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ABSTRACT

Backdoor attacks implant hidden behaviors into models by poisoning training data
or modifying the model directly. These attacks aim to maintain high accuracy on
benign inputs while causing misclassification when a specific trigger is present.
While existing studies have explored stealthy triggers in spatial and spectral do-
mains, few incorporate the semantic domain. In this paper, we propose 3S-attack,
a novel backdoor attack which is stealthy across the spatial, spectral, and seman-
tic domains. The key idea is to exploit the semantic features of benign samples
as triggers, using Gradient-weighted Class Activation Mapping (Grad-CAM) and
a preliminary model for extraction. Then we embedded the trigger in the spectral
domain, followed by pixel-level restrictions in the spatial domain. This process
minimizes the distance between poisoned and benign samples, making the attack
harder to detect by existing defenses and human inspection. And it exposes a vul-
nerability at the intersection of robustness and semantic interpretability, revealing
that models can be manipulated to act in semantically consistent yet malicious
ways. Extensive experiments on various datasets, along with theoretical analy-
sis, demonstrate the stealthiness of 3S-attack and highlight the need for stronger
defenses to ensure AI security.

1 INTRODUCTION

With the rapid integration of artificial intelligence (AI) into diverse sectors such as finance, health-
care, and daily life, concerns about the security and trustworthiness of AI systems are intensifying.
An increasing number of studies have revealed the vulnerabilities of AI models, raising concerns
about their reliability in real-world applications. Among them, backdoor attacks have drawn signifi-
cant attention due to their stealthy nature and minimal deployment cost Gu et al. (2019). In a typical
backdoor attack, an adversary poisons a small subset of the training data by injecting inputs con-
taining a specific trigger and labeling them with the target class. Once trained, the model performs
well on benign inputs but misclassifies any input with the trigger into the attacker-specified class.
Notably, modifying as little as 1% of the training data is sufficient to embed a backdoor Gu et al.
(2019), and the entanglement of backdoor functionality with normal neurons further complicates
detection and removal. Consequently, defending against such attacks forms a pressing challenge.

In neural networks, spatial domain refers to the arrangement of pixels in an image, spectral domain
focuses on frequency components of samples (e.g., via Fourier transforms), and semantic domain
captures latent features of sample generated by pre-defined metrics or the model. Over the years,
various defense strategies have emerged, targeting different domains: spatial Wang et al. (2019),
spectral Zeng et al. (2021), and semantic Liu et al. (2018a) characteristics. In response, attackers
have developed more covert strategies to optimize the stealthiness of the trigger and backdoor attack
across specific domains Nguyen & Tran (2021); Feng et al. (2022), seeking to evade these defenses
and human inspections. However, existing attacks have never considered stealthiness in all three
domains simultaneously. And existing semantic-aware attacks either require access to the training
process Zhong et al. (2022); Cheng et al. (2021), or fail to achieve stealth across multiple domains
simultaneously.

To address these limitations, we propose 3S-Attack, a novel backdoor attack that achieves stealth-
iness across three complementary domains: spatial, spectral, and semantic. Our method requires
no access to the training pipeline. Instead, it operates solely through data poisoning. Leveraging
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Grad-CAM Selvaraju et al. (2017), we extract the semantic features of benign class samples and
embed them into the poisoned images. We then restrict pixel-level perturbations to preserve visual
indistinguishability. The resulting poisoned samples remain nearly identical to clean ones in appear-
ance, frequency characteristics, and high-level features, effectively evading both human perception
and state-of-the-art defense techniques.

As illustrated in Figure 1, 3S-Attack introduces less perturbation to both spatial space and spectral
space compared to widely adopted backdoor methods (as can be seen by less light-up points in the
images), while achieving strong attack success rate.

Clean 3S-attack(ours) ISSBA Wanet Bppattack FIBA

Spatial
residual

Spectral
residual

Figure 1: Comparison of proposed 3S-attack with
other SOTA backdoor attacks in spatial and spec-
tral perspective. The residual is the difference be-
tween benign and poisoned samples, and color re-
versed for better demonstration.

The main contributions of this work are as fol-
lows:

1. We propose 3S-Attack, the first back-
door attack to simultaneously achieve
stealthiness in spatial, spectral, and se-
mantic domains.

2. 3S-Attack is also the first semantic-
domain stealthy backdoor attack that
operates purely through poisoned
samples, without requiring access to
the model training process.

3. Extensive experiments and theoreti-
cal analysis demonstrate the superior
stealth compared to prior state-of-the-
art attacks and defense-resistance ca-
pabilities of our proposed method.

2 BACKGROUND AND RELATED WORK

Research on backdoor attacks can be divided into two categories: attack schemes and corresponding
defense methods.

2.1 EXISTING BACKDOOR ATTACKS

A typical backdoor attack defines a trigger and target class, then selects samples from non-target
classes, embeds the trigger, and relabels them as the target class. These poisoned samples are added
to the training set, causing the model to learn a hidden association between the trigger and the target
class during training. In 2017, Gu et al. Gu et al. (2019) first proposed BadNets, defining the concept
of backdoor attacks targeting DNN models and revealing their potential risks. Since then, a plethora
of research papers on backdoor attacks have emerged. Currently, research on backdoor attacks can
be categorized into two stages: visible backdoor attacks and invisible backdoor attacks.

At the stage of visible backdoor attack, attackers primarily focus on enhancing the reliability and
attack success rate (ASR) of the attack Chen et al. (2017); Barni et al. (2019); Lovisotto et al. (2020);
Liu et al. (2021), paying less attention to whether the trigger is conspicuous, i.e., whether it can be
detected by human observation or defense methods.

Meanwhile, after the concept of backdoor attacks was introduced, numerous researchers began de-
veloping defense methods. Consequently, as understanding of backdoor attacks deepened, human-
recognizable triggers were gradually abandoned due to their susceptibility to detection. During this
stage, researchers not only ensured the effectiveness of the attack but also emphasized improving its
stealthiness. This includes invisibility to defense methods Xue et al. (2020), i.e., bypassing various
defenses, and invisibility to humans Zhong et al. (2020); Zou et al. (2018); Wang et al. (2022), ensur-
ing the poisoned samples appear normal and coherent to the human eye. Subsequently, researchers
found that adding backdoors to the frequency domain features of samples can make the poisoned
samples inherently covert in the spatial domain. Therefore, some researchers have attempted to im-
plement backdoor attacks from the frequency perspective Yu et al. (2023); Gao et al. (2024); Zeng
et al. (2021).
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In addition to adding poisoned samples to training datasets, researchers have also explored implant-
ing backdoors by directly modifying models Tang et al. (2020) or the training environment Doan
et al. (2021). If the attacker is a provider of Machine Learning as a Service (MLaaS), they can ac-
cess both the training dataset and the training process, enabling more efficient and stealthy backdoor
attacks Liu et al. (2018b); Zhong et al. (2022). Beyond image classification tasks, recent work has
extended backdoor attacks to models performing other tasks, including backdoor attacks on transfer
learning Yao et al. (2019), federated learning Bagdasaryan et al. (2020), self-supervised Saha et al.
(2022) and semi-supervised learning Yan et al. (2021), as well as models for voice recognition Shi
et al. (2022) and natural language processing Cheng et al. (2025).

2.2 EXISTING BACKDOOR DEFENSES

The existing backdoor defense methods can be categorized into three types based on their focus:
spatial domain-based, spectral domain-based, and semantic domain-based backdoor defenses.

Spatial Domain In image classification tasks, the spatial domain refers to the arrangement of pix-
els within each sample image. Backdoor defense methods that analyze from the spatial perspective
attempt to detect backdoors directly without applying any transformations to the samples or the
model. Their techniques often involve reverse engineering the trigger Wang et al. (2019), overlap-
ping Gao et al. (2019), analyzing model attentions Selvaraju et al. (2017); Chou et al. (2020), and
blocking Doan et al. (2020).

Spectral Domain Spectral-based backdoor defense methods involve transforming image samples
from the spatial domain to the frequency domain using techniques such as FFT (Fast Fourier Trans-
form) or DCT (Discrete Cosine Transform). After transformation, these methods identify triggers
and backdoors by detecting abnormal changes in frequencies and amplitudes Zeng et al. (2021); Fu
et al. (2021) such as abnormal clustering Hammoud et al. (2023), caused by trigger insertion. They
leverage frequency-domain features to achieve efficient and robust real-time detection.

Semantic Domain The semantic domain refers to any space that can represent or maximize the
features of a sample. This domain can include not only manually defined spaces but also those
automatically discovered by the model during training. For instance, to classify samples more ef-
ficiently, the model often assigns one or more neurons to specific features. In this case, the set of
neurons activated by a sample can be regarded as its representation in the model’s abstract seman-
tic domain. Based on analyzing these activations, poisoned samples can be identified Chen et al.
(2018); Liu et al. (2019); Tran et al. (2018), and backdoor model can also be fine-tuned to remove
the backdoor Liu et al. (2018a); Li et al. (2021a).

3 3S-ATTACK

In this paper, we focuses on designing a backdoor trigger that is stealthy in the spatial, spectral,
and semantic domains. We name our attack 3S-attack, as it satisfies all the above requirements.
Moreover, existing backdoor attacks that achieve semantic-domain stealth typically require control
over the training process or access to model parameters Zhong et al. (2022), which is impractical
in many real-world scenarios. To the best of our knowledge, this is also the first attack to achieve
semantic stealth without access to the model or training pipeline. This advancement significantly
broadens the feasibility of advanced backdoor attacks and poses a serious challenge to existing
defense strategies.

3.1 THREAT MODEL

In this work, we follow the most common assumptions adopted in previous studies Gu et al. (2019);
Nguyen & Tran (2021); Wang et al. (2022); Feng et al. (2022); Chen et al. (2017); Lovisotto et al.
(2020); Xue et al. (2020); Li et al. (2021b); Zou et al. (2018); Yu et al. (2023); Gao et al. (2024);
Doan et al. (2021); Liu et al. (2018b); Yan et al. (2021); Saha et al. (2022).

Attacker’s Capability The attacker can inject or alter a certain number of samples in the training
dataset. For example, the attacker may generate poisoned samples and publish them online, waiting
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for victims to collect them as part of their training dataset; or the attacker may be a third-party data
collection or labeling service provider who has more control over the victim’s dataset. However, we
do not assume that the attacker has access to the model itself, such as the training process, model
parameters, or loss function. This is because very few individuals or parties have access to a specific
victim’s model, and attacks conducted by such parties are highly traceable. Therefore, in this paper,
we assume that the attacker has access to the training dataset but not to the model training process.

Attacker’s Goal The attacker’s goal is to successfully implant a backdoor into the target model
via data poisoning. Specifically, the attacker designs a trigger, generates multiple poisoned samples
using it and change their label to the target class, and relies on the victim to train a model with
these samples. The backdoor attack should fulfill the following characteristics: feasibility (remains
inactive on benign samples but causes misclassification to a target class when triggered), stealthiness
(undetectable through human inspection across various domains), and defense resistance (resistant
to defenses from different perspectives).

3.2 ATTACK METHOD INTUITION

The major challenge in designing a stealthy backdoor attack lies in making the trigger invisible in
the semantic domain, which is an abstract space autonomously learned by the model and exhibits
strong black-box characteristics. It is impossible to predict the shape of this space before training
begins, let alone describe it accurately.

To address this challenge, the proposed 3S-attack adopts a strategy of fighting magic with magic.
Theoretically, a fully trained model should focus on parts of an input image that best reflect the
features associated with its label Selvaraju et al. (2017). For instance, if an image is labeled as
a cat, the model should focus on the parts that reveal the presence of a cat (e.g., the cat’s body),
while ignoring irrelevant parts (e.g., the background). Hence, models trained on similar datasets are
expected to focus on roughly the same regions when classifying the same sample. Further detailed
theories and experiments can be found in the appendix A.3.

Following this insight, the 3S-attack attempts to indirectly characterize the semantic domain and by-
pass the difficulty of describing it, by leveraging a preliminary model to predict the semantic domain
of the target model. Specifically, the attacker first trains a clean model. No specific requirements
are imposed on this clean model, as long as it achieves acceptable classification accuracy. Then
apply Grad-CAM to compute saliency map for given samples. By analyzing the saliency map, the
attacker identifies the parts of the image that are most important to the model. This information is
then utilized to construct the trigger for the backdoor attack. The detailed procedures for trigger
generation and injection are introduced below.

3.3 STEP 1: TRIGGER EXTRACTION
Trigger Image

Saliency map

Grad-CAM
Pre-trained model

M

M : Multiply

Taliored image

C

D

C

: DCT transform

: Compare

Backdoor trigger

D

D

Figure 2: Pipeline for extracting a trigger from a
benign sample in target class.

The attacker firstly trains a preliminary model
using a clean dataset. This model need not
achieve optimal accuracy—only an acceptable
performance level, and its structure can be dif-
ferent with the target model. The attacker then
selects a target class and chooses one or more
trigger samples from this class to generate the
trigger. As shown in Figure 2, the attacker uses
Grad-CAM to extract the regions the model re-
lies on most when classifying the trigger sam-
ples (saliency maps). These saliency maps are
multiplied with the corresponding samples to produce tailored samples. Both the original trigger
samples and the tailored samples are then transformed using the Discrete Cosine Transform Ahmed
et al. (1974)(DCT). The attacker compares the magnitude of each frequency component in the re-
sulting spectrograms. Frequencies with magnitude differences below a certain threshold (named
Frequency Selection Threshold) are considered the key features that the model uses for prediction.
These frequencies and the corresponding magnitudes are chosen as the trigger. The further explain
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on why stable DCT components represent the semantic feature is in Appendix A.4 and analysis of
time expenditure for each step is in Appendix A.5.

3.4 STEP 2: POISON SAMPLES GENERATION

D

IM

Benign Image Frequency Map

Trigger

Poisoned
Frequency map

Poisoned image

D : DCT transform

: Inverse 
  DCT transform

: Move the frequency value towards the trigger

I

M

Figure 3: Process of embedding the trigger into
benign samples to generate poisoned samples.

The next step is to inject the trigger into sam-
ples to generate poisoned samples. As shown
in Figure 3, for a target sample, the attacker
first applies DCT to obtain its spectral map.
Then, the magnitudes of the trigger-identified
frequencies in the target sample are adjusted to-
wards the corresponding values in the trigger,
based on a predefined extent of Poison Distance
Ratio. After this adjustment, inverse DCT is ap-
plied to convert the sample back into the spatial
domain. The pseudocode of 3S-attack is pro-
vided in Algorithm 1 in Appendix.

3.5 STEP 3: PIXEL CHANGE RESTRICTION

Before pixel value restriction

After pixel value restriction

Figure 4: Pixel value change restriction on poi-
soned samples. Note that the red circles in the
figure are solely used to highlight the unnatural
artifacts in the samples; the circles themselves are
not part of the poisoned samples.

However, preliminary experiments indicate that
directly adding triggers in the spectral domain
can result in unnatural artifacts in the spatial do-
main (see the upper half of Figure 4). There-
fore, it is necessary to constrain pixel varia-
tions. Specifically, after inverse transformation,
the modified sample is compared with the origi-
nal in terms of pixel values. If the change in any
pixel exceeds Pixel Change Restriction Thresh-
old, the change is limited to that threshold. The
same rule applies when pixel values exceed the
data boundaries (e.g., 0–255 for uint8, or 0–1
for float data). Note that the pixel value change
restriction step does not always take effect, as in
most cases the pixel changes caused by trigger
injection do not exceed the pixel change thresh-
old. In other words, the pixel restriction serves
merely as a safeguard in case the pixel changes
become too large.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environment All experiments were conducted on a server equipped with NVIDIA A100 Tensor
Core GPUs and Intel® Xeon® Platinum 8570 CPUs, running Red Hat Enterprise Linux 8.10. All
experiments were performed using Python 3.11.0 and PyTorch 2.5.1+cu118. We used the Adam
optimizer with a learning rate of 0.001, a batch size of 128, and trained the models for 50 epochs.

Datasets Backdoor attacks against DNNs have mainly focused on models for image classification
tasks. Therefore, we selected datasets that are representative in the image classification field to
demonstrate the generalizability of the 3S-attack across various scenarios.

We strategically selected MNIST LeCun et al. (1998), GTSRB Stallkamp et al. (2011), CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), Animal-10 Song et al. (2022),
and Imagenet Deng et al. (2009) to comprehensively evaluate our attack’s feasibility, stealthiness,
and resistance to defenses. In Imagenet dataset, due to the limited computational resources, we have
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chosen a subset of it by randomly selecting 20 classes from the entire dataset. Table 1 shows the
detailed statistics of each dataset.

Dataset Input Size #Train #Test Classes

MNIST 28× 28× 1 60000 10000 10
GTSRB 32× 32× 3 39209 12630 43
CIFAR-10 32× 32× 3 50000 10000 10
CIFAR-100 32× 32× 3 50000 10000 100
Animal-10 128× 128× 3 23679 2500 10
Imagenet 224× 224× 3 26000 1000 20

Table 1: Details of each dataset.

The selection of these datasets was based on
key considerations to ensure a thorough and
balanced evaluation. Their structured diver-
sity—encompassing handwritten digits, traffic
signs, objects, animals, and high-resolution im-
ages—ensures a robust evaluation of 3S-attack
across varied conditions.

Models We employ different neural network
architectures tailored to the complexity and characteristics of each dataset to ensure a meaningful and
rigorous evaluation. For MNIST, we utilize both a custom small model and LeNet-5, as this dataset
consists of low-resolution grayscale images of digits, requiring relatively simple architectures. For
GTSRB and CIFAR-10, we use VGG-11 and ResNet-18 to study the impact of model depth and
feature extraction strategy. For CIFAR-100, we use WideResNet (WRN), a ResNet variant with
wider layers, offering greater feature representation capacity. For Animal-10, we adopt ResNet-18
due to its balance between capacity and efficiency. For Imagenet, we adopt ResNet-50 because of
the complexity and high-resolution.

Metrics We mainly use Attack Success Rate (ASR), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index Measure (SSIM) to measure the effectiveness and stealthiness of 3S-
attack. ASR Gu et al. (2019) measures the effectiveness of a backdoor attack by quantifying the
probability that a model misclassify poisoned samples as the target class when the trigger is present.
PSNR Hore & Ziou (2010) evaluates the stealthiness of a backdoor trigger in pixel level by mea-
suring the pixel level similarity between the original and poisoned samples. SSIM Hore & Ziou
(2010) assesses the perceptual similarity between the original and poisoned images in global level,
considering not only pixel-wise differences but also structural information.

4.2 ATTACK PERFORMANCE EVALUATION

Baseline Attack We selected several baseline backdoor attack methods that employ different trig-
ger and poisoned sample generation algorithms to compare with 3S-attack. Specifically, we chose
the following attack method to compare with. Wanet Nguyen & Tran (2021) defines a warping
field as the trigger and applies it to benign samples, it acts in the spatial domain. Bppattack Wang
et al. (2022) uses quantization and dithering as the trigger mechanisms, it acts in the spatial do-
main. ISSBA Li et al. (2021b) trains an encoder-decoder pair initially designed for steganography
to embed hidden triggers, it acts in the semantic domain. FIBA Feng et al. (2022) selects the central
frequencies of a benign sample as trigger and replaces that of other samples to generate poisoned
inputs, it acts in the spectral domain. BadNets Gu et al. (2019) serves as a standard baseline and is
used to evaluate the effectiveness of various defenses, it acts in the spatial domain.

Clean 3S-attack ISSBA Wanet Bppattack FIBA DUBA
Datasets BA BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR
MNIST 99.34 99.20 96.47 99.23 99.10 98.83 97.43 - - 99.18 70.68 99.12 95.14
GTSRB 98.36 96.55 94.12 97.38 93.71 96.89 98.31 97.15 95.29 97.07 79.05 97.83 97.26

CIFAR10 86.40 84.65 89.29 84.80 77.23 85.13 93.36 85.54 91.32 84.93 65.85 86.97 95.79
CIFAR100 66.94 66.64 92.38 66.39 86.42 66.05 93.06 66.26 85.94 66.78 75.48 66.21 96.78
Animal10 88.08 87.32 97.42 86.96 99.87 87.52 93.88 86.84 92.44 87.36 58.72 88.04 98.30
Imagenet 74.80 72.60 88.21 72.70 82.74 74.30 87.16 73.20 89.53 71.80 73.84 72.20 92.53

Table 2: BA and ASR value of different attacks in spatial domain. Note that the BA and ASR is in
percentage format.

Attack Performance We compare the proposed 3S-attack with other baseline backdoor attacks,
and Table 2 demonstrates the attack affectiveness by showing the Benign Accuracy (BA) and Attack
Success Rate (ASR), while Table 3 demonstrates the attack stealthiness by showing the PSNR and
SSIM value of each backdoor attack across the above mentioned datasets. During experiments, we
adopted different poison rate for each dataset to achieve the best attack result. Specifically, we used
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3S-attack ISSBA Wanet Bppattack FIBA DUBA
Datasets PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
MNIST 46.01 0.943 39.22 0.892 34.13 0.639 - - 23.93 0.679 38.19 0.893
GTSRB 32.78 0.979 19.03 0.653 31.22 0.759 24.61 0.943 14.62 0.559 31.58 0.889

CIFAR10 35.65 0.969 23.51 0.852 29.95 0.773 20.06 0.923 15.50 0.710 31.98 0.918
CIFAR100 31.68 0.946 22.79 0.851 30.69 0.858 20.12 0.927 15.87 0.770 30.02 0.909
Animal10 30.83 0.962 26.60 0.840 29.59 0.452 23.28 0.966 15.69 0.754 32.69 0.916
Imagenet 32.82 0.963 31.39 0.875 28.13 0.129 23.51 0.967 17.69 0.776 32.33 0.885

Table 3: PSNR, and SSIM value of different attacks in spatial domain.
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Figure 5: The effect of (a) poison rate, (b) frequency selection threshold, (c) poison distance ratio,
and (d) pixel change restriction threshold on ASR, evaluated on three datasets: CIFAR-10, CIFAR-
100, and Animal-10.

the poison rate of 1% for MNIST, 2% for GTSRB, 4% for CIFAR-10, CIFAR-100, and Animal-10
dataset. Specifically, the 3S-attack attains a consistently high ASR across each datasets, showing
that it is achieving a acceptable attack feasibility. More importantly, it demonstrates remarkably high
PSNR and SSIM scores across all datasets. These results indicate that the perturbations introduced
by 3S-attack are not only effective but also imperceptible. Therefore, compared with baseline attacks
which sacrifice trigger stealthiness for ASR, 3S-attack offers a better trade-off between effectiveness
and imperceptibility. Besides, 3S-attack is having a constant performance across different dataset,
indicating its strong generalization capability. Note that the results of BppAttack on MNIST are
omitted because BppAttack is incompatible with the data characteristics of MNIST. Specifically,
most pixel values in MNIST are either 0 (the minimum) or 255 (the maximum), resulting in a
highly saturated dataset. When BppAttack is applied, it often produces pixel values that exceed
these limits. Due to value clipping, any modifications that fall outside the valid pixel range are
suppressed, rendering the inserted triggers ineffective. As a result, BppAttack consistently fails to
generate valid poisoned samples on MNIST.

4.3 PARAMETERS

In 3S-attack, there are multiple parameters and thresholds that can affect the performance of the
attack. Among them, the most important parameters are:

1. Poison rate: This parameter measures how much rate of samples in the training dataset are
changed into poisoned, in order to embed the backdoor.

2. Frequency Selection Threshold: When comparing the frequency map of target and tailored
images, frequencies with enough similarity are selected as part of the trigger.

3. Poison distance ratio: When injecting the trigger into samples, the amplitude of trigger
frequencies in benign sample will move towards the value in trigger in this specific extent.

4. Pixel change restriction threshold: This parameter controls to what extent the tolerance is
on pixel value change on poisoned samples.

We evaluate how these parameters affect 3S-attack performance. Figure 5, illustrate the effects
on ASR for CIFAR-10, CIFAR-100, and Animal-10, respectively. Generally, ASR monotonically
increases as the proportion of trigger components in the dataset increases, which is intuitive—higher
poisoned intensity leads to higher ASR. And with the increase of number of poisoned samples
(sub-figure a), frequency selection threshold (sub-figure b), poison distance ratio (sub-figure c), and
pixel change restriction threshold (sub-figure d), the proportion of trigger components in the dataset
increases.
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As illustrated in the Fig 5, Table 2, and Table 3, the 3S-attack exhibits strong stealthiness and ro-
bustness. Even when the proportion of trigger components in the dataset is low corresponding to
conservative parameter settings, it consistently achieves a satisfactory ASR. Furthermore, it main-
tains a relatively high ASR across a wide range of parameter variations. Specifically, when frequency
selection threshold ∈ [0.15, 0.5], poison distance ratio ∈ [0.7, 1], and pixel change restriction thresh-
old ∈ [0.1, ], the 3S-attack stay effective while not decreasing the BA of the victim model. These
results suggest that effective attack performance can be attained with high probability, even in the
absence of detailed knowledge about the target model or dataset. This highlights the practicality
of the 3S-attack, as its parameters can be configured based on general intuition or prior experience
rather than precise model-specific tuning, which enhanced the robustness of 3S-attack.

4.4 ABLATION STUDY

We theoretically and experimentally assess the 3S-attack’s performance when each key component
is removed.

Grad-CAM vs Random Frequency Pick If frequencies in the DCT map are selected randomly,
rather than according to a substitute model and the Grad-CAM method, as introduced in Section 3.3,
the trigger can still generate poisoned samples and embed a backdoor. However, neither the trigger
nor the poisoned samples will contain any features related to the target class. Consequently, they
cannot achieve invisibility in the semantic domain. The same theory holds when a random area is
picked instead of calculate the saliency map to select the model focusing area. The results are shown
in Table 4, where Grad-CAM guided frequency selection strategy and random frequency selection
strategy achieved similar attack effectiveness and stealthiness. But the random frequency selection
strategy resulted in a much higher MMD2 score, indicating that without Grad-CAM, the poison
samples generated rarely share semantic features with benign samples in target class, which will
diminish the invisibility of backdoor attack in semantic domain.

Strategy BA ASR PSNR SSIM MMD2 score

Grad-CAM 85.03 89.05 35.53 0.963 0.5984
Random Frequency Pick 84.83 88.75 35.16 0.954 0.9614

Table 4: Comparation of attack performance between Grad-CAM guided frequency selection, and
random frequency selection.Note that the BA and ASR is in percentage format.

Trigger Shifting Because the DCT is a linear transform, directly adding a universal trigger to
each sample is equivalent to attaching a kind of same pattern to every sample in the spatial domain,
which causes the trigger not sample-specific. Moreover, most frequencies in the DCT maps of
natural images have zero amplitude. Replacing these amplitudes with those of the trigger has a
similar effect. To ensure sample specificity, additional nonlinearity must be introduced; this makes
shifting each sample toward the trigger amplitudes (as described in Section 3.4) necessary.

Strategy BA ASR PSNR SSIM

Pixel Restriction On 85.03 89.05 35.53 0.963
Pixel Restriction Off 85.65 90.86 34.18 0.951

Table 5: Comparation between if pixel restriction step is engaged or not.Note that the BA and ASR
is in percentage format.

Pixel Value Restriction Switch on/off When the other parameters are set to reasonable values,
the pixel value restriction introduced in Section 3.5 has only a marginal influence on overall per-
formance. As previously introduced, its primary function is to serve as a safeguard that prevents
excessively large pixel deviations after the inverse transformation. Consequently, as shown in Ta-
ble 5, disabling this restriction slightly increases the ASR, since none of the frequency-domain
trigger components are attenuated by clipping. However, the absence of this control allows occa-
sional large pixel fluctuations to persist, leading to a minor decrease in averaged PSNR and SSIM

8
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value. This reflects the trade-off between maintaining trigger fidelity and constraining unintended
visual perturbations.

4.5 DEFENSE RESISTANCE

We selected a comprehensive set of defense methods that target these three domains to evaluate the
defense resistance of 3S-attack. In particular, we consider the following representative defenses:
STRIP Gao et al. (2019), Grad-CAM Selvaraju et al. (2017), Fine-Pruning Liu et al. (2018a), and
Frequency-based Trigger Detection (FTD) Zeng et al. (2021) where STRIP and Grad-CAM are
based on spatial domain; FTD is based on spectral domain; and FP is based on semantic domain.
The remainder of this section presents the evaluation of 3S-attack against each of these defenses in
detail.
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Figure 6: Experimental results of STRIP against
Badnets and 3S-attack on GTSRB and Animal10
datasets.

STRIP The core idea behind STRIP is that
backdoor triggers are typically designed to be
highly robust in order to ensure a high attack
success rate, whereas benign features in input
samples tend to be more fragile and suscepti-
ble to disruption. Figure 6 presents the per-
formance of STRIP against BadNets Gu et al.
(2019) and the proposed 3S-attack on the GT-
SRB and Animal10 datasets. Note that Bad-
Nets is used solely to demonstrate the effective-
ness of the defense against classical backdoor
attacks, as well as to show the outcome when
an attack fails to bypass the defense. The results show that STRIP is effective in identifying poi-
soned samples in BadNets, as their distribution (orange) significantly diverges from that of benign
samples (blue). However, in the case of 3S-attack, the distribution of poisoned samples (green)
closely resembles that of benign samples, making them indistinguishable. As a result, no reliable
threshold can be set to effectively separate poisoned samples introduced by 3S-attack, allowing it to
successfully evade detection by STRIP.

Benign samples

Badnets

3S-attack
(a) GTSRB

Benign samples

Badnets

3S-attack
(b) Animal10

Figure 7: Experimental results of Grad-CAM
against Badnets and 3S-attack on GTSRB and An-
imal10 datasets.

Grad-CAM When Grad-CAM is used defen-
sively, it produces a heatmap (saliency map)
that highlights the regions of an input sample
to which the model pays the most attention dur-
ing classification. Figure 7 illustrates saliency
maps for benign samples (top), poisoned sam-
ples from BadNets (middle), and poisoned sam-
ples from the 3S-attack (bottom). For benign
samples, the model’s attention is correctly con-
centrated on the main features or objects within
the image. However, in poisoned samples gen-
erated by BadNets, the model’s focus is pre-
dominantly on the trigger region, regardless of
the true label or semantic content of the image.
In contrast, the model’s behavior on poisoned
samples from the 3S-attack closely resembles its behavior on benign samples, with attention dis-
tributed over the primary semantic regions. This is because the 3S-attack trigger is embedded using
features already associated with the benign class, resulting in no specific spatial region being con-
sistently highlighted as the trigger area. As a result, any defenses that is further developed based on
Grad-CAM such as Doan et al. (2020) can be bypassed 3S-attack

Fine-pruning Fine-pruning (FP) assumes that certain neurons in a backdoored model are primar-
ily activated by triggers and remain inactive on benign inputs. By feeding a clean dataset into the
model and monitoring neuron activations, consistently inactive neurons are identified as potential
backdoor carriers and are pruned or suppressed to disable the attack. Figure 8 presents the results
of applying the FP defense to the 3S-attack on the GTSRB and Animal10 datasets. The X-axis is
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the ratio of neurons that being deactivated, and the Y-axis is the BA and ASR after such portion of
neurons being deactivated.
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Figure 8: Experimental results of FP defense
against 3S-attack on GTSRB and Animal10
datasets.

It is evident that as the pruning rate increases,
the benign accuracy (BA) declines more rapidly
and earlier than the attack success rate (ASR).
This indicates that there is no effective prun-
ing threshold at which ASR is substantially re-
duced without also significantly degrading the
model’s performance on benign samples. One
explanation is that the 3S-attack embeds the
trigger using complex, distributed features that
engage a wide range of neurons. As a result,
neurons responsible for recognizing benign fea-
tures and those involved in recognizing the trig-
ger may overlap. This makes it difficult to iso-
late and remove backdoor-specific neurons without simultaneously impairing the model’s normal
functionality. Besides, we have observed that BA and ASR have oscillated significantly in exper-
iment on Animal10 dataset. This is caused by the model’s limited redundancy on this dataset that
when Fine-Pruning removes even a small fraction of these neurons, the model rapidly loses critical
feature extractors and suffers an immediate and uncontrolled accuracy drop.

Detection Rate (%)
Attack methods GTSRB Animal10

Benign samples 98.54 100
3S-attack 1.46 0.98
ISSBA 100 99.16
Wanet 6.11 4.36
Bppattack 98.87 99.44
FIBA 99.98 98.76
Badnets 100 99.08

Table 6: Experimental results of FTD defense
method against multiple backdoor attack schemes
on GTSRB and Animal10 datasets.

Frequency based Defense Frequency-based
Trigger Detection (FTD) uses a dataset con-
structed with diverse known triggers to train a
binary classifier based on spectral features ex-
tracted to distinguish benign and poisoned sam-
ples. Table 6 shows that FTD performs well
in detecting certain types of backdoor attacks
and their corresponding triggers. Notably, even
when trained on a limited variety of trigger
patterns, the FTD detector demonstrates some
generalization ability and can successfully de-
tect previously unseen trigger types. However,
its effectiveness diminishes when facing attacks
like Wanet Nguyen & Tran (2021) and the pro-
posed 3S-attack. This is because the triggers in
these attacks exhibit significantly different frequency-domain characteristics compared to those used
in the training set. In particular, the 3S-attack modifies only a very small subset of frequency compo-
nents, making the resulting spectral changes too subtle for the detector to reliably distinguish from
benign samples. As a result, the FTD classifier fails to recognize the poisoned samples generated by
3S-attack as anomalous.

5 CONCLUSION

In this paper, we proposed 3S-Attack, a novel backdoor attack that achieves stealthiness across
spatial, spectral, and semantic domains, to fill the gap that existing attacks have only focused on
limited domains. The attack constructs a triple-stealthy trigger by extracting class-relevant features
using a preliminary model and Grad-CAM, followed by frequency-domain embedding and pixel-
level constraint. 3S-Attack is also the first semantic stealthy attack with no access to the victim
model or its training process, making it applicable to more realistic threat scenarios. Extensive
experiments demonstrate that our method not only maintains high attack success rates, but also
achieves superior imperceptibility across multiple domains, and being harder to detect by existing
defenses.
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6 ETHICS STATEMENT

This paper proposes the 3S-attack and presents a corresponding theoretical analysis, this attack be-
longs to a class of adversarial techniques targeting AI models. Such attacks may, if misused, lead to
potential harm or economic loss by compromising the reliability or confidentiality of machine learn-
ing systems. All experiments were conducted on publicly available benchmark datasets containing
no personally identifiable information, and no real-world deployment was performed. The purpose
of this study is to highlight an important security issue in deep neural networks and to support the
development of more robust and trustworthy AI systems. We have adhered to the ICLR Code of
Ethics throughout the research and preparation of this work.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our results. The section 3 clearly
describes the formulation of the 3S-attack, including the motivation and thought process underlying
each component. Detailed algorithms and hyperparameter settings are provided in the Appendix.
All datasets used in the experiments are publicly available, and their preprocessing pipelines are
also documented in the Appendix. Anonymised code of this work is provided in the following link:
https://anonymous.4open.science/r/anon-project-3776.
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A APPENDIX

A.1 STATEMENT ON AI TOOLS

Portions of the manuscript, such as grammar refinement, clarity improvement, and minor wording
suggestions, were provided by ChatGPT. The model was employed solely as a language-editing
tool and did not contribute to the conception of the study, the design of experiments, data analysis,
or the generation of scientific conclusions. All intellectual content, methodologies, analyses, and
interpretations remain entirely the work of the authors. Every section produced with the assistance
of the model was critically reviewed and, where necessary, revised by the authors to ensure accuracy,
originality, and compliance with the ethical standards of scholarly publishing. The authors accept
full responsibility for the integrity and final content of this article.

A.2 3S-ATTACK OVERVIEW

To summarize, the proposed 3S-attack follows a three-stage process that enables stealthy and effec-
tive backdoor injection by leveraging frequency-domain manipulation guided by semantic features.
This design ensures that the poisoned samples remain stealthy across spatial, spectral, and semantic
domains while evading multiple defense mechanisms. The entire procedure is illustrated in Algo-
rithm 1, which includes the following components:

Algorithm 1 Trigger Extraction and Poisoned Sample Generation Algorithm of 3S-Attack.

Require: Clean dataset D, target class ct, frequency selection threshold δ, poison distance ratio α,
pixel change restriction threshold τ

Ensure: Poisoned dataset Dpoisoned

1: Train model M on D
2: Select sample(s) xtrig ∈ ct
3: S ← Grad-CAM(M(xtrig)) ▷ Compute saliency maps
4: x̃trig ← S ⊙ xtrig

5: Fori ← DCT(xtrig)
6: Ftailored ← DCT(x̃trig)
7: F ← {f : |Fori(f)− Ftailored(f)| < δ}
8: Extract trigger: {(f, Fori(f)) | f ∈ F}
9: Sample subset D′ ⊂ D

10: for all x ∈ D′ do
11: Fx ← DCT(x)
12: for all f ∈ F do
13: F ′

x(f)← (1− α) · Fori(f) + α · Fx(f)
14: end for
15: x̂← IDCT(F ′

x)
16: for all pixel p in x̂ do
17: if |x̂(p)− x(p)| > τ then
18: x̂(p)← x(p) + sign(x̂(p)− x(p)) · τ
19: end if
20: x̂(p)← clip(x̂(p), 0, 255)
21: end for
22: Add x̂ to Dpoisoned

23: end for
return Dpoisoned ← D ∪Dpoisoned

Trigger Extraction: A preliminary model is trained to generate Grad-CAM saliency maps for
samples in the target class. These maps highlight class-relevant features. By comparing the DCT
representations of the original and tailored images, a set of key frequency components is selected as
the trigger pattern.

Poisoned Sample Generation: A subset of clean data is randomly selected, and their DCT co-
efficients are selectively modified at the trigger frequencies using linear interpolation between their
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original values and those in the extracted trigger. The modified representations are then transformed
back into the spatial domain via inverse DCT.

Pixel Value Restriction: To preserve visual imperceptibility, the pixel-level differences between
each poisoned sample and its original are clipped to a specified threshold.

A.3 THEORETICAL AND EXPERIMENTAL PROOF OF SEMANTIC SIMILARITY

A core component of 3S-Attack is the use of a preliminary surrogate model to approximate the
semantic behavior of the victim model. Although the attacker cannot access the victim’s training
process or parameters, our method relies on the observation that supported by both theoretical rea-
soning and empirical evidence: Two independently trained models on similar data tend to focus on
similar semantic regions when classifying the same sample.

Theoretical Justification Let fpre and fvic denote the preliminary and victim models, respec-
tively, and let Apre(x) and Avic(x) be their Grad-CAM saliency maps for an input x belongs to
class c. Grad-CAM computes the spatial importance of each location via:

A(x) = ReLU

(∑
k

αkF
k(x)

)
, αk =

1

Z

∑
i,j

∂yc
∂F k

ij(x)
.

where F k(x) is the k-th feature map at the last convolutional layer. A key property of CNN classi-
fiers trained to high accuracy is that they must rely on object-relevant features rather than background
artifacts. Formally, if both models satisfy:

Pr[fpre(x) = c | x ∈ c] ≈ 1, Pr[fvic(x) = c | x ∈ c] ≈ 1.

And to do this, their optimal discriminative features must approximate the true object-support region
Ωc ⊆ {1, . . . ,H} × {1, . . . ,W}. Because for a large amount of samples belonging to the class c,
their only common point is that every image contains the object described by class c, which makes
extracting the semantic feature that all the images in class c being the only way to achieve a high
benign accuracy and generalizability. Thus, although architectures and training data may differ, both
models satisfy:

supp(Apre(x)) ≈ Ωc ≈ supp(Avic(x)).

which provides the theoretical basis for using Apre(x) as a surrogate for the victim model’s semantic
focus.

Clean Model 2#Clean Model 1#

Figure 9: Saliency map of two clean model classifying same group of samples trained on separated
datasets.

Experimental Validation We designed a simple yet effective experiment to prove the above logic.
We take a clean dataset, for example CIFAR-10, and randomly split this dataset into two disjoint
subsets where each sample in the original CIFAR-10 can and only can belongs to one of the subsets,
which we call subset1 and subset2. Then both subset are used to train a model independently to
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acquire model1 and model2. Then the samples in test set that never existed in subset1 and subset2
are computed saliency map via Grad-CAM, when we compare the saliency map generated by both
models on the same samples. The results are shown in Figure 9, from which we can tell that the
semantic important region that two models identified on same sample are similar. This indicate
that despite trained on different datasets, different models that all achieved acceptable classification
accuracy on the same class, can all focus on the roughly correct region when processing same
samples in this class. Because the test samples are never seen during the training of either model, any
similarity in their saliency maps must arise from shared semantic structure rather than memorization.
Consequently, a preliminary model trained on attacker-owned dataset can reliably approximate the
victim model’s semantic focus for the target class.

A.4 WHY STABLE DCT COMPONENTS REPRESENTS SEMANTIC FEATURE

Why Selecting Stable DCT Components A central motivation for selecting DCT components
whose magnitudes change minimally between the original image and its Grad-CAM weighted coun-
terpart lies in the way semantic information is preserved under spatial masking. Grad-CAM attenu-
ates non-discriminative regions while retaining the object-related structure that the model relies on
for classification. Because a trained deep network functions as a semantic feature extractor, its Grad-
CAM map reveals the regions that encode the class-defining content, even when these semantics are
difficult to characterize explicitly.

Given that the DCT is a linear transform, suppressing background pixels produces predictable
changes only in the frequency components associated with the removed background content. In
contrast, the components encoding the preserved semantic structure remain largely stable. Conse-
quently, the DCT components that exhibit small magnitude differences before and after Grad-CAM
weighting correspond to model-dependent semantic features of the target class. By selecting these
stable components, 3S-Attack isolates spectral patterns that reflect object-level semantics while fil-
tering out background or spurious cues.

Our ablation study further validates this interpretation: Replacing the stability-based selection with
random frequency selection leads to a marked reduction in semantic stealth and significantly in-
creases activation-space separability. This provides empirical evidence that stability under Grad-
CAM masking effectively identifies the spectral components responsible for semantic preservation.
Therefore, we have the following reasoning chain that leads to the methodology of 3S-attack: Grad-
CAM → preserve semantic region → spatial masking → linear DCT → stable frequencies → se-
mantic meaningful frequencies.

Determining Frequency Selection Threshold Value Besides, we cannot determine, for any given
sample, how many, which, or what kinds of features represent the content described by its label, nor
to what extent these features reflect that label. Applied to the trigger extraction pipeline proposed
in this paper, this means that there is currently no explicit theoretical derivation that can guide us in
identifying the optimal values or appropriate ranges of the parameters in 3S-attack. Consequently,
the selection of parameter values is largely empirical.

For the frequency selection threshold in particular, our reasoning is as follows: We know for each
frequency, the degree of difference between the original image and the tailored image, and that the
tailored image preserves the parts the model considers most important for classifying the sample.
Therefore, frequencies that exhibit smaller differences correspond to more important features of the
sample. In this way, we obtain the importance of each frequency in reflecting the semantic content
associated with the sample’s label. However, we still lack another key piece of information, namely
how many of the top-ranking frequencies are sufficient to capture the sample’s semantic features,
i.e. where the frequency selection threshold should be set. We thus adopt an empirical approach,
tuning this parameter to balance the effectiveness, stealthiness, and defense resilience of the 3S-
attack. The experimental results in Figure 5 show that 3S-attack can achieve strong performance
across a relatively wide parameter range. Therefore, even when attackers have no knowledge of the
victim-side configuration, they may choose parameter settings that cause smaller perturbations to
the sample, while still retaining a high probability of successfully implanting a backdoor into the
victim model.
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A.5 TIME EXPENDITURE FOR PREPARATIONS

In 3S-attack, before the attack can perform the attack, prepositive steps are required, including
training a preliminary model, apply Grad-CAM to compute saliency map and extract spectral trigger,
and generate poison samples. In this section, we evaluate and report the time expenditure of each
step.

Train Preliminary Model As described in the paper, the preliminary model only needs to produce
Grad-CAM saliency maps that roughly localize the dominant object region, it is not required to
match the architecture, depth, or accuracy of the victim model. In our experiments, a CNN smaller
than ResNet/VGG/WRN is sufficient as preliminary model. Training such a model takes only a
small fraction of the time needed to train a standard classifier on the same dataset, not only because
the parameter amount is smaller than mainstream models, but also because epochs required during
training is much smaller. In experiments, typically 10-50% of the victim model’s training time is
enough to train a well functioning preliminary model, depends on the exact parameter amount of the
preliminary model and victim model.

Generate Saliency Map and Poison Samples Once the preliminary model is trained, the sub-
sequent operations including Grad-CAM computation, DCT transform, frequency selection, and
trigger injection are purely feed-forward computations. The poison sample generation process com-
pletes in seconds to a few minutes, depending on the sample resolution, number of poison samples,
and hardware details. Thus, the dominant cost is not data poisoning, but the one-time preliminary
model training.

Time Constrain for Attacker In the data-poisoning threat model we study, the attacker can pre-
pare poisoned data long before the victim trains any model, since there is no time constraint or
interaction requirement. Therefore, even if the attacker chose to train several preliminary models or
refine the trigger multiple rounds, this cost remains entirely offline and does not affect the success
or practicality of the attack. Besides, once a trigger is extracted for a given target class, it can be
reused for different victim models, different training runs, and even different datasets of the same
class semantics. This significantly reduces the amortized cost of the attack in practice.

A.6 STEALTHINESS IN SEMANTIC DOMAIN

To evaluate the semantic stealthiness of 3S-attack, we examine how closely the neuron activation
patterns elicited by poisoned samples resemble those of benign samples from the target class. We
conduct this analysis on the CIFAR-10 dataset using a ResNet-18 model. Specifically, benign sam-
ples from the target class and poisoned samples generated by different attacks are grouped into two
subsets. Each sample is passed through the backdoored model, and activation vectors from the sec-
ond last layers are collected. These activations naturally form empirical distributions for the benign
subset and the poisoned subset, respectively. To quantify their similarity, we compute the squared
Maximum Mean Discrepancy (MMD2), a widely adopted metric for comparing distributions of
high-dimensional neuron activations. The value of MMD2 ranges from 0 to 2, with smaller values
indicating greater similarity.

Attack methods MMD2 score

Same class 0.0004
Diff classes 1.9801
3S-attack 0.5996
ISSBA 1.2372
Wanet 1.0137
Bppattack 1.0283
FIBA 0.8946
Badnets 1.4828

Table 7: MMD2 score of 3S-attack compared
with other baseline attacks and specific situations

Table 7 summarizes the results. To contex-
tualize the scale of this metric, we addition-
ally evaluate two baseline scenarios. First,
we randomly divide benign samples from the
same class into two subsets and compute their
MMD2; as expected, the resulting score (first
row in in table) is near zero, confirming that
semantically consistent samples yield nearly
identical activation distributions. Second, we
compute MMD2 between benign samples
drawn from two different classes, which pro-
duces values close to the upper bound (second
row in in table), reflecting that the underlying
activation patterns are largely independent. For
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most baseline backdoor attacks, the activation distributions of poisoned samples diverge signifi-
cantly from those of benign target-class samples, with MMD2 typically exceeding 1. This indi-
cates that unless intentionally enhance the stealthiness in semantic domain , backdoor attacks can
leave discernible semantic footprints inside the model. In contrast, 3S-attack attains an MMD2

of approximately 0.6—substantially lower than competing methods—demonstrating that poisoned
samples produced by our method activate neurons in a manner much closer to the benign target-
class distribution. While the performance is not as ideal as methods that explicitly enforce semantic
alignment by modifying the training process or introducing additional losses, 3S-attack achieves
significantly stronger semantic stealthiness under a more realistic threat model where the adversary
cannot influence model training.

A.7 3S-ATTACK UNDER CONSISTENT MODEL STRUCTURE

Clean 3S-attack

Dataset BA BA ASR PSNR SSIM

GTSRB 98.36 96.55 94.12 32.78 0.979
CIFAR-10 86.40 84.65 89.29 35.65 0.969
CIFAR-100 54.35 52.13 92.78 31.14 0.943
Animal-10 88.08 87.32 97.42 30.83 0.962
Imagenet 74.80 73.10 86.26 32.32 0.963

Table 8: The performance of 3S-attack under
unified ResNet-18 model structure on various
datasets.

The proposed 3S-attack is designed with the
idea of being effective across datasets and
model structures instead of relying on any spec-
ification. The experiment results in Section 4.2
demonstrated the effectiveness of 3S-attack de-
ployed to a variety of datasets and models. To
further evaluate the consistency of effective-
ness, we conducted the following experiments.
Instead of selecting different model structure
for each dataset, we deploy a unified ResNet-
18 to dataset GTSRB, CIFAR-10, CIFAR-100,
Animal-10, and Imagenet to evaluate the per-
formance of 3S-attack. Note that due to the input and output structure differences of each dataset,
minor adjustments to the ResNet-18 are inevitable, we can only ensure the main structure is consist
across experiments.

The results are shown in Table 8, from which we can tell that 3S-attack maintains stable performance
across all datasets when the underlying model structure is fixed. Compared with Table 2, the benign
accuracy after poisoning remains within a small margin of the clean model’s accuracy, demonstrating
that using a unified architecture does not compromise the attack’s stealthiness or its impact on the
primary classification task. At the same time, the attack success rate consistently achieved the
same level compared with other attacks across all datasets, indicating that the principle of 3S-attack
generalizes well under architectural homogeneity. Moreover, the PSNR and SSIM values remain
nearly identical as that in Table 3 for all datasets, showing that the attack performance is universal
across datasets. This consistent performance confirms that the proposed 3S-attack does not rely
on model-specific properties. Rather, its effectiveness stems from exploiting stable semantic and
spectral patterns that persist across architectures.

A.8 POSSIBLE DEFENSE

Apart from the above defenses that 3S-attack can bypass, we also explored what defenses might be
effective on detecting and defending against the 3S-attack. The following two defense methods are
found to some extent, effective against the 3S-attack.

Neural Cleanse The core idea behind Neural Cleanse (NC) Wang et al. (2019) is based on the
observation that attackers typically aim to design triggers as small and inconspicuous as possible.
Moreover, backdoor-ed models often rely on a few key pixels from the trigger pattern to cause
misclassifications. As a result, for the target class, it is usually possible to identify a small trigger
pattern that, when attached to a wide range of benign inputs, consistently causes misclassification
into that class. In contrast, for clean (non-target) classes, any synthesized trigger that causes benign
samples to be misclassified into those classes tends to be much larger, as there is no actual backdoor
associated with them. By reverse-engineering potential triggers for all classes and comparing their
sizes, NC identifies the class with an abnormally small trigger as the likely backdoor target.

Figure 10 presents the anomaly index for each class in the NC defense applied to a 3S-attack where
the target class is 7. Subfigure (a) shows the results on the GTSRB dataset, where class 7 exhibits

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35 40
Classes

0

1

2

3

4

5

An
om

al
y 

in
de

x

(a) GTSRB

Benign class in 3S-attack
Target class in 3S-attack

0 2 4 6 8
Classes

0

1

2

3

4

5

An
om

al
y 

in
de

x

(b) Animal10

Benign class in 3S-attack
Target class in 3S-attack

Figure 10: Experimental results of Neural Cleanse against 3S-attack on GTSRB and Animal10
datasets.

a significantly higher anomaly index, indicating that the 3S-attack is effectively detected, although
some other class are also flagged as false positive. However, in subfigure (b), based on the Ani-
mal10 dataset, the anomaly index of class 7 is 1.73—still relatively high but below the threshold.
Moreover, another clean class also has a comparable anomaly index of 1.65. These results suggest
that while NC is effective in detecting the 3S-attack under certain conditions, its reliability is not
guaranteed across all settings. Due to the black-box nature of DNNs, the underlying reasons for this
inconsistency are difficult to pinpoint. One possible explanation is that, in some cases, the perturb
introduced by poison sample generation process is not sample-specific enough that resulted in trig-
ger pattern in each specific sample still have some common pattern in spatial domain. Therefore the
model learns to associate this certain subtle, recurring pixel patterns as the effective trigger, thereby
enabling successful reverse engineering by NC.

Activation Clustering The idea behind Activation Clustering (AC) Chen et al. (2018) is similar to
that of Fine-Pruning, in that certain neurons in a backdoored model—particularly those in the fully
connected layers—are specifically responsible for recognizing the presence of a trigger. As a result,
although poisoned and benign samples from the target class may yield the same prediction, the
internal mechanisms differ, as they activate different subsets of neurons. Based on this observation,
for each class in the model, one can collect neuron activation patterns and apply clustering analysis.
If the activations naturally separate into two distinct clusters, it is likely that the class is a backdoor
target; otherwise, the class is considered benign.
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Figure 11: Experimental results of Activation Clustering against 3S-attack on GTSRB and Animal10
datasets.

Figure 11 illustrates that AC is effective against the 3S-attack across different datasets, as the Sil-
houette scores of the target class are consistently higher than those of benign classes. This may be
attributed to the fact that, although 3S-attack is designed to make poisoned samples activate similar
neurons as benign ones, the internal optimization process of the target model remains a black box
and is beyond the attacker’s control. Consequently, some neurons may still be implicitly assigned
the task of recognizing trigger-specific patterns. These findings suggest that AC is a particularly
strong defense that designing a backdoor attack capable of evading AC without access to the model
training process remains an extremely challenging task.
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Benign Samples 3S-attack BadnetsISSBA

Silhouette score: 
0.3524

Silhouette score: 
0.7279

Silhouette score: 
0.5797

Silhouette score: 
0.5078

Figure 12: The activation distribution map of clean class, target class in 3S-attacks, and target class
in other attacks and the corresponding Silhouette score.

However, in fact, while the target class in 3S-attack achieved a Silhouette score around 0.5, it is
still much better than other attacks since they usually result in a Silhouette score around 0.6 to 0.9.
Figure 12 visualized the distributions of samples in clean and poison classes under various attacks,
here we take ISSBA Li et al. (2021b) and Badnets Gu et al. (2019) for example. Existing backdoor
attacks that not built to be semantically stealthy is quite visible on the ICA/PCA precessed maps.
In ISSBA and Badnets, it is clear that the dots are suitable for two clusters, the associated Silhou-
ette score also indicating they can be easily detected by AC defense. However, the activation of
3S-attack and benign samples looks more like the appearance of that of benign classes, the corre-
sponding Silhouette score is also lower than existing attacks. Therefore, although this study has not
yet succeeded in completely bypassing the AC defense without access to the model training process,
it nevertheless shows promising prospects for achieving this goal in the future.

A.9 DISCUSSION

In this section, we analyze the key findings from the experiments, compare 3S-attack with existing
works, identify limitations, and discuss potential future directions.

Contributions and Impact This work is the first to propose a backdoor attack that is simultane-
ously stealthy in spatial, spectral, and semantic domains. Furthermore, it achieves semantic stealth-
iness without requiring access to the model training process—an important advancement for practi-
cal black-box attacks. These findings imply that backdoor attacks can remain effective even under
strong stealth constraints, underscoring the considerable potential for advancement in the design of
both backdoor attacks and corresponding defenses.

Core Properties The experimental results demonstrate that 3S-attack is a feasible, stealthy, robust,
and defense-resistant backdoor attack. It achieves consistently high ASR across datasets of varying
complexity and resolution, including MNIST, GTSRB, CIFAR-10/100, and Animal-10, confirming
its general feasibility. Meanwhile, the attack induces only minimal perceptual distortion, as evi-
denced by high PSNR and SSIM scores—often exceeding all baseline methods. This validates its
spatial and perceptual stealthiness.

Hyperparameter and Model Robustness The 3S-attack remains stable across a wide range of
parameters, including poison rate, frequency threshold, poison distance ratio, and pixel-level re-
striction. Even under conservative configurations, 3S-attack retains high effectiveness, showing
robustness to hyperparameter variations. Moreover, it generalizes well across different model archi-
tectures, from simple CNNs to deep residual networks, further enhancing its applicability.

Defense Resistance Several defense mechanisms are rendered ineffective against 3S-attack.
STRIP fails to detect poisoned samples due to overlapping entropy distributions between benign
and poisoned samples are close. Grad-CAM-based detection is also evaded because Grad-CAM
consistently highlights natural areas, even in poisoned samples. As a result, not only Grad-CAM but
also its derivative defenses—such as saliency-based trigger localization—are effectively bypassed.

Failure of FTD FTD is designed to detect spectral anomalies but fails against 3S-attack. As
shown in Figure 2, the trigger typically occupies only 1%–5% of the frequency map and lacks any
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structured or localized pattern. This seemingly randomness prevents the FTD classifier, trained on
known triggers with regular frequency characteristics, from generalizing to 3S-attack. Consequently,
FTD consistently misclassifies 3S-poisoned samples as benign.

Partial Detection by NC and AC Despite its stealth, 3S-attack remains partially detectable by
Neural Cleanse (NC) and Activation Clustering (AC). NC succeeds in dataset GTSRB, where class
patterns are constrained, but fails on Animal-10 due to semantic complexity. While AC is more
robust that although 3S-attack aligns poisoned inputs with benign attention maps, it cannot fully
eliminate discrepancies in deep-layer activations. These latent differences remain cluster-able, sug-
gesting that 3S-attack does not yet achieve complete semantic stealthiness.

Limitations and Future Work An area where the 3S-attack could be further improved is its
stealth at the feature (semantic) level. Specifically, Activation Clustering can still detect subtle
activation differences between benign and poisoned samples. Enhancing semantic invisibility with-
out access to model internals remains a difficult but essential direction. Future work may explore:
(1) adaptive frequency selection strategies, (2) activation-aligned poisoning to evade AC, and (3)
extending the attack to more complex modalities such as video, text, and multimodal learning.

Summary 3S-attack demonstrates that multi-domain stealth is both achievable and effective. It
exposes critical vulnerabilities in current AI systems and motivates the design of more advanced
defense strategies.
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