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ABSTRACT

Areal spatial data represent not only geographical locations but also sizes and
shapes of physical objects such as buildings in a city. Data-driven generation
of such vector-format data requires an effective representation. Inspired by the
hierarchical nature of such spatial data, we propose AETree, a tree-based deep
auto-encoder network. Unlike common strategies that either treat the data as an
unordered set or sort them into a sequence, we preprocess the data into a binary
tree via hierarchical clustering. Then a tree encoder learns to extract and merge
spatial information from bottom-up iteratively. The resulting global representation
is reversely decoded for reconstruction or generation. Experiments on large scale
2D/3D building datasets of both New York and Zurich showed superior perfor-
mance of AETree than either set-based or sequential auto-regressive deep models.

1 INTRODUCTION

Spatial data describes the geometry information of physical entities. We term those with ar-
eas/volumes as areal spatial data, recording both locations, sizes, and shapes in vector format, for
objects such as buildings in a city1. As image/video generation evolves rapidly, similar data-driven
generation for areal spatial data becomes more appealing due to 1) the abundance of such real-world
data, and 2) the frequent use of such data in various applications. For example, urban planners and
architects heavily rely on spatial simulations to structure their designs; game makers use spatial data
generation tools to automatically create new virtual environments; and more recently, there is a surg-
ing demand from the autonomous driving industry to conduct road testing in simulated environments
with novel maps and scenarios; all of these need areal spatial data generation.

While deep generative models are successful for various data modalities including language, audio,
image, video, and even point clouds, several difficulties keep deep generation less explored for

1Roads are ignored in this term since they are often better modeled as polylines.

(a) 3D Building Generation

(b) (c)

(d) (e)

Figure 1: Example 3D (a) or 2D (b-e) building generation by AETree trained on New York City
(NYC) dataset. Given a ground truth set of 2D building footprints in NYC (b), the AETree recon-
struction result is shown in (c). The 2D generation results of SketchRNN (Ha & Eck, 2017) and
AETree are shown in (d) and (e) respectively.
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areal spatial data despite of their similarity to point clouds. First, they form a set of more complex
geometrically parameterized objects with irregular layouts. Second, such a complex object itself
may consists of a set of simpler objects. Third, these objects usually live on a high dimensional
complex data manifold than simple points in point clouds. For example, a building of the second
Level of Detail (LOD2) in CityGML format (Gröger et al., 2012) is recorded as a set of 3D polygons,
each of which contains a variable number of 3D vertices. Although this paper focuses on the simpler
LOD1 where a building is just a cuboid, generating a set of such cuiboids with resembling layouts as
in the training dataset is still considerably more difficult than point clouds, as shown in Figure 1(d).

There exist two major strategies, set-based or sequence-based, to handle such a set of geometric
objects. Set-based methods extract local features from each object independently, and aggregate
them into a global representation (Qi et al., 2017), based on which generation can be done via direct
multi-layer perceptron (MLP) (Achlioptas et al., 2018), deep parametric surfaces (Yang et al., 2018;
Groueix et al., 2018), or deep implicit functions (Park et al., 2019). Sequence-based methods first
manually sort those objects into a sequence which is then processed by auto-regressive recurrent
neural networks (RNNs) (Ha & Eck, 2017; Chu et al., 2019) or attention-augmented graph neural
networks (GNNs) (Nash et al., 2020). However, the set-based strategy cannot efficiently capture ob-
jects’ local covariation, while the sequence-based one suffers from the loss of spatial neighborhood
information in the sorted sequence.

The contribution of this paper is an alternative strategy based on spatial hierarchy as a more effective
structure than set/sequence for representing areal spatial data. Our method AETree is based on this
strategy and is shown to achieve superior reconstruction and generation performance than methods
using the other two strategies in two large scale real-world building datasets.

2 RELATED WORK

Procedural modeling such as L-systems create geometric structures based on handcrafted produc-
tion rules (Merrell et al., 2010; Vanegas et al., 2012b; Yang et al., 2013; Demir et al., 2014). Recently,
inverse procedural modeling starts to learn the rules from data aided by deep nets (Vanegas et al.,
2012a; Ritchie et al., 2016; Nishida et al., 2016; Guo et al., 2020). Differently, AETree can be seen
as a continuous L-system implemented as a deep net and enables end-to-end learning from scratch.

Deep geometric data modeling has gained popularity in the last lustrum since it enables the gener-
ation of complex geometric structures (vertices/lines/surfaces) with less human input. To generate
human sketch drawings, Ha & Eck (2017) proposed SketchRNN, an RNN model with a VAE struc-
ture to sequentially produce sketch strokes. Nash et al. (2020) proposed PolyGen to generate 3D
polygon meshes with an autoregressive transformer model. House-GAN by Nauata et al. (2020) is
an indoor layout generator enabled with GAN framework. To model city-level road layouts, Chu
et al. (2019) proposed Neural Turtle Graphics (NTG), an encoder-decoder RNN model to generate
roads sequentially. Zhang et al. (2020) further proposed a convolutional message passing neural net-
work for supervised architecture reconstruction from images. Distinctively, AETree explores data’s
spatial hierarchy instead of using a sequence.

Tree-structured neural networks have long been explored for natural language processing tasks,
such as as sentence parsing (Goller & Kuchler, 1996; Socher et al., 2011), representation learn-
ing (Tai et al., 2015; Li et al., 2015), and program generation (Chen et al., 2018). More recently,
Roy et al. (2020) proposed Tree-CNN, a model to grow neural networks during incremental learn-
ing. On the geometric data, researchers have explored tree networks for 3D point cloud modeling.
Klokov & Lempitsky (2017) proposed KD-Net that encodes point cloud features hierarchically with
a KD-tree, and used it for classification and segmentation. Gadelha et al. (2018) further extended it
to a multi-resolution tree networks for more efficient point cloud processing. However, both works
focused on discriminative tasks, and the proposed models are not suitable for data generation.

3 AETREE

Our goal is to discover the hierarchical structures in the areal spatial data (Section 3.1), and then
apply a custom tree structured neural networks for encoding and generation (Section 3.2). Figure 2
gives an overview of our method by taking 2D box data as an example.
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Figure 2: Illustration of the AETree model. The top row in the figure displays an example of
pre-calculated tree structure from raw data level to root level. The orange boxes at the each level
represent new boxes obtained by merging children boxes form the last level (for example, box 2 in
level 1 is generated based on box 0 and 1 from level 0). The bottom row presents our encoding
and decoding modules. Based on the tree structure, we first hierarchically encode children nodes to
acquire the features of their father nodes until getting the root node features. Then starting from the
root level, we hierarchically decode father nodes to children nodes and finally obtain the parameter
of raw nodes.

3.1 DISCOVERING SPATIAL HIERARCHY IN DATA

Let us first consider a set of spatial data {Pi} |i=1,...,N , where Pi represents a single object instance
in the set and N is the number of objects. As explained, we focus on 3D cuboids such as buildings,
so P = (x, y, l, w, h, a) ∈ R6, where x and y denote the center coordinates of a cuboid, and l, w, h
and a denote the length, width, height and orientation angle of the cuboid.

To organize the data hierarchically in a binary tree T , we apply hierarchical clustering (Johnson,
1967) by introducingN−1 intermediate nodes so that all the original objects stay on the leaf nodes.
Concretely, the binary tree is built by recursively merging two closest nodes into a father node until
we obtain a single root node.

The tree is homogeneous, so the intermediate nodes also represent 3D cuboids. For any intermediate
node produced, its parameters x and y are obtained as the mean value of corresponding children
nodes, and l, w, h and a are defined as the minimum bounding rectangle of its children nodes. Note
that before feeding the data into our model, we choose to represent all node parameters relative to
their father nodes (except the root node) as follows (subscript c/f means child/father),

xrc =
xc − xf
lf

, yrc =
yc − yf
wf

, lrc =
lc
lf
, wr

c =
wc

wf
, hrc =

hc
hf
, arc = ac − af .

We find this relative representation performs better in reconstruction, and it is only possible in this
tree-based (instead of set/sequence) structure (more analysis in Appendix A.1).

The distance metric is also important for hierarchical clustering. The one we use is defined as:

D(i, j) = λ1Dcenter(i, j) + λ2Darea(i, j) + λ3Dshape(i, j) + λ4Dangle(i, j) + λ5Dmerge(i, j),

where D(i, j) represents the distance between cuboid i and j, λ represents the weight of each
distance. Specifically, Dcenter measures the Euclidean distance between the center points of two
cuboids; Darea, Dshape and Dangle separately measure the difference between the area, the aspect ra-
tio, and the orientation of two cuboids; and Dmerge measures the difference between the sum of the
two cuboids area and their minimum bounding rectangle area. Mathematical definitions of these
distances are detailed in Appendix A.2.
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Figure 3: An example of our data struc-
ture. The blue nodes at level 0 store
raw objects and we build a hierarchical
clustering tree according to their pair-
wise distances. For efficient mini-batch
training, we design an index matrix for
each level storing the indexes of chil-
dren and fathers.

We present a simple example to explain our data structure.
As shown in Figure 3, three trees are all produced based
on four leaf nodes, but through different merging patterns.
We introduce an index matrix Il to store the merging rules
at each level l, where in each row, the first two columns
denote the indices of children nodes and the last column
is the index of the father node. In this way, we can gather
node features of all trees at the same level effectively, and
put them in a mini-batch for training and inference.

3.2 TREE-SHAPED AUTO-ENCODER NETWORK

With the data constructed hierarchically, we can natu-
rally develop an auto-encoding neural network with a tree
shape to encode, decode and generate the cuboid sets.
Our encoder learns a latent representation Froot of the
root node by encoding each node from bottom to top.
Conversely, our decoder decodes the root node from top
to bottom and reconstructs the original data. Each node
in the tree is represented by its geometric parameters P
and a feature representation F .

Encoding. To obtain the root node feature Froot, the
encoder encodes all intermediate nodes from bottom to top level by level. Given the the parameters
and features of a left child and a right child, the feature of a father node is computed as:

F ′f = fe([Pl,Fl]) + fe([Pr,Fr]), (1)

where fe represents an encoding function that encodes children parameters and features. In the
experiments, we tried both MLP and LSTM cell as the fe function. And it can be seen that our
encoding function is symmetric, meaning the encoded father feature does not contain order infor-
mation. Note that the parameters of father nodes Pf are pre-computed during data construction.

Decoding. The decoder aims to reconstruct the original data from the root featuresFroot produced
by the encoder. At each level, we decode from a father node into two children nodes, which can be
formulated as

[P ′l ,F ′l ,L′l,P ′r,F ′r,L′r] = fd([P ′f ,F ′f ]) (2)

where fd denotes the decoding function, P ′, F ′ and L′ indicate a node’s decoded parameters, fea-
tures, and indicator of being leaf nodes or not. We add this indicator judgement to determine whether
the current node should be further decoded or not at inference time. Whenever all the nodes are iden-
tified as leaf nodes, the decoding process will stop.

During training, following the idea of teacher forcing, we use the ground-truth (pre-calculated)
parameters Pf of the father node as the decoder input, which renders the model training faster and
more efficient. L1 loss and Binary Cross-Entropy (BCE) loss are used to minimize the errors of
predicted parameters and indicators, respectively.

Generation. To empower the model with data generation capability, we fit a Gaussian Mixture
Model (GMM) on the root feature representation. Specifically, we obtain the root features of all the
training data by passing into our encoder, and then estimate this distribution with a GMM. During
the data generation process, we sample a new root feature Fg from the fitted GMM distribution, and
a new data is generated going through our decoder.

4 EXPERIMENTS

4.1 DATASET

We collected CityGML models of the New York City (NYC) from The New York City Department
of Information Technology (2019). And then we extracted 955,120 individual building models,
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where each is represented by polygon mesh, through parsing the raw CityGML data. Semantic
information of buildings is preserved in polygon mesh through adding a class label to each surface
in our dataset. There are 3 categories for building surfaces: ground surface, roof surface, and wall
surface. Among these, we extracted the building footprint from ground surface and calculated the
minimum bounding rectangle of each building footprint to get a single box. For each building, we
perform the same process with its 32 neighbor buildings and consider the obtained 32 boxes as one
set. Moreover, we obtained the 3D cuboid set by adding the height of building to 2D box set. In this
paper, we selected 45,487 cuboid sets, which are generated based on all the buildings in Manhattan,
as our dataset. Similarly, we obtained CityGML models of Zurich (Stadt Zurich, 2018), the largest
city in Switzerland, and processed these models to obtain 52,225 cuboid sets. For each dataset,
70% of the data are chosen as training sets, 10% as valiation sets and 20% as test sets. Note that
we conduct experiments both on 2D boxes and 3D cuboids datasets and we consider a 2D box as a
simplified cuboid represented by (x, y, l, w, a), as described in Section 3.1.

4.2 EVALUATION METRICS

To quantitatively evaluate areal spatial data generation, we first convert spatial data to point clouds
(a cuboid is converted to the eight corner points) and then adopt three popular metrics (Achlioptas
et al., 2018). Jensen-Shannon Divergence (JSD) measures the similarity of marginal distributions
between the reference and generated sets. The distribution of data is calculated by counting the
number of points in each discretized grid cell. Coverage (COV) measures the fraction of points
in generated data that are matched to the corresponding closest neighbor points in the reference
data. Minimum Matching Distance (MMD) measures the fidelity of generated set with respect to
reference set by matching each generated point to the point in reference data with the minimum
distance.

For COV and MMD, we only select Chamfer Distance (CD) to compute the distance between two
point clouds. We leave out Earth Mover’s Distance (EMD) as it requires the number of instances
in two sets to be equal, which is not suitable for our generation evaluation. Moreover, compared to
points, an unique aspect of box data is their spatial extents. Therefore, we introduce another metric,
Overlapping Area Ratio (OAR), which measures the area ratio of overlapped to all objects.

4.3 IMPLEMENTATION DETAILS

As stated in Section 3.1, a comprehensive distance metric which integrates five distance metrics
with different weights is defined for hierarchical clustering. After performing a series of comparison
experiments, the weights λ1−5 are set to 5, 2, 0.1, 1 and 1 respectively. Likewise, the GMMs of 60
and 80 components both with full covariance are selected as generators for the NYC and the Zurich
dataset, respectively.

The AETree model is implemented based on the Pytorch framework. We employ the ADAM op-
timizer with a learning rate of 0.001 and divide the learning rate by 2 every 400 steps. The batch
size of tree data is set to 50 in our experiments. And for the JSD metric, the number of points are
counted by discretizing the space into 283 voxels.

4.4 RESULTS

4.4.1 RECONSTRUCTION

We first present the reconstruction results of our models. To show the effectiveness of different
encoding and decoding functions, we employ the Multilayer Perceptron (MLP) and Long Short-
Term Memory (LSTM) cell as basic function separately. Similarly, we transform spatial data to
point clouds and conduct quantitative evaluation under CD, EMD, and OAR metrics. Note that the
reason why we employ EMD as the reconstruction metric here is that the number of reconstructed
and original spatial data are equal. Table 1 summarizes the comparison results of two models on
NYC and Zurich Dataset. It can be seen that the LSTM cell module performs better than MLP
as base function. So the following results of our model are based on tree neural network with
LSTM cell if no special explanation is provided. Moreover, we plot the reconstruction results in
Figure 4, which demonstrates the promising performance our model achieves. More visualization
of reconstruction can be found in Appendix A.3.
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Table 1: Quantitative comparisons of AETree with different base nets on NYC and Zurich dataset.
↑: the higher the better, ↓: the lower the better. The best values are highlighted in bold.

Methods Dataset CD(↓) EMD(↓) OAR(%, ↓)
AETree (MLP) NYC 0.0079 0.1206 5.81

AETree (LSTMCell) NYC 0.0019 0.0417 0.57
AETree (MLP) Zurich 0.0077 0.1163 2.04

AETree (LSTMCell) Zurich 0.0027 0.0580 0.14

Dataset Ground Truth Reconstruction Ground Truth Reconstruction 

NYC 

    

Zurich 

    
 

Figure 4: 2D and 3D building reconstruction results of AETree on NYC and Zurich dataset.

4.4.2 LATENT SPACE INTERPOLATION

Given latent representations of two box sets, we can obtain the intermediate box set by applying the
decoder to the linear interpolation between these two latent spaces. Figure 5 shows the reconstructed
box sets from the interpolated latent vectors. Interestingly, we produce a gradually varied sequence
of box set from box set S to box set T, which demonstrates the smoothness of our latent space.
Meanwhile, it can be found that our learned latent representations are generative, instead of being
simply able to memorize the training sets.

S

T

Figure 5: Latent space interpolation between two box sets, S and T, using AETree.

4.4.3 GENERATION

After acquiring the generative latent representations, we fit Gaussian Mixture Models (GMMs) and
sample new latent representations, which are used as our decoder input to generate new box sets.
We compare with three baseline methods:
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SketchRNN-R2. SketchRNN is a generative model to generate sketch drawings (Ha & Eck, 2017).
This model seems intuitively suitable to solve our problem. We convert each box set to a list of
points as a sketch according to the input of SketchRNN. Specifically, for a box set with 32 boxes,
the converted sketch consists of 128 points in 5D as in (Ha & Eck, 2017).

SketchRNN-R5. Based on vanilla SketchRNN, we explore replacing the parameter of a box (de-
fined in Section 3.1) with x,y coordinates of a sketch. So we transform 32 boxes in a set to a sketch
with 32 high dimension points, which incorporates 6 elements: (∆x, ∆y, ∆l, ∆w, ∆a, p). The first
five elements are the offset parameters from the previous box. Different from Ha & Eck (2017), we
use 1D to represent the binary state of the pen (at its end or not), since we assume that the pen draws
32 points in succession.

PointNet-MLP. In addition, we achieve a simple baseline model, which adopts PointNet (Qi et al.,
2017) as the encoder by regarding a box set as a point cloud. By reference to the decoder of
SketchRNN, we employ MLP to decode the latent representations to parameters for a probabil-
ity distribution of points. Meanwhile, the loss function aims to maximize the log-likelihood of the
generated probability distribution to explain the training data.

Table 2 summarizes the quantitative comparison generation results of the above three baseline meth-
ods and our models. It can be found that our model outperforms all baselines across four evaluation
metrics. To intuitively show the superiority of our model, we randomly select some generation re-
sults of each model, as shown in Figure 6. We can find that the generations of SketchRNN and our
model are more regular than the other two models, which coincide more with the city layout. By
comparing the first two baseline models, we can see that the SketchRNN model is more suitable
for the input with low-dimension coordinates instead of compact high-dimension representations.
On the contrary, based on the input with box parameter representations, our model achieves better
generative performance than the two SketchhRNN baseline methods. More 3D generation results of
our model are shown in Appendix A.4.

In addition, the learnable parameters and floating point operations (FLOPs) of each method are pre-
sented in the last two columns of Table 2. It can be found that the number of parameters of all
methods are very close but their FLOPs differs a lot. Though PointNet-MLP model demonstrates
the lowest complexity both on the number of parameters and FLOPs, its generation results is unsat-
isfying on the four evaluation metrics. On the other hand, the generation results of SketchRNN-R2
is acceptable, yet it requires a higher computational cost. By comparison, our model achieves the
best generation performance with a relatively lower complexity computation.

Table 2: Quantitative comparisons of generation performance with various baseline methods. The
first four columns represent the results of models under four generation evaluation metrics and the
last two columns measure the complexity of models.

Methods JSD(↓) COV(%, ↑) MMD(↓) OAR(%, ↓) #params FLOPs/sample
SketchRNN-R2 0.0089 33.62 0.0050 1.83 2.19M 243.13M
SketchRNN-R5 0.0101 28.76 0.0047 95.41 2.37M 402.46M
PointNet-MLP 0.0417 4.60 0.0219 87.47 1.84M 3.67M

AETree 0.0033 39.53 0.0044 1.66 2.91M 31.86M

4.5 HYPERPARAMETER ANALYSIS

Table 3: The reconstruction comparisons of dif-
ferent distance metrics for hierarchical clustering.

λ1 λ2 λ3 λ4 λ5 CD(↓) EMD(↓) OAR(%, ↓)
5 2 0.1 1 1 0.0019 0.0417 0.57
25 - - - - 0.0021 0.0449 0.45
- 10 - - - 0.0019 0.0419 0.50
- - 0.5 - - 0.0022 0.0456 0.93
- - - 5 - 0.0020 0.0421 0.41
- - - - 5 0.0042 0.0760 5.65

Distance metrics. As described in Section
3.1, we defined a comprehensive distance met-
ric, a weighted sum of five distance metrics.
The weight λ of each distance is determined
by comparison experiments, and the values of
weight in our experiments are listed in the first
row of Table 3. To explore the effect of each
distance, we multiply 5 by the value of λi re-
spectively. As presented in Table 3, there is no
big difference between these results except the change of λ5, which means that the tree structure
may be less effective if we put too much weight on minimizing Dmerge.
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SketchRNN-R2 
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Figure 6: Unconditional 2D building generation results of the models trained on NYC dataset.

GMM parameters. To determine the optimal number and covariance type of Gaussian components
for the GMM, we conduct a grid search using the JSD criterion. As shown in Table 4, the GMM of
60 components with full covariance obtains the optimal JSD value, which is thereby chosen for our
generation experiments.

Table 4: The generation results of GMMs with a varying number and covariance type of Gaussian
components under JSD metrics. Each GMM is trained on the latent space learned by AETree.

cov. types
#components 10 20 30 40 50 60 70 80 90 100

full 0.0044 0.0039 0.0037 0.0036 0.0037 0.0033 0.0034 0.0034 0.0035 0.0034
diag 0.0176 0.014 0.0177 0.0118 0.0127 0.0171 0.0105 0.0118 0.0133 0.0255
tied 0.0057 0.0042 0.0045 0.0040 0.0043 0.0037 0.0043 0.004 0.0039 0.0043

spherical 0.0057 0.0060 0.0060 0.0059 0.0059 0.0057 0.0063 0.0061 0.0061 0.0062

5 CONCLUSIONS

In this work, we propose a tree-based deep auto-encoder network, AETree, to achieve reconstruction
and generation of areal spatial data. Different from previous work that would treat areal spatial data
as a set or a sequence, we employ a binary tree structure, making our model a continuous L-system
implemented as a deep net and enables end-to-end learning from scratch. Experiments in two large
scale real-world building datasets demonstrate the effectiveness of this hierarchical structure to take
advantage of the spatial hierarchy that can be efficiently discovered by hierarchical clustering via
data preprocessing. Although currently our model generates results that may not look as impressive
as those from the inverse procedural generation, we believe our model offers a promising alternative
for generic 2D/3D geometric content generation that can more efficiently benefit directly from a
large amount of real-world spatial data, similar to the motivation for deep image/video generation.

In our future work, we plan to extend AETree to generate complex polygon/polyhedron sets where
a polygon/polyhedron can be treated as an additional feature inside a box/cuboid. We will also
make the generator condition on maps or human inputs, therefore enabling more possibilities for
downstream applications.
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A APPENDIX

A.1 DISCUSSION ABOUT RELATIVE REPRESENTATION

As described in Section 3.1, we preprocess all nodes’ parameters relative to their father nodes. To
verify the effectiveness of this relative representation, we conduct a comparison experiment between
different ways of representation. In Figure 7, we plot the reconstruction results of models with
relative and absolute representation on NYC dataset. It can be found that relative representation
keep the spatial relations among objects better than absolute representation, which is thus employed
in our tree-based structure data.

Ground Truth Reconstruction(relative) Reconstruction(absolute)

Figure 7: Reconstruction results of models with the relative and absolute representation of spatial
data. The red boxes highlight the most obvious difference between results.

A.2 DISTANCE METRIC FOR HIERARCHICAL CLUSTERING

We detail the distance metrics used for hierarchical clustering below,

D(i, j) = λ1Dcenter(i, j) + λ2Darea(i, j) + λ3Dshape(i, j) + λ4Dangle(i, j) + λ5Dmerge(i, j),

Dcenter(i, j) =
√

(xi − xj)2 + (yi − yj)2,

Darea(i, j) = |liwi − ljwj | ,
Dshape(i, j) = |(li/wi)− (lj/wj)| ,
Dangle(i, j) =

∣∣(ai + aj)/2− aMBR(i,j)
∣∣ ,

Dmerge(i, j) =
∣∣liwi + ljwj − lMBR(i,j)wMBR(i,j)

∣∣ ,
where D(i, j) represents the distance between rectangle i and j, MBR(i, j) represents the minimum
bounding rectangle (MBR) of rectangle i and j and λ represents the weight of each distance. Specif-
ically, Dcenter measures the Euclidean distance between the center points of two rectangles; Darea,
Dshape and Dangle separately measure the difference between the area, the aspect ratio, and the
orientation of two rectangles; and Dmerge measures the difference between the sum of the two rect-
angles area and their MBR area. The values of λ are determined empirically, detailed in Section 4.5.
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A.3 MORE RECONSTRUCTION RESULTS

Figure 8 and 10 shows more of the 3D and 2D reconstruction results on the NYC dataset. Figure 9
and 11 shows more of the 3D and 2D reconstruction results on the Zurich dataset.

Ground Truth Reconstruction Ground Truth Reconstruction 

  

    

    
 

Figure 8: 3D reconstruction results of AETree trained on the NYC Dataset

Ground Truth Reconstruction Ground Truth Reconstruction 

    

    

    
 

Figure 9: 3D reconstruction results of AETree trained on the Zurich Dataset

A.4 MORE GENERATION RESULTS

Figure 12 and 13 shows more of the unconditional 3D and 2D generation results on the NYC dataset.
Figure 14 shows more of the unconditional 2D generation results on the Zurich dataset.
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Figure 10: 2D reconstruction results of AETree trained on the NYC Dataset
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Figure 11: 2D reconstruction results of AETree trained on the Zurich Dataset

      

  
 

Figure 12: 3D generation results of AETree trained on the NYC Dataset
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Figure 13: 2D generation results of AETree trained on the NYC Dataset

Figure 14: 2D generation results of AETree trained on the Zurich Dataset
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