
Accelerating Visual Sparse-Reward Learning with
Latent Nearest-Demonstration-Guided Explorations

Ruihan Zhao1 Ufuk Topcu1† Sandeep Chinchali1† Mariano Phielipp2†

1The University of Texas at Austin 2Intel AI Lab

Abstract: Recent progress in deep reinforcement learning (RL) and computer
vision enables artificial agents to solve complex tasks, including locomotion, ma-
nipulation, and video games from high-dimensional pixel observations. How-
ever, RL usually relies on domain-specific reward functions for sufficient learn-
ing signals, requiring expert knowledge. While vision-based agents could learn
skills from only sparse rewards, exploration challenges arise. We present Latent
Nearest-demonstration-guided Exploration (LaNE), a novel and efficient method
to solve sparse-reward robot manipulation tasks from image observations and a
few demonstrations. First, LaNE builds on the pre-trained DINOv2 feature extrac-
tor to learn an embedding space for forward prediction. Next, it rewards the agent
for exploring near the demos, quantified by quadratic control costs in the embed-
ding space. Finally, LaNE optimizes the policy for the augmented rewards with
RL. Experiments demonstrate that our method achieves state-of-the-art sample
efficiency in Robosuite simulation and enables under-an-hour RL training from
scratch on a Franka Panda robot, using only a few demonstrations. ∗

Keywords: Computer Vision, Sparse Reward, RL from Demonstrations

Reach a Location
1 Demo

21 minutes RL

Lift a Block
5 Demos

45 minutes RL

Insert a Pen
5 Demos

58 minutes RL

Open a Drawer
1 Demo

52 minutes RL

Figure 1: LaNE enables under-an-hour RL training from scratch on a Franka Panda arm from image observa-
tions and sparse rewards, utilizing only a few demonstrations. LaNE achieves unparalleled sample efficiency by
learning an embedding space to quantify state proximity and reward explorations close to the demonstrations.

1 Introduction

Deep reinforcement learning (RL) is a versatile approach that learns from interaction data, often
without an explicit, hand-coded dynamics model. Through environmental interactions, RL agents
can learn optimal policies from dense or sparse reward feedback. State-of-the-art approaches al-
low learning policies for discrete actions and continuous action spaces while taking either low-
dimensional state vectors or high-dimensional sensor readings [1, 2, 3, 4].

However, applying deep RL to real-life domains, including real-hardware robot learning, remains
difficult. One challenge is the need to reliably track the complete system state [5]. A policy that
directly maps images to optimal actions could alleviate such engineering challenges: data augmen-
tation and self-supervised learning have enabled policy learning from image observations with high

†Equal advising.
∗Project page: https://philipzrh.com/lane/.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://philipzrh.com/lane/

sample efficiency [6, 7, 8, 9]. Meanwhile, it is also hard to assign informative rewards in a scalable
way. Reward engineering requires domain-specific knowledge: popular simulated environments
provide optional dense reward functions based on heuristics [10, 11] but rely on state readings not
readily available in the real physical system. Thus, there has been a lot of effort to help RL agents
explore more effectively in environments with sparse or no rewards [12, 13, 14].

We present Latent Nearest-demonstration-guided Exploration (LaNE), a novel approach to tackle
the exploration challenge in image-based control tasks with sparse rewards. LaNE builds on the idea
of learning from demonstrations (LfD) and draws inspiration from reward shaping [15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25]. Our main insight is that each step in the demonstration can be considered
a subgoal, and the agent should be credited for reaching a similar state (see Fig. 2). Our approach
presents two main contributions:

1. We define a distance measure among image observations by learning a lower-dimensional
latent space. Specifically, we train a Variational Autoencoder (VAE) so that the resulting
latent space’s forward dynamics are locally linear. A quadratic control cost in this space
effectively identifies nearby states, whereas pre-trained embeddings from even a state-of-
the-art computer vision model are insufficient.

2. We propose a systematic way to provide dense reward signals in sparse-reward tasks un-
der the LfD paradigm. When exploring near the demonstrations, the RL agent receives
additional task-progress-informed rewards. The augmented reward function also derives
bounded value functions, significantly improving training stability.

LaNE is independent of the underlying RL algorithm, and we use Soft Actor-Critic [1] in this paper.
In Robosuite simulation [11], our method significantly improves sample efficiency when learning
long-horizon, sparse-reward visual manipulation tasks. On real hardware, LaNE enables learning
various manipulation tasks from scratch with a Franka Panda arm, each with under an hour of train-
ing and only one to five demonstrations (see Fig. 1).

2 Related Work

Exploration is a known challenge in deep RL, especially in sparse-reward environments [26]. One
solution is to guide exploration with domain knowledge. In reward shaping, intermediate rewards
can be added at important checkpoint locations [11], derived from physics knowledge [27], or
learned from human annotations [28]. Aside from external guidance, other works aim to improve the
agents’ intrinsic exploration behavior. Maximum entropy RL balances exploration and exploitation
by encouraging high policy entropy [1]. Hierarchical RL and intrinsically motivated skill learning
are also potential remedies [12, 29]. Our work aims to alleviate the need for domain expertise in the
reward-shaping approach by using a few demonstrations.

Learning from demonstrations (LfD) has proven helpful in expediting RL, especially in sparse re-
ward settings. Prior works have introduced various auxiliary training objectives. Behavior cloning
[21, 23] and supervised Q-value updates [18] can effectively learn from optimal demonstrations.
[30] employ an information theoretic approach to guide policy distributions. GAIL [31], AIRL [32]
and DAC [33] perform adversarial training to distinguish expert and policy rollouts. [17] and [20]
learn potential functions from value estimates, allowing imperfect or mismatched demonstrations to
be used. CoDER [34] performs contrastive learning to pre-train the image encoders. Other methods
perform warm start with scripted or behavior-cloned policies [14, 22]. Our method adopts the LfD
paradigm for efficient learning and is compatible with sub-optimal demonstrations.

Aside from more efficient exploration and LfD, model-based RL methods aim to improve efficiency
by generating new synthetic experiences with learned world models. DreamerV2 [6] learns an ac-
curate discrete world model from high-dimensional image inputs, enabling human-level RL per-
formance in Atari games. Modem [35] combines model-based learning with demonstrations by
over-sampling demonstrated data to form a behavior prior. Our method LaNE also learns a forward

2

Slice

Replay
Buffer

Demo
Storage

Off Policy RL

Nearest

New Experience

(a) Demonstrations (b) Nearest-Demo Matching (c) RL Updates

Figure 2: Latent Nearest-demonstration-guided Exploration (LaNE) augments the sparse task reward with a
dense exploration reward in vision-based RL. (Left) We utilize variable-length demonstrations, each consisting
of observations oit and actions ait. (Middle) A dense exploration reward re is given when a transition lands
sufficiently close to a demonstration and is discounted based on its distance to the goal. (Right) Using the
combined reward signal, the RL agent learns to map a sensor observation o to an action a.

dynamics model but only as an auxiliary task for representation learning. Hence, it can be integrated
with both model-based and model-free RL methods.

Finally, a rich collection of prior work has studied ways to learn better representations from high-
dimensional image observations. RAD and DrQ [8, 9, 36] perform data augmentation on image
observations to promote task-relevant features. CURL and CoDER [7, 34] use contrastive learning
as a self-supervised auxiliary objective for feature learning. TCC and TCN [37, 38] perform self-
supervised learning from video sequences. Recently, foundation models have also proven beneficial
for learning generalizable agents [39]. Our method builds on a state-of-the-art foundation model,
DINOv2 [40], and uses data augmentation to learn a robust embedding space.

3 Problem Setting

We tackle the challenges of vision-based RL in long-horizon, sparse reward tasks, where the agent
only receives a positive reward rdone at task completion while getting a constant negative reward
rlive everywhere else. The interpretation of such a reward function is that the agent gets a high
reward only at task completion but is penalized for the trajectory length. Formally, letting G denote
the set of goal states, we define the reward function as follows:

r(s, a, s′) =

{
rdone > 0 s′ ∈ G
rlive < 0 otherwise.

(1)

The sparse reward function reduces the need for expert knowledge or human intervention, making it
much easier to implement in a real-world environment, but makes exploration hard in training.

4 Method

We present Latent Nearest-demonstration-guided Exploration, an efficient RL algorithm centered
around a few demonstrations to tackle the exploration challenge with sparse-reward learning. The
core idea is to provide additional task-progress-aware dense rewards when the agent is close to the
demonstrations. We learn a structured embedding space to quantify state proximity from image
observations by learning a latent dynamics model as an auxiliary task. The cleverly designed aug-
mented reward function also derives bounded value functions, enabling us to perform value clipping
and greatly enhance training stability.

4.1 Reinforcement Learning from Demonstrations

LaNE utilizes a demonstration set D consisting of n successful trajectories of observations and
actions. Each demonstration trajectory i may have a different length Ti, but must terminate in the
goal set G. We assume the demonstrations to come from a human operator or a heuristic controller

3

and, thus, can be sub-optimal. We formalize the notations as follows: T i denotes the trajectory
for demonstration i. st is the underlying true environment state, and ot is the high-dimensional
observation, such as images. at is the action taken by the demonstrator. Note that the RL algorithm
cannot access the ground truth state st in the demonstrations, but only observations, as shown below:

D = {T 1, T 2 · · · T n}
T i = (oi0, a

i
0, o

i
1, a

i
1, · · · oiTi−1, a

i
Ti−1, o

i
Ti) (2)

∀i, siTi ∈ G.
The demonstrations are stored in two forms. First, the trajectory form records the steps to success
from each state, allowing us to discount the exploration reward according to task progress, as detailed
in Section 4.3. Next, they are sliced into experience tuples (o, a, o′, r, d) and placed in a replay buffer
B for representation learning and off-policy RL updates. Here, o′ denotes the next observation after
o. r is the sparse reward as defined in Equation 1, and d is a Boolean variable indicating episode
termination. LaNE uses a first-in-first-out replay buffer B with capacity for a limited number of
transitions, but the demonstrations are always retained to ensure sufficient reward signal.

4.2 Augmentation-Invariant Distance Measure
D
IN

O
v2

D
IN

O
v2

Frozen Frozen

Predict

Figure 3: LaNE learns a latent space with locally linear
dynamics. Given a transition tuple (o, a, o′), the ob-
servations are first encoded by a frozen DINOv2 model
into w and w′. Next, the encoder Eϕ further embeds
w into a low-dimensional latent state z. The forward
model Mψ predicts the transition matrices A, B and
offset c. Finally, the decoder Dθ reconstructs w′ from
the predicted ẑ′, where ẑ′ = Az + Ba + c. The train-
able modules Eϕ, Mψ , and Dθ are colored in orange.

The key technical challenge behind LaNE is to
find a demonstration state closest to the agent’s
current state and quantify its proximity. Com-
puting the distance between two states from
their respective image observations is nontriv-
ial: two drastically different states might only
differ by a few pixels. Conversely, the same
underlying state might appear very different in
two images due to task-irrelevant background
features. To solve this, we embed the images
into a low-dimensional latent space to obtain a
viable distance measure. Inspired by Embed
to Control (E2C) [41], we train a VAE [42]
and enforce a locally linear dynamics model
to regularize the structure of the latent space.
The locally-linear dynamics model captures our
goal for the latent space to be temporally con-
sistent since we have a multi-step control task.

Our method differs from E2C in three key ways: 1. LaNE leverages the feature extractor from a
strong pre-trained image model by embedding and predicting the frozen DINOv2 [40] features. As
we find with ablation studies in Section 5.2, learning on top of DINOv2 features w is superior to
learning directly from pixels o. 2. We learn a latent space robust to pixel-space perturbations. It
has been shown that data augmentation is crucial for efficient and robust image-based reinforcement
learning [8, 9, 34, 36]. Hence, we apply a random data-augmentation function f(·) during represen-
tation learning. 3. Our RL policy network uses a separate CNN encoder to learn in an unconstrained
embedding space and benefit from low inference latency. Overall, the trainable components include
the encoder Eϕ, the decoder Dθ, and the transition model Mψ .

LaNE optimizes a variational lower bound (ELBO) objective across transition tuples (o, a, o′)i sam-
pled from the replay buffer. We assume the latent states z form a unit Gaussian prior p(z) =
N (0, I). The encoded distributions q(z |w) and decoded distribution p(w | z) are also modeled
with Gaussian distributions. During training, the data-augmented observation features are encoded
into their latent distributions whose mean µ and diagonal covariance matrix Σ are predicted by the
encoder network Eϕ:

z ∼ qϕ(z |w) = N (µ,Σ), where (µ,Σ) = Eϕ(w), w = DINOv2(f(o))

z′ ∼ qϕ(z
′ |w′) = N (µ′,Σ′), where (µ′,Σ′) = Eϕ(w

′), w′ = DINOv2(f(o′)).
(3)

4

The one-step forward model in the latent space is locally linear in the state and action, whose param-
eters (matrices A, B and offset c) depend on the starting state, as predicted by the latent transition
model Mψ . Prior work shows that a latent linear dynamics model is tractable to learn but provides
modeling flexibility through local linearity [41]. The linear transition model allows the prediction
of the next step latent distribution using the current distribution and action as follows:

ẑ′ = Az +Ba+ c, where (A,B, c) = Mψ(z) (4)

qψ(ẑ′ | z, a) = N (µ̂′, Σ̂′), where µ̂′ = Aµ+Ba+ c, Σ̂′ = AΣAT . (5)

Finally, the decoder Dθ reconstructs the next step observation embedding from the predicted next
step latent vector:

ŵ′ = Dθ(ẑ′). (6)

The encoder Eϕ, decoder Dθ, and transition model Mψ are updated jointly using a combined loss
with three terms. First, we want the sampled starting latent state z to be reconstructed back to
the original image features w. Similarly, as we pass the sample through the dynamics model, the
resulting latent state prediction ẑ′ should be reconstructed back to w′. Finally, to ensure the latent
dynamics model is consistent over multiple steps, we want the predicted distribution qψ(ẑ′|w, a)
and encoded distribution qϕ(z

′|w′) to be similar. Formally, we write the overall training objective L
as follows, where λ is a hyper-parameter for weighing the two loss terms:

LELBO = E
z∼qϕ, ẑ′∼qψ

[
− log p(w|z)− log p(w′|ẑ′)

]
+DKL

(
qϕ(z |w)

∥∥∥∥ p(z)

)
(7)

Ldynamics = E
z∼qϕ

[
DKL

(
qψ(ẑ′ | z, a)

∥∥∥∥ qϕ(z
′ |w′)

)]
(8)

L = E
(o,a,o′)∈B

[
LELBO + λLdynamics

]
. (9)

In essence, we minimize the reconstruction error for the VAE using the ELBO objective (term 1)
and the forward prediction error in the latent space using KL divergence (term 2).

The learned latent space allows us to define a dynamics-aware distance measure between observa-
tions. Specifically, for two observations o1 and o2, we define the Augmentation-invariant Distance
Measure (ADM) to be the root quadratic cost between the augmented and encoded states z1 and z2:

d(o1, o2) := ((z1 − z2)
T Q (z1 − z2))

1
2 . (10)

Our design echoes the quadratic cost function commonly used in optimal control. Using an identity
weighting matrix Q = I further simplifies ADM to the Euclidean distance in the latent space. We
apply this simplification in our experiments, but other weighting matrices could be useful when the
agent observes both images and proprioceptive states.

4.3 Demonstration-Guided Exploration

We propose a systematic reward-engineering approach to credit the agent for staying close to demon-
strations. Given an experience tuple (o, a, o′, r, d), we assign an additional exploration reward r∗e if
o′ is sufficiently close to a demonstrated state, up to a distance threshold ϵ, which is dynamically
computed. We define ϵ as the average distance between consecutive demonstration observations:

ϵ := E
i,t

[
d(oit, o

i
t+1)

]
, oit, o

i
t+1 ∈ D. (11)

The threshold ϵ approximates the distance of one environment step. As the agent gathers new ex-
periences, we re-compute ϵ. This is necessary because the encoder Eϕ, decoder Dθ, and dynamics
model parameters Mψ are constantly updated with the latest experience to ensure that ADM is not
overfitted to only the demonstration data. In addition, we find the trajectory index i and time step t
of the nearest demonstration using the ADM d:

i∗, t∗ = argmin
i,t

d(o′, oit), oit ∈ D. (12)

5

Lift a Block
5 demos

Open a Door
10 demos

Stack Blocks
10 demos

Move a Can
20 demos

Figure 4: LaNE achieves state-of-the-art sample efficiency in four Robosuite visual manipulation tasks. The
RL agent observes RGB images from 2 cameras, one in the front (shown above) and the other on the gripper.

After we compute ϵ, i∗, and t∗, we assign a dense reward rdense by augmenting the environment
reward with a task-progress-informed exploration reward:

rdense =

{
r + αTi∗−t

∗
re [d(o′, oi

∗

t∗) ≤ ϵ] ∧ [o′ /∈ G]
r otherwise.

(13)

Here, the exploration reward r∗e = αTi∗−t
∗
re is modulated by the expected step to success, which

is the difference between the demo trajectory length Ti∗ and t∗. In the context of LfD, r∗e can be
interpreted as a point estimate of the potential function at o′, echoing prior work in this domain [17,
20]. The discounting factor α is a hyper-parameter chosen independently from the RL discounting
factor γ, and the nominal exploration reward re is a constant.

Inspecting the augmented reward rdense, we see that when o′ finds its nearest neighbor close to one
of the successful terminal states, o′ is awarded almost the full nominal exploration reward re. When
o′ is close to one of the earlier steps in a demonstration, re is heavily discounted. Finally, if we are
very far from any demonstration observation (relative to the distance threshold ϵ), or if we are at the
goal, the RL agent gets only the environment reward r (case 2 in Eq. 13). LaNE is versatile because
we can train a control policy to maximize rdense using any off-the-shelf RL algorithm.

4.4 Prioritized Replay and Value Clipping

We improve training efficiency and stability by performing prioritized replay and Q-value clipping.
Prioritized replay is a standard tool when learning from demonstrations [19]: in each batch of b
transitions, we sample at least pd fraction from the demonstrations, where b and pd are hyper-
parameters. Conservative q-value estimates are also widely used to stabilize training [1, 43]. LaNE
stands out because rdense derives upper and lower bounds on the q-value landscape, allowing us to
use a clipped value target when performing temporal difference updates.

The definition of rdense in Eq. 13 contains the nominal exploration reward re, a constant hyper-
parameter. We pick |re| ≤ |rlive| to obtain bounded Q-values. Under rdense, a transition either
receives a positive reward rdone and terminates the episode or receives a non-positive reward rlive +
1 · r∗e . The highest Q-value is achieved at task completion. On the other hand, in the worst case
where the agent receives rlive all the time and never succeeds, the Q-value is bounded below by∑∞
t=0 γ

trlive =
1

1−γ rlive. Thus, we obtain the following bound:

1

1− γ
rlive ≤ Q(o, a) ≤ rdone.

5 Experiments

5.1 Simulated Manipulation Tasks

We solve four robot manipulation tasks from the Robosuite simulator [11]: lifting a block, opening
a door, stacking blocks, and moving a soda can. The RL agent observes 128 × 128 RGB images
from two cameras, one mounted on the robot gripper and one in front of the robot. The robot uses
Operational Space Control – the agent predicts actions to change the robot’s hand displacement,

6

E2C-MPC MoDem CoDER LaNE

0 1 2 3 4 5
environment steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Lift a Block

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Open a Door

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 5: We compare LaNE with optimal control and state-of-the-art RL methods: E2C [41], MoDem [35]
and CoDER [34]. Our method (red) consistently learns faster and converges to higher success rates than all
three baseline methods.

RAD RAD+PR RAD+VC RAD+re RAD+PR+VC LaNE No re No DINO DINO Only LaNE

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Move a Can

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 6: Left: Starting from RAD [8], we add PR (prioritized replay), VC (value clipping), and exploration
reward re to understand their contributions. PR and VC are necessary for stable learning but are inefficient.
re by itself results in unstable training. Hence, all components of LaNE are necessary. Right: We experiment
with LaNE variants without pre-training (No DINO) or fine-tuning (DINO Only). While either variant improves
from the baseline where no exploration reward is given, combining both results in the quickest exploration.

rotation, and gripper width for 7 degrees of freedom. Figure 4 shows one of the camera angles.
The demonstrations come from a hand-coded controller that utilizes state information. The state is
unavailable for the RL agent, who must learn from images alone.

We compare LaNE with optimal control, model-free, and model-based RL. For E2C [41], we run an
MPC controller in the latent space to minimize a quadratic state cost towards the demonstrated goal
state. CoDER [34], and MoDem [35] are state-of-the-art vision-based RL algorithms in the LfD
setting. We initiate all methods with the same demonstrations and measure the evaluation success
rates during training. Figure 5 shows the mean and standard deviation across five random seeds as a
function of training environment steps. Our method outperforms all three baselines across all tasks
while showing major advantages in the two more challenging tasks.

5.2 Ablation Studies

Our approach utilizes multiple techniques to maximize the utility of demonstrations and to speed
up learning. We perform ablation studies to answer two key questions: 1. Is reward augmentation
really necessary, or are regularization tricks like prioritized replay (PR) and value clipping (VC) by
themselves sufficient? 2. LaNE learns an embedding space by fine-tuning a pre-trained computer
vision model. Are both the fine-tuning step and the pre-trained DINOv2 model necessary?

For question 1, we start from a standard image-based RL algorithm RAD [8] (initialized with demon-
strations) and add our key components, namely prioritized replay (PR), value clipping (VC), and the
exploration reward rdense. As shown by the left half of Figure 6, importance sampling and value
clipping help stabilize training but are not efficient enough. rdense significantly contributes on top
and allows the robot to complete the long-horizon task reliably much earlier in training.

For question 2, we experiment with two variants of LaNE, one without DINOv2 and one without
fine-tuning. When LaNE trains without DINOv2, it initializes the encoder and decoder from scratch
and learns to predict the images directly. When LaNE uses the pre-trained model and skips the fine-
tuning steps, we directly use the Euclidean distance between their respective DINOv2 embedding
vectors. The results in the right side of Figure 6 demonstrate that performing reward augmenta-
tion without pre-trained DINOv2 or fine-tuning helps, but combining both allows the most efficient
learning. Notably, DINOv2 improves training convergence, as showcased in Figure 9.

7

Figure 7: We deploy LaNE on four tasks with the Franka Panda robot: reach a fixed location, lift a block, open
a drawer, and insert a pen. The RL agent observes two RGB images, one in front of the robot and one on its
wrist. Trained from scratch, the robot achieves a 10/10 evaluation success rate with only a few demonstrations
and less than one hour of learning.

5.3 Real Robot Experiments

As Figure 7 illustrates, LaNE enables efficient RL in four diverse tasks with the Franka Panda robot.
From the easiest to the hardest, the tasks are Reaching a Fixed Goal, Opening a Drawer, Lifting a
Block (random location), and Inserting a Pen. Demonstrations are collected via teleoperation from
a mobile app, which uses inside-out tracking to stream the device’s pose.

Task Reach Drawer Lift Insert

Demos
Episodes 1 1 5 5

Steps 12 18 103 135
Time 0:20 0:25 2:00 3:00

CoDER Steps N/A N/A N/A N/A
First Success Time > 1h > 1h > 1h > 1h

LaNE (Ours) Steps 476 1054 1109 1854
First Success Time 13:10 31:51 30:07 38:01

LaNE (Ours) Steps 806 1929 1820 2927
Convergence Time 20:55 51:40 44:16 57:58

Table 1: We deploy LaNE on a Franka Panda arm to learn
manipulation tasks requiring up to 7 degrees of freedom.
Human demonstrations are provided via teleoperation, tak-
ing only a few minutes. LaNE trains every task to a 10/10
success rate from scratch under one hour of wall clock time.
In comparison, our strongest baseline CoDER [34] fails to
succeed even once during the first hour of training.

Results show that our method is extremely
data-efficient, leading to task success with
under an hour of training. Table 1 shows
the number of demonstrations provided
and training performance. For the most
straightforward goal-reaching task, LaNE
uses only one demo and completes the task
for the first time in only 13 minutes. The
agent finds a consistently successful pol-
icy quickly, only 8 minutes later. With five
demonstrations, LaNE can learn more chal-
lenging tasks with high stochasticity or re-
quiring precision, including lifting a block
and inserting a pen. Overall, the results
prove that our approach is outstanding in
simulation and practical in the real world.

6 Conclusion

This paper presents LaNE, a data-efficient RL algorithm to learn sparse reward tasks from image
observations by utilizing a few demonstrations. LaNE outperforms state-of-the-art benchmarks and
enables under-an-hour RL training with a real robot. Our key innovation is to learn a latent dy-
namics model, which provides a temporally consistent embedding space. When a transition lands
sufficiently close to a demonstration, we assign an extra task-progress-informed reward modulated
by the distance to the goal. As such, we convert a sparse reward task to a task with dense proxy
rewards, dramatically improving learning efficiency. Our work lends itself to exciting future direc-
tions. For example, we can leverage recent advancements in causal RL and counterfactual analysis
[44, 45, 46] to determine the state in an expert demonstration that directly caused task success. This
might further improve our search for the nearest demonstration and overall learning.

8

Acknowledgements

This work was partly supported by ARL W911NF-21-1-0009, ONR 202102702AWD, DARPA
ANSR: RTX CW2231110, and Lockheed Martin Corporation.

References
[1] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[4] J. Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[6] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
In International Conference on Learning Representations, 2021.

[7] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, 2020.

[8] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. Advances in Neural Information Processing Systems, 2020.

[9] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[11] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation
framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[13] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv preprint
arXiv:1611.07507, 2016.

[14] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, 2018.

[15] G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist,
O. Pietquin, and R. Dadashi. Get back here: Robust imitation by return-to-distribution plan-
ning. arXiv preprint arXiv:2305.01400, 2023.

[16] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learning.
arXiv preprint arXiv:2006.04678, 2020.

9

[17] Y. Guo, J. Gao, Z. Wu, C. Shi, and J. Chen. Reinforcement learning with demonstrations from
mismatched task under sparse reward. In Conference on Robot Learning, 2023.

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of
the AAAI conference on artificial intelligence, volume 32, 2018.

[19] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[20] Y. Wu, M. Mozifian, and F. Shkurti. Shaping rewards for reinforcement learning with imper-
fect demonstrations using generative models. In International Conference on Robotics and
Automation, 2021.

[21] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration
in reinforcement learning with demonstrations. In International Conference on Robotics and
Automation, 2018.

[22] I.-C. A. Liu, S. Uppal, G. S. Sukhatme, J. J. Lim, P. Englert, and Y. Lee. Distilling motion
planner augmented policies into visual control policies for robot manipulation. In Conference
on Robot Learning, 2022.

[23] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. In Robotics: Science and Systems, 2018.

[24] S. Haldar, V. Mathur, D. Yarats, and L. Pinto. Watch and match: Supercharging imitation with
regularized optimal transport. In Conference on Robot Learning, 2023.

[25] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

[26] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.
Information Fusion, 85:1–22, 2022.

[27] A. D. Laud. Theory and application of reward shaping in reinforcement learning. University
of Illinois at Urbana-Champaign, 2004.

[28] S. Cabi, S. Gómez, A. Novikov, K. Konyushova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Bud-
den, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. Freitas, and Z. Wang. Scaling
data-driven robotics with reward sketching and batch reinforcement learning. In Robotics:
Science and Systems, 2020.

[29] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning, 2017.

[30] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Reinforcement
learning with sparse rewards using guidance from offline demonstration. arXiv preprint
arXiv:2202.04628, 2022.

[31] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems, 2016.

[32] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[33] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-actor-
critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. In
International Conference on Learning Representations, 2018.

10

[34] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. Learning visual robotic control effi-
ciently with contrastive pre-training and data augmentation. In International Conference on
Robotics and Automation, 2022.

[35] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerating
visual model-based reinforcement learning with demonstrations. In International Conference
on Learning Representations, 2023.

[36] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[37] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. Temporal cycle-consistency
learning. In Computer Vision and Pattern Recognition Conference, 2019.

[38] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-
contrastive networks: Self-supervised learning from video. In International Conference on
Robotics and Automation, 2018.

[39] Z. Yuan, Z. Xue, B. Yuan, X. Wang, Y. Wu, Y. Gao, and H. Xu. Pre-trained image encoder for
generalizable visual reinforcement learning. In Advances in Neural Information Processing
Systems, 2022.

[40] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. HAZIZA, F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang,
S.-W. Li, I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut,
A. Joulin, and P. Bojanowski. DINOv2: Learning robust visual features without supervision.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

[41] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in Neural Information
Processing Systems, 2015.

[42] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference
on Learning Representations, 2014.

[43] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[44] E. Bareinboim and J. Pearl. Causal inference and the data-fusion problem. Proceedings of the
National Academy of Sciences, 113(27):7345–7352, 2016.

[45] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney, T. Steple-
ton, N. Heess, A. Guez, et al. Counterfactual credit assignment in model-free reinforcement
learning. arXiv preprint arXiv:2011.09464, 2020.

[46] S. Zhu, I. Ng, and Z. Chen. Causal discovery with reinforcement learning. arXiv preprint
arXiv:1906.04477, 2019.

[47] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

[48] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers.
In International Conference on Computer Vision, 2021.

[49] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[50] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger. Cartesian impedance control of redundant
robots: Recent results with the dlr-light-weight-arms. In International Conference on Robotics
and Automation, 2003.

11

[51] S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods. IEEE Journal of Robotics and Automation, 17(1-19):16, 2004.

[52] J. Linowes and K. Babilinski. Augmented reality for developers: Build practical augmented
reality applications with unity, ARCore, ARKit, and Vuforia. Packt Publishing Ltd, 2017.

12

7 Appendix

7.1 Motivating Example

We motivate the need to learn a dynamics-aware embedding space: finding a good distance measure
between states from their respective high-dimensional image observations is non-trivial. We use
the PointMaze environment from the D4RL benchmark [47] to provide a clear illustration. In this
environment, the controllable point mass is marked in green. As shown in Figure 8, we place the
point at three positions in the maze such that state (a) is much closer to state (b) than state (c).

(a) s = (−1, 1) (b) s = (−0.5, 1) (c) s = (1, 1)

Figure 8: Observations from the PointMaze environment. The point mass in green is the controllable agent,
whose location is indicated by s. As indicated by the agent’s location, state b is closer to state a than c.

Distance Measure d d(a, b) d(a, c) d(a, c)/d(a, b)

Pixel L2 2.835 3.303 1.165
DINOv2 L2 0.004 0.003 0.75

Ground Truth L2 0.5 1.5 3
ADM (Ours) 0.046 0.135 2.935

Table 2: Comparison across different distance measures in PointMaze. Distance in the pixel space and DI-
NOv2 embedding space cannot capture the true relations of the underlying states. Whereas our proposed ADM
can estimate the relative distance the most accurately.

1 0 1

1

0

1

0

1

2

3

41e 3

1 0 1

1

0

1

0.0

0.5

1.0

1.51e 2

1 0 1

1

0

1

0

1

2

3

1e 5

Figure 9: Left: ADM (Ours). Middle: DINOv2. Right: ADM without DINO. We plot the L2 distance
in ADM and DINOv2 embedding space from each location in the maze to the pink location. In the ADM
embedding space, computed distances match the environment dynamics, showing the lower left corner as the
farthest due to the turn. In contrast, DINOv2 cannot identify the differences between states. Finally, if ADM is
trained without DINOv2, it suffers from poor convergence due to difficulty in feature learning.

Table 2 compares two baseline distance measures with our proposed method ADM, trained from
10000 random interactions in the environment. For Pixel L2, we directly compute the Euclidean
distance. As expected, d(a, b) and d(a, c) are not distinguishable from the pixel-wise distance.
Similarly, the pre-trained DINOv2 embeddings do not capture the transition information and fail to
estimate the distance between states. ADM is the only method to capture the relative proportions of
the ground-truth distances.

We visualize the quality of the learned embeddings in Figure 9, where we plot the estimated distance
from all locations within the maze to a fixed location. We show that the embeddings learned by LaNE
respect the dynamics of the maze, understanding that the point must go around the corner instead of

13

1 0 1

1

0

1

1

0

1

2

3

1e 7 1

1 0 1

1

0

1

1.0

0.5

0.0

0.5

1.0

1.5
1e 7 1

1 0 1

1

0

1

1

0

1

2
1e 7 1

Figure 10: Left: ADM (Ours). Middle: DINOv2. Right: ADM without DINO. Instead of L2 distance, we
plot d(v1, v2) := − cos(v1, v2), the negative cosine distance between the embedding vectors. The scale 10−7

indicates that these vectors all point in similar directions. Hence, cosine similarity is not as informative as L2.

through the wall. This simple experiment illustrates the benefits of using our latent space distance
measure to quantify the task-relevant similarity between image observations.

Additionally, we are curious if cosine similarity, commonly used for vector retrieval, could be used
in place of L2 distance. As illustrated in Figure 10, all embedding vectors point in similar directions,
making the cosine similarity less informative.

7.2 Visualization of Embedded Robot Trajectories

This section aims to provide a better intuitive understanding of the learned ADM embedding space.
We visualize the learned embeddings in the real robot reach task by plotting their 2-D projections
in Figure 11. Specifically, we plot a demonstration, a random successful, and a random unsuccess-
ful episode. We observe a clear separation between successful and failed episodes: the successful
episode closely follows the demonstration. In addition, we observe that the latent states move lin-
early as the agent progresses in the task.

Figure 11: 2-D t-SNE of a demonstration, a successful and an unsuccessful trajectory on the Reach task.
Colors change from light to dark as the episodes progress. The successful episode is mapped closer to the
demonstration than the failed episode.

7.3 Comparison with Imitation Learning Methods

In this section, we compare LaNE with two powerful imitation learning algorithms, namely FISH
[25] and PWIL [16]. FISH builds on a non-parametric base policy and trains an RL residual policy
to minimize the earth mover’s distance between the policy rollout and demonstration distribution.
Similarly, PWIL uses RL to minimize an upper bound of the Wasserstein distance between rollouts
and demonstrations. FISH uses an encoder pre-trained with behavior cloning as a feature extractor,
whereas PWIL uses a TCC [37] model pretrained on demonstration trajectories.

As shown in Figure 12, both IL baselines fail to solve the Robosuite tasks given the same number of
demonstrations as LaNE. One potential cause is that their feature extractors are learned solely from

14

demonstrations and hence struggle to generalize to OOD observations, which often occurs when
the 7-DoF end-effector is allowed to rotate. On the other hand, these IL methods don’t utilize any
environment signals during RL training. Future works can explore the combination of sparse task
rewards, online representation learning, and IL methods.

FISH PWIL LaNE

0 1 2 3 4 5
environment steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Lift a Block

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Open a Door

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 12: We compare LaNE with two imitation learning methods. Since the IL methods don’t utilize the
sparse environment rewards, they fail to learn the tasks from the limited number of demonstrations.

7.4 Other Ablation Studies

To justify the design choice of LaNE’s exploration reward shown in Equation 13, we conduct ab-
lation studies on variants of the exploration reward. 1. We set α = 1 to verify if the discounting
is necessary. 2. Alternatively, we use a simpler reward based on the L2 distance between the ob-
servation and its nearest-neighbor demonstration: re = max(1, ϵ

d(o′,oi
∗
t∗)

). This simplified reward
is the inverse L2, scaled to the average distance between demonstration states, and clipped to make
the q-value bound hold. Results on the left of Figure 13 show that our method outperforms both
alternatives and holds a clear advantage in the long-horizon can-moving task.

Aside from our Augmentation-Invariant Distance Measure, we experiment with two other ways to
learn image embeddings. 1. We verify the necessity of the local linearity constraint by swapping out
the locally linear dynamics model with a fully connected neural network. 2. We perform contrastive
learning with MoCo-v3 [48] on individual images without learning the dynamics. The right two
plots in Figure 13 demonstrate that our method is advantageous over the alternative representation
learning approaches.

= 1 L2 inverse reward LaNE Non-Linear MoCo-v3 LaNE

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

0.0 0.5 1.0 1.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Stack Blocks

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Move a Can

Figure 13: Left: We compare two other choices of exploration reward re. α = 1 indicates the exploration
bonus is not discounted based on the estimated distance to success. L2 inverse reward is a simple reward based
on a state’s estimated distance to its closest demo. Both alternatives are inferior to LaNE. Right: We compare
two other representation learning methods to construct our distance measure. Non-Linear: We don’t enforce
local linearity in the forward model and use a fully connected network. MoCo-v3: We don’t train a forward
model but use contrastive learning on individual images. LaNE holds a clear advantage in the block stacking
task. In move-a-can, LaNE is the earliest to achieve success.

7.5 Comparison with DreamerV2

We compare LaNE with DreamerV2, a state-of-the-art model-based RL method. Because Dream-
erV2 does not explicitly take demonstrations, we pre-fill its replay buffer with demonstration trajec-
tories. In addition, we allow DreamerV2 to run for longer to get a better sense of its performance.
As shown in Figure 14 below, it takes over five times as many environment steps for DreamerV2
to learn the Robosuite block-lifting task compared to LaNE. We note that DreamerV2 does not dis-
tinguish the pre-filled demonstrations from the regular episodes and thus fails to sample the sparse

15

reward often enough. Nevertheless, LaNE can also integrate with model-based RL methods to boost
their sample efficiency in sparse-reward settings.

0.0 0.5 1.0 1.5 2.0 2.5
environment steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Lift a Block
DreamerV2
LaNE

Figure 14: DreamerV2 takes over 5 times samples to learn the Robosuite Lift a Block task compared to LaNE
because it does not distinguish between demonstration and regular episodes.

7.6 Robustness of LaNE Policies

We evaluate the out-of-distribution robustness of trained LaNE policies. Specifically, we push the
block and the pen with a stick during policy execution, as illustrated below in Figure 15. We find
that the policies are robust to small perturbations. For example, the agent can lift the yellow block
when pushed, even when the stick and the operator’s arm enter the camera view. Additionally, when
the pen is moved to locations unseen during training, the robot can still pick it up.

Figure 15: The learned LaNE policies are robust to small perturbations during evaluation, including moving
objects, unseen initialization locations, and foreign objects.

7.7 Environment Details

Maximum Episode Length: For our simulated experiments in Robosuite, we set maximum episode
lengths based on the difficulty of each task, as shown in Table 3. These numbers are slightly over the
average steps the demonstrator takes to complete each task, leaving the RL agent plenty of time to
finish. For our real robot experiments, all four tasks share the same maximum episode length of 30
steps. The episodes are terminated if the maximum length is reached or when the task is completed.

Task Lift Door Stack Move a Can
Max Episode Length 40 80 80 120

Table 3: We choose the maximum episode length of each task slightly over the average steps the demonstrator
took, giving the RL agent ample time to finish.

7.8 Real Robot Setup

7.8.1 Highly Compliant Real-time Controller

Because reinforcement learning requires a trial-and-error process [49], we expect the robot to make
frequent physical contact with the environment. To eliminate safety hazards, the controller must be
compliant with external forces. On the other hand, we want the robot to move swiftly so that each

16

RL step takes less time to execute. We develop a highly compliant real-time controller extended
from the Cartesian Impedance Controller [50, 51].

At a high level, the end-effector tracks an equilibrium pose following a mass-spring-damper model.
As the current end-effector pose deviates further from equilibrium, the robot asserts higher torque
in the opposite direction. In the Cartesian space, we limit the maximum force exerted on the end-
effector by the robot, preventing it from causing damage. In the joint space, we apply a counter
torque when a joint gets close to its hardware limit. Combining these control rules builds a safety
net around the robot for smoother RL training.

7.8.2 System Architecture

The robot uses two Intel Realsense cameras, one mounted on the end-effector and another in front of
the robot. Our method only utilizes color images. Both cameras are connected via USB to an Nvidia
GPU desktop, which runs inference and training for the RL agent. Specifically, the GPU desktop
runs an OpenAI gym interface [10], with which the RL agent interacts. At each timestep, the agent
chooses its action based on its policy: a = π(o). The action a consists of a displacement of the end
effector position, change in roll/pitch/yaw, and open/close of the gripper. Next, the action selected
by the RL agent is sent via ethernet to an Intel NUC, which directly interfaces with the Panda Robot.
Specifically, the Intel NUC runs the Robot Operating System (ROS), where our real-time controller
communicates with the hardware.

7.8.3 Demonstration Collection via Tele-Operation

Figure 16: We develop a mobile app
to stream the device pose to the PC.
This allows us to collect demonstra-
tions on the real robot arm quickly.

A key aspect of our approach is to learn from a small set of hu-
man demonstrations efficiently. We build an application where
a user can tele-operate the robot by moving and rotating a
smartphone. Our iPhone application utilizes primitives from
Apple’s ARKit [52] to stream the position and orientation of
the device to the PC controlling the robot.

During demonstration collection, a Python script translates the
tracking data into gym actions and executes them on the real
robot. The gym environment updates the robot’s equilibrium
pose to follow the phone’s movement. These demonstration
trajectories are stored on the Nvidia GPU desktop and used
during training.

7.9 Hyper-parameters and Training Scheduling

We use a discounting factor γ = 0.99 and an exploration re-
ward discount α = 0.98 for all our experiments. The actor
and critic learning rates are 10−3. The latent dynamics model
learning rate is 4 · 10−3. We use a training batch size of 128.
We choose different fractions of demonstrations pd when we
perform prioritized replay, as shown in the table below.

Task Lift Door Stack Move a Can Real Robot
pd 0.15 0.15 0.15 0.2 0.2

Table 4: We vary the fraction pd of demonstrations within each batch depending on the task we are training.

For simulated environments, we perform one Actor-Critic update for each environment step. After
loading the demonstrations, we update the latent dynamics model every 5000 environment steps
until convergence. For real robot experiments, we update the latent dynamics model every 30 steps
the robot takes. Since each step takes about 0.5 seconds to execute on the real robot, we keep
performing SAC updates in the background while the robot is in motion.

17

7.10 Neural Network Architectures

Our method consists of 6 components parameterized by neural networks, namely: model encoder
Eϕ, model decoder Dθ, locally-linear dynamics model Mψ , RL encoder ERL, Actor πRL and Critic
QRL. The numbers below correspond to our specific setting where the latent space has 16 dimen-
sions, and the action space has 7 dimensions. Our locally linear dynamics model predicts a low-rank
approximation of 16× 16 matrix A using two 16-dimensional vectors u and v, where A = I+uvT .
Model Encoder (with DINOv2):
Input: 2 of 3x112x112 randomly cropped images
Pretrained DINOv2 variant: dinov2_vits14_reg
Concatenate 2 of DINOv2 embeddings
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =512))
Linear(out_features =32)
Output: 16-dim mean + 16-dim log -std

Model Decoder (with DINOv2):
Input: 16-dim latent vectors
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =512))
Linear(out_features =2 * 768)
Output: 2 of predicted DINOv2 embeddings

Model Encoder (No DINOv2):
Input: 6x112x112 randomly cropped images
ReLU(LayerNorm(Conv2D(6, 32, kernel=3, stride =2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel =3))
ReLU(LayerNorm(Conv2D (32, 32, kernel =3))
Flatten ()
ReLU(Linear(out_features =128))
ReLU(Linear(out_features =128))
Linear(out_features =32)
Output: 16-dim mean + 16-dim log -std

Model Decoder (No DINOv2):
Input: 16-dim latent vectors
ReLU(Linear(out_features =128))
ReLU(Linear(out_features =128))
ReLU(Linear(out_features =32768))
Reshape into 128 x16x16
Upsample into 128 x32x32
ReLU(Conv2D (128, 128, kernel=3, stride=1, pad =1)))
Upsample into 128 x64x64
ReLU(Conv2D (128, 128, kernel=3, stride=1, pad =1)))
Upsample into 128 x128x128
Conv2D (128, 6, kernel=3, stride=1, pad =1))
Output: 6x128x128 images

Locally -Linear Dynamics model:
Input: 16-dim latent vectors
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =512))
ReLU(Linear(out_features =160))
Output: 16-dim vector u + 16-dim vector

+ 16x7 matrix B + 16-dim offset c

RL Encoder:
Input: 6x112x112 randomly cropped images
ReLU(LayerNorm(Conv2D(6, 32, kernel=3, stride =2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))
ReLU(LayerNorm(Conv2D (32, 32, kernel=3, stride =2)))
Flatten ()
LayerNorm(Linear(out_features =32))
Output: 32-dim feature

Actor / Critic:
Input: 32-dim feature
ReLU(Linear(out_features =1024))
ReLU(Linear(out_features =1024))
Linear(out_features =14)
Output: Actor: 7-dim mean + 7-dim log -std; Critic: Q-value

18

	Introduction
	Related Work
	Problem Setting
	Method
	Reinforcement Learning from Demonstrations
	Augmentation-Invariant Distance Measure
	Demonstration-Guided Exploration
	Prioritized Replay and Value Clipping

	Experiments
	Simulated Manipulation Tasks
	Ablation Studies
	Real Robot Experiments

	Conclusion
	Appendix
	Motivating Example
	Visualization of Embedded Robot Trajectories
	Comparison with Imitation Learning Methods
	Other Ablation Studies
	Comparison with DreamerV2
	Robustness of LaNE Policies
	Environment Details
	Real Robot Setup
	Highly Compliant Real-time Controller
	System Architecture
	Demonstration Collection via Tele-Operation

	Hyper-parameters and Training Scheduling
	Neural Network Architectures

