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ABSTRACT

Recent results in non-convex stochastic optimization demonstrate the convergence
of popular adaptive algorithms (e.g., AdaGrad) under the (L0, L1)-smoothness
condition, but the rate of convergence is a higher-order polynomial in terms of
problem parameters like the smoothness constants. The complexity guaranteed by
such algorithms to find an ε-stationary point may be significantly larger than the
optimal complexity of Θ

(
∆Lσ2ε−4

)
achieved by SGD in the L-smooth setting,

where ∆ is the initial optimality gap, σ2 is the variance of stochastic gradient.
However, it is currently not known whether these higher-order dependencies can
be tightened. To answer this question, we investigate complexity lower bounds
for several adaptive optimization algorithms in the (L0, L1)-smooth setting, with
a focus on the dependence in terms of problem parameters ∆, L0, L1. We pro-
vide complexity bounds for three variations of AdaGrad, which show at least a
quadratic dependence on problem parameters ∆, L0, L1. Notably, we show that the
decorrelated variant of AdaGrad-Norm requires at least Ω

(
∆2L2

1σ
2ε−4

)
stochastic

gradient queries to find an ε-stationary point. We also provide a lower bound for
SGD with a broad class of adaptive stepsizes. Our results show that, for certain
adaptive algorithms, the (L0, L1)-smooth setting is fundamentally more difficult
than the standard smooth setting, in terms of the initial optimality gap and the
smoothness constants.

1 INTRODUCTION

The best performing optimization algorithms for modern deep learning are gradient-based optimizers
with adaptive step sizes. For today’s large-scale deep learning tasks, such as training Large Language
Models (LLMs), classical non-adaptive optimizers like SGD perform significantly worse than their
adaptive counterparts, such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2018).
However, it remains open to theoretically characterize the efficiency of adaptive gradient algorithms
for non-convex optimization.

An increasingly popular framework for describing optimization in deep learning is (L0, L1)-
smoothness, also known as relaxed smoothness (Zhang et al., 2020b). The conventional smoothness
condition asserts that the norm of the objective’s Hessian is upper bounded by a constant, while
the weaker relaxed smoothness enforces only that the Hessian norm is upper bounded by an affine
function of the gradient norm (see Assumption 1). Empirical evidence suggests that this condition
may characterize neural network training (for certain architectures) more accurately than conventional
smoothness (Zhang et al., 2020b; Crawshaw et al., 2022).

Several recent works analyze the efficiency of adaptive algorithms for non-convex optimization,
particularly AdaGrad-Norm (Li & Orabona, 2019; Ward et al., 2020; Wang et al., 2023; Attia &
Koren, 2023; Faw et al., 2023) and AdaGrad (Wang et al., 2023). Indeed, adaptive algorithms are
naturally suited for relaxed smoothness, since the local curvature of a relaxed smooth objective can
be determined from gradient information, and adaptive algorithms adjust their step size based on
gradients. Existing works demonstrate that AdaGrad can find an ε-stationary point with iteration
complexity that scales as ε−4 in terms of ε, which matches the complexity of SGD in the stochastic,
non-convex setting. However, these guarantees also show that the complexity of AdaGrad (and
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Table 1: Iteration complexity to find an ε-stationary point in non-convex stochastic optimization. ∆
is the initial optimality gap, L and (L0, L1) are the smoothness constants for the smooth and relaxed
smooth cases, respectively. σ and (σ1, σ2) are constants bounding the stochastic gradient noise,
depending on the stochastic assumption. See Assumptions 1 and 2 for the full definitions. γ is the
stabilization constant of AdaGrad. ∗ denotes a high-probability guarantee with failure probability δ.
γ1, γ2, γ3 are defined and discussed in Section 6.

Complexity Stochasticity
L-smooth

SGD (Ghadimi & Lan, 2013) Θ
(

∆Lσ2

ε4 + ∆L
ε2

)
(Bounded-Var)

Decorrelated AdaGrad-Norm
(Li & Orabona, 2019) O

((
∆Lσ2

ε4 + ∆L
ε2

)(
1 + ∆L+σ2

γ2

)
+

√
∆L(γ2+σ2)

ε2

)
(Subgaussian)

AdaGrad-Norm
(Wang et al., 2023) Õ

((
∆L+

∆2L2σ4
2+σ

4
1

γ2

)(
σ2
1

δ4ε4 +
σ2
2

δ2ε2

))∗
(Affine-Var)

AdaGrad-Norm
(Attia & Koren, 2023) Õ

(
∆Lσ2

1

(
σ2
2+1

)
+σ4

1

ε4 +
∆L(1+σ4

2)+γ
√

∆L(1+σ2
2)+σ

2
1(1+σ

2
2)

ε2

)∗

(Affine-Noise)

AdaGrad-Norm
(Yang et al., 2024) O

(
∆Lσ2+σ4

ε4 + ∆L+γ
√
∆L+σ2+γσ
ε2

)
(Bounded-Var)

(L0, L1)-smooth

SGD (Li et al., 2024) O
(

(∆+σ)4L2
1

δ4ε4 + (∆+σ)3L0

δ3ε4 +
(∆+σ)2L2

1

δ2ε2 + (∆+σ)L0

δε2

)∗
(Bounded-Var)

Gradient Clipping
Zhang et al. (2020b;a) O

(
∆L0σ

2

ε4

)
(Bounded-Noise)

Gradient Clipping
Koloskova et al. (2023) O

(
∆L1σ

4

ε5 + ∆
ε2

(
σ2

ε2 + 1
) (
L0 +

√
L0L1ε+ L1ε

))
(Bounded-Var)

AdaGrad-Norm
Wang et al. (2023) Õ

((
∆2L2

1(1 + σ4
2) + ∆L0 +

(∆4L4
1+∆2L2

0)σ
4
2+σ

4
1

γ2

)(
σ2
1

δ4ε4 +
σ2
2

δ2ε2

))∗
(Affine-Var)

Decorrelated AdaGrad-Norm
(Theorem 1) Ω̃

(
∆2L2

1σ
2

ε4 + ∆L0σ
2

ε4 +
∆2L2

1

ε2

)
(Bounded-Noise)

Decorrelated AdaGrad
(Theorem 2) Ω̃

(
∆2L2

0σ
2

γ2ε4 +
∆2L2

1σ
2

γ2ε2

)
(Bounded-Noise)

AdaGrad (Theorem 3) Ω̃
(

∆2L2
0

ε4 +
∆2L2

1

ε2

)
(Bounded-Noise)

Single-step Adaptive SGD
(Theorem 4) Ω̃

(
∆L0σ

2
1

ε4 +
(∆L1)

2−γ2−γ3σ
γ2+γ3−γ1
1

ε2−γ1

)
(Affine-Noise)

some variants) is upper bounded by a higher-order polynomial (i.e., at least quadratic) in terms of
problem parameters such as ∆ (initial optimality gap), σ2 (variance of stochastic gradient), and the
smoothness constants. See Table 1 for a summary of these guarantees. This suggests the following
question:

Can AdaGrad-type algorithms converge under relaxed smoothness without a higher-order
polynomial complexity in terms of problem parameters?

In this paper, we answer this question negatively for several variants of the AdaGrad algorithm
by providing complexity lower bounds that scale quadratically in terms of the problem parameters
∆, L0, L1. Our results are summarized in Table 1. This shows that, in the non-convex, stochastic,
relaxed smooth settings, the variants of AdaGrad considered here cannot recover the ∆L0σ

2ε−4

complexity from the L0-smooth case; in this sense, these algorithms suffer a fundamental difficulty
in the relaxed smooth setting. In comparison, SGD with gradient clipping does achieve the classical
complexity of ∆L0σ

2ε−4 under the same setting as investigated in our lower bounds (Zhang et al.,
2020a), which shows the surprising consequence that SGD with gradient clipping outperforms
AdaGrad in this setting. Additionally, we give a lower bound for adaptive SGD with a broad class of
adaptive step sizes, in a setting where stochastic gradient noise scales linearly with the gradient norm.

We emphasize that the complexity’s dependence on problem parameters can be important for dis-
tinguishing the relative performance of optimization algorithms. A classic example is the case of
smooth, strongly convex functions, where both gradient descent and Nesterov’s Accelerated Gradient
(NAG) exhibit linear convergence, but the iteration complexity of NAG is faster than GD by a factor
of

√
κ, where κ is the condition number of the objective function (Nesterov, 2013).
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Our contributions can be summarized as follows:

1. In Theorem 1, we provide a complexity lower bound of Ω
(
∆2L2

1σ
2ε−4

)
for Decorrelated

AdaGrad-Norm (which uses decorrelated step sizes and a shared learning rate for all
coordinates) under (L0, L1)-smoothness and almost surely bounded gradient noise. The
proof uses a novel construction of a difficult objective for which Decorrelated AdaGrad-
Norm may diverge (depending on the choice of hyperparameter), combined with a high-
dimensional objective (adapted from Drori & Shamir (2020)). This lower bound matches
the upper bound of AdaGrad-Norm in two out of three dominating terms, and only differs in
terms of σ. See Section 4 for a comparison between these upper and lower bounds.

2. In Theorem 2, we lower bound the complexity of Decorrelated AdaGrad by
Ω
(
∆2L2

0σ
2γ−2ε−4

)
, where γ is a hyperparameter. The proof uses a novel high-dimensional

objective for which the algorithm diverges when η ≥ Ω̃(γ/(L1σ)). Theorem 3 extends
this result for the original AdaGrad algorithm, achieving a lower bound of Ω

(
∆2L2

0ε
−4
)
.

While our lower bound for AdaGrad is weaker than for its decorrelated counterpart, this
complexity is still larger than the optimal smooth rate in regimes when ∆ or the smoothness
constants are large compared to σ.

3. In Theorem 4, we consider the setting of (L0, L1)-smoothness and gradient noise bounded
by an affine function of the gradient norm. For SGD with a broad class of adaptive step
sizes, we show a lower bound that is nearly quadratic in the problem parameters ∆, L1. This
is proven by showing that one of the following must hold: (1) adaptive SGD can be forced
into a biased random walk with a constant probability of divergence, or (2) the adaptive step
size is O

(
1/(∆L2

1)
)

when optimizing a function with gradient magnitude equal to ε, which
leads to slow convergence.

The remainder of the paper is structured as follows. We discuss related work in Section 2, then
give the formal problem statement in Section 3. We then present our complexity lower bounds for
Decorrelated AdaGrad-Norm (Section 4), Decorrelated AdaGrad and the original AdaGrad (Section
5), and adaptive SGD (Section 6). We conclude with Section 7.

2 RELATED WORK

Relaxed Smoothness. Relaxed smoothness was introduced by Zhang et al. (2020b), who showed
that GD with normalization converges faster than GD under this condition. This inspired a line of
work focusing on efficient algorithms under this condition. Zhang et al. (2020a) showed an improved
analysis of gradient clipping, and Jin et al. (2021) considered a non-convex distributionally robust op-
timization satisfying this condition. Several recent works (Liu et al., 2022; Crawshaw et al., 2023a;b)
designed communication-efficient federated learning algorithms under relaxed smoothness. Li et al.
(2024) analyzed gradient-based methods without gradient clipping under generalized smoothness.
Crawshaw et al. (2022) studied a coordinate-wise version of relaxed smoothness, empirically showed
that transformers satisfy this condition, and designed a generalized signSGD algorithm with conver-
gence guarantees. Chen et al. (2023) proposed a new notion of α-symmetric generalized smoothness
and analyzed a class of normalized GD algorithms. More recently, a few works have investigated
momentum and variance reduction techniques within the framework of individual relaxed smooth
conditions (Liu et al., 2023) or on average relaxed smooth conditions (Reisizadeh et al., 2023).

Adaptive Gradient Methods. Adaptive gradient optimization algorithms automatically adjust the
step size for each coordinate based on gradient information, and have become very important in
machine learning. Examples include Adagrad (Duchi et al., 2011; McMahan & Streeter, 2010),
Adam (Kingma & Ba, 2014), RMSProp (Tieleman & Hinton, 2012), and other variants (Loshchilov
& Hutter, 2018; Shazeer & Stern, 2018). Most theoretical analyses of adaptive optimization methods
are based on the assumptions of smoothness or convexity (Reddi et al., 2018; Chen et al., 2018; Guo
et al., 2021). Recently, some works established convergence results for AdaGrad-Norm (Faw et al.,
2023; Wang et al., 2023) and Adam (Li et al., 2023) under the relaxed smoothness condition, and all
of the convergence rates in these works exhibit a higher order polynomial dependence on L1.

Lower Bounds. Lower bounds for first-order convex optimization are well studied (Nemirovskii
et al., 1983; Nesterov, 2013; Woodworth & Srebro, 2017; 2016). The lower bounds of nonconvex

3
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smooth optimization were studied in the deterministic setting (Cartis et al., 2010; Carmon et al., 2020;
2021), finite-sum setting (Fang et al., 2018) and stochastic setting (Drori & Shamir, 2020; Arjevani
et al., 2023). For relaxed smooth problems, Zhang et al. (2020b) and Crawshaw et al. (2022) derived
a lower bound for GD and showed that its complexity depends on the maximum magnitude of the
gradient in a sublevel set. Faw et al. (2023) considered the lower bound for normalized SGD, clipped
SGD, and signSGD with momentum in the affine noise setting, and showed that these algorithms
cannot converge under certain parameter regimes. Crawshaw et al. (2023b) showed a lower bound
for minibatch SGD with gradient clipping in the affine noise setting.

3 PROBLEM STATEMENT

3.1 OPTIMIZATION OBJECTIVES

We consider the problem of finding an approximate stationary point of a nonconvex, relaxed smooth
function with access to a stochastic gradient. Let ∆, L0, L1, σ1, σ2, σ > 0. We will denote the
objective function as f : Rd → R, the stochastic gradient as g : Rd × Ξ → Rd, and the noise
distribution as D, which is a distribution over Ξ. We then consider the set of problem instances
(f, g,D) satisfying the following conditions:
Assumption 1. (1) f is bounded from below and f(0) − infx f(x) ≤ ∆. (2) f is continuously
differentiable and (L0, L1)-smooth: For every x,y ∈ Rd with ‖x− y‖ ≤ 1/L1:

‖∇f(x)−∇f(y)‖ ≤ (L0 + L1‖∇f(x)‖)‖x− y‖.
(3) Eξ∼D[g(x, ξ)] = ∇f(x) for all x ∈ Rd.

Assumption 2. For all x ∈ Rd:

(Bounded-Noise) ‖g(x, ξ)−∇f(x)‖ ≤ σ almost surely over ξ ∼ D.

(Affine-Noise) ‖g(x, ξ)−∇f(x)‖ ≤ σ1 + σ2‖∇f(x)‖ almost surely over ξ ∼ D.

(Bounded-Var) Eξ∼D
[
‖g(x, ξ)−∇f(x)‖2

]
≤ σ2.

(Affine-Var) Eξ∼D
[
‖g(x, ξ)−∇f(x)‖2

]
≤ σ2

1 + σ2
2‖∇f(x)‖2.

(Subgaussian) Eξ∼D
[
exp(‖g(x, ξ)−∇f(x)‖2/σ2)

]
≤ 1.

We will denote by Fas(∆, L0, L1, σ) the set of problem instances (f, g,D) satisfying Assumption
1 and (Bounded-Noise), and by Faff(∆, L0, L1, σ1, σ2) those satisfying Assumption 1 and (Affine-
Noise).

In this paper, we present new results under (Bounded-Noise) and (Affine-Noise), though we state the
other assumptions for discussion with related work. It is important to note that (Bounded-Noise) is
strictly stronger than (Bounded-Var). Therefore, the lower bounds that we prove for Fas also hold
for the class of problems satisfying Assumption 1 and (Bounded-Var). This is because any difficult
problem instance in the former class is also in the latter. An analogous statement for (Affine-Noise)
and (Affine-Var) holds by the same reasoning. Our primary focus for stochasticity in this work is
(Bounded-Noise), since this is the standard assumption used by early work on relaxed smoothness
(Zhang et al., 2020b;a).

3.2 OPTIMIZATION ALGORITHMS

We will consider four optimization algorithms — Decorrelated AdaGrad-Norm, Decorrelated Ada-
Grad, AdaGrad, and single-step adaptive SGD — and their behavior for problems in Fas and Faff.

Decorrelated AdaGrad-Norm We first consider a variant of AdaGrad that we refer to as Decorrelated
AdaGrad-Norm:

xt+1 = xt −
η√

γ2 +
∑t−1
i=0 ‖gi‖2

gt, (1)

where η > 0 is a step size coefficient, gt = g(xt, ξt), and ξt ∼ D is independent over t. Notice
that the denominator contains the sum of squared gradient norms, as opposed to the coordinate-wise
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operations used in the original AdaGrad. This type of denominator is used in AdaGrad-Norm, whose
convergence was studied under various conditions in Ward et al. (2020); Faw et al. (2022); Attia
& Koren (2023); Wang et al. (2023); Yang et al. (2024). Further, the sum of squared gradients in
the denominator ranges from i = 0 to i = t − 1, meaning that it does not contain the most recent
stochastic gradient gt. This type of decorrelated step size was considered in Li & Orabona (2019),
which provided convergence guarantees in the smooth setting (see Table 1).

AdaGrad and Decorrelated AdaGrad Next, we consider two coordinate-wise variants of AdaGrad,
including the original AdaGrad and a variation with a decorrelated step size. The original AdaGrad
(Duchi et al., 2011) is defined as follows:

xt+1 = xt −
η√

γ2 +
∑t
i=0 g

2
i

gt, (2)

where the squaring g2
i is performed element-wise. Decorrelated AdaGrad (Li & Orabona, 2019) is

similarly defined as

xt+1 = xt −
η√

γ2 +
∑t−1
i=0 g

2
i

gt, (3)

the only difference from AdaGrad being that the sum in the denominator does not contain the gradient
from the current step, so the step size at step t is independent of the stochastic gradient noise at step t.

Single-Step Adaptive SGD Last, we consider a class of algorithms that implement stochastic gradient
descent with an adaptive step size, but whose step size function only depends on the current gradient.
For α : Rd → R, single-step adaptive SGD is defined as:

xt+1 = xt − α(gt)gt, (4)

where again gt = g(xt, ξt) and ξt ∼ D is independent over t. At each step t, the update xt+1 − xt
is determined completely by the stochastic gradient sampled at step t, hence the name “single-step".
However, the step size in the direction gt is computed as an arbitrary function α of the stochastic
gradient. This class of algorithms includes SGD with constant step size, SGD with gradient clipping,
and normalized SGD; it does not include Adam or AdaGrad.

3.3 COMPLEXITY

Given a problem (f, g,D) and ε > 0, the goal of an optimization algorithm A is to find an ε-
approximate stationary point of f , that is, a point x ∈ Rd such that ‖∇f(x)‖ < ε. We want to
characterize the number of gradient calls required by an algorithm to find such a point. Since an
algorithm can only gain information about the objective f through stochastic gradients, it cannot
necessarily guarantee to find an ε-stationary point, but it may find one in expectation or with high
probability. Denote by {xt} the sequence of points at which the stochastic gradient is queried by A
when given (f, g,D) as input. We then define the worst-case complexity of A on problem class F as

T (A,F , ε) = sup
(f,g,D)∈F

min

{
t ≥ 1

∣∣∣∣ min
s<t

E [‖∇f(xs)‖] < ε

}
.

To summarize, the worst-case complexity T (A,F , ε) measures the number of gradient calls required
by A to find an ε-approximate stationary point in expectation, for any problem in F . We also consider
the worst-case complexity for finding an ε-stationary point with high probability:

T (A,F , ε, δ) = sup
(f,g,D)∈F

min

{
t ≥ 1

∣∣∣∣ Pr
(
min
s<t

‖∇f(xs)‖ < ε

)
> 1− δ

}
.

Following Arjevani et al. (2023), most of our results (Theorems 1, 2, 3) will provide in-expectation
lower bounds, that is, lower bounds for T (A,F , ε). Our last result (Theorem 4) will provide lower
bounds for T (A,F , ε, δ) for any given δ, i.e., high-probability lower bounds. Throughout the paper,
O(·),Ω(·) and Θ(·) omit universal constants, and Õ(·), Ω̃(·), and Θ̃(·) omit universal constants and
factors logarithmic in terms of problem parameters ∆, L0, L1, σ1, σ2, σ, and target gradient norm ε.
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4 DECORRELATED ADAGRAD-NORM

Our first result gives a lower bound for Decorrelated AdaGrad-Norm, which shows that the complexity
has a quadratic dependence in terms of problem parameters ∆, L1.
Theorem 1. Denote F = Fas(∆, L0, L1, σ), and let algorithm ADAN denote Decorrelated
AdaGrad-Norm (Equation 1) with parameters η > 0 and 0 < γ ≤ Õ (∆L1). Let 0 < ε ≤
O
(
min

{√
∆L0,

√
∆L1γ,∆L1

})
. If ∆L2

1 ≥ L0, then

T (ADAN,F , ε) ≥ Ω

(
∆2L2

1σ
2

ε4
+

∆L0σ
2 log(1 + σ2/γ2)

ε4
+

∆2L2
1

ε2

)
.

The proof is given in Appendix A. Before giving a sketch of the proof, we make a few observations
about the result. (1) The lower bound contains the term ∆L0σ

2ε−4, which is the optimal complexity
for a first-order algorithm in the L0-smooth, non-convex, stochastic setting (Arjevani et al., 2023).
This means that Decorrelated AdaGrad-Norm requires at least as many iterations to solve the current
problem as any first order algorithm requires to solve the smooth counterpart. (2) The dominating term
is quadratic in ∆, L1. Therefore, under relaxed smoothness, Decorrelated AdaGrad-Norm cannot
recover the optimal complexity of the smooth case, as one might hope. (3) In the deterministic
case (i.e., σ = 0), the complexity is ∆2L2

1ε
−2, which is still quadratic in the problem parameters

∆, L1 and does not match the complexity achieved by deterministic GD in the L0-smooth case, i.e.,
∆L0ε

−2. (4) This lower bound for Decorrelated AdaGrad-Norm matches the upper bound of
AdaGrad-Norm in two out of three dominating terms. The dominating terms of the upper bound
of AdaGrad-Norm from Wang et al. (2023) (see Table 1) are

Õ
(
∆2L2

1σ
2

ε4
+

∆L0σ
2

ε4
+

σ6

γ2ε4

)
. (5)

The first two terms of this upper bound match our lower bound up to log terms. Note that this
result (Theorem 8 from Wang et al. (2023)) uses (Bounded-Var), whereas we use (Bounded-Noise).
However, their upper bound still applies for the stronger (Bounded-Noise) and our lower bound still
applies for the weaker (Bounded-Var). The gap between our lower bound and this upper bound is the
third term (due to the noise σ), which means that either (a) the upper bound can be decreased; (b) the
lower bound can be increased; (c) Decorrelated AdaGrad-Norm differs from AdaGrad-Norm in its
dependence on the noise σ; or (d) the gap is caused by the difference in noise assumptions.

Lastly, the condition ∆L2
1 ≥ L0 for Theorem 1 ensures that (L0, L1)-smoothness does not degenerate

to L-smoothness. Indeed, Lemma 3.5 of Li et al. (2024) implies that ‖∇f(x)‖ ≤ O(∆L1) for every
x with f(x) ≤ f(0), so ‖∇2f(x)‖ ≤ L0 + L1‖∇f(x)‖ ≤ O

(
L0 +∆L2

1

)
. Therefore, if the

condition ∆L2
1 ≥ L0 fails, then any objective f which is (L0, L1)-smooth is also Θ(L0)-smooth in a

sublevel set containing the initial point. We also require an upper bound on the stabilization constant:
γ ≤ Õ(∆L1), which covers all practical regimes in which γ is chosen as a small constant. In
Appendix E, we show that this condition can be removed in the deterministic setting while recovering
the complexity lower-bound Ω̃(∆2L2

1ε
−2).

4.1 PROOF OUTLINE

The proof of Theorem 1 follows two cases, depending on the choice of the parameter η. If η ≥ 1/L1,
then the algorithm can diverge on a fast growing function. On the other hand, if η ≤ 1/L1, then
the algorithm converges slowly on a function with small gradient. This proof structure is similar to
previous lower bounds under relaxed smoothness (Zhang et al., 2020b; Crawshaw et al., 2022), but
our result requires significantly different constructions due to the structure of AdaGrad updates, and
since previous bounds only achieve ε−2 dependence, whereas we show ε−4 dependence.

Divergence when η ≥ 1/L1 We want the update size ‖xt+1−xt‖ to be lower bounded by a constant,
but the step size decreases over t due to the sum of squared gradients in the denominator. Intuitively,
this means that the gradient magnitude ‖gt‖ should increase with t to offset the decreasing step size.
However, faster growth of ‖gt‖ causes faster decrease in the effective step size. We can balance these
two effects and force the trajectory to diverge with a properly constructed objective function and a
sequence of gradients satisfying ‖gt‖ = Θ((t log t)t), which is executed in Lemma 1.
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m

ψ(m)≤Δ

ψ′(m)ΔΔψ≤

(a) Graph of ψ(x) = L0

L2
1
(exp(L1|x|)− L1|x| − 1).

x0 x1 x2 x3 x4

(b) Trajectory from Lemma 1.

Figure 1: Objectives from Lemma 1. m := (ψ′)−1(∆L1) =
1
L1

log
(
1 +

∆L2
1

L0

)
.

Lemma 1. Suppose that ∆L2
1 ≥ L0, η ≥ 1

L1
, and γ ≤ Õ(η∆L2

1). Then there exists a problem
instance (f, g,D) ∈ Fas(∆, L0, L1, 0) such that ‖∇f(xt)‖ ≥ ∆L1 for all t ≥ 0.

The trajectory of the algorithm analyzed in Lemma 1 is informally pictured in Figure 1b. The objective
function is a piecewise combination of copies of the function ψ(x) = L0

L2
1
(exp(L1|x|)− L1|x| − 1) ,

which is shown in Figure 1a. ψ is constructed to satisfy |ψ′′(x)| = L0 + L1|ψ′(x)| for all x, so it
grows as quickly as possible under (L0, L1)-smoothness. As shown in Figure 1b, at each step the
algorithm receives a gradient gt and “jumps" over a valley to reach a new point with gradient gt+1.
In order to achieve this jump, we need the sequence of gradients to satisfy

η|gt|√
γ2 +

∑t−1
i=0 g

2
i

≥ 4

L1
log

(
1 +

L1|gt+1|
L0

)
.

This recurrent inequality is tricky since the magnitude of each |gt| is constrained not just by the
history {|gi|}i<t, but also by the future gt+1. We show that this requirement is satisfied if gt =
Θ
((

(t+ 1) log(1 + ∆L2
1L

−1
0 (t+ 1))

)t
∆L1

)
, and that this sequence of gradients can be realized

by an objective function in Fas(∆, L0, L1, σ).

Slow convergence when η ≤ 1/L1 In this case, previous lower bounds (Zhang et al., 2020b;
Crawshaw et al., 2022) consider a one-dimensional function with deterministic gradients to show a
complexity of Ω

(
∆2L2

1ε
−2
)
. To achieve ε−4 dependence, we consider a high-dimensional function

with stochastic gradients (adapted from Drori & Shamir (2020)), for which the first partial derivative
∇1f has magnitude ε, and the stochastic gradient noise affects coordinates with index greater than 1.
Since the same learning rate is shared by all coordinates, the noise in later coordinates will decrease
the learning rate for the first coordinate. Combining with η ≤ 1/L1 leads to the desired complexity.

Lemma 2. Let T = Θ
(
∆2L2

1σ
2ε−4 +∆L0σ

2ε−4 +∆2L2
1ε

−2
)
, and suppose d ≥ T and ε ≤

O
(
min

{√
∆L0,

√
∆L1γ

})
. If η ≤ 1

L1
, then there exists some (f, g,D) ∈ Fas(∆, L0, L1, σ) such

that ‖∇f(xt)‖ = ε for all 0 ≤ t ≤ T − 1.

See Appendix A for details on the objective function, stochastic gradient oracle, and analysis of the
trajectory. The theorem is then proved by combining Lemmas 1 and 2: No matter the choice of the
parameter η, the algorithm will not find an ε-stationary point within the first T steps.

5 ADAGRAD AND DECORRELATED ADAGRAD

Here we present lower bounds for Decorrelated AdaGrad (Theorem 2) and the original AdaGrad
(Theorem 3). Both lower bounds are quadratic in ∆, L0, but our result for Decorrelated AdaGrad has
a stronger dependence on σ than that of AdaGrad. This discrepancy is further discussed below.
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Theorem 2. Denote F = Fas(∆, L0, L1, σ), and letADA denote Decorrelated AdaGrad (Equation 2)
with parameters η, γ > 0. Suppose 0 < ε < Õ

(
min

{
∆L1,

√
∆L1σ

})
. Then

T (ADA,F , ε) ≥ Ω

∆2L2
0σ

2

γ2ε4
+

∆2L2
1σ

2

γ2ε2 log2
(
1 +

∆L2
1

L0

)
 .

Theorem 3. Denote F = Fas(∆, L0, L1, σ), and let Aada denote AdaGrad (Equation 3) with
parameters η, γ > 0. Suppose 0 < ε < Õ

(
min

{
∆L1,

√
∆L1σ

})
. If γ ≤ σ, then

T (Aada,F , ε) ≥ Ω

∆2L2
0

ε4
+

∆2L2
1

ε2 log2
(
1 +

∆L2
1

L0

)
 .

The proofs of both theorems above are given in Appendix B. The results above exhibit several
important properties. (1) As in Theorem 1, the dominating term ∆2L2

0σ
2γ−2ε−4 of the lower bound

in Theorem 2 is greater than the optimal complexity ∆L0σ
2ε−4 of the smooth case (up to the choice

of γ, which is usually a small constant). In fact, the dominating term is quadratic in ∆ and L0, so the
complexity of Decorrelated AdaGrad in this setting is fundamentally larger than the optimal
complexity of the smooth counterpart. Unlike Theorem 1, L1 does not appear in the dominating
term of this bound. (2) Compared to Decorrelated AdaGrad, our bound for AdaGrad loses a factor
of σ2/γ2. This arises in our construction from the fact that, at step t, any noise present in gt will
also appear in the denominator of the update, so that the update size of AdaGrad is not as sensitive
to noise as the decorrelated counterpart. Still, in regimes where ∆, L0 are large compared to σ, our
complexity lower bound of Ω̃(∆2L2

0ε
−4) is larger than the optimal complexity of the smooth case.

This shows that AdaGrad cannot recover the optimal complexity of the smooth case in all relaxed
smooth regimes. (3) The lower bound of Theorem 2 diverges to ∞ when the γ goes to 0, which
confirms the conventional wisdom that a non-zero stabilization constant is necessary in practice.

5.1 PROOF OUTLINE

The structure of the proof is similar to Theorem 1 (outlined in Section 4.1), but we can achieve di-
vergence for Decorrelated AdaGrad under the weaker condition η ≥ Θ(min {γ/(L1σ), γε/(L0σ)})
using a novel high-dimensional construction that takes advantage of the coordinate-wise learning
rates of Decorrelated AdaGrad by injecting noise into one coordinate per timestep. When η is smaller
than this threshold, convergence is slow for a one-dimensional, linear function with slope ε.

Divergence when η ≥ Θ(min {γ/(L1σ), γε/(L0σ)}) For any d ≥ 1, we consider the objec-
tive function f(x) =

∑d
i=1 ψ(〈x, ei〉), where ψ is as defined in Section 4.1. Letting m =

(ψ′)−1(ε) = 1
L1

log
(
1 + L1ε

L0

)
, consider the initialization x0 = me1, which by construction satisfies

‖∇f(x0)‖ = ε. For the initialization, all of the coordinates besides the first one are already at their
optimal values, and the partial gradient for these coordinates is zero; the stochastic gradient injects
noise into the second coordinate, so that g0 = ∇f(x0)± σe2 = εe1 ± σe2. Based on the magnitude
of η, this guarantees |〈x1, e2〉| ≥ m, and consequently |∇f(x1)| ≥ |ψ′(〈x1, e2〉)| ≥ ψ′(m) = ε.
Intuitively, the size of η causes the second coordinate to "jump" from the minimum at 0 to another
point whose partial derivative is larger than ε. This process continues with t: at each step t, the
stochastic gradient noise affects the coordinate indexed (t+ 2), so that this coordinate of the iterate
jumps from 0 to a point with magnitude at least m. This guarantees that the algorithm does not reach
a stationary point for d steps, and d can be arbitrarily large. An important detail of this process is
that the coordinate-wise learning rates ensure that the length of each “jump" (i.e., the per-coordinate
update size) does not decrease with t. This argument is made formal in the following lemma.

Lemma 3. Let 0 < ε < O(∆L1). If η ≥ Ω
(

γ
L1σ

log
(
1 + L1ε

L0

))
, then for any T ≥ 1, there exists

some f ∈ F such that Decorrelated AdaGrad satisfies ‖∇f(xt)‖ ≥ ε for all 0 ≤ t ≤ T − 1.

Similarly, if η ≥ Ω
(

1
L1

log
(
1 + L1ε

L0

))
and γ ≤ σ, then for any T ≥ 1 there exists some f ∈ F

such that AdaGrad satisfies ‖∇f(xt)‖ ≥ ε for all 0 ≤ t ≤ T − 1.
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Notice that the η requirement for AdaGrad in Lemma 3 is stronger than that of Decorrelated AdaGrad.
As previously mentioned, this happens because the size of AdaGrad’s update is less sensitive to
stochastic gradient noise than Decorrelated AdaGrad.

Slow convergence when η ≤ Θ(min {γ/(L1σ), γε/(L0σ)}) In this case, the desired complexity
follows by analyzing the trajectory of each algorithm on a one-dimensional, linear function with
slope equal to ε, similarly to existing lower bounds (Zhang et al., 2020b; Crawshaw et al., 2022).

Lemma 4. Let 0 < ε < O
(
min

{
∆L1,

√
∆L1σ

})
. If η ≤

√
2γ

L1σ
log
(
1 + L1ε

L0

)
, then there exists

some (f, g,D) ∈ Fas(∆, L0, L1, σ) such that Decorrelated AdaGrad satisfies ‖∇f(xt)‖ ≥ ε for all
t ≤ Õ

(
∆2L2

0σ
2γ−2ε−4 +∆2L2

1σ
2γ−2ε−2

)
.

Similarly, if η ≤ O
(

1
L1

log
(
1 + L1ε

L0

))
, then there exists some (f, g,D) ∈ Fas(∆, L0, L1, σ) such

that AdaGrad satisfies ‖∇f(xt)‖ ≥ ε for all t ≤ O
(
∆2L2

0ε
−4 +∆2L2

1ε
−2
)
.

Theorems 2 and 3 can then be proven by combining Lemmas 3 and 4.

6 SINGLE-STEP ADAPTIVE SGD

In this section, we consider single-step adaptive SGD (Equation 4). Our lower bound shows that,
due to relaxed smoothness and affine noise, any algorithm of this type will incur a higher-order
dependence on ∆, L1. The results below are stated in terms of constants γi and a function ζ, which
are defined in terms of δ and σ2 (see Appendix C.1 for the definitions). In the discussion following
the theorem statement, we specify the limiting behavior of these constants in terms of σ2, δ.

Theorem 4. Denote G = Θ̃(∆L1) and suppose G ≥ σ1. Let 0 < ε ≤ min
{
σ1,

G
2 ,

G−σ1

σ2−1 ,
√
∆L0√
2

}
.

Let algorithm Asingle denote single-step adaptive SGD (Equation 4) with any step size function
α : Rd → R for a sufficiently large d, and let F = Faff(∆, L0, L1, σ1, σ2). If σ2 ≥ 3, then

T (Asingle,F , ε, δ) ≥ Ω̃

(
∆L0σ

2
1

ε4
+

(∆L1)
2−γ2−γ3σγ2+γ3−γ11

ε2−γ1

)
.

Otherwise, if 1 < σ2 < 3, then

T (Asingle,F , ε, δ) ≥ Ω̃

(
∆L0σ

2
1

ε4
+

(∆L1)
2−γ5−γ6

ε2−γ4
(σ2 − 1)2

(
σ1

σ2 − 1

)γ5+γ6−γ4)
.

The proof is given in Appendix C. Below, we specify the error terms γi in two regimes of σ2.

Large σ2 For σ2 > 3, the error terms γ1, γ2, γ3 satisfy: γ1, γ3 = Θ(log (1 + ζ(2/3, δ))) and
γ2 = Θ

(
σ−1
2

)
, where ζ(p, δ) is defined in Equation 25. Lemma 15 shows that limδ→0 ζ(p, δ) = 0

for all p ∈ (0, 1), so when δ → 0, the lower bound approaches

Ω

∆L0σ
2

ε4
+

∆2L2
1

ε2 log
(
1 +

∆L2
1

L0

) ( σ1
∆L1

)Θ(1/σ2)
 .

In this limiting case, the complexity has a nearly quadratic dependence on ∆, L1, but only in the
non-dominating term. Still, we emphasize the generality of our result, which applies for any adaptive
SGD algorithm whose learning rate only depends on the current gradient, and shows that adaptivity
based on the current gradient alone will incur higher-order dependencies on ∆, L1.

Small σ2 Existing lower bounds that utilize similar constructions of a biased random walk under
affine noise (Faw et al., 2023; Crawshaw et al., 2023b) require that σ2 be bounded away from 1. Our
Theorem 4 covers the case that σ2 → 1, albeit with a lower bound that approaches 0 when σ2 → 1.
The error terms γ4, γ5, γ6 depend only on δ, σ2 and satisfy: limδ→0 γ4 = 0, limσ2→1 γ5 =
1, limσ2→1 γ6 = 0, limδ→0 γ6 = 0. Note that γ5 does not depend on δ, and γ5 < 1. Therefore,
letting δ → 0 yields a lower bound of

Ω

∆L0σ
2

ε4
+

∆L1σ1(σ2 − 1)

ε2 log
(
1 +

∆L2
1

L0

) (∆L1(σ2 − 1)

σ1

)1−γ5
 .
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Since 1 − γ5 → 0 as σ2 → 1, the second term in the lower bound goes to 0 when σ2 → 1. This
shows that our construction relies on σ2 bounded away from 1, and raises the question whether a
single-step adaptive SGD algorithm can converge without a quadratic dependence on ∆, L1 in the
regime σ2 < 1.

6.1 PROOF OUTLINE

The full proof of Theorem 4 can be found in Appendix C, and we provide a sketch of the main ideas
here. The proof of Theorem 4 has three main steps:

Step 1 If the step size function α does not satisfy 0 ≤ α(g) ≤ Õ (1/(L1‖g‖)) for every g with
‖g‖ ∈ [ε, σ1 + (σ2 + 1)∆L1], then Asingle will diverge for some exponential fexp, proven in Lemma
9. The difficult objective is constructed similarly as in Lemma 1, pictured in Figure 1b.

Step 2 If there exist g1, g2 ∈ Rd such that g2 = cg1 for some c < 0, and ‖g1‖ ≤ O(‖g2‖), but
α(g1)‖g1‖ ≥ Ω(α(g2)‖g2‖) (i.e., a “tricky pair", see Definition 1 in Appendix C.1), then there is
some (f, g,D) ∈ F for which Asingle will diverge. The construction is based on the idea that g1 and
g2 are stochastic gradients at a given point, where g2 points towards the minimum and g1 points
away from the minimum, but α(g1) is close enough to α(g2) that Asingle has nearly equal expected
movement in each direction. In this case, the sequence {xt} follows a biased random walk that will
diverge with probability at least δ. This argument is made formal in Lemma 10.

Step 3 If neither of the above cases hold, then α(g) ≤ Õ (1/(L1‖g‖)) and there do not exist any
tricky pairs. The non-existence of tricky pairs means that α(g)‖g‖ grows sufficiently fast in terms
of ‖g‖ when ‖g‖ ∈ [ε, σ1 + (σ2 + 1)∆L1]. In order for α to respect α(g) ≤ Õ (1/(L1‖g‖)) while
also growing quickly, it must be that α(g) is small whenever ‖g‖ is small. Lemma 11 formalizes
this idea to show an upper bound for α(g) whenever ‖g‖ = ε. The final bound follows by analyzing
the trajectory of Asingle for a piecewise linear objective with gradient g satisfying ‖g‖ = ε, since the
convergence rate is inversely proportional to α(g). (Lemma 12)

7 DISCUSSION AND CONCLUSION

It has been stated in the optimization literature (Woodworth et al., 2018; 2021) that a complexity
lower bound should not be interpreted as an unquestionable limit of performance, but rather as a tool
to examine the assumptions that led to the bound and explore alternatives. In this spirit, we consider
the implications of our choice of problem formulation.

First, the optimization problem investigated in this paper (i.e., problem instances satisfying Assump-
tions 1 and 2) may not be a sufficient theoretical framework to explain the behavior of adaptive
optimization algorithms in deep learning. A complete explanation of this type may require addi-
tional assumptions about the structure of the objective functions, such as enforcing a neural network
architecture or a particular data distribution.

Also, the negative results presented in this paper may be bypassed by algorithms other than those we
have considered. In particular, it is possible that higher-order polynomial dependence on problem
parameters can be avoided by more practical algorithms such as Adam and AdamW. Presently, it is
unknown whether these algorithms can recover the optimal complexity of the smooth case (as does
SGD with clipping), or if they behave more like the AdaGrad variants considered in this paper.

Limitations The most important limitation of our work is the fact that our strongest lower bounds
(Theorem 1, 2) are obtained for decorrelated variants of AdaGrad, which are not commonly used
in practice. We view these decorrelated methods as a starting point for lower bounds of adaptive
algorithms under relaxed smoothness, similarly to early work Li & Orabona (2019) showing upper
bounds for decorrelated versions of adaptive algorithms. Also, our result for the original AdaGrad
(Theorem 3) is weaker in terms of the dependence on σ. It remains open whether this result can be
improved, and whether there is a fundamental difference in the complexity of AdaGrad compared
to the decorrelated variants. Further, even if the same complexity can be achieved by the original
AdaGrad, the existing upper bounds do not exactly match our lower bounds. Therefore, it remains to
exactly characterize the complexity of AdaGrad (and its variants) by providing matching upper and
lower bounds.
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A PROOF OF THEOREM 1

Lemma 5 (Restatement of Lemma 1). Suppose that ∆L2
1 ≥ L0, and η ≥ 1

L1
, and

γ ≤ η∆L2
1

8 log
(
1 + 48

∆L2
1

L0

) . (6)

Then there exists a problem instance (f, g,D) ∈ Fas(∆, L0, L1, 0) such that ‖∇f(xt)‖ ≥ ∆L1 for
all t ≥ 0.

Proof. The difficult function f will be piecewise linear and exponential, and constructed in such
a way that the gradients ∇f(xt) increase at a rate of ≈ tt. The rapid growth rate of the gradients
ensures, even with the update normalization, that the update size ‖xt+1 − xt‖ increases at every step.

Recall the function ψ : R → R defined as

ψ(x) =
L0

L2
1

(exp(L1|x|)− L1|x| − 1) ,

with

ψ′(x) = sign(x)
L0

L1
(exp(L1|x|)− 1) .

It is straightforward to verify that ψ bounded from below by 0, continuously differentiable, and
(L0, L1)-smooth.

The difficult function f will be constructed in terms of the following:

gt =

(
576(t+ 1) log

(
1 +

∆L2
1

L0
(t+ 1)

))t
∆L1

mt =
1

L1
log

(
1 +

L1gt
L0

)
`t =

ηgt√
γ2 +

∑t−1
i=0 g

2
i

dt =

t−1∑
i=0

`i.

For each t ≥ 0, define φt : R → R as:

φt(x) =


ψ(x−mt) x ≤ mt +mt+1

gt(x−mt −mt+1) + ψ(mt+1) x ∈ (mt +mt+1, `t − 2mt+1)

−ψ(x− `t +mt+1) + 2ψ(mt+1) + gt(`t − 3mt+1 −mt) x ≥ `t − 2mt+1

.

These functions are constructed to satisfy φ′t(0) = ψ′(−mt) = −gt and φ′t(`t) = ψ′(−mt+1) =
−gt+1. To see that this definition makes sense, we should show that `t − 2mt+1 ≥ mt +mt+1, so
that the boundary of the first piece is smaller than the boundary of the third piece. This is equivalent
to: `t ≥ mt + 3mt+1. Using ∆L2

1 ≥ L0, the sequence gt is increasing, and consequently so is mt.
Therefore it suffices to prove

`t ≥ 4mt+1

ηgt√
γ2 +

∑t−1
i=0 g

2
i

≥ 4

L1
log

(
1 +

L1gt+1

L0

)
, (7)

We will prove Equation 7 separately for the cases t = 0 and t ≥ 1.
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Case 1 t = 0. In this case, the desired condition is

ηg0
γ

≥ 4

L1
log

(
1 +

L1g1
L0

)
.

The RHS of the above inequality can be bounded as

4

L1
log

(
1 +

L1g1
L0

)
= 4 log

(
1 +

L1

L0

(
1152 log

(
1 + 2

∆L2
1

L0

))
∆L1

)
=

4

L1
log

(
1 + 1152

∆L2
1

L0
log

(
1 + 2

∆L2
1

L0

))
(i)

≤ 4

L1
log

(
1 + 2304

(
∆L2

1

L0

)2
)

(ii)

≤ 8

L1
log

(
1 + 48

∆L2
1

L0

)
(iii)

≤ ∆L1η

γ
,

where (i) uses log x ≤ 1 + x for all x > 0, (ii) uses log(1 + xn) ≤ log((1 + x)n) ≤ n log(1 + x)
for all x > 0, and (iii) uses the assumed condition on γ (Equation 6). This concludes the first case.

Case 2 t ≥ 1. We first simplify the denominator
√
γ2 +

∑t−1
i=0 g

2
i . First, the assumed condition on

γ (Equation 6) implies that γ ≤ η∆L2
1 = ηL1g0, so

γ2 +

t−1∑
i=0

g2i ≤ η2L2
1g

2
0 +

t−1∑
i=0

g2i ≤ (1 + η2L2
1)

t−1∑
i=0

g2i ≤ 2η2L2
1

t−1∑
i=1

g2i .

Also,
t−2∑
i=0

g2i ≤ (t− 1)g2t−2

= (t− 1)

(
576(t− 1) log

(
1 +

∆L2
1

L0
(t− 1)

))2(t−2)

∆2L2
1

≤ (t− 1)

(
576t log

(
1 +

∆L2
1

L0
t

))2(t−2)

∆2L2
1

(i)

≤
(
576t log

(
1 +

∆L2
1

L0
t

))2(t−1)

∆2L2
1

= g2t−1.

Therefore γ2 +
∑t−1
i=0 g

2
i ≤ 4η2L2

1g
2
t−1. So the LHS of Equation 7 can be bounded as

ηgt√
γ2 +

∑t−1
i=0 g

2
i

≥ gt
2L1gt−1

=

(
576(t+ 1) log

(
1 +

∆L2
1

L0
(t+ 1)

))t
∆L1

2L1

(
576t log

(
1 +

∆L2
1

L0
t
))t−1

∆L1

=
288(t+ 1)

L1
log

(
1 +

∆L2
1

L0
(t+ 1)

)576(t+ 1) log
(
1 +

∆L2
1

L0
(t+ 1)

)
576t log

(
1 +

∆L2
1

L0
t
)

t−1

≥ 288(t+ 1)

L1
log

(
1 +

∆L2
1

L0
(t+ 1)

)
. (8)
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The RHS of Equation 7 can be bounded as

4

L1
log

(
1 +

L1gt+1

L0

)
=

4

L1
log

(
1 +

∆L2
1

L0

(
576(t+ 2) log

(
1 +

∆L2
1

L0
(t+ 2)

))t+1
)

(i)

≤ 4(t+ 1)

L1
log

(
1 + 576

(
∆L2

1

L0

)1/(t+1)

(t+ 2) log

(
1 +

∆L2
1

L0
(t+ 2)

))
(ii)

≤ 4(t+ 1)

L1
log

(
1 + 576

(
∆L2

1

L0

)1+1/(t+1)

(t+ 2)2

)
(iii)

≤ 4(t+ 1)

L1
log

(
1 + 576

(
∆L2

1

L0

)2

(t+ 2)2

)
(iv)

≤ 8(t+ 1)

L1
log

(
1 + 24

∆L2
1

L0
(t+ 2)

)
(v)

≤ 8(t+ 1)

L1
log

(
1 + 36

∆L2
1

L0
(t+ 1)

)
,

where (i) uses log(1 + xn) ≤ log((1 + x)n) = n log(1 + x) for x > 0, (ii) uses log(1 + x) ≤ x
for all x > 0, (iii) uses ∆L2

1 ≥ L0, (iv) again uses log(1 + xn) ≤ n log(1 + x), and (v) uses
t+ 2 ≤ 3

2 (t+ 1) since t ≥ 1. Further,

4

L1
log

(
1 +

L1gt+1

L0

)
(i)

≤ 8(t+ 1)

L1

(
log

(
1 +

∆L2
1

L0
(t+ 1)

)
+ log(37)

)
=

8(t+ 1)

L1
log

(
1 +

∆L2
1

L0
(t+ 1)

)
+ 8 log(37)(t+ 1)

(ii)

≤ 8(1 + log(37))(t+ 1)

L1
log

(
1 +

∆L2
1

L0
(t+ 1)

)
≤ 288(t+ 1)

L1
log

(
1 +

∆L2
1

L0
(t+ 1)

)
, (9)

where (i) uses log(1 + ab) ≤ log((1 + a)(1 + b)) ≤ log(1 + a) + log(1 + b) for all a, b > 0, and
(ii) uses ∆L2

1 ≥ L0 and t ≥ 1. Combining Equation 8 and Equation 9 proves Equation 7.

This proves that the definition of φt makes sense for all t. We can finally define the difficult objective
f as follows:

f(x) = φj(x)(x− dj(x)) +

j(x)−1∑
i=0

φi(`i),

where

j(x) =

{
max {t ≥ 0 | dt ≤ x} x ≥ 0

0 x < 0
.

With this definition, f is essentially a piece-wise function, where each piece is an interval [dt, dt+1]
whose function value is a translation of φt. f is informally pictured in Figure 1b of the main text.
Notice that f is continuous and differentiable within each piece. At the boundary of each piece,

lim
x→d−t+1

f(x) = lim
x→d−t+1

φt(x− dt) +

t−1∑
i=0

φi(`i)

= φt(dt+1 − dt) +

t−1∑
i=0

φi(`i) = φt(`t) +

t−1∑
i=0

φi(`i) =

t∑
i=0

φi(`i),

lim
x→d+t+1

f(x) = lim
x→d+t+1

φt+1(x− dt+1) +

t∑
i=0

φi(`i) = φt+1(0) +

t∑
i=0

φi(`i) =

t∑
i=0

φi(`i).
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Also

lim
x→d−t+1

f ′(x) = lim
x→d−t+1

φ′t(x− dt) = φ′t(dt+1 − dt) = φ′t(`t) = −gt+1

lim
x→d+t+1

f ′(x) = lim
x→d+t+1

φ′t+1(x− dt+1) = φ′t+1(0) = −gt+1.

Therefore f is differentiable everywhere. Also,

inf
x
f(x) = inf

t≥0

{
inf

x∈[0,`t]
φt(x) +

t−1∑
i=0

φi(`i)

}
≥ inf
t≥0

inf
x∈[0,`t]

φt(x) = 0.

The initial point x0 = 0 satisfies

f(x0) = φ0(0) = ψ(−m0) =
g0
L1

− L0

L2
1

log

(
1 +

L1g0
L0

)
≤ g0
L1

= ∆.

Therefore f(x0)− infx f(x) ≤ ∆. Since each φt is (L0, L1)-smooth, so is f .

We will use a stochastic gradient g,D for this function which is always equal to the true gradient, so
that the noise conditions are trivially satisfied. Therefore (f, g,D) ∈ Fas(∆, L0, L1, 0).

Now, consider the trajectory when starting from the initial point x0 = 0. We claim that xt = dt for
all t ≥ 0, which we will prove by induction. The base case t = 0 holds by construction. So suppose
that xi = di for all 0 ≤ i ≤ t. Then f ′(xi) = f ′(di) = −gi for all i. So

xt+1 = xt −
ηf ′(xt)√

γ2 +
∑t−1
i=0 (f

′(xi))
2
= dt +

ηgt√
γ2 +

∑t−1
i=0 g

2
i

= dt + `t = dt+1.

This completes the induction.

Therefore, for all t ≥ 0, we have |f ′(xt)| = gt ≥ g0 = ∆L1.

The following lemma uses a difficult objective which is adapted from Theorem 2 of Drori & Shamir
(2020).

Lemma 6 (Restatement of Lemma 2). Let

T = 1 +
∆2L2

1σ
2

144ε4
+

∆L0σ
2 log(1 + σ2/γ2)

24ε4
+

∆2L2
1

144ε2
.

and suppose d ≥ T and ε ≤ min
{√

2
3

√
∆L0,

1√
3

√
∆L1γ

}
. If η ≤ 1

L1
, then there exists some

(f, g,D) ∈ Fas(∆, L0, L1, σ) such that ‖∇f(xt)‖ = ε for all 0 ≤ t ≤ T − 1.

Proof. Let d ≥ T , and define f : Rd → R as:

f(x) = ε〈x, e1〉+
T∑
i=2

hi(〈xt, ei〉),

where

hi(x) =


L0

2 x
2 |x| < ai

2

−L0

2 (x− ai)
2 + L0

4 a
2
i |x| ∈

[
ai
2 , ai

]
L0

4 a
2
i |x| > ai

ai = αiσ

αi =
η√

γ2 + (i− 2)(ε2 + σ2)
.
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To see that f is (L0, L1)-smooth, notice that each hi is L0-smooth. Therefore, for any x,y ∈ Rd,

‖∇f(x)−∇f(y)‖2 = (∇1f(x)−∇1f(y))
2
+

d∑
i=2

(∇if(x)−∇if(y))
2

=

d∑
i=2

(h′i(xi)− h′i(yi))
2

≤ L2
d∑
i=2

(xi − yi)
2

≤ L2‖x− y‖2.
Therefore f is L0-smooth, and consequently is also (L0, L1)-smooth. We will also define the
following stochastic gradient for f :

F (x, ξ) = ∇f(x) + (2ξ − 1)σej(x),

where

j(x) =

{
T 〈x, ei〉 6= 0 for all i with 2 ≤ i ≤ d

min {2 ≤ i ≤ d | 〈x, ei〉 = 0} otherwise

This oracle is defined so that the stochastic gradient noise at step t only affects coordinate t+ 2 (this
will be shown later). Let D be the distribution of ξ, defined as P (ξ = 0) = P (ξ = 1) = 1

2 . With this
definition, the stochastic gradient F satisfies

E[F (x, ξ)] = ∇f(x)
‖F (x, ξ)−∇f(x)‖ ≤ σ (almost surely).

Therefore, all of the conditions for (f, F,D) ∈ Fas(∆, L0, L1, σ) are satisfied other than the condition
that f is bounded from below and f(x0)− infx f(x) ≤ ∆. This condition will be addressed at the
end of this lemma’s proof.

Now consider the trajectory when optimizing f from the starting point x0 = 0. We claim that, for
each 0 ≤ t ≤ T − 1, the iterate xt satisfies the following conditions:

〈xt, e1〉 = −ε
t+1∑
i=2

αi (10)

|〈xt, ej〉| = aj for all 2 ≤ j ≤ t+ 1 (11)
〈xt, ej〉 = 0 for all j > t+ 1. (12)

We will prove this claim by induction. The base case t = 0 holds since x0 = 0. So suppose that for
some 0 ≤ t ≤ T − 2 the claim holds for all 0 ≤ i ≤ t. Then for each such i,

∇1f(xi) = ε

∇jf(xi) = h′j(〈xi, ej)
(i)
= h′j(aj)

(iii)
= 0 for all 2 ≤ j ≤ i+ 1

∇jf(xi) = h′j(〈xi, ej)
(ii)
= h′j(0)

(iv)
= 0 for all j > i+ 1,

where (i) uses Equation 11 from the inductive hypothesis together with the fact that h′j(aj) =
h′j(−aj) = 0, (ii) uses Equation 12 from the inductive hypothesis, and both (iii) and (iv) use the
definition of hj . Therefore ∇f(xi) = εe1. Also, j(x) = i+ 2. From the definition of the stochastic
gradient oracle,

F (xi, ξi) = ∇f(xi) + (2ξi − 1)σej(xi)

= εe1 + (2ξt − 1)σei+2.

Therefore, the update from xt to xt+1 only affects coordinates with index 1 and index t+ 2. Further,
the above implies ‖F (xi, ξi)‖2 = ε2 + σ2. Therefore, the effective learning rate of the algorithm at
step t is

ηt =
η√

γ2 +
∑t−1
i=0 ‖F (xi, ξi)‖2

=
η√

γ2 + t(ε2 + σ2)
= αt+2.
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We can then verify the inductive hypothesis for step t+ 1 by considering the coordinates of xt+1:

〈xt+1, e1〉 = 〈xt − ηtF (xt, ξt), e1〉
= 〈xt, e1〉 − ηt〈F (xt, ξt), e1〉
= 〈xt, e1〉 − εαt+2

(i)
= −ε

(
t+1∑
i=2

αt

)
− εαt+2

= −ε
t+2∑
i=1

αt,

where (i) uses Equation 10 from the inductive hypothesis, and this completes the inductive step for
Equation 10. For Equation 11, we separately consider j ≤ t+ 1 and j = t+ 2. For j ≤ t+ 1,

|〈xt+1, ej〉| = |〈xt, ej〉 − ηt〈F (xt, ξt), ej〉| = |〈xt, ej〉|
(i)
= aj ,

where (i) uses Equation 11 from the inductive hypothesis. For j = t+ 2:

|〈xt+1, et+2〉| = |〈xt, et+2〉 − ηt〈F (xt, ξt), et+2〉|
(i)
= ηtσ = αt+2σ = at+2,

where (i) uses Equation 12 from the inductive hypothesis. This completes the inductive step for
Equation 11. For Equation 12, we consider j > t+ 1:

〈xt+1, ej〉 = 〈xt, ej〉 − ηt〈F (xt, ξt), ej〉 = 0,

where the last equality uses Equation 12. This completes the inductive step for Equation 12, and
consequently completes the induction. As a result, we have that ∇f(xt) = ε for all 0 ≤ t ≤ T − 1.

The only remaining detail is whether the objective f satisfies the condition f(x0)− infx f(x) ≤ ∆.
Actually, f does not satisfy this condition because f is not even lower bounded, due to the linear term
ε〈x, e1〉. Similarly to Drori & Shamir (2020), we instead argue that there exists a lower bounded
function f̂ that has the same first-order information as f at all of the points xt for 0 ≤ t ≤ T − 1. If
this happens, then the behavior of A when optimizing f̂ is the same as that of A when optimizing f ,
so the conclusion ‖∇f̂(xt)‖ = ε still holds. Specifically, we need f̂ which is lower bounded and that
satisfies:

∇f̂(xt) = ∇f(xt), f̂(xt) = f(xt)

for all 0 ≤ t ≤ T . The existence of such an f̂ follows immediately from Lemma 1 of Drori & Shamir
(2020), and this f̂ satisfies

inf
x
f̂(x) ≥ min

0≤t≤T−1
f(xt)−

3ε2

2L0
,

so that

f̂(x0)− inf
x
f̂(x) ≤ 3ε2

2L0
+ max

0≤t≤T−1
−f(xt). (13)

Recall that f(x0) = 0. For all t ≥, we can write each −f(xt) as:

−f(xt) = −ε〈xt, e1〉 −
T∑
i=2

hi(〈xt, ei〉)

(i)
= ε2

t+1∑
i=2

αi −
t+1∑
i=2

hi(ai)−
T∑

i=t+2

hi(0)

(ii)
= ε2

t+1∑
i=2

αi −
L0

4

t+1∑
i=2

a2i

= ε2η

t−1∑
i=0

1√
γ2 + i(ε2 + σ2)︸ ︷︷ ︸

S1

−L0σ
2

4
η2

t−1∑
i=0

1

γ2 + i(ε2 + σ2)︸ ︷︷ ︸
S2

, (14)
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where (i) uses Equation 10, Equation 11, and Equation 12, and (ii) uses the definition of hi. We can
bound S1 as follows:

S1 =

t−1∑
i=0

1√
γ2 + i(ε2 + σ2)

=
1

γ
+

t−1∑
i=1

1√
γ2 + i(ε2 + σ2)

≤ 1

γ
+

∫ t−1

0

1√
γ2 + x(ε2 + σ2)

dx
(i)
=

1

γ
+

1

ε2 + σ2

∫ γ2+(t−1)(ε2+σ2)

γ2

1√
u
du

=
1

γ
+

2

ε2 + σ2

(√
γ2 + (t− 1)(ε2 + σ2)− γ

)
=

1

γ
+

2

ε2 + σ2

(√
γ2 + (t− 1)(ε2 + σ2)− γ

) √γ2 + (t− 1)(ε2 + σ2) + γ√
γ2 + (t− 1)(ε2 + σ2) + γ

=
1

γ
+

2

ε2 + σ2

(t− 1)(ε2 + σ2)√
γ2 + (t− 1)(ε2 + σ2) + γ

=
1

γ
+

2(t− 1)√
γ2 + (t− 1)(ε2 + σ2) + γ

≤ 1

γ
+

2(t− 1)√
(t− 1)(ε2 + σ2)

=
1

γ
+

2
√
t− 1√

ε2 + σ2
, (15)

where (i) uses the substitution u = γ2 + x(ε2 + σ2). Similarly for S2:

S2 =

t−1∑
i=0

1

γ2 + i(ε2 + σ2)
≥
∫ t

0

1

γ2 + x(ε2 + σ2)
dx

(i)
=

1

ε2 + σ2

∫ γ2+t(ε2+σ2)

γ2

1

u
du =

1

ε2 + σ2
log

(
γ2 + t(ε2 + σ2)

γ2

)
=

1

ε2 + σ2
log

(
1 +

t(ε2 + σ2)

γ2

)
≥ 1

ε2 + σ2
log

(
1 +

tσ2

γ2

)
, (16)

where (i) uses the substitution u = γ2 + x(ε2 + σ2). Plugging Equation 15 and Equation 16 into
Equation 14:

−f(xt) ≤ ε2
(
1

γ
+

2
√
t− 1√

ε2 + σ2

)
η −

L0σ
2 log

(
1 + tσ2

γ2

)
4(ε2 + σ2)

η2

≤ ε2
(
1

γ
+

2
√
T − 1√
ε2 + σ2

)
η −

L0σ
2 log

(
1 + σ2

γ2

)
4(ε2 + σ2)

η2

We can decompose T = 1 + T1 + T2, where

T1 =
∆2L2

1σ
2

144ε4
+

∆2L2
1

144ε2
, T2 =

∆L0σ
2 log(1 + σ2/γ2)

24ε4
.

Then
√
T − 1 =

√
T1 + T2 ≤

√
T1 +

√
T2, so

−f(xt) ≤ ε2
(
1

γ
+

2
√
T1√

ε2 + σ2

)
η︸ ︷︷ ︸

D1

+
2ε2

√
T2√

ε2 + σ2
η −

L0σ
2 log

(
1 + σ2

γ2

)
4(ε2 + σ2)

η2︸ ︷︷ ︸
D2

. (17)
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We can bound D1 and D2 separately:

D1 =

(
ε2

γ
+

2ε2
√
T1√

ε2 + σ2

)
η

(i)

≤ ε2

γL1
+

2ε2
√
T1

L1

√
ε2 + σ2

(ii)

≤ ∆

6
+

2ε2
√
T1

L1

√
ε2 + σ2

(iii)
=

∆

6
+

2ε2

L1

√
ε2 + σ2

√
∆2L2

1σ
2

144ε4
+

∆2L2
1

144ε2

(iv)

≤ ∆

6
+

2ε2

L1

√
ε2 + σ2

(
∆L1σ

12ε2
+

∆L1

12ε

)
=

∆

6
+

∆σ

6
√
ε2 + σ2

+
∆ε

6
√
ε2 + σ2

≤ ∆

6
+

∆

6
+

∆

6
=

∆

3
,

where (i) uses the condition η ≤ 1/L1, (ii) uses the condition ε ≤ 1√
6

√
γ∆L1, (iii) uses the

definition of T1, and (iv) uses
√
a+ b ≤

√
a+

√
b. Notice that D2 is a quadratic function of η with

negative leading coefficient, so D2 is upper bounded by the vertex of the corresponding parabola, i.e.
ax2 + bx ≤ −b2/2a when a < 0. Therefore

D2 ≤
(

2ε2
√
T2√

ε2 + σ2

)2
2(ε2 + σ2)

L0σ2 log
(
1 + σ2

γ2

)
=

8ε4

L0σ2 log
(
1 + σ2

γ2

)T2
(i)
=

8ε4

L0σ2 log
(
1 + σ2

γ2

)∆L0σ
2 log(1 + σ2/γ2)

24ε4
=

∆

3
,

where (i) uses the definition of T2.

Finally, plugging back to Equation 17 yields −f(xt) ≤ 2∆
3 , and plugging this back into Equation 13:

f̂(x0)− inf
x
f̂(x) ≤ 3ε2

2L0
+

2∆

3
(i)

≤ ∆

3
+

2∆

3
= ∆,

where (i) uses the condition ε ≤
√
2
3

√
∆L0. Therefore f̂ satisfies all conditions of Fas(∆, L0, L1, σ).

Theorem 5. [Restatement of Theorem 1] Let ∆, L0, L1, σ > 0, and let F = Fas(∆, L0, L1, σ). Let
algorithm ADAN denote Decorrelated AdaGrad-Norm with parameters η > 0 and

0 < γ ≤ ∆L1

8 log
(
1 + 48

∆L2
1

L0

) .
Let 0 < ε ≤ min

{√
2
3

√
∆L0,

1√
3

√
∆L1γ,∆L1

}
. If ∆L2

1 ≥ L0, then

T (ADAN,F , ε) ≥ 1 +
∆2L2

1σ
2

144ε4
+

∆L0σ
2 log(1 + σ2/γ2)

24ε4
+

∆2L2
1

144ε2
.
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Proof. We only need to combine Lemmas 1 and 2. If η ≤ 1
L1

, then

γ

η
≤ ∆L1

8η log
(
1 + 48

∆L2
1

L0

) ≤ ∆L2
1

8 log
(
1 + 48

∆L2
1

L0

) ,
so the conditions of γ and η in Lemma 1 are satisfied. Therefore, by Lemma 1 there exists a
problem instance (f, g,D) ∈ F for which ‖∇f(xt)‖ ≥ ∆L0 > ε for all t ≥ 0. If η ≤ 1

L1
,

then by Lemma 1 there exists a problem instance (f, g,D) ∈ F for which ‖∇f(xt)‖ ≥ ε for all
t ≤ T := 1+

∆2L2
1σ

2

144ε4 + ∆L0σ
2 log(1+σ2/γ2)

24ε4 +
∆2L2

1

144ε2 . In both cases, ADAN requires at least T gradient
queries to find an ε-approximate stationary point.

B PROOFS OF THEOREM 2 AND 3

Lemma 7 (Restatement of Lemma 3). Let 0 < ε < ∆L1. If the parameters of Decorrelated AdaGrad
satisfy η ≥

√
2γ

L1σ
log
(
1 + L1ε

L0

)
, then for any T ≥ 1, there exists some f ∈ Fas(∆, L0, L1, σ) such

that ‖∇f(xt)‖ ≥ ε for all 0 ≤ t ≤ T − 1.

Similarly, if the parameters of AdaGrad satisfy η ≥
√
2

L1
log
(
1 + L1ε

L0

)
and γ ≤ σ, then for any

T ≥ 1 there exists some f ∈ Fas(∆, L0, L1, σ) such that ‖∇f(xt)‖ ≥ ε for all 0 ≤ t ≤ T − 1.

Proof. First, recall the definition of ψ:

ψ̃(x) =
L0

L2
1

(exp (L1|x|)− L1|x| − 1) .

Then define

f(x) =

T∑
i=1

ψ(〈x, ei〉).

To see that f is (L0, L1)-smooth, let x,y ∈ Rd. Denoting x = (x1, . . . , xT ) and y = (y1, . . . , yT ),

‖∇f(x)−∇f(y)‖2 =

T∑
i=1

(∇if(x)−∇if(x))
2

=

T∑
i=1

(ψ′(xi)− ψ′(yi))
2

(i)

≤
T∑
i=1

(L0 + L1|ψ′(xi)|)
2
(xi − yi)

2

(ii)

≤
T∑
i=1

(L0 + L1‖∇f(x)‖)2 (xi − yi)
2

= (L0 + L1‖∇f(x)‖)2
T∑
i=1

(xi − yi)
2

= (L0 + L1‖∇f(x)‖)2 ‖x− y‖2,

where (i) uses the fact that ψ is (L0, L1)-smooth and (ii) uses |ψ′(xi)| ≤ ‖∇f(x)‖. Therefore f is
(L0, L1)-smooth. Also, define m = 1

L1
log
(
1 + L1ε

L0

)
, so that ψ′(m) = ε. Consider the initial point
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x0 = me1. Then

f(x0)− inf
x
f(x) = ψ(m)

=
L0

L2
1

(exp (L1m)− L1m− 1)

=
L0

L2
1

(
1 +

L1ε

L0
− log

(
1 +

L1ε

L0

)
− 1

)
=

ε

L1
− L0

L2
1

log

(
1 +

L1ε

L0

)
=

ε

L1

(i)

≤ ∆,

where (i) uses the condition ε ≤ ∆L1.

We also define a stochastic gradient for f as follows:

F (x, ξ) = ∇f(x) + (2ξ − 1)σej(x),

where

j(x) =

{
0 〈x, ei〉 6= 0 for all 1 ≤ i ≤ T

min {1 ≤ i ≤ T | 〈x, ei〉 = 0} otherwise
,

and the distribution D of Ξ is defined as P (ξ = 0) = P (ξ = 1) = 0.5. Then Eξ[F (x, ξ)] = ∇f(x)
and ‖F (x, ξ)−∇f(x)‖ ≤ σ almost surely. Therefore, (f, g,D) ∈ Fas(∆, L0, L1, σ).

Now consider the trajectory of Decorrelated AdaGrad when optimizing (f, g,D) from the initial
point x0 = me1. We claim that for all 0 ≤ t ≤ T − 1:

|〈xt, et+1〉| ≥ m (18)
〈xt, ej〉 = 0 for all j > t+ 1, (19)

which we will prove by induction on t. The base case t = 0 holds from the choice of the initial point
x0. So suppose that Equation 18 and Equation 19 hold for all 0 ≤ i ≤ t for some 0 ≤ t ≤ T − 2.
Then j(xt) = t+ 2, so

〈F (xt, ξt), et+2〉 = 〈∇f(xt), et+2〉+ 〈(2ξ − 1)σet+2, et+2〉
= ψ̃′(〈xt, et+2) + (2ξ − 1)σ

(i)
= ψ̃′(0) + (2ξ − 1)σ

= (2ξ − 1)σ,

where (i) uses Equation 19 from the inductive hypothesis. Therefore, for Decorrelated AdaGrad:

〈xt+1, et+2〉 = 〈xt, et+2〉 −
η√

γ2 +
∑t−1
i=0 (〈F (xi, ξi), et+2〉)2

(2ξt − 1)σ

(i)
= − η√

γ2 +
∑t−1
i=0 (〈F (xi, ξi), et+2〉)2

(2ξt − 1)σ

(ii)
= − η√

γ2 +
∑t−1
i=0 (ψ

′(0))
2
(2ξt − 1)σ

= −η
γ
(2ξt − 1)σ,

where both (i) and (ii) use Equation 19 from the inductive hypothesis. Therefore

|〈xt+1, et+2〉| =
η

γ
σ ≥ m,
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where the inequality uses the condition η ≥ γm
σ for Decorrelated AdaGrad. Similarly for AdaGrad:

〈xt+1, et+2〉 = 〈xt, et+2〉 −
η√

γ2 +
∑t
i=0 (〈F (xi, ξi), et+2〉)2

(2ξt − 1)σ

(i)
= − η√

γ2 +
∑t
i=0 (〈F (xi, ξi), et+2〉)2

(2ξt − 1)σ

(ii)
= − η√

γ2 +
∑t−1
i=0 (ψ

′(0))
2
+ (ψ′(0) + σ)2

(2ξt − 1)σ

= − η√
γ2 + σ2

(2ξt − 1)σ.

where both (i) and (ii) use Equation 19 from the inductive hypothesis. Therefore

|〈xt+1, et+2〉| =
η√

γ2 + σ2
σ

(i)

≥ η√
2

(ii)

≥ η√
2
≥ m,

where (i) uses the assumed condition γ ≤ σ and (ii) uses the condition η ≥
√
2m. This proves the

inductive step for Equation 18, for both Decorrelated AdaGrad and AdaGrad. The inductive step
for Equation 19 follows immediately from the inductive hypothesis (Equation 19) together with the
stochastic gradient definition and j(xt) = t+ 2. This completes the induction.

For all 0 ≤ t ≤ T − 1, the conclusion of the lemma follows from Equation 18 by:

‖∇f(xt)‖ ≥ 〈∇f(xt), et+1〉 = ψ′(〈xt, et+1〉)
(i)

≥ ψ′(m) = ε,

where (i) uses Equation 18 together with the fact that ψ′(x) increases with |x|.

Lemma 8 (Restatement of Lemma 4). Let

0 < ε < min

∆L1

2
,

√√√√ ∆L1σ

4
√
2 log

(
1 +

∆L2
1

L0

)
 .

If the parameters of Decorrelated AdaGrad satisfy η ≤
√
2γ

L1σ
log
(
1 + L1ε

L0

)
, then there exists some

(f, g,D) ∈ Fas(∆, L0, L1, σ) such that ‖∇f(xt)‖ ≥ ε for all

t ≤ ∆2L2
0σ

2

256γ2ε4
+

∆2L2
1σ

2

256γ2ε2 log2
(
1 +

∆L2
1

L0

) .
Similarly, if the parameters of AdaGrad satisfy η ≤

√
2

L1
log
(
1 + L1ε

L0

)
, then there exists some

(f, g,D) ∈ Fas(∆, L0, L1, σ) such that ‖∇f(xt)‖ ≥ ε for all

t ≤ ∆2L2
0

128ε4
+

∆2L2
1

128ε2 log2
(
1 +

∆L2
1

L0

) .

Proof. Define m = 1
L1

log
(
1 + L1ε

L0

)
, and consider the objective

f(x) =


−ε(x+m) + ψ(m) x < −m
ψ(x) x ∈ [−m,m]

ε(x−m) + ψ(m) x > m

.
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This function is differentiable everywhere since ψ′(m) = ε and ψ′(−m) = −ε. Since ψ is (L0, L1)-
smooth, so is f . Also, m satisfies

ψ(m) =
L0

L2
1

(exp(L1m)− L1m− 1)

=
L0

L2
1

(
1 +

L1ε

L0
− log

(
1 +

L1ε

L0

)
− 1

)
=

ε

L1
− L0

L2
1

log

(
1 +

L1ε

L0

)
(i)

≤ ε

L1
≤ ∆

2
,

where (i) uses the condition ε ≤ 1
2∆L1. Therefore, with the initial point x0 = m+ ∆

2ε , the objective
satisfies

f(x0)− inf
x
f(x) = ε(x0 −m) + ψ(m)

= ε
∆

2ε
+

∆

2
= ∆.

We will define the stochastic gradient g with noise distribution D as equal to the true gradient, i.e.
g(x, ξ) = f ′(x) for every x, ξ. Therefore (f, g,D) ∈ Fas(∆, L0, L1, σ).

Now consider the trajectory of Decorrelated AdaGrad when optimizing (f, g,D) from the initial
point x0 = m+ ∆

2ε . Let t0 = max {t ≥ 0 | xt ≥ m}. Then f ′(xt) = ε for all t ≤ t0, so that

xt+1 = xt −
ηε√

γ2 +
∑t−1
i=0 ε

2

= xt −
ηε√

γ2 + tε2
,

and unrolling yields

xt+1 = x0 − ηε

t∑
i=0

1√
γ2 + iε2

= x0 −
ηε

γ
− ηε

t∑
i=1

1√
γ2 + iε2

≥ x0 −
ηε

γ
− ηε

∫ t

0

1√
γ2 + xε2

dx

= x0 −
ηε

γ
− 2η

ε

[√
γ2 + xε2

]t
0

= x0 −
ηε

γ
− 2η

ε

(√
γ2 + tε2 − γ

)
= x0 −

ηε

γ
− 2η

ε

tε2√
γ2 + tε2 + γ

≥ x0 −
ηε

γ
− 2ηtε√

γ2 + tε2
.

Plugging t = t0 then yields

xt0+1 ≥ x0 −
ηε

γ
− 2ηt0ε√

γ2 + t0ε2
. (20)

On the other hand,
xt0+1 < m. (21)
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Combining Equation 20 and Equation 21:

m ≥ x0 −
ηε

γ
− 2ηt0ε√

γ2 + t0ε2

2ηt0ε√
γ2 + t0ε2

≥ x0 −m− ηε

γ

2ηt0ε√
γ2 + t0ε2

(i)

≥ ∆

2ε
− ηε

γ

t0√
γ2 + t0ε2

≥ 1

ε

(
∆

4ηε
− ε

2γ

)
, (22)

where (i) uses the definition of x0. The last term in Equation 22 can be bounded as

ε

2γ
≤ ∆

8ηε

4ηε2

∆γ

(i)

≤ ∆

8ηε

4ε2

∆γ

√
2γ

L1σ
log

(
1 +

L1ε

L0

)
=

∆

8ηε

4
√
2ε2

∆L1σ
log

(
1 +

L1ε

L0

)
(ii)

≤ ∆

8ηε

4
√
2ε2

∆L1σ
log

(
1 +

∆L2
1

L0

)
(iii)

≤ ∆

8ηε
,

where (i) uses the condition η ≤
√
2γ

L1σ
log
(
1 + L1ε

L0

)
, (ii) uses the condition ε ≤ ∆L1, and (iii)

uses the condition ε ≤
√

∆L1σ

4
√
2 log

(
1+

∆L2
1

L0

) . Plugging back to Equation 22 yields

t0√
γ2 + t0ε2

≥ ∆

8ηε2

t0√
t0ε2

≥ ∆

8ηε2

√
t0 ≥ ∆

8ηε

t0 ≥ ∆2

64η2ε2
(23)

From the assumed upper bound on η,

η ≤
√
2γ

L1σ
log

(
1 +

L1ε

L0

)
(i)

≤
√
2γ

L1σ
log

(
1 +

∆L2
1

L0

)
,

and

η ≤
√
2γ

L1σ
log

(
1 +

L1ε

L0

)
(ii)

≤
√
2γε

L0σ
,

where (i) uses the condition ε ≤ ∆L1 and (ii) uses log(1 + x) ≤ x. Therefore

1

η
≥ max

 L1σ
√
2γ log

(
1 +

∆L2
1

L0

) , L0σ√
2γε


1

η2
≥ max

 L2
1σ

2

2γ2 log2
(
1 +

∆L2
1

L0

) , L2
0σ

2

2γ2ε2

 ≥ L2
1σ

2

4γ2 log2
(
1 +

∆L2
1

L0

) +
L2
0σ

2

4γ2ε2
.
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Plugging back to Equation 23 yields

t0 ≥ ∆2L2
0σ

2

256γ2ε4
+

∆2L2
1σ

2

256γ2ε2 log2
(
1 +

∆L2
1

L0

) .
Since |f ′(xt)| = ε for all t ≤ t0, this completes the proof for Decorrelated AdaGrad.

The corresponding proof for AdaGrad is nearly identical, so we list only the key steps here. For all
t ≤ t0,

xt+1 = xt −
ηε√

γ2 + (t+ 1)ε2
≥ xt −

η√
t+ 1

.

After unrolling and applying the same bound for
∑
i

1√
i

as in the decorrelated case, then choosing
t = t0, we have

xt0+1 ≥ x0 − 2η
√
t0 + 1.

From xt0+1 ≤ m, we have

m ≥ x0 − 2η
√
t0 + 1

t0 + 1 ≥ ∆2

16η2ε2
.

The assumed upper bound on η yields

1

η2
≥ L2

1

4 log2
(
1 +

∆L2
1

L0

) +
L2
0

4ε2
,

so that

t0 + 1 ≥ ∆2L2
0

64ε4
+

∆2L2
1

64ε2 log2
(
1 +

∆L2
1

L0

) .
Since 2t0 ≥ t0 + 1 for all t0 ≥ 1, this means

t0 ≥ ∆2L2
0

128ε4
+

∆2L2
1

128ε2 log2
(
1 +

∆L2
1

L0

) .

Theorem 6. [Restatement of Theorem 2] Let ∆, L0, L1, σ > 0 and let F = Fas(∆, L0, L1, σ). Let
ADA and Aada denote Decorrelated AdaGrad and AdaGrad (respectively) with parameters η, γ > 0.
Suppose

0 < ε < min

∆L1

2
,

√√√√ ∆L1σ

4
√
2 log

(
1 +

∆L2
1

L0

)
 .

Then

T (ADA,F , ε, δ) ≥
∆2L2

0σ
2

256γ2ε4
+

∆2L2
1σ

2

256γ2ε2 log2
(
1 +

∆L2
1

L0

) .
Also, if γ ≤ σ, then

T (Aada,F , ε, δ) ≥
∆2L2

0

128ε4
+

∆2L2
1

128ε2 log2
(
1 +

∆L2
1

L0

) .
Proof. We only have to combine Lemmas 3 and 4. We first consider Decorrelated AdaGrad. If
η ≥

√
2γ

L1σ
log
(
1 + L1ε

L0

)
, then by Lemma 3 there exists a problem instance for which Decorrelated

AdaGrad will never find an ε-approximate stationary point. Otherwise, by Lemma 4 there exists a
problem instance for which Decorrelated AdaGrad requires a number of steps at least as large as

∆2L2
0σ

2

256γ2ε4
+

∆2L2
1σ

2

256γ2ε2 log2
(
1 +

∆L2
1

L0

) .
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Therefore in either case, we have

T (ADA,F , ε, δ) ≥
∆2L2

0σ
2

256γ2ε4
+

∆2L2
1σ

2

256γ2ε2 log2
(
1 +

∆L2
1

L0

) .

The corresponding proof for AdaGrad (Theorem 3) is nearly identical, so we omit it.

C PROOF OF THEOREM 4

C.1 PRELIMINARY DEFINITIONS

We first provide definitions of constants and objects that will be used throughout the proof.

For p ∈ (0, 1) and λ > 0, consider the random walk parameterized by (p, λ):

X0 = 1

P (Xt+1 = Xt + λ) = p (24)
P (Xt+1 = Xt − 1) = 1− p.

Then we can define

zp,λ = P (∃t > 0 : Xt ≤ 0)

λ0(p, δ) = inf {λ ≥ 0 : zp,λ ≤ 1− δ}
ζ(p, δ) = λ0(p, δ)− λ0(p, 0). (25)

Informally, zp,λ is the probability that the random walk reaches a non-positive value, and λ0(p, δ) is
the smallest λ required to ensure that the chance of never reaching a non-positive value is at least δ.

For σ2 ≥ 3, define the following constants:

γ1 =
log (1 + 2ζ(2/3, δ))

log 2
, γ2 = 1− log 2

log
(
2 + 6

σ2−2

) , γ3 =
log (1 + 2ζ(2/3, δ))

log
(
2 + 6

σ2−2

) (26)

For σ2 ∈ (1, 3), define the following constants:

γ4 =
log
(
1 + 2ζ( 1

12 (σ2 + 5), δ)
)

log
(

12
−σ2+7 − 1

) , γ5 = 1−
log
(

12
−σ2+7 − 1

)
log
(

18
σ2−1 − 1

)
γ6 =

log
(
1 + 2ζ( 1

12 (σ2 + 5), δ)
)

log
(

18
σ2−1 − 1

) .

Also, we will denote:

G =
∆L1

1 + 4 log
(
1 +

∆L2
1

L0

) , (27)

which will be used in the following definition.
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Definition 1. For p ∈
(

1
2 ,

σ2

σ2+1

)
and δ ∈ (0, 1), we say that g1, g2 ∈ Rd forms a (p, δ)-tricky pair

with respect to the stepsize function α if all of the following conditions hold:

g1 = c1g, and g2 = c2g for some g ∈ Rd with ‖g‖ = 1 (28)
sign(c1) 6= sign(c2) (29)

|c1| ≥ ε and |c2| ≥ ε (30)

|c1| ≤
1− p

p
σ1 +

(
1− p

p
σ2 − 1

)
G (31)

|c2| ≥


p|c1|+ε
1−p |c1| ≤ 1−p

p σ1 +
(

1−p
p σ2 − 1

)
ε

(σ2+1)p|c1|−σ1

(σ2+1)(1−p)−1 |c1| > 1−p
p σ1 +

(
1−p
p σ2 − 1

)
ε

(32)

|c2| ≤
p|c1|+G

1− p
(33)

α(g1)‖g1‖
α(g2)‖g2‖

≥ λ0(p, δ). (34)

Notice that the lower bound of |c2| for the second case of Equation 32 is positive, since p < σ2

σ2+1 .
The significance of a tricky pair, as shown in Lemma 10, is that it can be used to construct an instance
(f, g,D) ∈ Faff(∆, L0, L1, σ1, σ2) for which A diverges with probability at least δ.

Finally, let P̂y(x) =
〈x,y〉
‖y‖ , so that P̂y(x) denotes the component of x in the direction of y

‖y‖ . Note

the difference from the common notation Py(x) =
〈x,y〉
‖y‖2 x.

C.2 PROOFS

We now provide proofs of the lemmas mentioned in Section 6.1.

Lemma 9. Suppose that there exists some g ∈ Rd with ‖g‖ ∈ [ε, σ1 + (σ2 + 1)∆L1] and

α(g) ≤ 0, or α(g) ≥ 4

L1‖g‖
log

(
1 +

L1 min(‖g‖,∆L1)

L0

)
.

Then there exists (fexp, gexp,Dexp) ∈ Faff(∆, L0, L1, σ1, σ2) such that ‖∇fexp(xt)‖ ≥ ε for all t ≥ 0.

Proof. We will construct f : Rd → R piecewise with linear and exponential pieces so that
‖∇f(xt)‖ = min(‖g‖,∆L1) ≥ ε for all t ≥ 0.

First, define g̃ := min(‖g‖,∆L1)
g

‖g‖ , m := 1
L1

log
(
1 + L1‖g̃‖

L0

)
. Recall the function ψ : R → R

defined as

ψ(x) =
L0

L2
1

(exp(L1|x|)− L1|x| − 1) .

It is straightforward to verify that ψ bounded from below by 0, continuously differentiable, (L0, L1)-
smooth, and satisfies

ψ(−m) = ψ(m) =
‖g̃‖
L1

− L0

L2
1

log

(
1 +

L1‖g̃‖
L0

)
≤ ‖g̃‖

L1
≤ ∆L1

L1
≤ ∆

|x| ≤ m =⇒ |ψ′(x)| ≤ ‖g̃‖ ≤ ∆L1

ψ′(−m) = −‖g̃‖
ψ′(m) = ‖g̃‖.

The condition in the lemma statement gives two cases: α(g) ≤ 0 or α(g) ≥ 4m
‖g‖ . We handle the two

cases separately below.
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Case 1: α(g) ≤ 0. This case is easy: the algorithm A is essentially employing a negative learning
rate! For a piecewise linear function that has a piece with gradient equal to g, the trajectory {xt}
moves away from the minimum indefinitely. To handle the case that ‖g‖ > ∆L1, we instead use
a gradient of g̃ = min(‖g‖,∆L1)

g
‖g‖ = ∆L1

g
‖g‖ , and construct a stochastic gradient that always

returns either g or 0, so that each updated iterate xt+1 either moves further from the minimum than
xt, or doesn’t move at all.

Define the objective

f(x) =


−‖g̃‖(P̂g(x) +m) + ψ(m) P̂g(x) < m

ψ(P̂g(x)) P̂g(x) ∈ [−m,m]

‖g̃‖(P̂g(x)−m) + ψ(m) P̂g(x) > m

.

Notice that f is bounded from below by ψ(0) = 0. Since ψ′(m) = ‖g̃‖ and ψ′(−m) = −‖g̃‖,
then f is continuously differentiable. Since ψ is (L0, L1)-smooth, so is f . Consider the initial point
x0 = mg. From the properties of ψ from above, f satisfies

f(x0)− f∗ = ψ(m) ≤ ∆.

and for all x with f(x) ≤ f(x0), it must be that P̂g(x) ∈ [−m,m], so

‖∇f(x)| = |ψ′(P̂g(x))| ≤ ∆L1. (35)

Define a stochastic gradient F for f as follows:

F (x, ξ) =

{
(‖g‖/‖g̃‖)∇f(x) ξ = 0

0 ξ = 1,

where ξ ∈ {0, 1} has distribution D, defined as P (ξ = 0) = ‖g̃‖/‖g‖. Then Eξ[F (x, ξ)] = ∇f(x).
To see that this stochastic gradient satisfies the noise condition: If ‖g‖ ≤ ∆L1, then g̃ = g and
P (ξ = 0) = 1, so F (x; ξ) = ∇f(x) almost surely. Otherwise,

‖F (x; 0)−∇f(x)| =
(
‖g‖
‖g̃‖

− 1

)
‖∇f(x)‖

=

(
‖g‖
∆L1

− 1

)
‖∇f(x)‖

(i)

≤
(
σ1 + (σ2 + 1)∆L1

∆L1
− 1

)
‖∇f(x)‖

=
σ1 + σ2∆L1

∆L1
‖∇f(x)‖

=
‖∇f(x)‖
∆L1

σ1 + σ2‖∇f(x)‖

(ii)

≤ σ1 + σ2‖∇f(x)‖,
where (i) uses the assumption ‖g‖ ≤ σ1 + (σ2 + 1)∆L1, and (ii) uses Equation 35. Also

‖F (x; 1)−∇f(x)‖ = ‖∇f(x)‖ ≤ σ1 + σ2‖f(x)‖,
which uses the assumption σ2 > 1. So the noise condition is satisfied, and therefore (f, F,D) ∈
Faff(∆, L0, L1, σ1, σ2).

Now consider the trajectory of A from the initial point x0 = mg. We claim that xt = ctg for
some ct ≥ m for all t ≥ 0. Clearly this holds for t = 0. Suppose it holds for some t ≥ 0. Then
‖∇f(xt)‖ = g̃. The stochastic gradient has two cases: if ξ = 0, then

F (xt, ξ) = (‖g‖/‖g̃‖)∇f(x) = (‖g‖/‖g̃‖)g̃ = g,

so
xt+1 = xt − α(g)g = (ct − α(g))g = ct+1g,

and ct+1 ≥ ct ≥ m since α(g) ≤ 0. If ξ = 1, then F (xt, ξ) = 0, so xt+1 = xt = ctg.
Either way, xt+1 = ct+1g holds for some ct+1 ≥ m, which completes the induction. Therefore
‖∇f(xt)‖ = ‖g̃‖ ≥ ε for all t ≥ 0.
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Case 2: α(g) ≥ 4m
‖g‖ . In this case, the learning rate α(g) is large enough to ensure that f(xt+1) ≥

f(xt) for an exponentially increasing f . By creating f that only depends on 〈x, g〉 and which
is piecewise linear and exponential in 〈x, g〉, this increase of the objective function continues
indefinitely.

Define m′ = α(g)‖g‖ and φ : [0,m′] as

φ(x) =


ψ(x−m) x ∈ [0, 2m)

‖g̃‖(x− 2m) + ψ(m) x ∈ (2m,m′ − 2m)

−ψ(x− (m′ −m)) + ‖g̃‖(m′ − 4m) + 2ψ(m) x ∈ (m′ − 2m,m′]

Note that the above definition makes sense since we assumed that m′ = α(g)‖g‖ ≥ 4m, so
m′ − 2m ≥ 2m. Again, φ is continuously differentiable, bounded from below, (L0, L1)-smooth, and
satisfies

|φ′(x)| ≤ ‖g̃‖ ≤ ∆L1 for all x ∈ [0,m′]

φ(x) ≥ 0

φ′(0) = −‖g̃‖
φ′(m′) = −‖g̃‖.

Now, we can define the objective f as follows:

f(x) =

{
−‖g̃‖P̂g(x) + φ(0) P̂g(x) ≤ 0

φ(P̂g(x)−m′bP̂g(x)/m
′c) + g̃(m′ − 4m)bP̂w(x)/m′c P̂g(x) > 0

f is continuous inside each "piece" (i.e. each region with P̂g(x) ∈ (km′, (k + 1)m′) for k ∈ Z≥0).
Also, using φ(0) = 0, f is continuous at the boundary of each piece. Similarly, f is continuously
differentiable inside each piece, and using the fact that φ′(0) = −‖g̃‖ = φ′(m′), is continuously
differentiable at the boundary of each piece. Also, f is bounded below by minx∈[0,m′] φ(x) =
minx ψ(x) = 0. So with the initial point x0 = 0, f satisfies

f(x0)− f∗ = φ(0)− 0 = ψ(−m) ≤ ∆.

Since φ is (L0, L1)-smooth, so is f . Also, ‖∇f(x)‖ ≤ |ψ′(m)| = ‖g̃‖ ≤ ∆L1 for every x.

Now we can define a stochastic gradient F for f as follows:

F (x; ξ) =

{
(‖g‖/‖g̃‖)∇f(x) ξ = 0

0 ξ = 1
,

where ξ ∈ {0, 1} has distribution D, defined as P (ξ = 0) = ‖g̃‖/‖g‖. This is the same stochastic
gradient that we used in Case 1, and an identical argument shows that the noise conditions are
satisfied. Therefore (f, F,D) ∈ Faff(∆, L0, L1, σ1, σ2).

Consider the execution of A on (f, F,D) from the initial point x0 = 0. We claim that xt is an
integer multiple of m′ g

‖g‖ for all t ≥ 0, which we will show by induction. The base case t = 0 holds
by construction. If xt = −km′ g

‖g‖ for some t ≥ 0, then there are two outcomes of the stochastic
gradient. If ξt = 1, then xt+1 = xt = −km′ g

‖g‖ . Otherwise ξt = 0, so

xt+1 = xt − α(F (xt, 0))F (xt, 0)

= −km′ g

‖g‖
− α

(
‖g‖
‖g̃‖

∇f(xt)
)

‖g‖
‖g̃‖

∇f(xt)

(i)
= −km′ g

‖g‖
− α(g)g

= −km′ g

‖g‖
− α(g)‖g‖ g

‖g‖

= −km′ g

‖g‖
−m′ g

‖g‖

= −(k + 1)m′ g

‖g‖
,
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where (i) uses the fact that xt = −km′ g
‖g‖ =⇒ ∇f(xt) = ‖g̃‖ g

‖g‖ . This completes the induction.

Therefore ‖∇f(xt)‖ =
∥∥∥∇f (−km′ g

‖g‖

)∥∥∥ = ‖g̃‖ ≥ ε for all t.

Lemma 10. Suppose that

0 < α(g) <
4

L1g
log

(
1 +

L1 min(‖g‖,∆L1)

L0

)
, (36)

for all g ∈ Rd with ‖g‖ ∈ [ε, σ1 + (σ2 + 1)∆L1], and suppose that there exist g1, g2 ∈ R which is
a (p, δ)-tricky pair with respect to α. Then there exists (f, g,D) ∈ Faff(∆, L0, L1, σ1, σ2) such that
‖∇f(xt)‖ ≥ ε for all t ≥ 0 with probability at least δ.

Proof. We will construct (f, g,D) such that f is a piecewise linear function, where one piece has
stochastic gradient equal to g1 with probability p and g2 with probability 1− p. Using the properties
of a (p, δ)-tricky pair, this instance is a member of Faff(∆, L0, L1, σ1, σ2), and A will diverge with
probability at least δ when optimizing this instance.

From the tricky pair definition, g1 = c1g and g2 = c2g for a unit vector g. Without loss of
generality, assume that c1 < 0 and c2 > 0. The following argument applies in the excluded case
c1 > 0, c2 < 0 by replacing the objective f(x) below with f(−x). Denote ` = pc1 + (1− p)c2 and
a = 1

L1
log
(
1 + L1`

L0

)
, and define f : Rd → R as

f(x) =


−`
(
P̂g(x) + a

)
+ ψ(a) P̂g(x) ≤ −a

ψ(P̂g(x)) P̂g(x) ∈ (−a, a)
`
(
P̂g(x)− a

)
+ ψ(a) P̂g(x) ≥ a

,

where ψ is as defined in Lemma 1. Notice that f is continuously differentiable, bounded from below
by f∗ = 0, and (L0, L1)-smooth.

Next, set Ξ = {0, 1} and define F : Rd × Ξ → Rd as

F (x, ξ) =



−g1 P̂g(x) ≤ −a and ξ = 0

−g2 P̂g(x) ≤ −a and ξ = 1

ψ′(x) P̂g(x) ∈ (−a, a)
g1 P̂g(x) ≥ a and ξ = 0

g2 P̂g(x) ≥ a and ξ = 1

and define the distribution D over Ξ as

ξ =

{
0 with probability p
1 with probability 1− p

for ξ ∼ D. Notice that F (x, ξ) = ∇f(x) for x with P̂g(x) ∈ (−a, a). Also, Eξ∼D[F (x, ξ)] =

pg1 + (1− p)g2 = `g = ∇f(x) for x with P̂g(x) ≥ a, and similarly for P̂g(x) ≤ −a. Using the
fact that g1, g2 is a p-tricky pair, we have for all x:

‖∇f(x)‖ ≤ ` = pc1+(1−p)c2 = −p|c1|+(1−p)|c2|
(i)

≤ −p|c1|+(1−p)
(
p|c1|+G

1− p

)
= G. (37)

where (i) uses Equation 33. We can also use the tricky pair properties to show that (f, g,D) satisfies
` ≥ ε and the noise condition, depending on the two cases in Equation 32. In the first case,

|c1| ≤
1− p

p
σ1 +

(
1− p

p
σ2 − 1

)
ε (38)

|c2| ≥
p|c1|+ ε

1− p
, (39)

so
` = (1− p)|c2|+ p(−|c1|) ≥ ε,
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and

‖g2 − `g‖ = |c2 − `|‖g‖
= c2 − `

=
p

1− p
(`− c1)

(i)

≤ p

1− p
`+

p

1− p

(
1− p

p
σ1 +

(
1− p

p
σ2 − 1

)
ε

)
=

p

1− p
`+ σ1 +

(
σ2 −

p

1− p

)
ε

(ii)

≤ p

1− p
`+ σ1 +

(
σ2 −

p

1− p

)
`

= σ1 + σ2`,

where (i) uses Equation 38 and (ii) uses ` ≥ ε. Also,

‖g1 − `g‖ = |c1 − `|‖g‖ = `− c1 =
1− p

p
(c2 − `) ≤ 1− p

p
(σ1 + σ2`) ≤ σ1 + σ2`,

where the last inequality uses p > 1
2 . Therefore (f, g,D) satisfies ` ≥ ε and the noise condition in

the first case. In the second case,

|c1| >
1− p

p
σ1 +

(
1− p

p
σ2 − 1

)
ε (40)

|c2| ≥
(σ2 + 1)p|c1| − σ1
(σ2 + 1)(1− p)− 1

, (41)

so

c2 ≥ (σ2 + 1)p(−c1)− σ1
(σ2 + 1)(1− p)− 1

((σ2 + 1)(1− p)− 1)c2 ≥ (σ2 + 1)p(−c1)− σ1

c2 ≤ σ1 + (σ2 + 1)pc1 + (σ2 + 1)(1− p)c2

c2 ≤ σ1 + (σ2 + 1)`

c2 − ` ≤ σ1 + σ2`,

and

c2 ≥ (σ2 + 1)p|c1| − σ1
(σ2 + 1)(1− p)− 1

=
p

1− p
|c1|+

(
σ2 + 1

(σ2 + 1)(1− p)− 1
− 1

1− p

)
p|c1| −

σ1
(σ2 + 1)(1− p)− 1

=
p

1− p
|c1|+

1

((σ2 + 1)(1− p)− 1)(1− p)
p|c1| −

σ1
(σ2 + 1)(1− p)− 1

(i)

≥ p

1− p
|c1|+

(1− p)σ1 + ((1− p)σ2 − p) ε

((σ2 + 1)(1− p)− 1)(1− p)
− σ1

(σ2 + 1)(1− p)− 1

≥ p

1− p
|c1|+

ε

1− p
,

where (i) uses Equation 40. Therefore ` = pc1 + (1− p)c2 ≥ ε as in the first case. Also as in the
first case, |c1− `| ≤ |c2− `|. Therefore (f, g,D) satisfies ` ≥ ε and the noise condition in the second
case.

Consider the initial point x0 = (a+ α(g2)‖g2‖)g. Recall that

‖g2‖ = |c2| ≤ |`|+ |c2 − `| ≤ σ1 + (σ2 + 1)`
(i)

≤ σ1 + (σ2 + 1)G
(ii)

≤ σ1 + (σ2 + 1)∆L1,
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where (i) uses Equation 37 and (ii) uses the definition of G (Equation 27). Also, by the tricky pair
definition, ‖g2‖ = |c2| ≥ ε. Therefore ‖g2‖ ∈ [ε, σ1 + (σ2 + 1)∆L1], so we can use Equation 36 to
conclude that

0 < α(g2) <
4

L1‖g2‖
log

(
1 +

∆L2
1

L0

)
.

Therefore, f satisfies

f(x0)− f∗ = ψ(a) + `α(g2)‖g2‖

=
`

L1
− L0

L2
1

log

(
1 +

L1`

L0

)
+ `α(g2)‖g2‖

≤ `

L1
+ `α(g2)‖g2‖

≤ `

L1
+

4`

L1
log

(
1 +

∆L2
1

L0

)
=

`

L1

(
1 + 4 log

(
1 +

∆L2
1

L0

))
(i)

≤ ∆L1

1 + 4 log
(
1 +

∆L2
1

L0

) 1

L1

(
1 + 4 log

(
1 +

∆L2
1

L0

))
= ∆,

where (i) uses Equation 37. This shows that (f, g,D) ∈ Faff(∆, L0, L1, σ1, σ2).

We now claim that ‖∇f(xt)‖ ≥ ε for all t ≥ 0 with probability δ when A is initialized with
x0 = (a+ α(g2)‖g2‖)g. To see this, consider the sequence

yt =

{
1

α(g2)‖g2‖ (〈xt, g〉 − a) 〈xi, g〉 ≥ a for all i ≤ t

0 otherwise
.

As long as 〈xt, g〉 > a, the sequence yt follows the exact same distribution as the random walk
in Equation 24 with λ = α(g1)‖g1‖

α(g2)‖g2‖ > 0. Since g1, g2 is a (p, δ)-tricky pair, λ ≥ λ0(p, δ), so that
zp,λ ≤ 1− δ by the tricky pair definition. Therefore

P (‖∇f(xt)‖ ≥ ε for all t ≥ 0) ≥ P (〈xt, g〉 > a for all t ≥ 0)

= P (yt > 0 for all t ≥ 0)

= 1− zp,λ

≥ δ.

Lemma 11. Suppose that

0 < α(g) <
4

L1‖g‖
log

(
1 +

L1 min(‖g‖,∆L1)

L0

)
, (42)

for all g ∈ Rd with ‖g‖ ∈ [ε, σ1 + (σ2 + 1)∆L1], and that there do not exist any (p, δ)-tricky pairs
with respect to α. Suppose g ∈ Rd with ‖g‖ = ε. If σ2 ≥ 3, then

α(g) ≤ Õ
(

1

L1(∆L1)1−γ2−γ3εγ1σ
γ2+γ3−γ1
1

)
.

On the other hand, if σ2 ∈ (1, 3), then

α(g) ≤ Õ
(

1

(σ2 − 1)2−γ4−γ5−γ6εγ4L1(∆L1)1−γ5−γ6σ
γ5+γ6−γ4
1

)
.

Proof. Different from the proof sketch in Section 6.1, in our actual construction below, we use
two sequences {xi} and {yi} instead of one sequence {zi}. Every x in the sequence {xi} satisfies

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

|P̂g(x)| ∈ [ε, σ1+(σ2−1)ε], and every y in {yi} satisfies |P̂g(x)| ∈ [σ1,+(σ2−1)ε, σ1+(σ2−1)G]
(see Equation 27 for the definition of G).

Denote β(x) = α (x) ‖x‖, fix any p0 ∈
(

1
2 ,

σ2

σ2+1

)
and define a sequence {xi}∞i=0 as follows:

x0 = g

xi = (−1)i
p0‖xi−1‖+ ε

1− p0

g

‖g‖
.

Also, denote k0 = max
{
i ≥ 0 : ‖xi‖ ≤ 1−p0

p0
σ1 +

(
1−p0
p0

σ2 − 1
)
ε
}

. We claim that, for each i
with 0 ≤ i ≤ k0, the pair (xi,xi+1) satisfies all of the conditions of a (p0, δ)-tricky pair, other than
possibly Equation 34. Notice that ‖xi‖ is increasing and 〈xi, g〉 has alternating sign, so Equation 29
and Equation 30 are satisfied. Recall that ‖xi‖ ≤ 1−p0

p0
σ1 +

(
1−p0
p0

σ2 − 1
)
ε by the definition of

k0. Since ε ≤ G was assumed in Theorem 4, this implies ‖xi‖ ≤ 1−p0
p0

σ1 +
(

1−p0
p0

σ2 − 1
)
G. So

Equation 31 is satisfied. Since ‖xi‖ ≤ 1−p0
p0

σ1 +
(

1−p0
p0

σ2 − 1
)
ε, we must fulfill the first branch of

the RHS of Equation 32. This only requires ‖xi+1‖ ≥ p0‖vxi‖+ε
1−p0 , which holds by construction of the

sequence {xi}. Finally, Equation 33 is satisfied again from ε ≤ G, since

‖xi+1‖ =
p0‖xi‖+ ε

1− p0
≤ p0‖xi‖+G

1− p0
.

This verifies the claim that the pair (xi,xi+1) satisfies Equation 29 through Equation 33. If (xi,xi+1)
also satisfied Equation 34, then it would be a (p0, δ)-tricky pair. Since it was assumed that there do
not exist any (p, δ)-tricky pairs, it must be that Equation 34 is not satisfied by (xi,xi+1), so that

β(xi) ≤ λ0(p0, δ)β(xi+1)

for all 0 ≤ i ≤ k0. Choosing i = 0 and unrolling to i = k0 − 2:

β(x0) ≤ (λ0(p0, δ))
k0−1

β(xk0−1). (43)

Now choose y0 = (−1)k0(σ1 + (σ2 − 1)ε) g
‖g‖ . Then ‖y0‖ ≥ ‖xk0‖ from the definition of k0.

We again want to show that (xk0−1,y0) satisfies Equation 29 through Equation 33. We can use an
identical argument as above to demonstrate Equation 29 through Equation 32, so it only remains to
show Equation 33. It was assumed in the statement of Theorem 4 that σ1+(σ2−1)ε ≤ G. Therefore

‖y0‖ = σ1 + (σ2 − 1)ε ≤ ∆L1 ≤ p‖xk0−1‖+G

1− p
,

which demonstrates Equation 33. This verifies the claim for (xk0−1,y0). Again, Equation 34 would
imply that (xk0−1,y0) is a (p0, δ)-tricky pair. But we assumed there are none, so Equation 34 cannot
be satisfied. Therefore

β(xk0−1) ≤ λ0(p0, δ)β(y0),

and combining with Equation 43 yields

β(x0) ≤ (λ0(p0, δ))
k0 β(y0). (44)

Now fix some p1 ∈
(

1
2 ,

σ2

σ2+1

)
, define the sequence {yi}∞i=0 as:

yi = (−1)k0+i
(σ2 + 1)p1‖yi−1‖ − σ1
(σ2 + 1)(1− p1)− 1

g

‖g‖
.

Denote k1 = max
{
i ≥ 0 : ‖yi‖ ≤ 1−p1

p1
σ1 +

(
1−p1
p1

σ2 − 1
)
G
}

. Similarly as for the sequence
{xi}, we claim that for each i with 0 ≤ i ≤ k1, the pair (yi,yi+1) satisfies all of the conditions of a
(p1, δ)-tricky pair, other than possibly Equation 34. Equation 29 and Equation 30 are satisfied, since
‖yi‖ is increasing and 〈yi, g〉 alternates in sign. The upper bound of ‖yi‖ in the definition of k1
ensures that Equation 31 is satisfied. Since

‖yi‖ ≥ ‖y0| = σ1 + (σ2 − 1)ε ≥ 1− p1
p1

σ1 +

(
1− p1
p1

σ2 − 1

)
ε,

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

we must fulfill the second branch of the RHS of Equation 32. This only requires

‖yi+1‖ ≥ (σ2 + 1)p1‖yi‖ − σ1
(σ2 + 1)(1− p1)− 1

,

which holds by construction of the sequence {yi}. Finally, to show Equation 33, we need

‖yi+1‖ ≤ p1‖yi‖+G

1− p1
,

which is equivalent to

(σ2 + 1)p1‖yi−1‖ − σ1
(σ2 + 1)(1− p1)− 1

≤ p1‖yi‖+G

1− p1

(1− p1)(σ2 + 1)p1‖yi−1‖ − (1− p1)σ1 ≤ ((σ2 + 1)(1− p1)− 1)p1‖yi‖+ ((σ2 + 1)(1− p1)− 1)G

p1‖yi‖ ≤ (1− p1)σ1 + ((σ2 + 1)(1− p1)− 1)G

‖yi‖ ≤ 1− p1
p1

σ1 +
(σ2 + 1)(1− p1)− 1

p1
G

‖yi‖ ≤ 1− p1
p1

σ1 +

(
1− p1
p1

σ2 − 1

)
G.

All steps in this sequence are reversible, and the last inequality holds by the upper bound of ‖yi‖ in the
definition of k1. Therefore, Equation 33 is satisfied. This verifies the claim that (yi,yi+1) satisfies all
of the conditions of a (p1, δ)-tricky pair, other than possibly Equation 34. Again, Equation 34 cannot
hold, since this would imply the existence of a (p1, δ)-tricky pair, and we have already assumed
otherwise. Therefore

β(yi) ≤ λ0(p1, δ)β(yi+1)

for all 0 ≤ i ≤ k1. Unrolling from i = 0 to i = k1 − 1 yields

β(y0) ≤ (λ0(p1, δ))
k1 β(yk1). (45)

Combining Equation 44 and Equation 45 yields

β(x0) ≤ (λ0(p0, δ))
k0 (λ0(p1, δ))

k1 β(yk1). (46)

We can use Lemma 16 for the sequences {‖xi‖}i and {‖yi‖}i to lower bound k0 and k1. For k0, we
apply Lemma 16 with

a0 = ε, r =
p0

1− p0
, b =

ε

1− p0
, A =

1− p0
p0

σ1 +

(
1− p0
p0

σ2 − 1

)
ε.

Then

A(r − 1) + b

a0(r − 1) + b
=

(
1−p0
p0

σ1 +
(

1−p0
p0

σ2 − 1
)
ε
)

2p0−1
1−p0 + ε

1−p0

ε 2p0−1
1−p0 + ε

1−p0

=

(
1−p0
p0

σ1 +
(

1−p0
p0

σ2 − 1
)
ε
)
(2p0 − 1) + ε

ε(2p0 − 1) + ε

=

1−p0
p0

(
σ1 +

(
σ2 − p0

1−p0

)
ε
)
(2p0 − 1) + ε

2p0ε

=

(2p0−1)(1−p0)
p0

(σ1 + σ2ε) + 2(1− p0)ε

2p0ε

=
(2p0 − 1)(1− p0)

2p20ε
(σ1 + σ2ε) +

1− p0
p0

,
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so Lemma 16 implies

k0 =

 log
(

(2p0−1)(1−p0)
2p20ε

(σ1 + σ2ε) +
1−p0
p0

)
log p0

1−p0


≥

log
(

(2p0−1)(1−p0)
2p20ε

(σ1 + σ2ε) +
1−p0
p0

)
log p0

1−p0
− 1

=
log b0

log p0
1−p0

− 1, (47)

where we denoted

b0 =
(2p0 − 1)(1− p0)

2p20ε
(σ1 + σ2ε) +

1− p0
p0

.

Similarly, for k1, we apply Lemma 16 with

a0 = σ1 + (σ2 − 1)ε, r =
(σ2 + 1)p1

(σ2 + 1)(1− p1)− 1
, b = − σ1

(σ2 + 1)(1− p1)− 1

A =
1− p1
p1

σ1 +

(
1− p1
p1

σ2 − 1

)
G =

1− p1
p1

(
σ1 +

(
σ2 −

p1
1− p1

)
G

)
.

Then

r − 1 =
(σ2 + 1)p1

(σ2 + 1)(1− p1)− 1
− 1 =

(σ2 + 1)(2p1 − 1) + 1

(σ2 + 1)(1− p1)− 1
,

so

A(r − 1) + b =

1−p1
p1

(
σ1 +

(
σ2 − p1

1−p1

)
G
)
((σ2 + 1)(2p1 − 1) + 1)− σ1

(σ2 + 1)(1− p1)− 1
,

and

a0(r − 1) + b =
(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

(σ2 + 1)(1− p1)− 1
.

So

A(r − 1) + b

a0(r − 1) + b
=

1−p1
p1

(
σ1 +

(
σ2 − p1

1−p1

)
G
)
((σ2 + 1)(2p1 − 1) + 1)− σ1

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1
.

Denoting the RHS as b1, this yields

k1 =

 log b1

log (σ2+1)p1
(σ2+1)(1−p1)−1

 ≥ log b1

log (σ2+1)p1
(σ2+1)(1−p1)−1

− 1. (48)

Plugging Equation 47 and Equation 48 into Equation 46:

β(x0) ≤ (λ0(p0, δ))
−1

(λ0(p1, δ))
−1

(λ0(p0, δ))

log b0

log
p0

1−p0 (λ0(p1, δ))

log b1

log
(σ2+1)p1

(σ2+1)(1−p1)−1 β(yk1).

Using the fact that for any ρ,

(λ0(p0, δ))
log ρ = (λ0(p0, δ))

log ρ
log λ0(p0,δ)

log λ0(p0,δ) = ρlog λ0(p0,δ),

we can choose ρ = log b0 and ρ = log b1,

β(x0) ≤ (λ0(p0, δ))
−1

(λ0(p1, δ))
−1

(
1

b0

)φ0
(

1

b1

)φ1

β(yk1), (49)

where

φ0 = log
1

λ0(p0, δ)
/ log

p0
1− p0

φ1 = log
1

λ0(p1, δ)
/ log

(σ2 + 1)p1
(σ2 + 1)(1− p1)− 1

.
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Note that φ0 > φ1, and denote m = 4
L1

log
(
1 +

∆L2
1

L0

)
. We can also bound β(yk1) using the

assumed condition α(g) < 4m
|g| , since we previously showed that (yk1 ,yk+1) satisfies Equation 29

through Equation 33. In particular, Equation 31 implies that

‖yk1‖ ≤ 1− p1
p1

σ1 +

(
1− p1
p1

σ2 − 1

)
G ≤ σ1 + (σ2 + 1)G ≤ σ1 + (σ2 + 1)∆L1,

so that ‖yk1‖ falls within the range for which the bound on α(g) applies. Therefore α(yk1) ≤ 4m
‖yk1

‖ ,
or β(yk1) ≤ 4m. Plugging back to Equation 49 yields

β(x0) ≤ 4m (λ0(p0, δ))
−1

(λ0(p1, δ))
−1

(
1

b0

)φ0
(

1

b1

)φ1

. (50)

It only remains to choose p0 and p1 such that b0, b1, φ0, and φ1 can be bounded in terms of the
problem parameters. First, using Lemma 15, we can rewrite λ0(p, δ) as

λ0(p, δ) = λ0(p, 0) + (λ0(p, δ)− λ0(p, 0))

=
1− p

p
+ (λ0(p, δ)− λ0(p, 0))

=
1− p

p
+ ζ(p, δ),

so that
1

λ0(p, δ)
=

p

1− p+ pζ(p, δ)
=

p

1− p

1− p

1− p+ pζ(p, δ)
.

We can then rewrite φ0 as

φ0 =

(
log

p0
1− p0

+ log

(
1− p0

1− p0 + p0ζ(p0, δ)

))
/ log

p0
1− p0

= 1−
log
(

1−p0+p0ζ(p0,δ)
1−p0

)
log p0

1−p0

and φ1 as

φ1 =

(
log

p1
1− p1

+ log

(
1− p1

1− p1 + p1ζ(p1, δ)

))
/ log

(σ2 + 1)p1
(σ2 + 1)(1− p1)− 1

=
log
(

p1
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

) −
log
(

1−p1+p1ζ(p1,δ)
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

)
We choose p0 and p1 differently depending on the magnitude of σ2. We consider two cases: σ2 ≥ 3
(bounded away from 1), and σ2 ∈ (1, 3) (close to 1).

Case 1: σ1 ≥ 3. Here we choose p0 = p1 = 2
3 , and this satisfies p0, p1 ∈

(
1
2 ,

σ2

σ2+1

)
. We now

bound the remaining constants. For b0:

b0 =
(2p0 − 1)(1− p0)

2p20ε
(σ1 + σ2ε) +

1− p0
p0

=
1

8ε
(σ1 + σ2ε) +

1

2

≥ σ1
8ε
.
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For b1:

b1 =

1−p1
p1

(
σ1 +

(
σ2 − p1

1−p1

)
G
)
((σ2 + 1)(2p1 − 1) + 1)− σ1

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

=

(
1−p1
p1

((σ2 + 1)(2p1 − 1) + 1)− 1
)
σ1 +

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

(i)

≥

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

(ii)

≥

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)σ1) ((σ2 + 1)(2p1 − 1) + 1)− σ1

=

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ2 ((σ2 + 1)(2p1 − 1) + 1)− 1)σ1

(iii)
=

(
1
2σ2 − 1

) (
1
3σ2 +

4
3

)
G(

σ2
(
1
3σ2 +

4
3

)
− 1
)
σ1

=
(σ2 − 2) (σ2 + 4)G

2 (σ2 (σ2 + 4)− 3)σ1
≥ (σ2 − 2) (σ2 + 4)G

2σ2 (σ2 + 4)σ1

=
(σ2 − 2)G

2σ2σ1

(iv)

≥ G

6σ1
,

where (i) uses the fact that

1− p1
p1

((σ2 + 1)(2p1 − 1) + 1)− 1 =
1

2

(
1

3
σ2 +

4

3

)
− 1 =

1

6
σ2 −

1

3
> 0,

(ii) uses ε ≤ σ1 as assumed in the statement of Theorem 4, (iii) plugs in p1 = 2/3, and (iv) uses
σ2 ≥ 3. For φ0 :

φ0 = 1−
log
(

1−p0+p0ζ(p0,δ)
1−p0

)
log p0

1−p0
= 1− log (1 + 2ζ(2/3, δ))

log 2
= 1− γ1,

where we denoted

γ1 =
log (1 + 2ζ(2/3, δ))

log 2
.

For φ1:

φ1 =
log
(

p1
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

) −
log
(

1−p1+p1ζ(p1,δ)
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

)
=

log 2

log
(
2 + 6

σ2−2

) − log (1 + 2ζ(2/3, δ))

log
(
2 + 6

σ2−2

)
= 1−

1− log 2

log
(
2 + 6

σ2−2

)
− log (1 + 2ζ(2/3, δ))

log
(
2 + 6

σ2−2

)
= 1− γ2 − γ3,

where we denoted

γ2 = 1− log 2

log
(
2 + 6

σ2−2

)
γ3 =

log (1 + 2ζ(2/3, δ))

log
(
2 + 6

σ2−2

) .
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Finally, we can plug our bounds of b0, b1, φ0, φ1into Equation 50:

β(x0) ≤ 4m (λ0(2/3, δ))
−1

(λ0(2/3, δ))
−1

(
8ε

σ1

)1−γ1 (6σ1
G

)1−γ2−γ3

(i)

≤ 192m (λ0(2/3, 0))
−1

(λ0(2/3, 0))
−1

(
ε

σ1

)1−γ1 (σ1
G

)1−γ2−γ3
(ii)

≤ 768m

(
ε

σ1

)1−γ1 (σ1
G

)1−γ2−γ3
= 768m

ε1−γ1

G1−γ2−γ3σγ2+γ3−γ11

= 3072
ε1−γ1

L1G1−γ2−γ3σγ2+γ3−γ11

log

(
1 +

∆L2
1

L0

)
,

where (i) uses the fact that λ0(p, δ) is decreasing in terms of δ, and (ii) uses λ0(p, 0) = 1−p
p

(from Lemma 14). As noted after Equation 49, φ0 > φ1, so that γ1 < γ2 + γ3. Replacing
β(x0) = β(g) = α(g)ε yields

α(g) ≤ 3072

L1G1−γ2−γ3εγ1σγ2+γ3−γ11

log

(
1 +

∆L2
1

L0

)
≤ 3072

L1(∆L1)1−γ2−γ3εγ1σ
γ2+γ3−γ1
1

log

(
1 +

∆L2
1

L0

)(
1 + 4 log

(
1 +

∆L2
1

L0

))
,

which is the desired result.

Case 2: σ2 ∈ (1, 3). Here we choose p0 = p1 = σ2+5
12 , which satisfies p0, p1 ∈

(
1
2 ,

σ2

σ2+1

)
. With

this choice,

1− p0 =
−σ2 + 7

12
, 2p0 − 1 =

σ2 − 1

6
,

and similarly for p1. We can now bound the remaining constants. For b0:

b0 =
(2p0 − 1)(1− p0)

2p20ε
(σ1 + σ2ε) +

1− p0
p0

=
(σ2 − 1)(−σ2 + 7)

(σ2 + 5)2
σ1 + σ2ε

ε
+

−σ2 + 7

σ2 + 5

(i)

≥ 6(σ2 − 1)

64

σ1 + σ2ε

ε
+

1

2

≥ 3(σ2 − 1)σ1
32ε
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where (i) uses σ2 ∈ (1, 3). For b1:

b1 =

1−p1
p1

(
σ1 +

(
σ2 − p1

1−p1

)
G
)
((σ2 + 1)(2p1 − 1) + 1)− σ1

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

=

(
1−p1
p1

((σ2 + 1)(2p1 − 1) + 1)− 1
)
σ1 +

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

(i)

≥

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)ε) ((σ2 + 1)(2p1 − 1) + 1)− σ1

(ii)

≥

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ1 + (σ2 − 1)σ1) ((σ2 + 1)(2p1 − 1) + 1)− σ1

=

(
1−p1
p1

σ2 − 1
)
((σ2 + 1)(2p1 − 1) + 1)G

(σ2 ((σ2 + 1)(2p1 − 1) + 1)− 1)σ1

≥

(
1−p1
p1

σ2 − 1
)
G

σ2σ1
=

(
1− p1
p1

− 1

σ2

)
G

σ1
=

(
−σ2 + 7

σ2 + 5
− 1

σ2

)
G

σ1

=
(σ2 − 1)(−σ2 + 5)

σ2(σ2 + 5)

G

σ1

(iii)

≥ (σ2 − 1)G

12σ1
,

where (i) uses

1− p1
p1

((σ2 + 1)(2p1 − 1) + 1)− 1 =
−σ2 + 7

σ2 + 5

(
(σ2 + 1)

σ2 − 1

6
+ 1

)
− 1

=
(−σ2 + 7)(σ2

2 + 5)

6(σ2 + 5)
− 1

=
−σ2 + 7

6
− 1 > 0,

(ii) uses ε ≤ σ1, as was assumed in the statement of Theorem 4, and (iii) uses σ2 ∈ (1, 3). For φ0:

φ0 = 1−
log
(

1−p0+p0ζ(p0,δ)
1−p0

)
log p0

1−p0
= 1−

log
(
1 + σ2+5

−σ2+7ζ(p0, δ)
)

log σ2+5
−σ2+7

= 1−
log
(
1 + σ2+5

−σ2+7ζ(p0, δ)
)

log
(

12
−σ2+7 − 1

) = 1− log (1 + 2ζ(p0, δ))

log
(

12
−σ2+7 − 1

)
= 1− γ4,

where we denoted

γ4 =
log
(
1 + 2ζ( 1

12 (σ2 + 5), δ)
)

log
(

12
−σ2+7 − 1

) .

Lastly, for φ1, notice that

(σ2 + 1)p1
(σ2 + 1)(1− p1)− 1

=
(σ2 + 1)(σ2 + 5)

12

(
(σ2 + 1)(−σ2 + 7)

12
− 1

)−1

=
(σ2 + 1)(σ2 + 5)

(σ2 + 1)(−σ2 + 7)− 12
=

(σ2 + 1)(σ2 + 5)

(σ2 − 1)(−σ2 + 5)

=
3

σ2 − 1
+

15

−σ2 + 5
− 1 ≤ 18

σ2 − 1
− 1.
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Therefore

φ1 =
log
(

p1
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

) −
log
(

1−p1+p1ζ(p1,δ)
1−p1

)
log
(

(σ2+1)p1
(σ2+1)(1−p1)−1

)
=

log
(
σ2+5
−σ2+7

)
log
(

18
σ2−1 − 1

) −
log
(
1 + σ2+5

−σ2+7ζ(p1, δ)
)

log
(

18
σ2−1 − 1

)
≥

log
(

12
−σ2+7 − 1

)
log
(

18
σ2−1 − 1

) − log (1 + 2ζ(p1, δ))

log
(

18
σ2−1 − 1

)
= 1− γ5 − γ6

where we denoted

γ5 = 1−
log
(

12
−σ2+7 − 1

)
log
(

18
σ2−1 − 1

)
γ6 =

log
(
1 + 2ζ( 1

12 (σ2 + 5), δ)
)

log
(

18
σ2−1 − 1

) .

Finally, we can plug our bounds of b0, b1, φ0, φ1 into Equation 50:

β(x0) ≤ 4m (λ0(p0, δ))
−1

(λ0(p1, δ))
−1

(
32ε

3(σ2 − 1)σ1

)1−γ4 ( 12σ1
(σ2 − 1)G

)1−γ5−γ6

(i)

≤ 512m (λ0(2/3, 0))
−1

(λ0(2/3, 0))
−1

(
ε

(σ2 − 1)σ1

)1−γ4 ( σ1
(σ2 − 1)G

)1−γ5−γ6

(ii)

≤ 2048m

(
ε

(σ2 − 1)σ1

)1−γ4 ( σ1
(σ2 − 1)G

)1−γ5−γ6

≤ 2048m
ε1−γ4

(σ2 − 1)2−γ4−γ5−γ6G1−γ5−γ6σγ5+γ6−γ41

≤ 8192ε1−γ4

(σ2 − 1)2−γ4−γ5−γ6L1G1−γ5−γ6σγ5+γ6−γ41

log

(
1 +

∆L2
1

L0

)
=

8192ε1−γ4

(σ2 − 1)2−γ4−γ5−γ6L1(∆L1)1−γ5−γ6σ
γ5+γ6−γ4
1

log

(
1 +

∆L2
1

L0

)(
1 + 4 log

(
1 +

∆L2
1

L0

))
,

where (i) uses the fact that λ0(p, δ) is increasing in terms of p and decreasing in terms of δ, and (ii)
uses λ0(p, 0) = 1−p

p (from Lemma 14). As noted after Equation 49, φ0 > φ1, so that γ4 < γ5 + γ6.
Replacing β(x0) = β(g) = α(g)ε yields

α(g) ≤ 8192

(σ2 − 1)2−γ4−γ5−γ6εγ4L1(∆L1)1−γ5−γ6σ
γ5+γ6−γ4
1

log

(
1 +

∆L2
1

L0

)(
1 + 4 log

(
1 +

∆L2
1

L0

))
,

which is the desired result.

Lemma 12. Define
α0 = max

‖g‖=ε
α(g).

There exists f ∈ Faff(∆, L0, L1, 0, 0) such that ‖∇f(xt)‖ ≥ ε for all t with

t ≤ ∆

2α0ε2
.
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Proof. Denote a = 1
L1

log
(
1 + L1ε

L0

)
, and let g ∈ Rd such that ‖g‖ = ε and α(g) = α0. Define the

objective f : Rd → R as follows:

f(x) =


−ε
(
P̂g(x) + a

)
+ ψ(a) P̂g(x) ≤ −a

ψ(P̂g(x)) P̂g(x) ∈ (−a, a)
ε
(
P̂g(x)− a

)
+ ψ(a) P̂g(x) ≥ a

,

where ψ is as defined in Lemma 1. It is straightforward to show that f is continuously dif-
ferentiable, bounded from below (f∗ = 0), and (L0, L1)-smooth. Also, with the initial point
x0 =

(
a+ ∆−ψ(a)

ε

)
g

‖g‖ , f satisfies f(x0)− f∗ = ∆. So f ∈ Faff(∆, L0, L1, 0, 0).

Consider the execution of A on f from x0 =
(
a+ ∆−ψ(a)

ε

)
g

‖g‖ , and let t0 = max{t ≥
0 | Pg(xs) ≥ a for all 0 ≤ s ≤ t}. Then ∇f(xt) = g for any t ≤ t0, so that

xt+1 = xt − α(∇f(xt))∇f(xt) = xt − α(g)g = xt − α0g,

so

P̂g(xt+1) =

〈
xt+1,

g

‖g‖

〉
=

〈
xt − α0g,

g

‖g‖

〉
= P̂g(xt)− α0‖g‖ = P̂g(xt)− α0ε.

Unrolling over t yields
P̂g(xt+1) = P̂g(x0)− (t+ 1)α0ε.

In particular, choosing t = t0 yields P̂g(xt0+1) ≥ P̂g(x0)− (t0 + 1)α(ε)ε. By the definition of t0,
we also know P̂g(xt0+1) < a. Therefore P̂g(x0)− (t0 + 1)α(ε)ε < a, and rearranging yields

t0 + 1 >
P̂g(x0)− a

α(ε)ε
=

∆− ψ(a)

α(ε)ε2
.

Also,

ψ(a) =
ε

L1
− log

(
1 +

L1ε

L0

)
≤ ε

L1
≤ ∆L1

2L1
≤ ∆

2
,

where the last inequality uses the condition ε ≤ ∆L1

2 from Theorem 4. So

t0 + 1 >
∆

2α(ε)ε2
.

Therefore, t ≤ ∆
2α(ε)ε2 implies that t < t0 + 1, so that P̂g(xt) ≥ a by the definition of t0, and finally

‖∇f(xt)‖ = ε.

The following lemma is nearly identical to parts of the proof of Theorem 2 in Drori & Shamir
(2020), with some small modifications to fit our requirements. We include it here for the sake of
completeness.

Lemma 13. For any sufficiently large d ∈ N and any α : Rd → Rd, there exists some (f, g,Ξ) ∈
Faff(∆, L0, L1, σ1, σ2) such that ‖∇f(xt)‖ = ε for all 0 ≤ t ≤ T , where

T =
∆L0σ

2
1

2ε4
.

Proof. Suppose d ≥ T . Let α : Rd → Rd and define f : Rd → R as

f(x) = ε〈x, e1〉+
T∑
i=2

hi(〈x, ei〉),
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where

hi(x) =



L0

4 a
2
i |x| < −ai

−L0

2 (x+ ai)
2 + L0

4 a
2
i |x| ∈

[
−ai,−ai

2

]
L0

2 x
2 |x| ∈

(
−ai

2 ,
bi
2

)
−L0

2 (x− bi)
2 + L0

4 b
2
i |x| ∈

[
bi
2 , bi

]
L0

4 b
2
i |x| > bi

ai = σ1α(εe1 + σ1ei)

bi = σ1α(εe1 − σ1ei).

For any x,y ∈ Rd,

‖∇f(x)−∇f(y)‖2 =

d∑
i=1

(∇if(x)−∇if(y))
2

=

d∑
i=2

(h′(xi)− h′(yi))
2

(i)

≤ L2
0

d∑
i=2

(xi − yi)
2

≤ L2
0‖x− y‖2,

where (i) uses the fact that h is L0-smooth. Therefore f is L0-smooth, and consequently is (L0, L1)-
smooth. Also, define the following stochastic gradient for f :

F (x, ξ) = ∇f(x) + (2ξ − 1)σ1ej(x),

where
j(x) = min {1 ≤ i ≤ d | 〈x, ei〉 = 0} .

This oracle is defined so that the stochastic gradient noise at step t only affects coordinate t+ 1 (this
will be shown later). Let D be the distribution of ξ, defined as P (ξ = 0) = P (ξ = 1) = 1

2 . With this
definition, the stochastic gradient F satisfies

E[F (x, ξ)] = ∇f(x)
‖F (x, ξ)−∇f(x)‖ ≤ σ1 (almost surely).

Therefore, all of the conditions for (f, F,D) ∈ Faff(∆, L0, L1, σ1, σ2) are satisfied other than the
condition that f is bounded from below and f(x0)−infx f(x) ≤ ∆. This condition will be addressed
at the end of this lemma’s proof.

Now consider the trajectory of A on f from the initial point x0 = 0. We claim that for all 0 ≤ t ≤ T :

〈xt, e1〉 = −ε
t−1∑
i=0

α(F (xi, ξi)) (51)

〈xt, ej〉 =
{
−aj ξj = 1

bj ξj = 0
for all 2 ≤ j ≤ t+ 1 (52)

〈xt, ej〉 = 0 for all j > t+ 1, (53)

which we will prove by induction on t. By construction, all three of the above hold for the base case
t = 0. Now, suppose that they hold for some 0 ≤ t ≤ T − 1. Then for j ≥ 2,

∇jf(xt) = h′j(〈x, ej〉)
(i)
=


h′j(−aj) j ≤ t+ 1 and ξj = 1

h′j(bj) j ≤ t+ 1 and ξj = 0

h′j(0) j > t+ 1

(ii)
= 0,

where (i) uses Equation 52 and Equation 53 from the induction hypothesis, and (ii) comes from
the definition of h. Therefore ∇f(xt) = εe1. Also, Equation 52 and Equation 53 imply that
j(xt) = t+ 2, so

F (xt, ξt) = ∇f(xt) + (2ξt − 1)σ1et+2.
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Therefore, the next iterate xt+1 is:

xt+1 = xt − α(F (xt, ξt))F (xt, ξt)

= xt − α(F (xt, ξt)) (εe1 + (2ξt − 1)σ1et+2)

(i)
= −ε

(
t−1∑
i=0

α(F (xi, ξi))

)
e1 +

t+1∑
i=2

〈xt, ei〉ei − α(F (xt, ξt)) (εe1 + (2ξt − 1)σ1et+2)

= −ε

(
t∑
i=0

α(F (xi, ξi))

)
e1 +

t+1∑
i=2

〈xt, ei〉ei − (2ξt − 1)α(F (xt, ξt))σ1et+2,

where (i) uses Equation 51 from the inductive hypothesis. Notice that the last term (i.e. the coefficient
of et+2) equals −ai when ξt = 1 and it equals bi when ξt = 0. This proves Equation 51, Equation 52,
and Equation 53 for step t+ 1. This completes the induction. Together, these three equations imply
that ‖∇f(xt)‖ = ε for all t ≤ T , which is the desired conclusion.

The only remaining detail is the satisfaction of the condition f(x0)− infx f(x) ≤ ∆. As currently
stated, the objective f does not satisfy this condition because it is not even bounded from below due
to the linear term ε〈x, e1〉. Similarly to Drori & Shamir (2020), we instead argue that there exists a
lower bounded function f̂ that has the same first-order information as f at all of the points xt for
0 ≤ t ≤ T . If this happens, then the behavior of A when optimizing f̂ is the same as that of A when
optimizing f , so the conclusion ‖∇f̂(xt)‖ = ε still holds. Specifically, we need f̂ which is lower
bounded and that satisfies:

∇f̂(xt) = ∇f(xt), f̂(xt) = f(xt)

for all 0 ≤ t ≤ T . The existence of such an f̂ follows immediately from Lemma 1 of Drori & Shamir
(2020), and this f̂ satisfies

inf
x
f̂(x) ≥ min

0≤t≤T
f(xt)−

3ε2

2L0
.

Therefore

f̂(x0)− inf
x
f̂(x) ≤ 3ε2

2L0
− min

0≤t≤T
f(xt)

≤ 3ε2

2L0
+ max

0≤t≤T

(
−ε〈xt, e1〉 −

T∑
i=2

hi(〈xt, ei〉)

)

=
3ε2

2L0
+ max

0≤t≤T

(
ε2

t−1∑
i=0

α(F (xi, ξi))−
t+1∑
i=2

hi(〈xt, ei〉)

)
. (54)

Denote αt = α(F (xt, ξt)). Then for 2 ≤ i ≤ t+ 1,

hi(〈xt, ei〉) =
1

4
L0σ

2
1α

2
i−2.

Plugging into Equation 54:

f̂(x0)− inf
x
f̂(x) ≤ 3ε2

2L0
+ max

0≤t≤T

(
ε2

t−1∑
i=0

αi −
1

4
L0σ

2
1

t+1∑
i=2

α2
i−2

)

≤ 3ε2

2L0
+ max

0≤t≤T

t−1∑
i=0

ε2αi − 1

4
L0σ

2
1α

2
i︸ ︷︷ ︸

Qi


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Qi can be upper bounded by the maximum value of ε2x − 1
4L0σ

2
1x

2 as a function of x, which is
ε4

L0σ2
1

. Therefore

f̂(x0)− inf
x

≤ 3ε2

2L0
+ max

0≤t≤T

t−1∑
i=0

ε4

L0σ2
1

=
3ε2

2L0
+

Tε4

L0σ2
1

(i)

≤ 3ε2

2L0
+

∆

2
(ii)

≤ ∆,

where (i) uses T ≤ ∆L0σ
2
1

2ε4 and (ii) uses ε ≤
√
∆L0/3.

Theorem 7. [Restatement of Theorem 4] Let ∆, L0, L1, σ1 > 0 and σ2 > 1. Denote

G =
∆L1

1 + 4 log
(
1 +

∆L2
1

L0

) ,
and suppose G ≥ σ1. Let 0 < ε ≤ min

{
σ1,

G
2 ,

G−σ1

σ2−1

}
. Let algorithm Aada denote single-step

adaptive SGD with any step size function α : Rd → R for sufficiently large d, and let F =
Faff(∆, L0, L1, σ1, σ2). If σ2 ≥ 3, then

T (Aada,F , ε, δ) ≥ Ω̃

(
(∆L1)

2−γ2−γ3σγ2+γ3−γ11

ε2−γ1

)
.

Otherwise, if σ2 ∈ (1, 3), then

T (Aada,F , ε, δ) ≥ Ω̃

(
(∆L1)

2−γ5−γ6σγ5+γ6−γ41

ε2−γ4
(σ2 − 1)2+γ4−γ5−γ6

)
.

Proof of Theorem 4. We only need to combine Lemmas 9, 10, 11, 12 and 13. If there exists any
g ∈ Rd such that ‖g‖ ∈ [ε, σ1 + (σ2 + 1)M ] and

α(g) ≤ 0 or α(g) ≥ 4

L1‖g‖
log

(
1 +

L1 min(‖g‖,M)

L0

)
,

then there exists some problem instance (f, F,D) such that ‖∇f(xt)‖ ≥ ε for all t ≥ 0 (Lemma
9). If no such g exists, and there exist any tricky pairs with respect to the stepsize function α, then
there exists some problem instance (f, F,D) such that ‖∇f(xt)‖ ≥ ε for all t ≥ 0 with probability
at least δ (Lemma 10). Suppose neither of these cases hold. Lemma 12 implies that there exists a
problem instance (f, F,D) such that ‖∇f(xt)‖ ≥ ε for all t with

T ≤ ∆

4α0ε2
.

Since neither of the above cases hold, the conditions of Lemma 11 hold, so we can bound α0 with
two cases. If σ2 ≥ 3, then

α0 ≤ 3072

L1(∆L1)1−γ2−γ3εγ1σ
γ2+γ3−γ1
1

log

(
1 +

∆L2
1

L0

)(
1 + 4 log

(
1 +

∆L2
1

L0

))
,

so ‖∇f(xt)‖ ≥ ε for all t with

t ≤ Õ

(
∆L0σ

2
1

ε4
+

(∆L1)
2−γ2−γ3σγ2+γ3−γ11

ε2−γ1

)
. (55)
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If σ2 ∈ (1, 3), then

α0 ≤ 8192

(σ2 − 1)2−γ4−γ5−γ6εγ4L1(∆L1)1−γ5−γ6σ
γ5+γ6−γ4
1

log

(
1 +

∆L2
1

L0

)(
1 + 4 log

(
1 +

∆L2
1

L0

))
,

so ‖∇f(xt)‖ ≥ ε for all t with

t ≤ Õ

(
∆L0σ

2
1

ε4
+

(∆L1)
2−γ5−γ6

ε2−γ4
(σ2 − 1)2

(
σ1

σ2 − 1

)γ5+γ6−γ4)
. (56)

Lemma 13 implies that

T (Aada,F , ε, δ) ≥
∆L0σ

2
1

2ε4
,

and this can be combined with Equation 55 and Equation 56 to obtain the two conclusions of Theorem
4.

D AUXILIARY LEMMAS

Lemmas 14 and 15 deal with the asymmetric random walk described in the proof of Theorem 4. We
restate the associated definitions below.

For p ∈ (0, 1) and λ > 0, consider the random walk parameterized by (p, λ):

X0 = 1

P (Xt+1 = Xt + λ) = p (57)
P (Xt+1 = Xt − 1) = 1− p.

Define

zp,λ = P (∃t > 0 : Xt ≤ 0)

λ0(p, δ) = inf {λ ≥ 0 : zp,λ ≤ 1− δ}
ζ(p, δ) = λ0(p, δ)− λ0(p, 0).

Informally, zp,λ is the probability that the random walk reaches a non-positive value, and λ0(p, δ) is
the smallest λ required to ensure that the chance of never reaching a non-positive value is at least δ.

Lemma 14. Let Xt be as defined in Equation 57. Then λ0(p, 0) = 1−p
p .

Proof. Denote a ∧ b = min(a, b). Define τ = inf
t
{t > 0 : Xt < 0}. Note that Xt = X0 +

∑t
i=1 ξi,

where {ξi}ti=1 are i.i.d. and follow the same distribution: Pr(ξi = λ) = p and Pr(ξi = −1) = 1− p.

Now we first prove that {Xt − t((λ+ 1)p− 1)}∞t=1 is a martingale with respect to itself. To see this,
note that for any t > 0, we have

E [Xt − t((λ+ 1)p− 1) | Xt−1] = E [Xt−1 + ξt − t((λ+ 1)p− 1) | Xt−1] = Xt−1−(t−1)((λ+1)p−1),

where the last inequality holds because E [ξt | Xt−1] = λp− (1− p) = (λ+ 1)p− 1.

Let T > 0 be a fixed constant. Note that τ ∧ T is a stopping time which is almost surely bounded.
Then by the optional sampling theorem,

E [Xτ∧T − (τ ∧ T )((λ+ 1)p− 1)] = E[X0] = 1.

Therefore, we have

E [τ ∧ T ] = E [Xτ∧T ]− 1

(λ+ 1)p− 1
.

Let T → ∞. By the monotone convergence theorem,

E[τ ] =
limT→∞ E [Xτ∧T ]− 1

(λ+ 1)p− 1

We consider the following cases.
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• If λ < 1−p
p , then (λ+ 1)p− 1 < 0. Combined with E[τ ] > 0, this implies

lim
T→∞

E [Xτ∧T ]− 1 < 0.

Now we show that E[τ ] < ∞ by contradiction. If E[τ ] = ∞, then limT→∞ E [Xτ∧T ] =
−∞, which is impossible because Xτ∧T ≥ −1 for any T . Therefore Pr(τ = ∞) = 0 and
zp,λ = 1.

• If λ ≥ 1−p
p , then (λ+ 1)p− 1 ≥ 0. Combined with E[τ ] > 0, this implies

lim
T→∞

E [Xτ∧T ]− 1 ≥ 0.

Now we show that Pr(τ = ∞) > 0 by contradiction. If Pr(τ = ∞) = 0, then by
the bounded convergence theorem, we have limT→∞ E [Xτ∧T ] = E[Xτ ] < 0, which
contradicts limT→∞ E [Xτ∧T ]− 1 ≥ 0. Therefore Pr(τ = ∞) > 0 and zp,λ < 1.

Therefore λ0(p) = 1−p
p .

Lemma 15. Let Xt be as defined in Equation 57. Then limδ→0+ λ0(p, δ) = λ0(p, 0) for all
p ∈ (0, 1).

Proof. The idea of the proof is, given some λ, to find some α ∈ (0, 1) such that Yt = αXt is a
martingale. We can then apply the optional sampling theorem to αXt in order to get a bound of zp,λ in
terms of λ, which we can use to upper bound λ0(p, δ). This upper bound goes to λ0(p, 0) as δ → 0+.
Combining with the fact that λ0(p, δ) is increasing in terms of δ yields limδ→0+ λ0(p, δ) = λ0(p, 0).

Let p ∈ (0, 1) and δ ∈ (0, p). We want to find λ̃ such that zp,λ̃ ≤ 1− δ (so that λ0(p, δ) ≤ λ̃) and
λ̃→ λ0(p, 0) as δ → 0. First, we need α ∈ (0, 1) such that αXt is a martingale. This requires

E[αXt+1 | Xt] = αXt

pαXt+λ + (1− p)αXt−1 = αXt

pαXt+λ − αXt + (1− p)αXt−1 = 0

pαλ+1 − α+ (1− p) = 0, (58)

so we are looking for a root of hλ(x) = pxλ+1−x+(1−p) in the interval x ∈ (0, 1). We claim that
for all λ > 1−p

p , there is exactly one root of hλ in (0, 1). To see that such a root exists, notice that
hλ(0) = 1− p > 0 and hλ(1) = 0. Also, h′λ(1) = p(λ+ 1)− 1 > 0 (since λ > 1−p

p ). Therefore
hλ(1− z) < 0 for sufficiently small z > 0. Then we can apply the intermediate value theorem to hλ
at hλ(0) > 0 and hλ(1− z) < 0 to conclude that h must have a root in (0, 1).

To see that this root is unique, note that hλ is strictly convex in (0,∞), since h′′λ(x) = pλ(λ +
1)xλ−1 > 0 for x > 0. Suppose hλ had two roots x1, x2 ∈ (0, 1), with x1 < x2. Letting
α = (x2 − x1)/(1 − x1), we have by strict convexity hλ(x2) < (1 − α)hλ(x1) + αhλ(1) = 0,
which contradicts hλ(x2) = 0. Therefore, hλ has a unique root in (0, 1) for every λ > p

1−p . Denote
this root as r(λ).

Now define λ̃ = inf
{
λ > 1−p

p | r(λ) ≤ 1− δ
}

(the threshold 1 − δ will be used later to show

zp,λ̃ ≤ 1− δ). In order to show that λ̃ exists and that λ̃ → λ0(p, 0) as δ → 0, we need a few facts
about r(λ). Specifically, we need

r(λ) is decreasing (59)
lim

λ→ 1−p
p

+
r(λ) = 1 (60)

lim
λ→∞

r(λ) = 1− p. (61)

To see Equation 59, let λ2 > λ1 >
1−p
p . For any x ∈ [r(λ1), 1):

hλ2(x) < hλ1(x) ≤
(
1− x− r(λ1)

1− r(λ1)

)
hλ1

(r(λ1)) +
x− r(λ1)

1− r(λ1)
hλ1

(1) = 0,
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where the first inequality uses the fact that hλ(x) is decreasing in terms of λ for any fixed x, and the
second inequality uses convexity. Then r(λ2) cannot lie in the interval [r(λ1), 1), so r(λ2) < r(λ1).
This shows that r(λ) is decreasing.

To prove Equation 60, notice that r(λ) ∈ (0, 1) already implies lim
λ→ 1−p

p

+ ≤ 1. So it suffices to

show for any ε ∈ (0, 1) that r(λ) > 1− ε for sufficiently small λ. Denoting ` = 1−p
p ,

lim
λ→ 1−p

p

+
hλ(1− ε) = p(1− ε)1/p − x+ (1− p) = h`(1− ε) > h`(1)− εh′`(1) = 0, (62)

where the inequality uses strict convexity of h` and the last equality uses h`(1) = h′`(1) = 0. Also

lim
λ→ 1−p

p

+
h′λ(1− ε) = lim

λ→ 1−p
p

+
p(λ+ 1)xλ − 1 = (1− ε)

1−p
p − 1 < 0. (63)

Together, Equation 62 and Equation 63 tell us that for sufficiently small λ: hλ(1 − ε) > 0 and
h′λ(1− ε) < 0. Then for any x ≤ 1− ε,

hλ(x) ≥ hλ(1− ε) + (x− (1− ε))h′λ(1− ε) > 0.

In other words, for sufficiently large λ, the root of hλ cannot be smaller than 1− ε, or r(λ) > 1− ε.
This proves Equation 60.

For Equation 61, let x ∈ (0, 1) and λ > 1−p
p . Then by strict convexity of hλ:

hλ(x) > hλ(0) + xh′λ(0) = (1− p)− x,

so hλ(x) > 0 for any x ≤ 1− p. Therefore r(λ) > 1− p for any λ, so that limλ→∞ r(λ) ≥ 1− p.
We can also show that limλ→∞ r(λ) ≤ 1− p by showing for any ε > 0 that r(λ) ≤ 1− p+ ε for
sufficiently large λ. By convexity of hλ:

lim
λ→∞

hλ(1− p+ ε) = lim
λ→∞

p(1− p+ ε)λ+1 − (1− p+ ε) + (1− p) = −ε.

So hλ(1− p+ ε) < −ε/2 sufficiently large λ. Then for any x ≥ 1− p+ ε,

hλ(x) ≤ (1− α)hλ(1− p+ ε) + αhλ(1) = −(1− α)ε < 0.

So the root of hλ must be smaller than 1−p+ε, or r(λ) ≤ 1−p+ε. This proves that limλ→∞ r(λ) ≤
1− p, and completes the proof of Equation 61.

Recall the definition λ̃ = inf
{
λ > 1−p

p | r(λ) ≤ 1− δ
}

. Equation 61 and Equation 60 together

imply that λ̃ exists, since δ ∈ (0, p) =⇒ 1− δ ∈ (1− p, 1). Also, Equation 59 and Equation 60
imply that λ̃→ 1−p

p = λ0(p, δ) as δ → 0.

We can now consider the random walk Xt defined in Equation 57 with λ = λ̃. Our goal is to show
that zp,λ̃ ≤ 1− δ, which implies that λ0(p, δ) ≤ λ̃. Let α = r(λ̃) ≤ 1− δ. We have constructed α to
be a root of hλ̃, so that αXt is a martingale, as shown in Equation 58. Let T0 = inf{t ≥ 0 | Xt ≤ 0},
and Tb = inf{t ≥ 0 | Xt ≥ b}, where b > 0. Define T = min(T0, Tb). We have αXmin(T,n) is
bounded for any n and it is nonnegative, therefore by optional sampling theorem and martingale
convergence theorem (e.g., Theorem 4.8.2 in Durrett (2019)), we have

α = αX0

= E
[
αXT

]
= Pr(T0 < Tb)α

XT0 + (1− Pr(T0 < Tb))α
XTb

≥ Pr(T0 < Tb) + (1− Pr(T0 < Tb))α
b+λ,

where the inequality holds due to α ∈ (0, 1), XT0
≤ 0, and XTb

≤ b+ λ. Let b→ ∞ on both sides,
and note that αb → 0, we have

α ≥ Pr(T0 <∞) = zp,λ̃. (64)

Therefore
zp,λ̃ ≤ α ≤ 1− δ,
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so that λ0(p, δ) ≤ λ̃. Finally,

λ0(p, 0) ≤ lim
δ→0+

λ0(p, δ) ≤ lim
δ→0+

λ̃ = λ0(p, 0),

so that limδ→0+ λ0(p, δ) = λ0(p, 0).

Lemma 16. Let {ai}∞i=0 be a positive sequence of reals satisfying ai+1 = rai + b for r > 1, and let
A ≥ a0. Define k = max{i ≥ 0 : ai ≤ A}. Then

k =

 log
(
A(r−1)+b
a0(r−1)+b

)
log r


Proof. It is straightforward to show by induction that for any i ≥ 0:

ai = a0r
i + b

i−1∑
j=0

rj = a0r
i + b

ri − 1

r − 1
= ri

(
a0 +

b

r − 1

)
− b

r − 1
.

Then ai ≤ A if and only if

ri
(
a0 +

b

r − 1

)
− b

r − 1
≤ A

ri
(
a0 +

b

r − 1

)
≤ A+

b

r − 1

ri ≤
A+ b

r−1

a0 +
b

r−1

=
A(r − 1) + b

a0(r − 1) + b

i ≤
log
(
A(r−1)+b
a0(r−1)+b

)
log r

.

So k is the largest integer smaller than or equal to the RHS of the above.

E DISCUSSION ON STABILIZATION CONSTANT γ

In Theorem 1, we showed that Decorrelated AdaGrad-Norm exhibits a quadratic dependence on
∆, L1 in the dominating term of its convergence rate, so that the number of iterations required to
find an ε-stationary point is Ω(∆2L2

1σ
2ε−4). This result depends on the condition γ ≤ Õ(∆L1),

which covers the standard protocol in practice of choosing γ to be a small constant, e.g. γ = 1e− 8.
However, it is natural to ask whether our result can extend to any choice of γ.

In this section, we answer this question in the deterministic setting, that is, with σ = 0, we show that
the lower bound of Theorem 1 can be recovered even if the condition γ ≤ Õ(∆L1) is removed. This
shows that (deterministic) Decorrelated AdaGrad-Norm cannot recover the optimal complexity from
the smooth (deterministic) setting, no matter the choice of γ. This result is stated below.
Theorem 8. Denote Fdet = Fas(∆, L0, L1, 0), and let algorithm ADAN denote Decorrelated

AdaGrad-Norm (Equation 1) with parameters η, γ > 0. Let 0 < ε ≤ min
{

∆L1

2 ,
√

∆γ
4η

}
. If

∆L2
1 ≥ L0, then

T (ADAN,Fdet, ε) ≥ Ω̃

(
∆2L2

1

ε2

)
.

The proof structure is similar as Theorems 1, 2, and 3, by splitting into cases depending on the choice
of η and γ. However, for this proof we split into cases slightly differently than in these three theorems;
here, the cases are determined by the magnitude of η and γ/η. The proof relies on Lemma 1 for one
case and reuses the hard instance of Lemma 4 for the other.
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Proof. We consider two cases: In the first case, both of the following hold:

η ≥ 1/L1 and γ/η ≤ ∆L2
1

8 log
(
1 +

48∆L2
1

L0

) . (65)

In the second case, one or both of these two conditions fail:

η ≤ 1/L1 or γ/η ≥ ∆L2
1

8 log
(
1 +

48∆L2
1

L0

) . (66)

We will show that in the first case, there exists an objective for which Decorrelated AdaGrad-Norm
will never converge, and in the second case, there exists an objective for which convergence requires
Ω(∆2L2

1ε
−2) iterations.

Case 1 This case is the simpler of the two, since we can directly apply Lemma 5. The conditions of
this lemma are immediately satisfied by the conditions of this case. Therefore, in Case 1, there exists
an objective (f, g,D) ∈ Fdet such that ‖∇f(xt)‖ ≥ ∆L1 for all t ≥ 0.

Case 2 For this case, we will reuse the hard instance from Lemma 8. Denoting m =
1
L1

log
(
1 + L1ε

L0

)
, the objective is defined as

f(x) =


−ε(x+m) + ψ(m) x < −m
ψ(x) x ∈ [−m,m]

ε(x−m) + ψ(m) x > m

,

where

ψ(x) =
L0

L2
1

(exp(L1|x|)− L1|x| − 1) .

With g,D defined so that g(x, ξ) = f ′(x) almost surely when ξ ∼ D, it was already shown in the
proof of Lemma 8 that (f, g,D) ∈ Fdet, when we use the initial point x0 = m+ ∆

2ε .

Letting xt be the sequence of iterates generated by Decorrelated AdaGrad-Norm, we define t0 =
max {t ≥ 0 | xt ≥ m}. Notice that f ′(x) = ε for all x ≥ m, so the definition of t0 implies that
|f ′(xt)| = ε for all t ≤ t0. Accordingly, we want to show that

t0 ≥ Ω̃

(
∆2L2

1

ε2

)
.

Actually, the trajectory of Decorrelated AdaGrad-Norm for this objective is identical to that of
Decorrelated AdaGrad, since the objective’s domain is one-dimensional. Therefore, to analyze the
trajectory xt, we can reuse the analysis from the proof of Lemma 8. Starting from Equation 22,

t0√
γ2 + t0ε2

≥ 1

ε

(
∆

4ηε
− ε

2γ

)
.

Using the assumed upper bound on ε,

ε ≤

√
∆γ

4η

ε2 ≤ ∆γ

4η

ε

2γ
≤ ∆

8ηε
,
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so
t0√

γ2 + t0ε2
≥ ∆

8ηε2

8ηε2t0 ≥ ∆
√
γ2 + ε2t0

64η2ε4t20 ≥ ∆2γ2 +∆2ε2t0

t20 ≥ ∆2γ2

64η2ε4
+

∆2

64η2ε2
t0.

Denoting b = ∆2

64η2ε2 and c = ∆2γ2

64η2ε4 , this gives the quadratic inequality

t20 − bt0 − c ≥ 0.

Since t0 > 0, this implies

t0 ≥ b+
√
b2 + 4c

2
≥ b

2
+

√
c =

∆2

128η2ε2
+

∆γ

8ηε2
. (67)

Finally, we can apply the conditions on η and γ/η from the case analysis. We know that either

η ≤ 1/L1 or γ/η ≥ ∆L2
1

8 log
(
1 +

48∆L2
1

L0

) . (68)

If η ≤ 1/L1, then Equation 67 implies

t0 ≥ ∆2

128η2ε2
≥ ∆2L2

1

ε2
.

On the other hand, if

γ/η ≥ ∆L2
1

8 log
(
1 +

48∆L2
1

L0

) ,
then Equation 67 implies

t0 ≥ ∆γ

8ηε2
≥ ∆2L2

1

64ε2 log
(
1 +

48∆L2
1

L0

) .
Either way, we have

t0 ≥ Ω̃

(
∆2L2

1

ε2

)
,

which finishes the analysis for Case 2.

Putting The Cases Together The case analysis above shows that, no matter the choice of γ, η,
there always exists some objective (f, g,D) ∈ Fdet such that the number of iterations to find an
ε-stationary point is at least

Ω̃

(
∆2L2

1

ε2

)
.
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