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ABSTRACT

Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task
where a model needs to be adapted to a new domain without access to target
domain labels or source domain data. The primary difficulty in this task is that the
model’s predictions may be inaccurate, and using these inaccurate predictions for
model adaptation can lead to misleading results. To address this issue, this paper
proposes a novel approach that considers multiple prediction hypotheses for each
sample and investigates the rationale behind each hypothesis. By consolidating
these hypothesis rationales, we identify the most likely correct hypotheses, which
we then use as a pseudo-labeled set to support a semi-supervised learning procedure
for model adaptation. To achieve the optimal performance, we propose a three-
step adaptation process: model pre-adaptation, hypothesis consolidation, and
semi-supervised learning. Extensive experimental results demonstrate that our
approach achieves state-of-the-art performance in the SFUDA task and can be
easily integrated into existing approaches to improve their performance.

1 INTRODUCTION

The success of deep learning models in visual tasks is largely dependent on whether the training
and testing data share similar distributions He et al. (2016); Liang et al. (2020b). However, when
the distribution of the testing data differs significantly from that of the training data, also known
as domain shift, the performance of these models can decrease substantially Tzeng et al. (2017);
Peng et al. (2019). To mitigate the effects of domain shift and reduce the need for data annotations,
Unsupervised Domain Adaptation (UDA) techniques have been developed to transfer knowledge
from annotated source domains to new but related target domains without requiring annotations in
the target domain Hoffman et al. (2018); Long et al. (2018); Dai et al. (2020); Feng et al. (2021);
Mei et al. (2020). However, most UDA-based methods rely on access to labeled source domain data
during adaptation, such an access may not always be feasible due to privacy concerns. As a result,
Source-Free Unsupervised Domain Adaptation (SFUDA) Liang et al. (2020a); Yang et al. (2021b;a);
Chen et al. (2022); Yang et al. (2022); Zhang et al. (2022); Karim et al. (2023) gains much attention
recently, which only requires a pre-trained model from the source domain and unlabeled data from
the target domain.

The main challenge in SFUDA research is how to generate supervision solely from unlabeled data.
The current approaches in SFUDA research primarily focus on either generating pseudo-labels Liang
et al. (2020a); Yang et al. (2021b;a); Litrico et al. (2023) or conducting unsupervised feature learning
Huang et al. (2021); Chen et al. (2022); Zhang et al. (2022); Karim et al. (2023); Litrico et al. (2023)
to address this issue. To generate reliable pseudo-labels, existing methods Liang et al. (2020a); Yang
et al. (2021b;a) often utilize the distribution of the target domain data to refine the initial predictions
from the source domain, i.e., via clustering Liang et al. (2020a) or using the predictions of neighboring
samples Yang et al. (2021a); Litrico et al. (2023). On the other hand, unsupervised feature learning,
such as contrastive learning, is often employed as an auxiliary task to encourage the features to adapt
to the target domain Huang et al. (2021); Chen et al. (2022); Zhang et al. (2022); Karim et al. (2023);
Litrico et al. (2023).
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In our study, we propose a novel approach to tackle the challenge of SFUDA. Our strategy involves
deferring the utilization of label predictions to update the model in the early stages and carefully
selecting the most reliable predictions to construct a pseudo-labeled set. The key innovation of
our approach lies in considering multiple prediction hypotheses for each sample, accommodating
the possibility of multiple potential labels for each data point. We treat each label assignment
as a hypothesis and delve into the rationale and supporting evidence behind each prediction. We
utilize a representation derived from GradCAM Selvaraju et al. (2017) to encode the rationale
for predicting an instance to a hypothetical label. Our methodology is inspired by the belief that
assessing the correctness of a prediction can be more reliable by analyzing the reasoning behind
a particular prediction, rather than solely relying on prediction probabilities. Subsequently, we
develop a consolidation method to determine the most trustworthy hypothesis and utilize it as the
labeled dataset in a semi-supervised learning framework. By employing this technique, we effectively
transform the SFUDA problem into a conventional semi-supervised learning problem.

Concretely, our approach consists of three key steps: model pre-adaptation, hypothesis consolidation,
and semi-supervised learning. We have empirically observed that pre-adapting the model can enhance
the effectiveness of the second step. To accomplish this, we introduce a straightforward objective that
encourages prediction smoothness from the network. In the final step, we leverage the widely-used
FixMatch Sohn et al. (2020) algorithm as our chosen semi-supervised learning method. Through
extensive experimentation, we demonstrated the clear advantages of our approach over existing
methods in the SFUDA domain and show that the proposed method can be easily integrated into
existing approaches to bring improvement.

2 RELATED WORK

UDA. Unsupervised domain adaptation aims to transfer knowledge learned from a labeled source
domain to an unlabeled target domain. Various approaches have been proposed to address this
task, including discrepancy minimization Tzeng et al. (2014); Ganin & Lempitsky (2015); Long
et al. (2015), adversarial learning Hoffman et al. (2018); Long et al. (2018); Tzeng et al. (2017); Vu
et al. (2019), and contrastive learning Dai et al. (2020); Kang et al. (2019). Recently, self-training
using labeled source data and pseudo-labeled target data has emerged as a prominent approach in
unsupervised domain adaptation (UDA) research Feng et al. (2021); Mei et al. (2020); Xie et al.
(2020); Yu et al. (2021); Zou et al. (2018). However, these methods typically rely on access to the
source data, making them inapplicable when source data is unavailable.

SFUDA. Source-free unsupervised domain adaptation involves adapting a pre-trained model from
a source domain to a target domain without access to source data+labels or target labels. Existing
SFUDA methods can be broadly categorized into two classes: i) Label Refinement: Methods
such as SHOT Liang et al. (2020a), G-SFDA Yang et al. (2021b), NRC Yang et al. (2021a), and
GPL Litrico et al. (2023) focus on refining pseudo labels. SHOT generates pseudo labels using
centroids obtained in an unsupervised manner. G-SFDA, NRC, and GPL refine pseudo labels through
consistent predictions and nearest neighbor knowledge aggregation from local neighboring samples.
ii) Contrastive Feature Learning: Approaches like HCL Huang et al. (2021), C-SFDA Karim et al.
(2023), AdaContrast Chen et al. (2022), GPL Litrico et al. (2023), and DaC Zhang et al. (2022). HCL
and C-SFDA use a contrastive loss similar to moco He et al. (2016), where positive pairs consist of
augmented query samples and negatives are other samples. AdaContrast and GPL exclude same-class
negative pairs based on pseudo labels. DaC divides the target data into source-like and target-specific
samples, computes source-like class centroids, and generates negative pairs using these centroids.
These methods aim to tackle SFUDA by refining pseudo labels or leveraging contrastive feature
learning, demonstrating the potential of different strategies in addressing the challenges of adapting
models without access to labeled source data or target label.

3 METHOD

In the source-free unsupervised domain adaptation (SFUDA) setting, only pretrained source models
and unlabeled data in the target domain are given. The task is to adapt the model to the target domain
by using unlabeled target data only. Our approach sequentially applies three steps as described in
Sec. 3.1), Sec. 3.2) and Sec. 3.3).
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Figure 1: The visualizations illustrate the GradCAM Selvaraju et al. (2017) for predicting the image
to a specific class. In the right-half section, it can be observed that even though the prediction is
incorrect, the obtained rationale (region highlighted in the GradCAM) based on the correct label
remains reasonable and resembles the rationale of the corresponding class depicted in the left-half
section.

3.1 MODEL PRE-ADAPTATION VIA ENCOURAGING SMOOTH PREDICTION

The first step of our approach is to make an initial adaptation to reduce the domain gap. We
empirically find such a step can be beneficial for the following steps. We develop a pre-adaptation
strategy by encouraging a smooth prediction on the data manifold. 1 Specifically, we create a memory
Q ∈ RNq×d to store Nq randomly sampled image features and update it after each batch training
(we choose Nq equals the number of target samples in the dataset). Then for each target sample
xi, we find the z-nearest neighbor NN (xi) and z-samples FN (xi) that are furthest to xi based on
the Euclidean distance between the image feature of xi and features in Q (we choose z = 3 in our
implementation). Then we optimize the following objective:

LPA = LSM + λLFAR =

NB∑
i=1

∑
x′
j∈NN (xi)

KL(p(xi), p(x
′
j)) + λ

NB∑
i=1

∑
x′
j∈FN (xi)

p(xi)
⊤p(x′

j),

(1)

where KL represents Kullback-Leibler divergence and p denotes the posterior probability predicted
from the source model. NB is the number of samples within a mini-batch. The first term is used to
ensure similar samples have similar predictions. However, using the first term alone may lead to a
trivial solution that assigns identical prediction for every instance. Thus we use the second term to
counter-act it as it ensures that the least similar samples should have divergent posterior probabilities,
i.e., the inner product between posterior should close to zero.

3.2 HYPOTHESIS CONSOLIDATION FROM PREDICTION RATIONALE

After pre-adaptation, the model generally exhibits improved adaptation to the target domain. However,
there may still be instances where the model produces incorrect predictions, making it challenging to
rectify misclassifications solely based on predicted posterior probabilities. Therefore, in the second
step, we explore a more robust methodology for analyzing predictions.

We begin by considering multiple prediction hypotheses for each individual instance. Specifically,
for each instance, we consider the top k̃ classes with the highest posterior probabilities as potential
prediction hypotheses, denoted as (xi, y

h
ik), k ∈ top k̃. In other words, we acknowledge the correct

class label could exist within one of these top k̃ classes, even though we do not know which one.

To further analyze each hypothesis (xi, y
h
ik), we calculate the GradCAM Selvaraju et al. (2017) to

identify the regions that contribute to supporting the prediction for yhik, resulting in a representation
1Other pre-adaptation approaches may also work, such as the method in Liang et al. (2020a) Yang et al.

(2022), please refer to Sec. 4.4 for more experimental evidence.
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Figure 2: In our method, we generate multiple prediction hypotheses based on the posterior probability
of the current model. An image I and its hypothetical label form a hypothesis, for example, (I ,
y = clock). For each hypothesis, GradCAM is calculated based on the hypothetical label, resulting in
the corresponding rationale representation a. Subsequently, we calculate the centroid for the rationale
representation of each class.

called the rationale representation aik. This rationale representation encodes the evidence supporting
the corresponding hypothesis. Drawing inspiration from prior work Shu et al. (2022; 2023), we
formally calculate aik using the following equation:

aik =
1

HW

H∑
m=1

W∑
n=1

([
∂logit(yhik)

∂[ϕ(xi)]m,n

⊤

[ϕ(xi)]m,n

]
+

· [ϕ(xi)]m,n

)
∈ Rd′

, (2)

where ϕ(xi) ∈ RH×W×d′
is the feature map of the last convolutional layer of the network with H

height, W width, and d′ channels. [ϕ(xi)]m,n ∈ Rd′
is the feature vector located at the (m,n)-th grid.

logit(yhik) is the logit for class yhik, [·]+ = max(·, 0).
[

∂logit(yh
ik)

∂[ϕ(xi)]m,n

⊤
[ϕ(xi)]m,n

]
+

is equivalent to

GradCAM value at the (m,n)-th grid. Essentially, the calculation of aik performs weighted average
pooling over ϕ(xi) according to the GradCAM. Figure 1 shows the GradCAM calculated from
different hypotheses for the same image. Upon observation, we notice that even if the ground-truth
class is not ranked as the top prediction by the model, its associated rationale remains reasonable and
similar to the common rationale patterns for the corresponding class. This inspires us to leverage this
observation to analyze the model’s current predictions. For example, if an instance has a prediction
hypothesis that exhibits a rationale similar to the corresponding class’s common rationale but is not
ranked as the top prediction, then the top prediction may not be correct.

Formally, we calculate the class-wise rationale centroid as the average rationale representation from
each hypothetical class, representing the common rationale for each class:

āc =

∑
ik 1(y

h
ik = c)aik∑

ik 1(y
h
ik = c)

, (3)

where c represents a class and 1(yhik = c) = 1 if k = c. The idea of using multiple hypotheses with
the rationale representation is illustrated in Figure 2.

Next, we generate a ranking index rik for each prediction hypothesis (xi, aik, y
h
ik) by ranking the

Euclidean distance between aik and its corresponding rationale centroid āyh
ik

, i.e., the centroid for

class yhik, in the ascending order. For each instance xi, we obtain k̃ ranking indices rik, k ∈ top k̃
classes, one for each hypothesis. Then, a hypothesis {xi, yik′} is considered reliable if it satisfies
the following two conditions: (1) rik′ < τ1, indicating the rationale for {xi, yik′} is typical as its
rationale representation is close to the rationale centroid. (2) rij > τ2 ∀j ̸= k′, where τ2 > τ1
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Figure 3: These examples demonstrate the generation of reliable hypotheses. In Case 1, the rank ID
of the second hypothesis derived from the image is lower than τ1, while all other hypotheses from
the same image have ranks larger than τ2. Consequently, the second hypothesis of I1 is selected as a
reliable hypothesis. In Case 2, no hypothesis is selected because it has two hypotheses with rank IDs
less than τ2, indicating a conflict between those hypotheses. Similarly, Case 3 is not selected because
none of its hypotheses has rank IDs lower than τ1.

are two predefined ranking thresholds. The second condition ensures that there is no conflicting
hypotheses, i.e., no other hypothesis is likely to be true for the same instance as their rationale appears
to be unusual.

With those criteria, we can collect a set of reliable hypotheses P as samples with their corresponding
hypothetical labels. Representative examples of this procedure are depicted in Figure 3. It is important
to note that in the second step, we aim to select the most reliable hypothesis rather than correcting
hypotheses. This is because we believe that the task of correcting predictions or hypotheses can
be better accomplished through the use of semi-supervised learning, which allows for the gradual
propagation of pseudo-labels.

By focusing on identifying the most reliable hypothesis based on the proximity of the rationale
representation to the rationale centroid and the absence of conflicting rationales, we can create a
high-quality set of pseudo-labeled samples (see Appendix C and D). These pseudo-labels can then
be used in a semi-supervised learning framework to refine the model’s predictions and gradually
improve its performance.

3.3 SEMI-SUPERVISED LEARNING

After completing the second step of hypothesis consolidation, we obtain a reliable pseudo-label set
P , while the remaining samples are treated as the unlabeled set U . At this stage, we are ready to
apply a semi-supervised algorithm to perform the final step of adaptation. For this purpose, we utilize
one of the state-of-the-art semi-supervised methods, FixMatch Sohn et al. (2020), which combines
consistency regularization and pseudo-labeling to address this task.

Specifically, we start by sampling a labeled mini-batch Bl from the reliable pseudo-label set P and
an unlabeled batch Bu from the unlabeled set U . We then optimize the following objective function
using these batches:

LFM =
∑

xb∈Bl

CE(ŷb, p(Aw(xb))) +
∑

xu∈Bu

1(max(p(Aw(xu))) ≥ τ)CE(ŷu, p(As(xu))), (4)

where ŷu = argmax
c

p(y = c|Aw(xu)). Aw(·) and As(·) are the weakly-augmented and strongly-

augmented operations, respectively. τ is the threshold defined in FixMatch to identify reliable
pseudo-label (we set the same with FixMatch as 0.95), and CE is the cross-entropy between two
probability distributions.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Office-Home Venkateswara et al. (2017) consists of 15,500 images categorized into 65
classes. It includes four distinct domains: Real-world (Rw), Clipart (Cl), Art (Ar), and Product (Pr).
To evaluate the proposed method, researchers perform 12 transfer tasks on this dataset, involving
adapting models across the four domains. The evaluation reports each domain shift Top-1 and the
average Top-1 accuracy. Originally, the DomainNet dataset Peng et al. (2019) consisted of over
500,000 images, including six domains and 345 classes. For our evaluation, we follow the approach
described in Saito et al. (2019) and focus on four domains: Real World (Rw), Sketch (Sk), Clipart
(Cl), and Painting (Pt), resulting in DomainNet-126. We assess our proposed method on seven
domain shifts within these four domains. VisDA-C Peng et al. (2017) contains 152,000 synthetic
images from the source domain and 55,000 real object images from the target domain. It consists of
12 object classes, and there is a significant synthetic-to-real domain gap between the two domains.
Our evaluation reports per-class Top-1 accuracies, as well as the average Top-1 accuracy on this
dataset. The implementation details of our method can be found in the Appendix A.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Table 1: Accuracy (%) on medium-sized Office-Home dataset (ResNet-50). “SF” denotes source-free.

Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 He et al. (2016) × 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
GSDA Hu et al. (2020) × 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.0 80.0 72.2 60.6 83.1 70.3
RSDA Gu et al. (2020) × 53.3 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
SRDC Tang et al. (2020) × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
FixBi Na et al. (2021) × 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

G-SFDA Yang et al. (2021b) ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
SHOT Liang et al. (2020a) ✓ 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SHOT++ Liang et al. (2021) ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
NRC Yang et al. (2021a) ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
CoWA Lee et al. (2022) ✓ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
HCL Huang et al. (2021) ✓ 64.0 78.6 82.4 64.5 73.1 80.1 64.8 59.8 75.3 78.1 69.3 81.5 72.6
DaC Zhang et al. (2022) ✓ 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
VMP Jing et al. (2022) ✓ 57.9 77.6 82.5 68.6 79.4 80.6 68.4 55.6 83.1 75.2 59.6 84.7 72.8
SFDA-DE Ding et al. (2022) ✓ 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.2 72.9
C-SFDA Karim et al. (2023) ✓ 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5

Ours ✓ 59.9 79.6 82.7 70.3 81.8 80.4 68.5 57.8 83.5 72.5 59.8 86.0 73.6

Table 2: Accuracy (%) on large-scale DomainNet-126 dataset (ResNet-50). “SF” denotes source-free.

Method SF Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.

ResNet-50 He et al. (2016) × 58.8 62.2 57.7 50.3 52.6 47.3 73.2 57.4
MCC Jin et al. (2020) × 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9
CDAN Long et al. (2018) × 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5
GVB Cui et al. (2020) × 68.2 69.0 63.2 56.6 63.1 62.2 78.3 65.2
MME Saito et al. (2019) × 70.0 67.7 69.0 56.3 64.8 61.0 76.0 66.4

TENT Wang et al. (2020) ✓ 58.5 65.7 57.9 48.5 52.4 54.0 67.0 57.7
G-SFDA Yang et al. (2021b) ✓ 63.4 67.5 62.5 55.3 60.8 58.3 75.2 63.3
NRC Yang et al. (2021a) ✓ 67.5 68.0 67.8 57.6 59.3 58.7 74.3 64.7
SHOT Liang et al. (2020a) ✓ 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1
AdaConstrast Chen et al. (2022) ✓ 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
DaC Zhang et al. (2022)* ✓ 70.0 68.8 70.9 62.4 66.8 60.3 78.6 68.3
C-SFDAKarim et al. (2023) ✓ 70.8 71.1 68.5 62.1 67.4 62.7 80.4 69.0
GPL Litrico et al. (2023) ✓ 74.2 70.4 68.8 64.0 67.5 65.7 76.5 69.6

Ours ✓ 76.9 71.8 75.4 65.5 69.9 64.6 83.2 72.5
* This work uses ResNet-34 as backbone.

We compare our proposed method against popular source-present and source-free methods on three
benchmark datasets: Office-Home, DomainNet-126, and VisDA-C. We report the Top-1 accuracy,
and the results are presented in Table 1 to Table 3. In the Office-Home dataset, as shown in Table 1,
our proposed method achieves the best performance in terms of Top-1 average accuracy, which
is comparable to the most recent source-free method C-SFDA. Additionally, our method in 3 sub-
transfer tasks achieves the highest accuracy (see bold in Table 1) vs. only one sub-transfer task in
C-SFDA. For the DomainNet-126 dataset, as demonstrated in Table 2, our proposed method exhibits
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Table 3: Accuracy (%) on large-scale VisDA-C dataset (ResNet-101). “SF” denotes source-free.

Method SF plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.

ResNet-101 He et al. (2016) × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MCC Jin et al. (2020) × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR Lu et al. (2020) × 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT Xu et al. (2020) × 95.1 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
CAN Kang et al. (2019) × 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

SHOT Liang et al. (2020a) ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 90.5 89.1 86.3 58.2 82.9
DIPE Wang et al. (2022) ✓ 95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1
HCL Huang et al. (2021) ✓ 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
A2Net Xia et al. (2021) ✓ 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA Yang et al. (2021b) ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC Yang et al. (2021a) ✓ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
SFDA-DE Ding et al. (2022) ✓ 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
AdaContrast Chen et al. (2022) ✓ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
CoWA Lee et al. (2022) ✓ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
DaC Zhang et al. (2022) ✓ 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
BDT Kundu et al. (2022) ✓ - - - - - - - - - - - - 87.8
C-SFDA Karim et al. (2023) ✓ 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8

Ours ✓ 98.0 88.0 86.4 82.3 97.8 96.2 92.1 85.0 95.5 91.7 93.8 56.2 88.6

Table 4: Ablation study of the proposed components calcu-
lated by average accuracy (%) on the Office-Home (O-H),
DomainNet-126 (DN-126) and VisDA-C datasets. PA stands
for model pre-adaptation (Sec. 3.1), HCPR (Sec. 3.2) stands
for hypothesis consolidation from prediction rationale, FM
stands for FixMatch techniques (Sec. 3.3 ).

# PA HCPR FM O-H DN-126 VisDA-C

0 × × × 60.2 55.6 46.6
1 × × ✓ 64.2 60.6 62.3
2 × ✓ ✓ 68.6 70.6 85.2

3 ✓ × × 72.1 67.4 86.2
4 ✓ ✓ × 72.7 69.6 87.5

5 ✓ × ✓ 72.2 67.5 86.2
6 ✓ ✓ ✓ 73.6 72.5 88.6

Table 5: DomainNet-126
(Pt→Cl) Top-1 accuracy (%) of
the proposed method with dif-
ferent number of the prediction
hypotheses k̃. We find k̃ = 4
yields the optimal results.

k̃ Accuracy

2 73.7
3 74.2
4 75.4
5 75.3
6 74.8
10 71.8
20 66.9

significant improvements over all baselines. With an average Top-1 accuracy of 72.5%, our method
outperforms the best source-free baseline by nearly 3% and surpasses the best source-present baseline
by 6.1%. Moreover, our method achieves the best performance in almost all domain shifts. On the
VisDA-C dataset, presented in Table 3, our proposed method outperforms the state-of-the-art method
C-SFDA Karim et al. (2023) by 0.8%. Furthermore, our method achieves the best performance in
specific classes such as “plane”, “bus”, “car”, and “horse”. These results clearly demonstrate the
superiority of our proposed method across the evaluated datasets, showcasing its effectiveness in
source-free domain adaptation scenarios.

4.3 ABLATION STUDIES

Component-wise analysis.

In this section, we conduct ablation studies to analyze the contribution of each component in our
method on three benchmark datasets: Office-Home, DomainNet-126, and VisDA-C. The results
are summarized in Table 4. Each component of our methods helps to enhance the performance,
in which the HCPR (Hypothesis Consolidation from Prediction Rationale) component makes the
most contributions to the promotion of accuracy. Specifically, compared to only using FixMatch,
combining both FixMatch and HCPR significantly improves accuracy by 4.4%, 10.0%, and 22.9% on
the respective datasets. Additionally, in the case of combining both PA (Pre-Adaptation) and HCPR,
we execute PA again following HCPR to integrate the consolidation outcomes from HCPR. This
showcases a substantial enhancement in accuracy, with improvements of 0.6%, 2.2%, and 1.3% on the
respective datasets compared to solely employing PA. Last but not least, Removing HCPR from the
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Figure 4: VisDA-C average accuracy (%) of the
proposed method using different τ1 and τ2.

Figure 5: Office-Home accuracy of Ours and
Ours w/ updating step 2 across varying epochs.

method leads to a performance drop of 1.4%, 5%, and 2% points on Office-Home, DomainNet-126,
and VisDA-C, respectively.

Impact of k̃ —the number of prediction hypotheses per instance.

In our method, we choose labels from the top k̃ highest posterior probabilities as the prediction
hypothesis. In this section, we investigate the impact of the value of k̃. Table 5 shows the accuracy
achieved with different k̃. From the result, we can see that using 2 hypotheses has already led to good
performance. When k̃ is very large, the performance drop significantly. As a result, it is recommended
to set k̃ in a smaller range, and specifically, choosing 3-6 hypotheses leads to optimal performance.

Impact of the two ranking thresholds τ1 and τ2.

To assess the influence of ranking thresholds in our method, we examined the percentage values
τ1 and τ2 relative to the total number of samples. Specifically, we analyzed their impact on the
Top-1 average accuracy on the VisDA-C dataset, as illustrated in Figure 4. Our analysis, depicted in
Figure 4, revealed that the proposed method exhibits robustness to the specific values of τ1 and τ2.

The benefit of using rationale representations.

Table 6: Average accuracy (%) of our HCPR
vs. near centroid collection on the Office-
Home (O-H) and DomainNet-126 (DN-126)
datasets.

Method O-H DN-126

near-centroid selection 72.6 69.6
Ours 73.6 72.5

To further understand the benefit of using the ratio-
nale representation from multiple hypotheses, we
explore an alternative method that replaces the pro-
posed second step by using feature centroids rather
than rationale centroids. Since the feature is invariant
to the prediction hypothesis, only the top predicted
class will be considered. More specially, we first
generate pseudo-label for each instance and calculate
the feature centroid similar to our approach. Then
we rank instances based on the Euclidean distances
between their features and the corresponding class
centroid. The top τ1 features closest to the class cen-
troid are assigned reliable pseudo labels, while the remaining samples are left for step 3. We refer to
this method as “near-centroid selection”. Table 6 presents the comparison results on the Office-Home
and DomainNet-126 datasets. As seen, while such an approach still leads to improvement over using
step 1 and step 3 alone (by cross-referencing Table 4), it is still inferior to the use of HCPR. This
clearly demonstrates the benefits of the latter.

Investigation of recursively applying HCPR.

One may wonder if recursively applying HCPR will lead to additional improvement. To this end,
we create a variant of our method by alternatively applying step 2 and step 3, hoping that they may
mutually enhance each other. We conducted experiments on the Office-Home (Cl→Pr) dataset. The
results are depicted in Figure 5, where the red curve represents our method using the second step
only once, i.e., the hypothesis consolidation occurs between model pre-adaptation (0-9 epochs) and
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Table 7: Accuracy (%) of our method combined with existing SHOT and AaD methods on the
Office-Home, VisDA-C and DomainNet-126 datasets.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

SHOT Liang et al. (2020a) 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SHOT+Ours 58.7 79.5 82.1 69.6 80.7 80.0 69.1 56.9 82.3 74.5 59.2 85.3 73.2
AaD Yang et al. (2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
AaD+Ours 59.8 79.4 82.7 70.0 81.6 80.0 68.5 57.6 83.2 72.7 59.4 86.1 73.4

Method plane bcyle bus car horse knife mcyle person plant sktbrd train truck Avg.

SHOT Liang et al. (2020a) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 90.5 89.1 86.3 58.2 82.9
SHOT+Ours 97.5 84.6 83.0 74.2 96.5 93.7 92.8 86.7 93.5 92.6 89.7 56.9 86.8
AaD Yang et al. (2022) 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.0 88.0
AaD+Ours 97.8 87.6 86.7 83.4 97.7 95.4 94.2 83.8 94.6 91.2 92.8 55.6 88.4

Method Rw→Cl Rw→Pt Pt→Cl Cl→Sk Sk→Pt Rw→Sk Pt→Rw Avg.

SHOT Liang et al. (2020a) 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1
SHOT+Ours 70.5 70.6 72.5 63.6 68.0 61.1 82.8 69.9
AaD Yang et al. (2022) 70.6 69.8 69.3 58.5 66.2 60.2 80.2 67.8
AaD+Ours 75.4 71.3 75.2 64.2 68.4 63.3 82.8 71.5

semi-supervised learning (10-40 epochs). The blue curve represents our method with the second step
updated at the 15th, 20th, and 25th epochs. From the results, we observed that recursively applying
HCPR does not lead to an improvement as one may expect. We also conduct experiments with HCPR
applied recursively to only PA or FixMatch, which can be found in the Appendix F.

4.4 INCORPORATING THE PROPOSED METHOD INTO EXISTING APPROACHES

The proposed method can be seamlessly integrated into existing network architectures, such as
SHOT Liang et al. (2020a) and AaD Yang et al. (2022). Specifically, we replace the pre-adaptation
phase in our first step with SHOT and AaD, resulting in the combined approach referred to as
“SHOT+Ours” and “AaD+Ours”. The experimental results, as shown in Table 7, demonstrate the
superiority of the proposed method integrated into the SHOT and AaD objectives. Across the
Office-Home (Avg. ↑ 1.6% and ↑ 0.7%), VisDA-C (Avg. ↑ 3.9% and ↑ 0.4%), and DomainNet-126
(Avg. ↑ 2.8% and ↑ 3.7%) datasets, the integrated approach consistently outperforms the baseline
of SHOT and AaD. This indicates that our method complements existing SFUDA baselines and
consistently improves their performance by incorporating our approach as a replacement for the
model pre-adaptation phase.

5 LIMITATION AND FUTURE WORK

The current approach relies on having access to the entire target training set to perform crucial
steps like pre-adaptation and identifying the reliable pseudo-labeled set. However, in real-world
applications, online adaptation is often more desirable as it doesn’t require holding a large number of
target examples. As part of our future work, we aim to extend the key idea of this research to the
online streaming setting. By doing so, we can develop a methodology that adapts in real time to
incoming data, allowing for more efficient and effective adaptation in dynamic environments. This
extension will enhance the applicability and practicality of the proposed approach in various domains.

6 CONCLUSION

In conclusion, this paper introduces a novel approach for Source-Free Unsupervised Domain Adap-
tation (SFUDA), where a model needs to adapt to a new domain without access to target domain
labels or source domain data. By considering multiple prediction hypotheses and analyzing their
rationales, the proposed method identifies the most likely correct hypotheses, which are then used
as pseudo-labeled data for a semi-supervised learning procedure. The three-step adaptation process,
including model pre-adaptation, hypothesis consolidation, and semi-supervised learning, ensures
optimal performance. Experimental results demonstrate that the proposed approach achieves state-of-
the-art performance in the SFUDA task and can be seamlessly integrated into existing methods to
enhance their performance.
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A IMPLEMENTATION DETAILS.

To ensure fair comparisons with previous work Liang et al. (2020a); Chen et al. (2022); Karim et al.
(2023), we employ the ResNet-50 He et al. (2016) as the network backbone for the Office-Home
and DomainNet-126 datasets, and ResNet-101 for the VisDA-C dataset. The network architec-
ture follows the same configuration as SHOT Liang et al. (2020a). Specifically, we replace the
original fully connected (FC) layer in ResNet-50/101 with a bottleneck layer of 256 dimensions
and apply batch normalization Ioffe & Szegedy (2015). This modified setup serves as the feature
extractor+projector head, producing feature representations and embedding of dimensions d′ = 2048
and d = 256, respectively. Additionally, we include an extra fully connected layer with weight
normalization Salimans & Kingma (2016) as a task-specific classifier.

In the first step of model pre-adaptation, we use a batch size of 64. The value of λ is set as
λ = λ0 · (1 + 10 · p′)−5, where λ0 = 1, and p′ represents the training progress variable ranging from
0 to 1, calculated as iter

max iter . In the second step of hypothesis consolidation, we set the number of
nearest/furthest neighbor per instance z as 3, and set hypothesis per instance k̃ as 4, respectively. The
ranking thresholds τ1 and τ2 are determined as a percentage of the total number of samples on the
three datasets, specifically set at 0.8% and 1.6%. In the third step of semi-supervised learning, we set
the size of Bl and Bu to 64.

We use the SGD optimizer with a momentum of 0.9 and a weight decay of 1e−3 for all datasets.
The learning rate is set as 1e−4 for all datasets, except for the bottleneck layer and the additional
fully connected layer, where it is set as 1e−3. We train for 40 epochs on the Office-Home and
DomainNet-126 datasets, where 9 epochs are dedicated to the model pre-adaptation. For the VisDA-C
dataset, we train for 15 epochs, with 7 epochs allocated for the model pre-adaptation. All images from
the datasets undergo augmentation, including weak and strong augmentation. Weak augmentation
involves a standard flip-and-shift augmentation strategy, while strong augmentation is similar to the
approach used in the work of Sohn et al. (2020).

B VISUALIZATION

(a) Source model only (b) PA only (c) Ours

Figure B1: t-SNE of target features on the randomly selected 6 DN-126 (Rw→Cl) classes.

In t-SNE visualization, we compare the results with the state before adaptation by examining three
approaches: source model only, model pre-adaptation (PA), and our novel method. The source model
only demonstrates shortcomings, experiencing false predictions within each class and struggling
to establish clear intra-class boundaries. While PA generally achieves accurate predictions within
each class, it falls short in generating clear intra-class boundaries. In contrast, our method excels
in achieving accurate predictions within each class and successfully generates distinct intra-class
boundaries, which showcases its ability to enhance prediction accuracy and produce well-defined
intra-class boundaries.
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Table 1: Comparison of pseudo-label quantity and quality on DomainNet-126 (Rw→Cl). Quantity
(%) refers to the proportion of selected samples to total samples. Quality (%) refers to precision (%)
of chosen sample.

DomainNet (Rw->Cl) Quantity (%) Quality (%)
source model only (con>0.95) 3.95 95.80

SHOT (con>0.95) 61.83 80.38
Ours (PA,con>0.95) 79.13 80.76

Ours (HCPR) 21.35 84.02
Ours (PA+HCPR) 24.65 90.76

C PSEUDO-LABEL QUANTITY AND QUALITY

In this section, we assess both the quality and quantity of pseudo-labels generated by each component
of our method, comparing them with the source model alone and SHOT. Pseudo-label quantity is
measured by the ratio of selected samples to the total samples, while pseudo-label quality is defined
as the precision of the selected samples. The results are shown in Table 1. As seen, using the original
source model generate good pseudo-label quality within the selected group, but only a small number
of samples satisfy the high confidence condition. On the other hand, SHOT and PA select a large
number of samples but with a relatively poor quality of approximately 80%. In comparison, our
method achieves both good pseudo-label quality, approximately 90.76%, and a substantial quantity of
pseudo-labels (24.65%). When comparing only HCPR and only PA, we observed that PA generates
nearly four times as many pseudo-labels as HCPR but with lower quality. This suggests the presence
of significant noise in the pseudo-labels generated by PA.

D THE COURSE OF TRAINING

(a) (b)

Figure D1: Pseudo-label quantity, quality and classification accuracy of our method over training on
DomainNet-126 (Rw→Cl).

We conducted experiments to analyze the quantity, quality, and performance throughout the training
process shown in Figure D1. Our findings revealed that in the initial step with PA (0-9th epochs),
there is a significant increase in the quantity of pseudo labels, albeit accompanied by a gradual
decrease in their quality. However, with the assistance of HCPR (after 9th epch, before 10th epoch),
the quality of pseudo-labels experiences a significant increase, accompanied by a substantial quantity.
In the subsequent third step involving FM (10-40th epochs), the quality of pseudo labels has a gradual
improvement, which subsequently stabilizes at a consistent level.

E EFFECTIVENESS ANALYSIS.

We conducted an analysis and comparison of the memory usage and running time of our method
with recent works, including AdaContrast Chen et al. (2022), C-SFDA Karim et al. (2023), and
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Table E1: Effectiveness analysis on contrastive-based method and our methods. “BS” and “Mem”
represent the batch size and peak memory on a single GPU. The running time is measured on 1 Tesla
A100 GPU with 40 epochs.

DomainNet-126 (Rw→Cl) Batch Size Memory Time Accuracy
AdaConstrast Chen et al. (2022) 128 >32G - 70.2

C-SFDA Karim et al. (2023) 256 >64G - 70.8
GPL Litrico et al. (2023) 256 >64G 3h 74.2

Ours 128 17G 2h 76.9

GPL Litrico et al. (2023). Interestingly, our method requires normal memory usage, whereas the
other methods consume more than 32GB of memory. Despite using standard memory, our approach
achieves higher accuracy in comparison. Additionally, the running time of our method is considerably
less than that of GPL.

F FURTHER EXPLORATION OF RECURSIVE HCPR APPLICATION

Figure F1: Accuracy of different components in our method with Recursive HCPR on the Office-
Home (Cl→Pr) dataset.

We further investigate the influence of recursively applying HCPR to either PA or FixMatch. We
conduct experiments using the Office-Home (Cl→Pr) dataset and configure the following scenarios:

• Combining Step 1 and Step 2, with Step 2 calculated at the 9th, 15th, and 20th epochs
(indicated by the green curve in Figure F1).

• Combining Step 3 and Step 2, with Step 2 calculated at the 7th, 15th, and 20th epochs
(indicated by the yellow curve in Figure F1).

• Combining Step 2 and Step 3, with Step 2 calculated at the 0th, 15th, and 20th epochs
(indicated by the purple curve in Figure F1).

• Our method, represented by the red curve.

Our observations indicate that utilizing Step 2 only once is sufficient, and recursive HCPR application
does not yield improvements. However, we do note that HCPR plays a crucial role in enhancing
FixMatch, particularly in improving the quality of pseudo-labels.

G IMPACT OF THE z —THE NUMBER OF NEAREST AND FURTHEST NEIGHBOR

In the initial step of our model pre-adaptation, we select the z-nearest and z-furthest neighbors for
each target sample. In this analysis, we examine the influence of the z value. Figure G1 and Table G1
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Figure G1: Accuracy of different z in our method on the DomainNet-126 (Pt→Cl) dataset. When
step 1 (0-9 epochs) achieves and maintains the best results, HCPR plays a pivotal role in enhancing
the performance of the model.

Table G1: DomainNet-126 (Pt→Cl) accuracy (%) of the proposed method with different number of
the z.

z 1 2 3 4 5

Accuracy 73.2 74.7 75.4 74.7 74.3

showcase the performance throughout the training process and top-1 accuracy of classification on the
DomainNet-126 (Pt→Cl) dataset for different values of z. The results indicate that even with just one
nearest and furthest neighbor, we achieve favorable classification accuracy, and selecting 2-5 nearest
and furthest neighbors yields optimal performance. Moreover, as observed in Figure G1, it is worth
noting that when step 1 (0-9 epochs) achieves and maintains the best results, HCPR plays a pivotal
role in enhancing the performance of the model.

17


	Introduction
	Related Work
	Method
	Model Pre-adaptation via Encouraging Smooth Prediction
	Hypothesis Consolidation from Prediction Rationale
	Semi-Supervised Learning 

	Experiments
	Experimental Setup
	Comparison with State-of-the-arts
	Ablation Studies
	Incorporating the Proposed Method into Existing Approaches

	Limitation and Future Work
	Conclusion
	Implementation Details.
	Visualization
	Pseudo-label quantity and quality
	The course of training
	Effectiveness analysis.
	Further Exploration of Recursive HCPR Application
	Impact of the z —the Number of Nearest and Furthest Neighbor

