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Abstract

Wasserstein distance, which measures the discrepancy between distributions, shows efficacy
in various types of natural language processing (NLP) and computer vision (CV) applica-
tions. One of the challenges in estimating Wasserstein distance is that it is computationally
expensive and does not scale well for many distribution comparison tasks. In this paper,
we aim to approximate the 1-Wasserstein distance by the tree-Wasserstein distance (TWD),
where TWD is a 1-Wasserstein distance with tree-based embedding and can be computed
in linear time with respect to the number of nodes on a tree. More specifically, we propose
a simple yet efficient L1-regularized approach to learning the weights of the edges in a tree.
To this end, we first show that the 1-Wasserstein approximation problem can be formulated
as a distance approximation problem using the shortest path distance on a tree. We then
show that the shortest path distance can be represented by a linear model and can be formu-
lated as a Lasso-based regression problem. Owing to the convex formulation, we can obtain
a globally optimal solution efficiently. Moreover, we propose a tree-sliced variant of these
methods. Through experiments, we demonstrated that the weighted TWD can accurately
approximate the original 1-Wasserstein distance.

1 Introduction

Wasserstein distance, which is an optimal transport (OT)-based distance, measures the discrepancy between
two distributions, and is widely used in natural language processing (NLP) and computer vision (CV)
applications. For example, measuring the similarity between documents is a fundamental natural language
processing task, and can be used for semantic textual similarity (STS) tasks (Yokoi et al.l 2020). For CV
tasks, because it is possible to obtain matching between samples using OT, it is used to determine the
correspondence between two sets of local features (Sarlin et al., [2020).

One of the widely used application of the Wasserstein distance is Word Mover’s Distance (WMD) (Kusner
et al., 2015), which measures the similarity between documents by solving the optimal transport problem.
Recently, [Yokoi et al.| (2020]) proposed a more effective similarity measure based on the Word Rotator’s
Distance (WRD). The WMD and WRD are distance-based optimal transport, which can be estimated by
solving linear programming with O(n?) order of computation, where n is the number of words in a document.
Thus, using WMD and WRD for a large number of documents is challenging.

One of the well-known speedup techniques for OT problems is the use of the Sinkhorn algorithm (Cuturi,
2013)), which solves the entropic regularized optimal transport problem. Using the Sinkhorn algorithm, we
can estimate WMD and WRD with O(n?) computational cost. However, this is slow for most NLP and CV
tasks. Instead of using linear programming and the Sinkhorn algorithm, we can speed up the computation
by projecting word vectors into 1D space and solving the OT problem. This approach is known as the sliced
Wasserstein distance (Rabin et al.||2011}; [Kolouri et al.,2016)), and its computational complexity is O(nlogn).
Note that the result of the sliced Wasserstein distance can be different if we use another projection matrix,
and thus the performance of the sliced Wasserstein distance is highly dependent on the projection matrix.
To alleviate this problem, we average the sliced Wasserstein distances with different projection matrices.

Tree-Wasserstein distance (TWD) (Evans & Matsen| 2012} [Le et al.,2019) computes the optimal transport
on a tree, and it can be computed in O(N), where N is the number of nodes in a tree. Specifically, we first
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embedded the word vectors into a tree and computed the optimal transport based on a tree metric. Because
we can obtain an analytical solution to the OT problem on a tree, it can be solved efficiently. Moreover,
TWD includes sliced Wasserstein as a special case, and it empirically outperforms sliced Wasserstein (Le
et al.;|2019). The performance of TWD is highly dependent on tree construction. One of the widely used tree
construction methods is based on the QuadTree (Indyk & Thaper, |2003). Another approach involves using
a clustering-based tree algorithm (Le et al) 2019). Recently, Takezawa et al.| (2021) proposed a continuous
tree-construction approach. Although tree-based methods improve the computational complexity by a large
margin, existing tree-based methods do not approximate the vanilla Wasserstein distance satisfactorily.

In this paper, we aimed to accurately approximate the 1-Wasserstein distance using TWD. Specifically, we
propose a simple yet efficient sparse learning-based approach to train the edge weights of a tree. To this
end, we first demonstrate that the 1-Wasserstein approximation problem can be formulated as a distance
approximation problem using the shortest path distance on a tree. Then, we show that the shortest path
distance can be represented by a linear model when we fix the tree structure. The weight estimation problem
is then formulated as a non-negative Lasso-based optimization problem. Owing to the convex formulation, we
can obtain a globally optimal solution efficiently. Moreover, we propose a tree-sliced variant of the proposed
method. One of the key advantages of our formulation is that the optimization can be efficiently solved using
an off-the-shelf solver. Through experiments, we evaluate the proposed algorithm for Twitter, BBCSport,
and Amazon datasets and show that the 1-Wasserstein distance computed by linear programming can be
accurately approximated by TWD, whereas QuadTree (Indyk & Thaper, [2003) and ClusterTree (Le et al.,
2019) have high approximation errors.

Contribution: The contributions of our paper are summarized below:

e A Lasso-based weight estimation is proposed for TWD.
e An estimation of the weights for tree-sliced Wasserstein distance is proposed.

e We empirically demonstrate that the proposed method is capable of approximating the 1-Wasserstein
distance accurately.

2 Related Work

Optimal Transport and Wasserstein distance: Measuring the distance between sets is an important
research topic in machine learning, computer vision, and natural language processing. Among the early
works, Earth Mover’s Distance (EMD) is an optimal transport-based distance, equivalent to Wasserstein
distance if we employ distance to compute the cost function and can be computed using linear programming.
EMD has been particularly studied in the computer vision community because it can obtain matching
between samples. For example, [Sarlin et al| (2020) proposed the SuperGlue method, which determines
the correspondence between two sets of local features using optimal transport. |[Liu et al.| (2020) uses the
optimal transport method for semantic correspondence. In NLP tasks, |Kusner et al.| (2015) proposed Word
Mover’s Distance (WMD), the first work to use Wasserstein distance for textual similarity tasks, and it is
widely used in NLP tasks, including text generation evaluation (Zhao et al.l |2019). Recently, |Sato et al.
(2022) re-evaluated WMD in various experimental setups and summarized the pros and cons of WMD.
Another promising approach is based on the Word Rotater’s Distance (WRD) (Yokoi et al., 2020), which
normalizes the word vectors and solves WMD with adjusted probability mass, and it has been reported
that the performance significantly improves over WMD. However, these approaches employ EMD, and the
computational cost is very high; therefore, they cannot be used for large-scale distribution comparison tasks.

To speed up EMD and Wasserstein distance computation, |(Cuturi (2013) proposed the Sinkhorn algorithm,
which solves the entropic regularized optimization problem and computes Wasserstein distance in quadratic
order (i.e., O(n?)). Kusner et al.| (2015 proposed a relaxed Wasserstein Mover’s distance (RWMD), which
only considers the some to one constraint. Because RWMD computation is simple, it can efficiently compute
the distance. |[Atasu & Mittelholzer| (2019)) proposed the approximate constrained transfer method, which
iteratively adds constraints to RWMD and improves the performance of RWMD while maintaining the
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computational speed. To solve large-scale OT problems, [Genevay et al.| (2016) formulated the optimal
transport problem as a concave maximization problem using c-transform and then solved the problem with
the stochastic gradient descent (SGD) and the stochastic average gradient (SAG). Mensch & Peyré| (2020)
proposed the online Sinkhorn algorithm, which solves OT problems using a stream of samples.

Another approach is based on the sliced Wasserstein distance (SWD) (Rabin et al., 2011} Kolouri et al., 2016)),
which solves the optimal transport problem in a projected one-dimensional subspace. Because it is known
that one-dimensional optimal transport can be solved using sorting, SWD can be computed in O(nlogn).
Several extensions of SWD have been proposed. The generalized sliced-Wasserstein distance extends the 1D
sliced Wasserstein distance for multidimensional cases (Kolouri et al,, 2019). The max-sliced Wasserstein
distance determines the 1D subspace that maximizes the discrepancy between two distributions and then
computes the optimal transport in the subspace (Mueller & Jaakkolaj 2015; |[Deshpande et al.l 2019). The
subspace robust Wasserstein distance (SRWD) is a general extension of the max-sliced Wasserstein distance
for multi-dimensional subspaces (Paty & Cuturi, 2019} [Lin et al., 2020)).

Tree-Wasserstein distance (TWD) (Evans & Matsen, [2012; Le et al) [2019) uses tree-based embedding,
whereas SWD uses one-dimensional embedding. Because a chain of a tree can represent one-dimensional
embedding, TWD includes SWD as a special case. reported that the TWD can empirically
outperform SWD. TWD is also studied in the theoretical computer science community and can be computed
using the QuadTree algorithm (Indyk & Thaper) 2003)). The extension of TWD has also been studied, in-
cluding unbalanced TWD (Sato et al., [2020; Le & Nguyenl [2021)), supervised Wasserstein training
2021)), and tree barycenter (Takezawa et al.l[2022). These approaches mainly focus on approximating
1-Wasserstein with tree construction, and the weight of the edges are set by a constant number. Recently,
Backurs et al.| (2020) proposed a flowtree tree that combines the QuadTree method and the cost matrix
computed from vectors. They then showed that the flowtree outperformed QuadTree-based approaches.
Moreover, they theoretically guarantee that the QuadTree and flowtree methods can approximate the near-
est neighbor using the 1-Wasserstein distance. |Dey & Zhang| (2022) proposed an Ll-embedding approach
for approximating 1-Wasserstein distance for the persistence diagram. However, there are no learning-based
approaches for approximating 1-Wasserstein distance for general setup. Thus, we focus on estimating the
weight parameter of TWD from the data to approximate 1-Wasserstein distance.

Applications of Optimal transport: The optimal transport has been applied to various types of
applications including barycenter estimation (Cuturi & Doucet| 2014} [Benamou et al) [2015)), generative
modeling (Arjovsky et al| [2017} |Gulrajani et all 2017} [Kolouri et al. [2018]), domain adaptation (Courty|
et al] 2017} [Shen et al.| [2018)), inverse optimal transport (Li et all [2019), differentiable sorting (Cuturi et al.|
2019; Blondel et all [2020} [Xie et all [2020), and modeling of population dynamics (Bunne et al. [2022)).
Moreover, by using the Sinkhorn algorithm, we can solve a Wasserstein distance minimization problem in
an end-to-end manner (Genevay et all 2018). In this research direction, solving the Wasserstein distance
minimization problem in mini-batch setup is an important research topic (Nguyen et all [2022).

Many OT-based applications are formulated as a minimization problem of Wasserstein distance in dual
(Arjovsky et all [2017), a minimization problem using the Sinkhorn algorithm (Genevay et al. [2018]), or a
minimization problem with 1D slicing (Kolouri et al] [2018). Tree Wasserstein distance, which includes a
sliced Wasserstein distance as a special case, has been applied to document classification (Le et all [2019)),
topological data analysis (TDA) (Le et al] [2019)), a neural architecture search (NAS) (Nguyen et al [2021)),
and a barycenter estimation (Takezawa et all 2022)). Moreover, TWD is known as the UniFrac distance
(Lozupone & Knight|, [2005), which is a phylogenetic method for comparing microbial communities. Thus,
our proposed weighting technique for TWD can be used for microbial community comparisons.

3 Preliminary

In this section, we introduce the optimal transport, Wasserstein distances, and tree-Wasserstein distances.
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3.1 Optimal transport and Wasserstein Distance

Optimal transport: We computed the distance between two datasets {(z;, a;)}?_, and {(x}, bi)}?/:l, where

zreXCRY 2 e X CRY and Y a; =1 and E?/:l b; = 1 are the probability masses. For example,
in the text similarity setup, & and @’ are precomputed word-embedding vectors, and a; is the frequency
of the word x; in a document. Let D = {x;}', denote the entire set of vectors, where N’ denotes the
number of vectors. The goal of this paper is to measure the similarity between two datasets {(x;, a;) ",

and {(x}, bl)}?lzl
In the Kantorovich relaxation of OT, admissible couplings are defined by the set of transport plans between
two discrete measures, = > i} a;0y, and v =37, bjda: -

Up,v) = {1 e R . M1,y = a, 11" 1,, = b}, (1)
where 04, is the Dirac at position «;, 1, is the n-dimensional vector whose elements are ones, and a =
(ar,az,...,a,)" € R and b = (b1, bz, ... )T € R are the probability masses of distributions p and v,
respectively.

Then, the OT problem between two discrete measures p and v is given as

min miic(xi, ), 2
g > > mye(@ @) (2)

i=1 j=1

where 7;; is the 4, j-th element of II, and c(x, ') is a cost function (e.g., c(z,z’) = ||z — z'||3). Eq. ()
is equivalent to the Earth Mover’s Distance and it can be solved by using linear programming with O(n?)
computation (n = n'). To speed up the optimal transport computation, |(Cuturi| (2013) proposed an entropic
regularized optimal transport problem:

min : Z Z mije(eq, ;) — eH(IT), (3)

eU
Ulwy) i3 =1

where € > 0 is the regularization parameter and H(II) = —>"" | E;/:l mi;(log(m;;) — 1) is the entropic
regularization. The entropic regularized OT is equivalent to EMD when € = 0. The entropic regularization
problem can be efficiently solved using the Sinkhorn algorithm with O(nn’) cost. Moreover, the Sinkhorn
algorithm can be efficiently implemented on GPU, leading to a super-efficient matrix computation. Hence,
the Sinkhorn algorithm is one of the most widely used OT solvers in the ML field.

Wasserstein distance: If we use distance function d(x, ') for the cost ¢(x, ') and p > 1, the p-Wasserstein
distance of two discrete measures between two probability measures p and v is defined as

1/p
Wy (p,v) = ( inf / d(m,m’)dw(m,zzf;')p) , (4)
TI'EZ/I(;,L,U) XxX'
where U denotes a set of joint probability distributions (Peyré et al.| [2019)) (Remark 2.13):
U(p,v) = {m € ML(X x X') : Pyym = p, Pxnym = v}, (5)

and Mi(?( ) is the set of probability measures, Pyy and Py are push-forward operators (see Remark 2.2
of (Peyré et al. 2019)). The p-Wasserstein distance of the two discrete measures p = > | a;0,, and

V= 2;;1 bjtsm; is defined as
1/p

Wy (p,v) = min Z Z migd(x, )P . (6)

O (uy) — =
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From the definition of the p-Wasserstein distance, the 1-Wasserstein distance of two discrete measures is
given as:

n TLI
. i

Wi(p,v) = HEHI}I(I;,V) ; ; ﬂl]d(mza mj)? (7)
which is equivalent to Eq. when c(x, ') = d(x,x’). For the distance function, the Euclidean distance
d(z,2') = ||z — z'||2 and Manhattan distance d(z,z’) = || — «’||; are common choices. Note that |Cuturi
(2013) proposed the entropic regularized Wasserstein distance, although the entropic regularized formulation
does not admit the triangle inequality, and thus, it is not a distance. Sinkhorn divergence was proposed to
satisfy the metric axioms of the entropic regularized formulation (Genevay et al., 2018)).

3.2 Tree-Wasserstein distance (TWD)

Although the Sinkhorn algorithm has quadratic time complexity, it is still prohibitive when dealing with
large vocabulary sets. TWD has been gathering attention owing to its light computation, and is thus used
to approximate the 1-Wasserstein distance (Indyk & Thaper, 2003} [Evans & Matsen, [2012; [Le et al. 2019).

We define 7 = (V, E), where V and E are the sets of nodes and edges, respectively. In particular, for a given
tree T, EMD with a tree metric dy(x,2’) is called TWD. TWD admits the following closed-form expression:

Wr(p,v) =Y welp(T(ve)) = v(T(ve))], (8)

eck

where e is an edge index, we € R, is the edge weight of edge e, v, is the e-th node index, and u(T'(ve))
is the total mass of the subtree with root v.. The restriction to a tree metric is advantageous in terms of
computational complexity, TWD can be computed as O(N), where N is the number of nodes of a tree. It has
been reported that TWD compares favorably with the vanilla Wasserstein distance and is computationally
efficient. Note that the sliced Wasserstein distance can be regarded as a special case of TWD (Takezawa
et al., 2022).

TWD can be represented in matrix form as (Takezawa et al., [2021))
Wr(p,v) = [|diag(w)B(a - b)| , (9)

where w € RY is the weight vector, B € {0,1}"V*MNeat is a tree parameter, [B]; ; = 1 if the node i is the
ancestor node of the leaf node j and zero otherwise, IV is the total number of nodes of a tree, Nyt is the
number of leaf nodes, and diag(w) € Rf *N s a diagonal matrix whose diagonal elements are w. Figure
shows an example of a tree embedding. In this tree, the total number of nodes is N = 5 and the number
of leaf nodes is Njgar = 3. It is noteworthy that wg is the weight of the root node. Because a and b are
probability vectors (i.e., a1 = 1), and the elements of the first row of B are all 1, the weight of the root
node is ignored in Wy (u, v).

To compute TWD, the choice of tree structure and weight is crucial for approximating the Wasserstein
distance. Indyk & Thaper| (2003)) proposed the QuadTree algorithm, which constructs a tree by recursively
splitting a space to four regions (quad) and setting the weight parameter as 2—te) (£(e) is the depth of an
edge ¢e). For QuadTree, TWD is defined as

Wr(p,v) =Y 27O u(l(ve)) = v(T(ve))]. (10)
ecE

Le et al.| (2019) proposed a clustering-based tree construction. More recently, Takezawa et al.|(2021]) proposed
training a tree using continuous optimization in a supervised learning setup.

Previous research related to TWD has focused more on constructing a tree. However, learning edge weights
in TWD has not been well examined. Thus, in this paper, we propose a weight estimation procedure for
TWD to approximate Wasserstein distance.
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(a) An illustration of tree embedding. (b) Shortest path between x; and 3.

Figure 1: An illustration of tree embedding and the shortest path between &1 and x3 of the tree. All the input
vectors are associated with the leaf nodes. The by, by, and bs of the tree are given as by = (1,1,0, 1,0)T,
by = (1,1,0,0,1)7, and b3 = (1,0,1,0,0) T, respectively. In this case, dr(x1,x3) = ws + w1 + wa.

4 Proposed method

In this section, we propose a tree weight estimation method using a non-negative Lasso to accurately ap-
proximate the 1-Wasserstein distance.

4.1 Tree weight estimation using Lasso

Because TWD is a 1-Wasserstein distance with a tree metric, it is natural to estimate the weight that can
approximate the 1-Wasserstein distance with an arbitrary distance d(x,«’). Thus, we propose estimating
the weight w by minimizing the error between the 1-Wasserstein distance with distance d(x, ') and TWD.
First, we show that TWD can approximate the vanilla Wasserstein distance arbitrarily well with some trees.

Proposition 1 For any measure p = ;| a;04, and v = E;L/:l bjém; and the distance function d: X x X —
R, there exists a tree T such that Wy(p,v) = Wr(u,v) and IT*(p, v) = II5-(pu, v) holds, where IT*(p,v) is
an optimal solution to Fq. with cost ¢ = d, and II%-(p,v) is an optimal solution with the cost function
being the shortest path distance dr on tree T .

The proof is provided in section [A] This proposition indicates that TWD has sufficient expressive power to
model the 1-Wasserstein distance.

Proposition 2 (Le et al., 12019)

Wru) = _inf [ dr@.ein(a.e), (11)
meU (V) J x x X

where d(x,x’) is the length of the (unique) path between x and &' on a tree (i.e., the shortest path on the
tree) and U is a set of joint probability distributions.

This proposition indicates that the 1-Wasserstein distance with an arbitrary distance metric and TWD are
equivalent (i.e., Wy (p,v) = Wr(p,v)) if d(z, ') = dy(x,2’). Thus, we aim to fit d(x,z’) using dr(z, '),
where the tree structure and edge weights are potential learning parameters. Figure shows the shortest
distance between x; and x3. In this case, dy (21, x3) = Zkepath(ml,wg) wy = ws + wy + we; Thus, a closed-
form expression for the shortest path distance can be obtained as follows.
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Algorithm 1 Sliced Weight Estimation with Trees

1: Input: The matrix X, the regularization parameter A\; > 0, and a set of indices (2.
2: fort=1,2,...,7T do

3:  random.seed(7)

4: By := QuadTree(X) or By := ClusterTree(X)

5. Compute zl(tj) from By and d(x;,x;), (4,7) € Q

6: W= argminwekft 2 jeald@i z;) — szZ(?)Q + Mwl]|1-

7. end for
8: return {(By,w;)}1_,;

Proposition 3 We denote by B € {0,1}V*Newr = [by by, ... by, ] and b; € {0,1}". The shortest path
distance between leaf i and leaf j can be represented as

dT(iEi,ZBj) = ’l,l]—l—(bZ + bj — 2b2 o bJ) (12)

(Proof) The shortest distance between leaf i and leaf j can be written as

dT(sci,acj) = Z Wi

kePath(x;,x;)

Zwk—i— Z’wkr—z Z Wk

kES; k'ES, kESINS;
wai + ’waj — QwT(bi o b])
= wT(bl + bj — 2b; o bj),

where S; includes the set of ancestor node indices of leaf i and node index of leaf i. O

Given the closed-form expression in Proposition [3] we formulate the edge weight estimation problem as
follows. First, we assumed that the tree was obtained using a tree construction algorithm such as QuadTree
(Indyk & Thaper} [2003) and ClusterTree (Le et al. |2019), and we fixed the tree structure (i.e., fixed B).
We then propose the following optimization for learning w:

m
@ = argmin Y _ (d(mi, ;) —w' 2;)* + Awl|1, (13)
weRY ij—=1

where 2z, ; = b; + b; —2b; 0 b; € Rf, |lw|l1 is the Ll-norm, and A > 0 is a regularization parameter. This
optimization problem is convex with respect to w and we can easily solve the problem using an off-the-shelf
nonnegative Lasso solver. Note that z; ; is a sparse vector with only 2H < N elements, where H is the tree
depth. Thus, we can store the entire z in a sparse format and efficiently solve the Lasso problem. Moreover,
thanks to the Ll-regularization, we can make most of the weights zero; this corresponds to merging the
nodes of the tree. Thus, with this optimization, we are not only able to estimate the tree’s weight, but also
compress its size.

We further propose a subsampled variant of the regression method:
W := argmin Z (d(zs, ) — w2 5)% + N|w|1, (14)
weRY (; jeq
where 2 denotes a set of indices. In this paper, we randomly subsampled the indices.

Although our proposed method is specifically designed for the 1-Wasserstein distance approximation, it can
also be used to approximate any distance using shortest path distance on a tree.
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4.2 Tree-Slice extension

Thus far, we have focused on estimating the distance using a single tree. However, the approximation
performance is highly dependent on the tree that is fixed before the weight estimation. To address this issue,
we can use the tree-sliced Wasserstein distance (Le et al., [2019):

Wr(v) = 7 3 Wra,0), (15)
t=1

where W, (u,v) is TWD with the tth generated tree, and T is the total number of trees. In previous studies,
TWD outperformed approaches based on a single tree. The matrix version of the tree-sliced Wasserstein
distance can be written as

Wi, v) = 7= 3 |diag(w,) Bu(a ~ b)), (16)
t=1

where w; and B; are the weight and parameters of the ¢-th tree, respectively.

Here, we extend the single-tree weight estimation to multiple trees. To this end, we separately estimate w;
from each tree and then average the estimates:

T
= 1 P
Wr(p,v) = 7 3 |diag(@:)Bi(a — b, (17)
t=1
where
@y = argmin > (d(@i,2;) —w 2{))? + A, (18)

N.
weRY' (4,5)en

(tj) RN ¢ is computed from B;, where N; is the number of nodes in the ¢-th tree. We call the proposed
methods Wlth QuadTree and ClusterTree as Sliced-qTWD and Sliced-cTWD, respectively. Algorithm [I] is
the pseudocode for the weight estimation procedure using trees. If we set T = 1, this corresponds to a
single-tree case.

4.3 Computational cost

The computational cost of the proposed algorithm consists of three parts: computing a tree, estimating the
weight, and computing TWD. In many Wasserstein distance applications, such as document retrieval, it is
necessary to compute the tree and weight only once. In this paper, we employed QuadTree and ClusterTree,
which are efficient methods of constructing trees. The computational complexity of QuadTree is linear with
respect to the number of samples O(dNjearlog1/e€), where d is the number of input dimension and € > 0
is accuracy. For the ClusterTree , we employed the farthest-point clustering
1985)), and its computational complexity of O(dH Nigatlog K), where H is the depth of tree and K is the
number of clusters. For weight estimation, we employed the FISTA method (Beck & Teboulle, [2009), which
has a efficient solver. Overall, when the number of vectors Nje.r is 10,000 to 30,000, the tree construction
and weight estimation can be performed efficiently with a single CPU. For inference, TWD can be efficiently
computed by using our tree-based approach, since its computational complexity is O(N), where N is the total
number of nodes of a tree. For the tree-sliced variant case, the computational cost of tree-sliced Wasserstein
is T times larger than that of a single tree case.

5 Experiments

In this section, we evaluate our proposed methods using Twitter, BBCSport, and Amazon datasets.
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Table 1: The results of 1-Wasserstein distance approximation. We report the averaged mean absolute error
(MAE), the averaged Pearson’s correlation coefficients (PCC), and the averaged number of nodes used for
computation, respectively. For tree-sliced variants, we empirically fix the number of sliced as T' = 3. For
MAE and PCC computation, we computed the MAE and PCC between the 1-Wasserstein distance computed
by EMD with Euclidean distance and the tree counterparts, and we run the algorithm 10 times by changing
the random seed.

Twitter BBCSport Amazon

Methods MAE | PCC Nodes MAE | PCC Nodes MAE | PCC Nodes
QuadTree 0.486 | 0.702 | 5097.2 | 0.512 | 0.851 | 11463.1 | 0.573 | 0.596 34203.0
qTWD (A = 107%) 0.053 | 0.880 | 4976.4 | 0.098 | 0.923 | 11016.4 | 0.072 | 0.789 32132.7
qTWD (A =1077) 0.053 | 0.879 | 4542.2 | 0.095 | 0.921 9968.5 | 0.067 | 0.783 28443.3
qTWD (A =10"1) 0.051 | 0.873 | 4328.4 | 0.073 | 0.878 8393.8 | 0.051 | 0.732 16983.9
ClusterTree 8.028 | 0.674 | 5717.5 | 5.842 | 0.799 | 12217.7 | 8.074 | 0.759 33430.0
cTWD (A = 1073) 0.039 | 0.885 5674.1 0.028 | 0.902 | 12145.3 | 0.036 | 0.785 32642.3
cTWD (A =109 0.038 | 0.881 | 5481.0 | 0.023 | 0.894 | 11031.8 | 0.033 | 0.778 28701.8
cTWD (A =10"1) 0.036 | 0.867 | 4195.2 | 0.023 | 0.866 6680.7 | 0.028 | 0.768 9879.8
Sliced-Quad Tree 0.463 | 0.796 | 15164.6 | 0.498 | 0.901 | 34205.7 | 0.552 | 0.759 | 102274.2
Sliced-qTWD (A =10"%) [ 0.053 | 0.890 | 14702.7 | 0.100 | 0.945 | 32447.4 | 0.072 | 0.838 94737.4
Sliced-qTWD (A =10"2) | 0.052 | 0.892 | 13581.1 | 0.096 | 0.945 | 29966.5 | 0.067 | 0.849 85604.9
Sliced-qTWD (A = 1071) 0.050 | 0.892 | 13026.3 | 0.073 | 0.925 | 25647.7 | 0.047 | 0.838 53689.9
Sliced-ClusterTree 7.989 | 0.804 | 17129.5 | 5.83 | 0.863 | 36644.2 | 8.071 | 0.822 | 100,251.3
Sliced-cTWD (A =10"%) [ 0.035 | 0.929 | 17002.6 | 0.026 | 0.948 | 36405.2 | 0.035 | 0.888 97891.5
Sliced-cTWD (A = 1072) 0.034 | 0.929 | 16414.7 | 0.021 | 0.943 | 33024.7 | 0.031 | 0.884 86068.8
Sliced-cTWD (A =10"1) | 0.029 | 0.930 | 12565.3 | 0.018 | 0.924 | 19947.2 | 0.022 | 0.870 29540.0

5.1 Setup

We evaluated the approximation ability of the proposed method. More specifically, we measured the error
and correlation between the 1-Wasserstein distance with the Euclidean norm and tree-based methods. For
the tree-based methods, we evaluated QuadTree (Indyk & Thaper, [2003) and ClusterTree (Le et al., |2019).
For ClusterTree, we set the number of clusters K = 5 for all experiments. For the 1-Wasserstein distance, we
used the Python Optimal Transport (POT) package B For tree methods, we first construct a tree using an
entire word embedding vector X and then compute the Wasserstein distance with the tree. For the proposed
methods, we selected the regularization parameter from {1073,1072,1071}. qTWD and ¢TWD are both
proposed methods, and qTWD and ¢cTWD employ QuadTree and ClusterTree, respectively. We compared
all the methods using the Twitter, BBCSport, and Amazon datasets ﬂ We further evaluated the group-sliced
TWD using QuadTree and ClusterTree. We randomly subsample 100 document pairs and computed the
mean absolute error (MAE) and Pearson’s correlation coefficient (PCC) between the 1-Wasserstein distance
computed by EMD with Euclidean distance and the tree counterparts. Moreover, we reported the number
of nonzero tree weights. In this experiment, we set the number of slices to T = 3 and the regularization
parameters A = {1073,1072,1071}. We used SPAMS to solve Lasso problems El For all methods, we ran
the algorithm ten times by changing the random seed. We evaluated all methods using Xeon CPU E5-2690
v4 (2.60 GHz) and Xeon CPU E7-8890 v4 (2.20GHz). Note that since the number of vectors x; tends to be
large for real-world applications, we only evaluated the subsampled training method.

5.2 Results of the approximation of 1-Wasserstein distance

Table [I] presents the experimental results for the Twitter, BBCSport, and Amazon datasets. As shown,
qTWD and cTWD can obtain a small MAE and accurately approximate the original 1-Wasserstein distance.
In contrast, QuadTree and ClusterTree had larger MAE values than the proposed methods. Although
QuadTree has a theoretical guarantee, the MAE of QuadTree is one order of magnitude larger than that of

Thttps://pythonot.github.io/index.html
?https://github.com/gaohuang/S-WMD
Shttp://thoth.inrialpes.fr/people/mairal/spams/
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Figure 2: Scatter plots of the Twitter, BBCSport, and Amazon datasets.

the proposed method. For ClusterTree, since ClusterTree is based on clustering and the tree construction is
independent of the scaling of vectors, it cannot guarantee a good approximation of 1-Wasserstein. However,
our proposed method can approximate 1-Wasserstein even if we use ClusterTree. For PCC, qTWD and
c¢TWD outperformed the vanilla QuadTree and ClusterTree if we set a small A\. Moreover, even when using
half of the nodes (i.e., A = 10~ 1), PCCs of gTWD and cTWD were comparable to QuadTree and ClusterTree.
Figure [2| shows scatter plots for each method. We can see that all methods correlate with the 1-Wasserstein
distance. However, it is evident that the proposed method has a similar scale to that of the original WD,
whereas QuadTree and ClusterTree have larger values than the original WD. Moreover, Figure [3] shows the
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Figure 3: MAE and PCC with respect to the number of training samples. In this experiments, we computed
MAE and PCC for m € {25,000, 50,000, 75,000, 100,000}. Note that MAEs of the ClusterTree are bigger
than 1, and they do not appear in (d),(e), and (f).

effect of the training sample size used for training Eq. . In these experiments, the number of samples
was changed to 25,000, 50,000, 75,000, and 100, 000. We found that PCC could be improved by using more
samples. In contrast, the MAE is small, even if we use a relatively small number of samples.

With the tree-sliced, as reported in (Le et all [2019), Sliced-QuadTree and Sliced-ClusterTree outperform
their non-sliced counterparts. Although there is no gain in MAE, our proposed methods, Sliced-qTWD and
Sliced-cTWD can significantly improve the PCC values. Furthermore, because we use distance to retrieve
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Table 2: The document classification results for Twitter, BBCSport, and Amazon datasets. We used the ten
nearest neighbor classifiers. For the Sinkhorn algorithm, we set the regularization parameter with 10~2 and
the maximum iteration with 100, respectively. We run the algorithms five times by changing the random
seed and reporting the averaged classification accuracy.

Methods Twitter | BBCSport | Amazon
WMD (Sinkhorn) 0.675 0.972 0.905
QuadTree 0.691 0.970 0.865
qTWD (A =107?) 0.697 0.967 0.847
Sliced-QuadTree 0.694 0.970 0.877
Sliced-qTWD (A =1073) | 0.697 0.967 0.887
ClusterTree 0.682 0.901 0.873
cTWD (A =1073) 0.694 0.962 0.878
Sliced-ClusterTree 0.694 0.929 0.900
Sliced-cTWD (A = 1073) 0.700 0.970 0.905

similar documents, we can obtain similar results using the Wasserstein distance. More interestingly, for the
Amazon dataset, Sliced-cTWD (A = 107!) has a PCC value of 0.870 with 29,540 nodes, whereas cTWD
(A = 1073) has a PCC value of 0.785 with 32,642.3 nodes. Thus, Sliced-cTWD significantly outperformed
¢TWD. Thus, to obtain a low approximation error, one strategy is to use the sliced version and prune
unimportant nodes using Lasso.

5.3 Results of Document Classification

We evaluate the document classification experiments tasks with 1-Wasserstein distance (Sinkhorn algorithm),
QuadTree, ClusterTree, qTWD, ¢TWD, and the sliced counterparts. For proposed method, we set the
regularization parameter as A = 1073, In this experiment, we used the 90% of samples for training and the
rest of samples for the test. We then used the ten nearest neighbor classification method. We run five times
by changing the random seed and report the average mean accuracy.

Table [2] shows the classification accuracy for each methods. The proposed weighting-based approaches
compare favorably with the Word Mover’s Distance (WMD) with the Sinkhorn algorithm. In particular,
the proposed method can significantly gain the ClusterTree cases, while the improvements from the vanilla
QuadTree method are modest.

5.4 Computation and memory costs

Table [3] summarizes the computational cost for training and test. For training, we measured the average
computational cost using Xeon CPU E5-2690 v4 (2.60 GHz) for computing cost matrix, tree constructiorﬂ
training set generation for weight estimation, and the Lasso optimization. The training set generation
process includes calculating the cost matrix and the z vectors. For the test, we compute the average time
consumption for comparing the entire documents in training set with one document for the test. As can be
observed, the training set generation for training is the most computationally expensive operation for our
proposed method. The computational costs for computing cost matrix and tree construction are comparable.
In contrast, the computational cost of the Lasso optimization is small. Overall, the computational cost of
training increases if the number of training vectors Nje.s increases. For the test, the proposed method’s
computational speed is several orders of magnitude faster with GPUs. It is important to note that the
proposed approximation approach cannot compute the exact 1-Wasserstein distance; the proposed approach
may not be suited for the task that we should evaluate the 1-Wasserstein distance exactly.

Memory cost: Table [f] shows the required memory space for each method. Note that we report the size
of dense matrices because dense matrices are more suited for GPU. However, since the tree matrix B is

4Due to our implementation of tree-construction, the computational complexities of QuadTree and ClusterTree are O(dNjear)
and O(dNjeasHK), respectively.
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Table 3: The time comparison of Twitter, BBCSport, and Amazon datasets. For training, we compute the
time using Xeon CPU E5-2690 v4 (2.60 GHz). For the test, we run all the methods with an A6000 GPU.
We run the algorithm five times by changing the random seed and report the averaged computational time.
We compute the average time consumption for comparing the entire documents in training set with one
document for the test. The number in the parenthesis of each dataset is the number of the word vectors
used in this paper.

Training (CPU) Test (GPU)
Dataset Methods Cost matrix | Tree const. | Training set gen. | Lasso

Sinkhorn 3.0 n/a n/a n/a 0.159
QuadTree n/a 8.0 n/a n/a 9.1 x107°
Twitter ClusterTree n/a 6.0 n/a n/a 8.8 x107°
(Niear = 4,489) | qTWD (A = 107?) n/a 8.0 39.4 4.1 8.8 x107°
cTWD (A = 107%) n/a 6.0 49.8 11.7 | 9.0 x107°

Sinkhorn 14.7 n/a n/a n/a 0.125
QuadTree n/a 24.9 n/a n/a 8.7 x107°
BBCsport ClusterTree n/a 21.3 n/a n/a 8.8 x107°
(Nieat = 10,103) | gTWD (A = 107%) n/a 24.9 95.6 4.5 8.7 x107°
cTWD (A = 107%) n/a 21.3 109.7 124 | 87 x107°

Sinkhorn 183.4 n/a n/a n/a 2.24
QuadTree n/a 162.2 n/a n/a 1.1 x10™*
Amazon ClusterTree n/a 126.3 n/a n/a 1.1 x107*
(Nieat = 30,249) | qTWD (A = 107%) n/a 162.2 368.8 5.6 1.2 x107*
cTWD (A = 107%) n/a 126.3 366.8 129 | 1.2 x10™*

Table 4: Memory usage of each method for test time. Note that we report the size of dense matrices because
dense matrices are more suited for GPU. However, since the tree matrix B is sparse, the required memory
space for B is negligible in practice. Thus, if we compute TWD with CPU, the required memory space is
much less than that of Sinkhorn-based algorithms.

Twitter (Neat = 4, 489) BBCSport (Niear = 10, 103) Amazon (Niear = 30, 249)
Methods Cost matrix | Tree matrix | Cost matrix | Tree matrix | Cost matrix | Tree matrix
Sinkhorn 161.2 MB n/a 816.6 MB n/a 7320.0 MB n/a
QuadTree n/a 184.8 MB n/a 929.7 MB n/a 8149.3 MB
ClusterTree n/a 203.4 MB n/a 982.6 MB n/a 8089.1 MB
qTWD (A =10"?) n/a 184.8 MB n/a 929.7 MB n/a 8149.3 MB
cTWD (A = 107%) n/a 203.4 MB n/a 982.6 MB n/a 8089.1 MB

sparse, the required memory space for B is negligible in practice. Thus, if we compute TWD with CPU, the
required memory space is much less than that of Sinkhorn-based algorithms.

6 Conclusion

In this paper, we consider approximating the 1-Wasserstein distance with trees. More specifically, we first
showed that the 1-Wasserstein distance approximation can be formulated as a distance-approximation prob-
lem. Then, we proposed a non-negative Lasso-based optimization technique for learning the weights of a tree.
Because the proposed method is convex, a globally optimal solution can be obtained. Moreover, we proposed
a weight estimation procedure for a tree-sliced variant of Wasserstein distance. Through experiments, we
show that the proposed weight estimation method can significantly improve the approximation performance
of the 1-Wasserstein distance for both QuadTree and clustered tree cases. Owing to L1-regularization, we
can compress the tree size without losing approximation performance.

A potential limitation of our proposal is that the tree-based approach may not be suited for tasks that
require the exact evaluation of the 1-Wasserstein distance. Moreover, since it needs to construct a tree from
data, the proposed approach may not be suited for the end-to-end training of deep neural network models.
Another limitation of the tree-based approach is that it may not be suited for a matching problems, such as

a semantic correspondence detection task (Liu et all [2020]). In contrast, the tree-based approach is super
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fast with reasonable approximation performance of the original 1-Wasserstein distance. Thus, the proposed
tree-based approach is more suited when we compute a large number of the 1-Wasserstein distances, such as
document retrieval and document classification tasks (i.e., k-nearest neighbor classifier).
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A Proof of Proposition [1]

Let IT* = IT*(u, v). If there exists (i, j, k) such that m;; > 0 and m;, > 0,

mij — min(mi;, wik) (P, q) = (4, 7)
SN K min(m;j, k) (P, q) = (4, k) (19)
pa mi +min(mij, k) (P, q) = (i, k)
Tpq otherwise

is no worse than IT* because d(i,j) + d(j, k) > d(i, k) due to the triangle inequality. We assume no tuples
(i,7, k) exists such that mi; > 0 and 7, > 0 without loss of generality. If there exist 71,42, - , 25, f2n+1 = 91
such that P;,;, > 0, P;,;, >0, P, >0,---, P, > 0, either

i192n

Tigkt1iantz — € (p, Q) = (i2k+1ai2k+2)

ﬂ;q = § Tigppaionsz T € (p, Q) = (i2k+3,i2k+2) (20)
Tpq otherwise
or
Tiok4192k42 +e (pv (]) = (i2k+17 7;2k+2)
W;J/q =\ Miokqsionye — € (p> Q) = (i2k+3ai2k+2) (21)
Tpq otherwise
is no worse than IT*, where ¢ = min{7;,, ipu,0 | & =0,--- ,n — 1} U {7y, gisyry | K =0,---,n—1}, and

both supports of 7;,, and 7,

q »q do not have this cycle. Therefore, we assume the support of P* has no cycle
without loss of generality, i.e., the graph is a tree. Let T be the graph induced by the support of IT* and let
the weight of edge e = (4, j) be we = d(w;, w;). As the shortest path distance between u and v on tree T is
no less than d(u,v) by definition, Wi (u,v) < Wr(u,v) holds. However, any pair (4,5) on the support of IT*

is directly connected in 7. Therefore,

Wy (:u, V) = Hergi(g ») Z Z,}Tijd(wia m;)a

i=1 j=1

/
n n

Zwajd(a:i,a:fj)

i=1 j=1

i=1 j=1

n n'

Therefore, W1 (u,v) = Wr(u,v) and P* is an optimal solution for both Wy (u,v) and Wy (p, v).
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