additional context and information
about the experiment setup for each branch in Appendix A.

MNIST-SumN. The MNIST-SumN (or briefly, SumN) task from (De Smet et al., 2024) takes as
inputs N handwritten digits from the MNIST dataset and returns their sum. We consider three
versions of this task: small (N = 5), medium (N = 10), and large (N = 15).

Hand-Written Formula (HWF). The HWF task from Li et al. (2020) takes as input a set of images
of handwritten digits and arithmetic operators representing a formula. The task is to evaluate the
formula and return the result. We consider three versions of HWF: small (formulas of length up to
7), medium (formulas of length up to 15), and large (formulas of length up to 19).

PathFinder. PathFinder (or Path) from Tay et al. (2021) tests the ability of an agent to reason over
long-range dependencies within an input image. The image consisting of two dots and a sequence
of curved and dashed lines. The task is to identify whether the two dots are connected via the lines.
We consider three versions of this task based on the image size in pixels: small (32 x 32), medium
(128 x 128), and large (256 x 256).

CLUTRR. In this task from Sinha et al. (2019), the input is a passage of text containing some
information about several individuals and some of their relationships. The task is then to infer
the relationship between two given individuals, which is not explicitly provided in the input. We
consider two versions of this task, where the training data contains relation chains of lengths up to 3
(small) or 4 (medium).

Mugen. In this task from Hayes et al. (2022), the input is a video of gameplay footage that is 3.2
seconds long and a natural language passage captioning the video. The goal is to measure how
aligned the text is with the video. This task has two variants: Mugen-TVR, where the model must
retrieve the video that best aligns with the text, and Mugen-VTR, where the model must retrieve the
text that best aligns with the video. This benchmark tests the ability of the model to reason over
multimodal data. We consider two versions of this task: small, with 1000 training samples, and
medium, with 5000 training samples.

4.2 EXPERIMENTAL SETUP AND BASELINES

Setup. All experiments, except for the CLUTRR benchmark, were run on machines with two
20-core Intel Xeon Gold 6248 CPUs, four NVIDIA GeForce RTX 2080 Ti GPUs, and 768 GB
RAM. Since the CLUTRR benchmark requires more GPU memory, it was run on a machine with 8
NVIDIA A100 40GB GPUs instead. We ran each tool thrice until convergence or until a timeout of
10 hours was reached and report the average best accuracy and training time. The code of DOLPHIN
and the benchmarks are provided in the supplementary material.

Baselines. We select Scallop (Li et al., 2023), a contemporary state-of-the-art neurosymbolic frame-
work supporting differentiable programming optimized to run on the CPU and use multiple cores to
parallelize its computations. We also choose two sampling-based gradient approximation methods,
ISED (Solko-Breslin et al., 2024) and IndeCateR+ (De Smet et al., 2024). We compare DOLPHIN
against Scallop on all benchmarks, and against ISED and IndeCateR on MNIST-SumN and HWF.

4.3 RQ1: SCALABILITY

Table 2 presents the total training times (Ttotal) in seconds for DOLPHIN and baselines on all bench-
marks, along with the time per epoch (Tepoch) and scaling factor ↵. The scaling factor is the ratio
of the per epoch times of the baselines to DOLPHIN. We observe that in almost all cases, DOLPHIN
shows significant improvements in training times, training up to about 300x faster than Scallop, 44x
faster than ISED, and 3x faster than IndeCateR+. On average, DOLPHIN reports a speedup of 21x
times over all baselines. Further, DOLPHIN converges on all benchmarks, while the baselines time

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task DOLPHIN Scallop ISED IndeCateR+

Ttotal Tepoch Ttotal Tepoch ↵ Ttotal Tepoch ↵ Ttotal Tepoch ↵

SumN (S) 78.33 15.67 923.78 184.76 11.80 299.63 59.93 3.82 416.78 59.54 3.8
SumN (M) 144.92 14.49 3.41e3 341.57 23.57 2.16e3 216.54 14.94 385.65 32.14 2.22
SumN (L) 220.47 14.70 7.41e3 493.87 33.60 9.8e3 653.39 44.45 548.28 23.84 1.62
HWF (S) 3.17e3 158.79 9.99e3 499.57 3.15 1.58e4 790.04 4.97 1.35e4 540.26 3.4
HWF (M) 1.46e4 731.67 TO 1.49e4 20.41 TO 6.83e3 9.34 2.51e4 2512.03 3.43
HWF (L) 2.42e4 1.21e3 TO 3.92e5 323.21 TO 1.05e4 8.61 TO 4091.46 3.37

Path (S) 1.08e4 1.08e3 2.2e4 2.2e3 2.03
N.A.Path (M) 1.79e4 1.79e3 TO 4.17e3 2.32

Path (L) 1.94e4 1.94e3 TO 1.12e4 5.81

CLUTRR (S) 1.54e3 154.85 4.29e3 429.97 2.77 N.A.CLUTRR (M) 2.91e3 291.36 7.83e3 783.11 2.69

Mugen (S) 3.62e3 180.80 1.34e4 133.68 0.74 N.A.Mugen (M) 1.78e3 890.34 TO 634.86 0.71

Table 2: Comparison of training times taken by each baseline. The Timeout (TO) is set at 10 hours. ↵
is the scaling factor, which is the ratio of the per epoch training times of the baselines and DOLPHIN.

Sum
N

Small Sum
N

Med
ium Sum

N

Larg
e HW

F

Small HW
F

Med
ium HW

F

Larg
e

CLUTRR

Small
CLUTRR

Med
ium Path

Small Path

Med
ium Path

Larg
e

Mug
en

-T
VR

Small

Mug
en

-T
VR

Med
ium

Mug
en

-V
TR

Small

Mug
en

-V
TR

Med
ium

0

50

100

A
cc

ur
ac

y
(%

)

Dolphin
Scallop
ISED
IndiCateR

Figure 6: Accuracy of DOLPHIN and baselines across all benchmarks.

out on most of the Medium and Large versions of the benchmarks. These results thus demonstrate
that, unlike existing tools, DOLPHIN can scale to complex problems and large datasets.

DOLPHIN trains slightly slower than Scallop on both versions of the Mugen benchmark. This is
because the DOLPHIN program written for Mugen uses Python objects and operations that are not
fully batchable across samples. In contrast, the Scallop program, which is written in a compiled
and optimized language, runs around 1.3x faster than DOLPHIN on average per iteration. However,
DOLPHIN requires only 20 epochs to converge whereas Scallop requires almost 1000 epochs (Li
et al., 2023). As a result, DOLPHIN’s total training time is still significantly lower than Scallop’s
(3̃.7x for Mugen(S)). We show the accuracy curves for Mugen in Appendix A.6.

4.4 RQ2: ACCURACY

Figure 6 presents the accuracy of DOLPHIN and the baselines on the different benchmarks. DOL-
PHIN accuracies are marked in blue. In all cases, for DOLPHIN, we report the accuracies of the
best-performing provenance. We use the DAMP provenance for MNIST, CLUTRR, and Mugen
benchmarks, and the DTKP-AM provenance for the HWF and PathFinder benchmarks.

We observe that in all cases, DOLPHIN achieves state-of-the-art accuracy among neurosymbolic
frameworks, except in CLUTRR, where DOLPHIN’s accuracy is slightly lower than Scallop’s. While
DeepProbLog (Manhaeve et al., 2018) reports near-perfect accuracies for CLUTRR, they use nega-
tive mining techniques to provide additional labels at train time. Scallop and DOLPHIN, on the other
hand, stick to a traditional semi-supervised multiclass classification approach. For most Medium
and Large versions of the benchmarks, DOLPHIN achieves better accuracy, whereas the baselines
either report lower accuracy due to the complexity of the benchmark (e.g., HWF) or fail to converge
within the time limit (e.g., Scallop on PathFinder-Large). Most importantly, these results show that
DOLPHIN’s scalability improvements do not come at the cost of accuracy.

4.5 RQ3: PROVENANCE COMPARISONS

We perform ablation studies to compare the effectiveness of the DAMP and DTKP-AM provenances
for each benchmark. We share the graphs in Figure 9 (Appendix B). In all cases, training with the
DAMP provenance takes around 132.96 seconds per epoch less than with DTKP-AM on average.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

However, the effectiveness of each provenance varies from benchmark to benchmark. For all varia-
tions of CLUTRR, Path, and Mugen, both provenances achieve comparable accuracies, with DTKP-
AM usually having a slight edge. In the MNIST-SumN benchmark, the DAMP provenance is more
effective than the DTKP-AM provenance by 72.08 %pts on average, since the top-k proofs cannot
capture all the possible ways in which the sum of the digits can be computed.

In contrast, for HWF, the DTKP-AM provenance is more effective than DAMP by an average of
42.18 %pts. Each step of the HWF program, shown in Appendix G, involves both a concatenation
operation and a partial parsing operation before the final expression is evaluated to produce a result.
As such, it is difficult for the tags in DAMP to capture the semantics of the symbolic program. In
the case of DTKP-AM, each tag is a collection of proofs over input symbols corresponding to logits
derived from the neural model. Therefore, any calculated gradients can be directly backpropagated
to the logits that most influenced the output, making this a more effective provenance for this task.

5 RELATED WORK

Neurosymbolic programming frameworks. Frameworks like Scallop (Li et al., 2023), Deep-
ProbLog (Manhaeve et al., 2018), and ISED (Solko-Breslin et al., 2024) provide a simple interface
for neurosymbolic programming. There are also domain-specific tools like NeurASP Yang et al.
(2021) for answer set programming and NeuralLog Chen et al. (2021) for phrase alignment in NLP.
While these frameworks provide intuitive abstractions, they are bottle-necked due to expensive data
transfers between symbolic computations done on CPU versus neural computations that execute on
GPU, making neurosymbolic learning hard to scale. In contrast, DOLPHIN provides a deeper inte-
gration of the two worlds by building a Python-based API on top of PyTorch, which scales better.

Scaling techniques. Several optimization techniques have been proposed to improve the scalability
of differentiable reasoning algorithms. Some techniques aim to scale reasoning algorithms by com-
piling the symbolic program into computation graphs that can be run on GPUs. LYRICS (Marra
et al., 2019), Logic Tensor Networks (Badreddine et al., 2022), and Tensorlog (Cohen et al., 2020)
are examples of such techniques. However, these methods focus on first order logic programs and
provide limited support for user-defined Pythonic functions, essential for building complex neu-
rosymbolic programs.1 Greedy NTP (Minervini et al., 2020a) reduces the computation cost of
NTP (Rocktäschel & Riedel, 2017) by tracking only a subset of proof states using nearest neigh-
bor search. Likewise, the conditional theorem prover (Minervini et al., 2020b) employs a machine
learning-based proof selection technique. However, unlike DOLPHIN, these methods are point solu-
tions that do not fundamentally address the scalability challenge for neurosymbolic learning.

Specialized neurosymbolic solutions. There are many specialized solutions for various neurosym-
bolic tasks. For instance, NGS (Li et al., 2020) uses a hand-coded syntax to specify the structure
of mathematical expressions for HWF. More general solutions, such as NS-CL (Mao et al., 2019)
includes a framework for visual question answering that learns symbolic representations for text and
images. NeRd (Chen et al., 2021) transforms questions in natural language into executable programs
based on symbolic information extracted from text. Orvieto et al. (2023) proposes a recurrent neu-
ral network architecture that achieves 95% accuracy on Path (S) and 94% on Path (M). In contrast,
Dolphin is a general programming framework that tries to scale diverse neurosymbolic programs.

6 CONCLUSION AND LIMITATIONS

We proposed DOLPHIN, a programmable framework for scaling neurosymbolic learning. DOLPHIN
provides abstractions for writing symbolic programs along with pluggable vectorized provenances
to compute symbolic gradients. This allows users to write differentiable symbolic programs in
Python within PyTorch pipelines that can scale to complex programs and large datasets. We show
that DOLPHIN scales significantly better than existing neurosymbolic frameworks while achieving
state-of-the-art performance on a variety of tasks.

A limitation of DOLPHIN is that it needs the user to write programs in a batched manner. While this
is a common pattern within deep learning, it may be restrictive to users new to batched programming.
Also, while DOLPHIN works well with most models, the representation needed by generative models
(e.g., Causal LLMs like Llama) has not been investigated. A third limitation is that Dolphin lacks
support for non-deterministic symbolic programs. We leave this to future work.

1Refer to Appendix E for a detailed comparison of DOLPHIN with LTN.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor net-
works. Artificial Intelligence, 303:103649, 2022. ISSN 0004-3702. doi: https://doi.org/10.1016/
j.artint.2021.103649. URL https://www.sciencedirect.com/science/article/
pii/S0004370221002009.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages,
7(3):158–243, 2021.

Zeming Chen, Qiyue Gao, and Lawrence S. Moss. NeuralLog: Natural language inference with joint
neural and logical reasoning. In Lun-Wei Ku, Vivi Nastase, and Ivan Vulić (eds.), Proceedings

of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics, pp. 78–
88, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
starsem-1.7. URL https://aclanthology.org/2021.starsem-1.7.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: A probabilistic database im-
plemented using deep-learning infrastructure. J. Artif. Intell. Res., 67:285–325, 2020. URL
https://api.semanticscholar.org/CorpusID:211263674.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. Juice: A
julia package for logic and probabilistic circuits. In AAAI Conference on Artificial Intelligence,
2021. URL https://api.semanticscholar.org/CorpusID:235363700.

Adnan Darwiche. An advance on variable elimination with applications to tensor-based computa-
tion. In ECAI 2020, pp. 2559–2568. IOS Press, 2020.

Lennert De Smet, Emanuele Sansone, and Pedro Zuidberg Dos Martires. Differentiable sampling
of categorical distributions using the catlog-derivative trick. Advances in Neural Information

Processing Systems, 36, 2024.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Proceedings of

the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 31–40, 2007.

Thomas Hayes, Songyang Zhang, Xi Yin, Guan Pang, Sasha Sheng, Harry Yang, Songwei Ge,
Qiyuan Hu, and Devi Parikh. Mugen: A playground for video-audio-text multimodal understand-
ing and generation. In European Conference on Computer Vision, pp. 431–449. Springer, 2022.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
From probabilistic deductive databases to scalable differentiable reasoning. Advances in Neural

Information Processing Systems, 34:25134–25145, 2021.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning
in llm-modulo frameworks. In Forty-first International Conference on Machine Learning.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In International Conference on Machine Learning, pp. 5884–5894. PMLR, 2020.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI):1463–1487, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692, 2019.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-

ing systems, 31, 2018.

11

https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://aclanthology.org/2021.starsem-1.7
https://api.semanticscholar.org/CorpusID:211263674
https://api.semanticscholar.org/CorpusID:235363700

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJgMlhRctm.

Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Lyrics: A gen-
eral interface layer to integrate logic inference and deep learning. In Machine Learning and

Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg,

Germany, September 16–20, 2019, Proceedings, Part II, pp. 283–298, Berlin, Heidelberg,
2019. Springer-Verlag. ISBN 978-3-030-46146-1. doi: 10.1007/978-3-030-46147-8 17. URL
https://doi.org/10.1007/978-3-030-46147-8_17.

Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette.
Differentiable reasoning on large knowledge bases and natural language. In Proceedings of the

AAAI conference on artificial intelligence, volume 34, pp. 5182–5190, 2020a.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In International Conference

on Machine Learning, pp. 6938–6949. PMLR, 2020b.

Aaditya Naik, Adam Stein, Yinjun Wu, Mayur Naik, and Eric Wong. Torchql: A program-
ming framework for integrity constraints in machine learning. Proc. ACM Program. Lang.,
8(OOPSLA1), April 2024. doi: 10.1145/3649841. URL https://doi.org/10.1145/
3649841.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In Proceedings

of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. Advances in neural

information processing systems, 30, 2017.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108, 2019.

Scallop Language Group. Scallop and neuro-symbolic programming: Tags, instrumentation, and
provenance. Eleventh Summer School on Formal Techniques, 2022. URL https://www.
scallop-lang.org/ssft22/lectures/lecture-2.pdf.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language Process-

ing (EMNLP-IJCNLP), pp. 4506–4515, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1458. URL https://aclanthology.
org/D19-1458.

Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, and Eric
Wong. Data-efficient learning with neural programs. arXiv preprint arXiv:2406.06246, 2024.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: embracing neural networks into answer set
programming. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial

Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

12

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://doi.org/10.1007/978-3-030-46147-8_17
https://doi.org/10.1145/3649841
https://doi.org/10.1145/3649841
https://www.scallop-lang.org/ssft22/lectures/lecture-2.pdf
https://www.scallop-lang.org/ssft22/lectures/lecture-2.pdf
https://aclanthology.org/D19-1458
https://aclanthology.org/D19-1458
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k

	Introduction
	Overview
	The Dolphin Framework
	Dolphin Core Design Principles
	The Dolphin Syntax
	Abstractions
	Operations

	Control Flow and Recursion
	Dolphin Provenances
	Building the Dolphin Program

	Experiments
	Benchmarks
	Experimental Setup and Baselines
	RQ1: Scalability
	RQ2: Accuracy
	RQ3: Provenance Comparisons

	Related Work
	Conclusion and Limitations
	Dolphin Experiment Details for Benchmarks
	MNIST Sum-N
	Hand-Written Formula
	PathFinder
	CLUTRR
	Mugen
	Accuracy Curves for Mugen

	Graph Results of RQ3
	DTKP-AM Provenance
	WMC approximation
	Role of + and -
	Further reading

	Control Flows and Recursion in Dolphin
	Control Flow in HWF
	Recursion

	Comparison with Tensor-based Neurosymbolic Frameworks
	Optimizing Probabilistic Computations

	On Combinatorial Explosions
	The HWF Model
	On the Language and Semantics
	Language
	Semantics

