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ABSTRACT
Spellchecking is one of the most fundamental and widely used

search features. Correcting incorrectly spelled user queries not

only enhances the user experience but is expected by the user.

However, most widely available spellchecking solutions are either

lower accuracy than state-of-the-art solutions or too slow to be

used for search use cases where latency is a key requirement. Fur-

thermore, most innovative recent architectures focus on English

and are not trained in a multilingual fashion and are trained for

spell correction in longer text, which is a different paradigm from

spell correction for user queries, where context is sparse (most

queries are 1–2 words long). Finally, since most enterprises have

unique vocabularies such as product names, off-the-shelf spelling

solutions fall short of users’ needs.

In this work, we build a multilingual spellchecker that is ex-

tremely fast and scalable and that adapts its vocabulary and hence

speller output based on a specific product’s needs. Furthermore our

speller out-performs general purpose spellers by a wide margin on

in-domain datasets. Our multilingual speller is used in search in

Adobe products, powering autocomplete in various applications.

CCS CONCEPTS
• Applied computing → Document management and text
processing.
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1 INTRODUCTION
Spell correction is a widely studied problem in search and NLP

research. Spellcheckers generally comprise two parts: creating a list

of candidate corrections and ranking those candidates. Most widely

used spellcheckers are built for English and utilize behavioral [12]

and/or contextual signals [5] for ranking the suggested corrections.

Recent works have also utilized other extrinsic data such as search

results [4] or public domain multi-word datasets [6] as ranking

signals. Although most spellers are built for English, some works

have developed custom spellers for non-English languages such

as Bengali [8] or Dutch [3]. These works are hard to scale across

multiple languages since they are language specific. Most of the

work for spell correction has been around correction in sentences or

paragraphs where context is plentiful. In such cases, neural models

such as transformers and LSTMs perform well since they capture

textual context [10]. However, these systems are usually slower than

their frequentists counterparts and do not showmuch improvement

in search query cases where textual context is minimal.

Our work takes a best-of-both-worlds approach: We utilize con-

textual signals such as search results, behavioral data, and phonetic

signals to suggest candidates, while incorporating a small neural

model for ranking. In addition, we use a suggestion model that is

language agnostic and can scale to multiple languages.

We divide the speller into four components: a behavioral data

analysis pipeline to finetune the downstream components; a prod-

uct specific rule engine to correct common errors and provide

editorial overrides; a suggester that takes in user queries and sug-

gests potential replacements for incorrectly spelled tokens; and a

neural ranker that calculates the probability of the suggested tokens.

We evaluate our speller on both general purpose and product spe-

cific domains and showcase significant improvement over current

methods.

Our approach is currently used in production by the autocom-

plete feature in Adobe search and is being integrated in Adobe

Express and Adobe Stock for online spell correction.

Our main contributions and business impact are:

(1) A novel approach for creating a fast, multilingual spellchecker

for search queries

(2) A novel, low latency architecture for deploying and scaling

the spellchecker

(3) Significant improvement over widely available state-of-the-

art spellcheckers for short user queries
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2 TRAINING DATASETS
Finding public spellcheck datasets is surprisingly hard, with very

few benchmarks available for validation. Furthermore, since we

require data for training our models, we decided to employ a boot-

strapping approach for dataset generation and leveraged crowd

workers for manual curation. This section describes howwe created

the training data, as well as some datasets used for initial internal

evaluation. The evaluation datasets are described in section 5.

2.1 Artificially Generated Query Dataset
We extracted user queries from search over Adobe Stock images

for English, French and German locales for analysis. Since we use

full queries, the model has some context for multi-word queries.

Data Preprocessing: We removed queries with spelling errors

from the dataset by applying the updated Hunspell
1
dictionaries

to check for spelling errors and then had the remaining queries

reviewed by crowd workers. This created our ground truth dataset.

Artificial Injection of Errors: Most spelling errors are due

to one of the following reasons: missing a letter, adding a letter,

typing an incorrect letter. To create our artificial dataset, for each

query in the list of correctly spelled queries, we injected one or

more spelling errors using one of the following techniques in a

probability-weighted fashion:

(1) Change the order of letters (e.g. "change" to "chnage"; "check"

to "chekc"). This the most common spelling error.

(2) Remove or add a vowel (e.g. "malleable" to "mallable" or

"malleiable").

(3) Add an additional character (e.g. "fresh" to "freshh" or "fr-

ersh").

(4) Replace a character with another character (e.g. "fresh" to

"frash" or "frwsh").

(5) Replace accented characters and their unaccented counter-

parts with another character in the same class (e.g. "français"

to "francais"; "wörter" to "worter").

(6) For words with two identical letters in a row, have only one

letter (e.g. change "happiness" to "hapiness").

The artificial errors were patterned on real life errors and were

weighted at a ratio of 7:5:4:2:7:2 respectively. For addition of vowels,

only vowels that usually follow one another were chosen, e.g. for

‘e’, ‘i’ was much more likely to be added than ‘u’. Each query in the

example set had one or more errors injected into them.

Our final artificial dataset size is shown in in Table 1.

English Queries ∼1.5M
French Queries ∼1.2M
German Queries ∼1.4M

Table 1: Training data size

Table 2 shows example input queries and their artificially mis-

spelled training counterparts. Only some words in the query have

added errors so that the model also learns to recognize correctly

spelled words.

1
http://hunspell.github.io/

Query Error Tok-

enized Query

Error Type

atlantic [agtlantic, letter_add_remove

mackerel mackrel] vowel_add_remove

burgundy [burgundy, double_add_remove

background backgrround]

glacier national [glaicer, letter_order

park and hike natoinal, 0ark, letter_order

and, hik] letter_change

letter_add_remove

medal icon [,edal, icon] letter_change

Table 2: Examples of spelling errors introduced to naturally
occurring, correctly spelled Adobe Stock queries. Note that
punctuation marks and numbers can substitute for letters.

2.2 Birkbeck Corpus
The Birkbeck corpus

2
contains 36,133 misspellings of 6,136 words. It

is an amalgamation of errors taken from the native-speaker section

(British and American writers) of the Birkbeck spelling error corpus,

a collection of spelling errors gathered from various sources, avail-

able with detailed documentation from the Oxford Text Archive.
3

It includes the results of spelling tests and errors from free writing,

primarily from schoolchildren, university students and adult liter-

acy students. We utilize 18,295 misspellings from Birkbeck as part

of our English training dataset.

2.3 Commonly Misspelled Word Corpora
The Aspell [1] corpus contains ∼1500 common misspellings. Wiki-

pedia
4
lists commonly misspelled words. We used these to mine

for queries in our domain that feature these misspelled words and

for internal evaluation for model selection.

3 MODEL
Following common practice, we divide the spellcheck model into

two modules: a suggester module and a ranker module. The sug-

gester module takes in the user query and suggests possible correc-

tion tokens for any incorrectly spelled tokens. The ranker module

ranks the suggestions and outputs the most probable candidate.

This is shown in Figure 1.

3.1 Symmetric Delete Suggester
We utilize the Symmetric Delete

5
[7] algorithm for our suggester

module. Symmetric Delete generates a permutation index for words

in the dictionary at index time. Instead of calculating transposes

+ replaces + inserts + deletes at runtime, Symmetric Delete only

calculates deletes of the index dictionary. The symmetric delete

suggester has two key advantages:

• Latency: The module is extremely fast for up to 2 edit dis-

tances, with an average of ∼1ms latency. This is critical for

2
http://www.dcs.bbk.ac.uk/∼ROGER/corpora.html

3
http://ota.ahds.ac.uk/

4
https://en.wikipedia.org/wiki/Commonly_misspelled_English_words

5
https://github.com/wolfgarbe/SymSpell
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Figure 1: Model architecture of the speller

query spell correction. The speed comes from inexpensive

delete-only edit candidate generation and pre-calculation.

• Language Agnostic: The module is language agnostic, not

requiring language specific characteristics to generate sug-

gestions.

Index Time Operation. At index time, we utilize a dictionary

of correct words and generate the symmetric delete index from

those. The dictionary of correct words is generated from known

language dictionaries, including FastText [2] word dictionaries,

Adobe-specific product terms (e.g. product names, file extensions)

and behavioral data (e.g. popular queries). The addition of custom

vocabulary is important because most enterprises have custom

language that is not supported by the open source dictionaries.

Runtime Operation. At runtime, given a user query, we first check

if the query is correctly spelled. If it is incorrect, we find all candi-

dates within 1 edit distance. If <3 candidates are generated, we then

utilize 2 edit distance suggestions. This balances speed and preci-

sion, as increasing the edit distance leads to more suggestions but

higher latency. In our analysis of Adobe user queries, we found that

88% of spelling errors are 1 edit distance away. So, 2 edit distance

suggestions are used sparingly.

3.2 Neural Ranker
We utilize a neural network to rank the suggestions from the sug-

gester module. Due to our low latency requirements, we use a

multilayer perceptron network (MLP) rather than recurrent neural

nets or transformers. Our MLP consists of 5 fully connected lay-

ers, with dropout and batch normalization. Since MLPs do not do

well at token level understanding, we utilize the features for each

suggestion rather than the tokens themselves in order to improve

performance on unseen words (i.e. unique spelling errors).

The features we utilize for each suggestion are below. All features

were scaled and normalized (0–1) before being fed to the neural

network.

• Word Count: In most cases, we want to recommend more

common words. We store the number of occurrences of each

word in the query set. The word counts vary based on appli-

cation, enabling per-application suggestions.

• Asset Frequency: In most cases, we want to correct to a

word which retrieves more search results. For each word, we

store the number of assets associated with it. This feature is

application specific.

• Download Count: Query success is indicated by downloads
in Adobe Stock. We store the number of downloads for the

first 100 (first page) results for each word. This feature is

only used on Adobe Stock.

• Levenshtein Distance: Standard string edit distance mea-

surement [11].

• Language Locale: Language of the locale the query is issued
on (e.g. French, Japanese).

• Application: Which application the query is scoped to (e.g.

Adobe Stock, Adobe Express).

• Phonetic Similarity: For misspellings where the misspelled

word is phonetically correct (e.g. muzeem vs. museum), this

feature helps focus on phonetically similar corrections.
6

4 SERVICE ARCHITECTURE
In order to serve, scale andmaintain low latency for the spellchecker,

we implemented a novel architecture (Figure 2). The suggester

module can struggle with task-specific multi-word errors caused

by compounding or decompounding (e.g. "creativecloud" (creative

cloud) and "photo shop express" (photoshop express)). We created

a multi-word expression (MWE) module that corrects the most

custom multi-word errors. This module uses a key-value map based

on the most common queries in Adobe products and can be different

for different applications. We also created a behavioral pipeline that

automatically updates the statistics for the model features (e.g.

asset frequency, word count). This updates the speller based on

user data without the need for extrinsic changes (e.g. automatically

incorporating new words like "covid" and "blockchain").

5 EVALUATION
We performed several qualitative and quantitative evaluations on

a variety of datasets. Here, we present results from two different

applications to demonstrate the ability of the speller to adapt to

different query patterns.

6
This feature was only utilized for English.
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Figure 2: Spellcheck Service Architecture. The MWE module handles task-specific multi-word expressions before the suggester
and ranker are called. Behavioral pipelines keep features updated. The postprocessor enables task-specific confidence boosting.

5.1 Adobe Express User Queries
We performed a quantitative analysis on user queries from Adobe

Express, a web-based product to create assets from templates. We

generated a misspelling dataset from Adobe Express queries by

mining queries using the commonly misspelled words from the

Wikipedia and Aspell datasets. Additionally we added synthetic

perturbations on the mined queries based on common misspellings

for each of the 3 languages under consideration (English, French,

German). Finally, high frequency spelling errors seen in the appli-

cation were added via human annotation. There are 6355 queries

for English, 1187 for German, and 1128 for French.

This dataset is very different from the dataset that our model

was trained on (section 2) but uses dictionaries from the same

distribution. This gives us a better representation of real world

performance across domains. We tested the performance against

NeuSpell (a state-of-the-art neural spelling model) [9] and Aspell

(a widely used speller) [1]. As shown in Table 3, our approach

outperforms off-the-shelf state-of-the-art approaches in our specific

domain, while taking a fraction of the time (under 1 ms on average

as opposed to 40+ ms).

Model Accuracy Latency

English French German (ms)

Aspell 51.6% 60.8% 29.7% 40

Neuspell 75.5% 37.5% 36.6% 50

Ours 81.7% 85.0% 84.8% <1

Table 3: Accuracy and latency of different spell correction
models on the Adobe Express query dataset

5.2 Adobe Creative Cloud Home User Queries
We performed a qualitative analysis on user queries from Adobe

Creative Cloud Home, one of the main gateways for users to search

about Adobe products. We utilized English queries from a single

day. The evaluation set comprised 7123 unique queries and their

frequencies.

We crowd-sourced and manually checked the correctness of the

response from the speller. Results are depicted in Table 4. Nearly

50% of all unique queries entered by users contained a spelling

error, highlighting the need for a task-specific speller. Most of the

common spelling errors revolved around product names with the

words "creative" or "acrobat" being spelled incorrectly in many

different ways. For this application, having higher boosting for

Adobe product name candidates led to better results due to the

nature of the queries, highlighting the need for application-specific

contextual signals.

Model Recall Precision Accuracy

Aspell 29.5% 98.9% 45.5%

Neuspell 57.6% 84.2% 75.7%

Ours 96.4% 87.3% 82.2%

Table 4: Accuracy metrics on the Creative Cloud Home
dataset. Recall is the rate of incorrect queries that have been
properly corrected. Precision is the rate of corrected queries
where the correction is correct.

6 CONCLUSIONS AND NEXT STEPS
In this paper we described a novel approach for creating a fast,

multilingual spellchecker for user queries. This includes a novel,

low latency architecture for deploying and scaling the spellchecker.

The resulting speller shows significant improvement over widely

available state-of-the-art spellcheckers for short user queries.

Next steps focus on two areas. The first is using the English,

French, and German spellers to replace the current production

query-time spellers given their success in offline spell correction

for autocomplete. The second is extending the speller to ∼10 and
eventually ∼35 languages in order to cover the primary languages

used in our search applications. This will allow us to use the same

high-quality, custom-tuned, low-latency speller for all query spell

correction, both offline for autocomplete suggestions and online

for user queries.
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