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Abstract

Continuous-output neural machine translation001
(CoNMT) replaces the discrete next-word pre-002
diction problem with an embedding prediction.003
The semantic structure of the target embed-004
ding space (i.e., closeness of related words)005
is intuitively believed to be crucial. We chal-006
lenge this assumption and show that completely007
random output embeddings can outperform la-008
boriously pretrained ones, especially on larger009
datasets. Further investigation shows this sur-010
prising effect is strongest for rare words, due to011
the geometry of their embeddings. We shed fur-012
ther light on this finding by designing a mixed013
strategy that combines random and pre-trained014
embeddings for different tokens.015

1 Introduction016

Since text is naturally discrete, i.e., each token017

in a target sentence is represented by an integer018

index in the vocabulary, neural machine transla-019

tion (NMT), as many other language generation020

tasks, is trained mainly as a discrete-output model021

with softmax over the full vocabulary followed by022

the cross-entropy loss. Continuous-output neural023

machine translation (CoNMT) models, in contrast,024

are trained to predict the continuous representa-025

tion based on the distances between vectors. It is026

an appealing line of study for computational and027

modeling related reasons (Kumar and Tsvetkov,028

2019), as well as a reliable test bed for exploring029

the properties of continuous spaces that appear in030

modern deep generative models (Li et al., 2022).031

However, CoNMT introduces its own challenge,032

namely mapping to and from continuous space.033

During training, CoNMT model requires continu-034

ous targets, and while decoding, one needs to map035

back to the discrete text representation.036

Text mapping to continuous space is widely ex-037

plored in NLP and can be done using embeddings038

of tokens, words (Turian et al., 2010; Mikolov et al.,039

2013, 2018) and sentences (Reimers and Gurevych,040

2019; Feng et al., 2022). Cosine similarity be- 041

tween word embeddings is well correlated with 042

lexical similarity metrics, motivating the use of 043

cosine distance against pretrained embeddings as 044

the dominant training strategy for CoNMT. Nearest 045

neighbor beam decoding would in this case include 046

related words and, unlike discrete cross-entropy, 047

the training strategy does not discourage synonyms. 048

Previous studies show that the quality of 049

continuous-output models highly depends on the 050

choice of embeddings (Li et al., 2022; Tokarchuk 051

and Niculae, 2022; Kumar and Tsvetkov, 2019). In 052

general, in CoNMT the embeddings are pre-trained 053

and fixed, as otherwise making all embeddings 054

equal leads to an unwanted global optimum. Ob- 055

taining pre-trained word embeddings can be com- 056

putationally expensive, especially if one needs to 057

train an embeddings model from scratch. 058

In this work we randomly initialize target em- 059

beddings for continuous-output models and keep 060

them static during training. Arora et al. (2020) 061

applied static random embeddings for text classi- 062

fication model’s input; however, to the best of our 063

knowledge, the effect of untrained random target 064

embeddings has not been previously studied in the 065

literature, especially for text-generating tasks such 066

as machine translation. Using random untrained em- 067

beddings as targets for training continuous-output 068

models with distance measures confronts the idea 069

of the semantic similarity importance. However, 070

we show that random target embeddings perform 071

close to their pre-trained counterpart, and even 072

surpass them if there is enough data available. 073

That means that meaningful semantic similarity 074

is not the only factor contributing to the perfor- 075

mance of the continuous-output models. We hy- 076

pothesize and experimentally show that distances 077

between embeddings play an important role for rep- 078

resentation disentanglement. Our findings on three 079

NMT tasks, namely WMT 2018 English→Turkish 080

(en-tr), WMT 2016 English→Romanian (EnRo), 081
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and WMT 2019 English →German (en-de) indi-082

cate that random embeddings are more spread out083

and performing better on rare words for all language084

pairs. On the large-scale (en-de) CoNMT with ran-085

dom target embeddings are even substantially better086

overall. We propose simple, yet efficient combi-087

nation of random and pre-trained embeddings and088

show that it helps improving models performance089

on both en-tr and ro-en090

2 Continuous-Output NMT091

The machine translation task involves learning to092

map sequences of input tokens 𝒙 = (𝑥1, . . . ,𝑥𝑚)093

to output tokens 𝒚 = (𝑦1, . . . , 𝑦𝑛). In standard094

(discrete) NMT, each step is a multi-class next word095

prediction task, minimizing:096

𝐿discrete(𝑦𝑖 = 𝑡;𝒚<𝑖,𝒙) = − log𝑝(𝑦𝑖 = 𝑡 | 𝒚<𝑖,𝒙)
= −⟨𝑬 (𝑡),𝒉⟩ + log

∑︁
𝑡′∈𝑉

exp ⟨𝑬 (𝑡′),𝒉⟩,

(1)097

where 𝑡 is a token index, 𝑉 is the vocabulary,098

𝑬 : 𝑉 → ℝ𝑑 is an embedding lookup, and 𝒉 is a099

transformer hidden state calculated in terms of 𝒙100

and the output prefix 𝒚<𝑖. The costly log-sum-exp101

and the penchant for continuous similarity metrics102

in NLP motivate a purely-continuous alternative:103

𝐿cos(𝑦𝑖 = 𝑡;𝒚<𝑖,𝒙) = 1 − cos(𝑬 (𝑡),𝒉). (2)104

Continuous NMT models were first studied by Ku-105

mar and Tsvetkov (2019), who also propose other106

probabilistic losses and later other margin-based107

objectives (Bhat et al., 2019), with limited gain108

and at the cost of additional hyperparameters; we109

therefore focus on the robust cosine objective. On110

the other hand, the choice of embeddings 𝑬 makes111

a much larger difference, especially due to the fact112

that all previous work keeps this parameter frozen:113

indeed, if it were trainable, Equation (2) would have114

trivial global optima by setting all 𝑬 (𝑡) to the same115

vector for all 𝑡. With modern transformer architec-116

tures, the best performing embeddings overall tend117

to be the “oracle” output embeddings learned by118

a pretrained discrete MT system (Tokarchuk and119

Niculae, 2022). We highlight that the cosine loss is120

invariant to the norms of both the embeddings and121

of the decoder hidden state, and therefore we may122

restrict our modeling problem to the unit sphere.123

Optimizing Equation (1) pushes the model 𝒉124

away from all tokens different from the “gold” to-125

ken, even if some other tokens (e.g., synonyms)126

could otherwise be a good fit. Equation (2) has 127

no such effect, leading to a promise of more di- 128

verse generations. An appealing intuition is that 129

synonyms and related words being nearby in em- 130

bedding space contributes to the performance of 131

CoNMT and enables such diversity. However, this 132

intuition is not consistent with practice. In fact, de- 133

coding is usually done by greedy nearest-neighbor 134

lookup rather than beam search. Therefore, in this 135

work, we challenge this conventional wisdom by 136

considering completely random embeddings. 137

3 Random Embeddings Generation 138

We consider two different distributions from which 139

to sample the |𝑉 | random embeddings. 140

Spherical uniform. We draw embeddings uni- 141

formly from the surface of the 𝑑-sphere, by drawing 142

from a standard Gaussian and normalizing. (As 143

the cosine loss is norm-invariant, uniform initial- 144

ization is equivalent to the standard initialization 145

of transformer embeddings.) 146

Hypercube. The corners of the hypercube 147

{−1, 1}𝑑 all have norm
√
𝑑 and thus form a dis- 148

crete subset of a hypersphere. This motivates us 149

to consider drawing embeddings from a scaled 150

Rademacher distribution: 151

E(𝑦𝑖) = r𝑖/
√
𝑑; r𝑖 ∼ Rademacher(𝑑). 152

Each coordinate of r𝑖 has 50% probability of be- 153

ing +1 and 50% of being −1. With this strategy, 154

any two distinct embeddings have cosine distance 155

at least 2/𝑑. Moreover, hypercubic embeddings 156

can be stored as bit patterns and potentially allow 157

for faster loss calculation with dedicated low-level 158

implementations which we do not explore here. 159

4 Experimental Setup and Data 160

We train CoNMT systems against randomly- 161

generated target embeddings and against pre-trained 162

embeddings from discrete NMT systems. 163

Results are reported on three WMT translation 164

tasks 1: WMT 2016 Romanian→English (ro-en), 165

WMT 2018 English→Turkish (en-tr) and WMT 166

2019 English→German (en-de), the latter includ- 167

ing back-translated data. Note that for en-trwe use 168

only WMT 2018 training data with 207k training 169

sentences to represent a challenging lower-resource 170

and morphology-rich scenario. Data statistics are 171

collected in Appendix A. 172

1https://www2.statmt.org/
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en-tr ro-en en-de
embeddings BLEU ↑ BERTSc. ↑ BLEU ↑ BERTSc. ↑ BLEU ↑ BERTSc. ↑
discrete model 12.3 70.4 31.7 64.1 33.1 69.0

MTtransfer (beam=1) 10.1 67.1 29.0 58.5 31.3 66.2
MTtransfer 10.4 67.4 29.0 58.0 29.2 62.6
random uniform 8.9 65.1 28.8 58.8 31.8 67.2
random cube 8.7 64.6 28.7 58.8 31.4 66.9
combined 10.4 68.3 29.5 60.4 32.0 66.8

Table 1: BLEU and BertScore on ro-en newstest16, en-tr newstest2017 and newstest2016 en-de. We use a
beam of 5 if not stated otherwise. In bold, we show the highest score among the continuous models in each column.

For subword tokenization we used the same Sen-173

tencePiece (Kudo and Richardson, 2018) model174

for all language pairs, specifically the one used in175

the MBart multilingual model (Liu et al., 2020).176

This choice allows for unified preprocessing for all177

languages we cover. We validate that token-based178

models performs generally better than word-level179

models (Appendix C), even though subwords intro-180

duce an additional challenge of predicting subword181

continuation (Appendix C.1).182

We used fairseq (Ott et al., 2019) framework183

for training our models. Baseline discrete models184

are trained with cross-entropy loss, label smoothing185

equal to 0.1 and effective batch size 65.5K tokens.186

Both discrete and continuous models are trained187

with learning rate 5 · 10−4, 10k warm-up steps for188

ro-en and en-de, and 4k for the smaller en-tr189

dataset. All continuous models are trained with the190

cosine distance objective in Equation (2). Detailed191

description of training setup and parameters can be192

found in Appendix B.193

We measure translation accuracy using Sacre-194

BLEU 2 (Papineni et al., 2002; Post, 2018) and195

BertScore 3 (Zhang* et al., 2020). Note that196

BertScore is scaled differently for each language,197

so the scores cannot be compared across languages.198

5 Results and Discussion199

Scores. Per Table 1, we find that random uniform200

embeddings outperform the MTtransfer baseline201

for en-de, match it closely for ro-en, and only202

underperform in the low-resource case for en-tr.203

We find that hypercube embeddings consistently204

perform worse than uniform embeddings; however,205

it is possible that their computational advantages206

can make up for this in some applications.207

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3implementation by https://github.com/Tiiiger/bert_score

Figure 1: BLEUbeam−BLEUgreedy scores for the ro-en
newsdev2016 for continuous output models with random
and MTtransfer embeddings. Beam=1 BLEU score for
the MTtransfer embeddings is equal to 30.0 and for
uniform random embeddings 28.6

Beam search. Preliminary experiments with 208

CoNMT models indicate little gain or even degra- 209

dation from beam search, which is why we report 210

results with greedy decoding for MTtransfer in Ta- 211

ble 1. Further investigation in Figure 1 shows that 212

the MTtransfer model degrades consistently, per- 213

forming best in the greedy case, while the random 214

embedding model benefits noticeably from a larger 215

beam, in spite of neighboring words being random 216

and not related. We discuss the details of the beam 217

search in Appendix D. 218

Frequency. We perform a token-level evaluation 219

using compare-mt (Neubig et al., 2019), comput- 220

ing the 𝐹1 score of matching a gold token (at its 221

gold position), aggregated over bins defined by the 222

token’s frequency in the training data. The result 223

in Figure 3 reveals that random embeddings allow 224

much better classification of rare tokens than even 225

the discrete reference model. To understand this 226
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Figure 2: Pre-trained embeddings demonstrate strong correlation between the frequency rank of each token and
(top) the cosine similarity, and (bottom) the frequency rank of its nearby neighbors. Most rare words are identified
with their nearest neighbor, which is also a rare word. Bin size 500; shaded area denotes 50% of values in each bin.

Figure 3: Token-level 𝐹1 test score grouped into three
bins defined by training set frequency. The 𝑥 label shows
frequency boundaries and token counts per bucket.

effect, we study the geometry of the pre-trained em-227

bedding spaces in relation to frequency in Figure 2.228

The top row shows the relationship between the fre-229

quency rank (higher means rarer) and the similarity230

to its nearest– and fifth-nearest– neighbors. For231

all three language pairs we observe that most rare232

words become identical to their nearest neighbor.233

In contrast, for random embeddings this metric234

does not depend on rank and is always around 0.4.235

The bottom row of Figure 3 shows that the nearest236

neighbors of rare words tend also to be comparably237

rare. This geometry clarifies in part the surprising238

performance of random embeddings on rare tokens.239

Combined embeddings. Our finding motivates240

combining pre-trained and random embeddings:241

Ecmb(𝑦𝑖) =
𝛼EMT(𝑦𝑖) + (1 − 𝛼)Erand(𝑦𝑖)
∥𝛼EMT(𝑦𝑖) + (1 − 𝛼)Erand(𝑦𝑖)∥

.242

To emphasize pre-trained distances more than the243

noise, we choose 𝛼 = 0.9 for all language pairs.244

This simple approach leads to overall improved 245

performance, on almost all metrics and language 246

pairs as shown in Table 1. Furthermore, Figure 3 247

confirms that combined embeddings preserve the 248

performance of pre-trained embeddings on frequent 249

tokens and increase 𝐹1 score on rare tokens. We fur- 250

ther study the impact𝛼 on ro-en in Appendix E and 251

observe that for all considered 𝛼 ∈ [0.5, 0.9], the 252

combination outperforms random and pre-trained 253

embeddings along both metrics; the specific value 254

of 𝛼 in this range has only negligible impact. 255

6 Conclusion 256

Our experimental results show that randomly ini- 257

tialized target embeddings can achieve similar per- 258

formance as pre-trained ones and even surpass them 259

when a sufficiently large amount of data is avail- 260

able. The gap is most pronounced on very rare 261

tokens. We also found that beam size > 1 does 262

not harm the performance of CoNMT with random 263

target embeddings (compared to pre-trained target 264

embeddings). We suggest combining random and 265

pre-trained embeddings in attempt to maintain high 266

accuracy on frequent tokens as well as rare tokens. 267

This simple approach proved to be effective for 268

en-tr and ro-en in terms of overall performance. 269

However, more refined ways to combine random 270

embeddings with semantically meaningful anchors 271

may lead to more reliable improvements, and ide- 272

ally hold the potential to remove the reliance on a 273

pretrained model entirely. Finding the best ways to 274

achieve this potential is an important avenue of fu- 275

ture work for CoNMT and for continuous modeling 276

of language repesentations more broadly. 277
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Limitations278

Generalization. Our experimental results show279

that semantic similarity of the targets embeddings280

does not play a major role for continuous-output281

NMT. However, this not necessarily holds for other282

text generation tasks like summarization or lan-283

guage modeling. To claim that random target284

embeddings can be sucessfuly used for any text285

generation task yet has to be proved. In the future,286

we will conduct additional experiments on other287

text generation tasks, such as summarization and288

language modeling.289

Dataset Size. Arora et al. (2020) argue that290

random embeddings can achieve comparable per-291

formance when the dataset size is big enough. In292

our work we report results on three language pairs293

with vast range of training samples.The gap be-294

tween pre-trained and random embeddings is much295

higher for en-tr with 207K training samples than296

for ro-en and en-de with 612K and 9.1M training297

samples. Moreover, on en-de random embeddings298

even outperform pre-trained ones. That hints that299

random embeddings indeed work only if there is300

sufficiently large amount of data available.301

Static Embeddings. The formulation of the loss302

we use in our work, specifically cosine distance,303

leads to representation collapse when tuning target304

embeddings jointly with the model, That is why in305

our work the target embeddings are kept unchanged306

during training. Li et al. (2022) show that it307

is possible to design a loss that allows for joint308

training. However, we believe that fine-tuning of309

random embeddings is orthogonal to our study.310

Comparison with External Embeddings Mod-311

els. In the scope of this work, we compared only312

embeddings extracted from the discrete NMT model313

(MTtransfer) and randomly generated embeddings.314

However, we do not compare random embeddings315

with external models like mBart (Liu et al., 2020)316

or fasttext (Bojanowski et al., 2016). That is inten-317

tional since Tokarchuk and Niculae (2022) showed318

that MTtransfer embeddings perform the best com-319

pared to the external models, and our goal was to320

compare to the best-performing baseline.321

Loss Function. All our results are tied to the322

choice of the target objective function, precisely co-323

sine similarity. We chose cosine similarity to align324

our work with previous studies on CoNMT (Kumar325

and Tsvetkov, 2019; Tokarchuk and Niculae, 2022).326

We implicitly assumed that our embeddings lie on327

the sphere and have the norm equal to 1. In the328

future, we would like to experiment with other geo- 329

metrical spaces and verify if our findings are still 330

valid. 331

Risks 332

NMT as a technology is subject to dual-use con- 333

cerns. We also want to stress that it is possible that 334

random embedding models make different kinds 335

of mistakes compared to other models, and they 336

should be studied and treated with caution before 337

deployment. CoNMT models are generally at an 338

earlier stage of development and do not seem likely 339

to replace the well-studied discrete models in de- 340

ployed application in the very near future. 341

References 342

Simran Arora, Avner May, Jian Zhang, and Christo- 343
pher Ré. 2020. Contextual embeddings: When are 344
they worth it? In Proceedings of the 58th Annual 345
Meeting of the Association for Computational Lin- 346
guistics, pages 2650–2663, Online. Association for 347
Computational Linguistics. 348

Gayatri Bhat, Sachin Kumar, and Yulia Tsvetkov. 2019. 349
A margin-based loss with synthetic negative sam- 350
ples for continuous-output machine translation. In 351
Proceedings of the 3rd Workshop on Neural Gener- 352
ation and Translation, pages 199–205, Hong Kong. 353
Association for Computational Linguistics. 354

Piotr Bojanowski, Edouard Grave, Armand Joulin, 355
and Tomas Mikolov. 2016. Enriching word vec- 356
tors with subword information. arXiv preprint 357
arXiv:1607.04606. 358

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari- 359
vazhagan, and Wei Wang. 2022. Language-agnostic 360
BERT sentence embedding. In Proceedings of the 361
60th Annual Meeting of the Association for Compu- 362
tational Linguistics (Volume 1: Long Papers), pages 363
878–891, Dublin, Ireland. Association for Computa- 364
tional Linguistics. 365

Taku Kudo. 2018. Subword regularization: Improv- 366
ing neural network translation models with multiple 367
subword candidates. In Proceedings of the 56th An- 368
nual Meeting of the Association for Computational 369
Linguistics (Volume 1: Long Papers), pages 66–75, 370
Melbourne, Australia. Association for Computational 371
Linguistics. 372

Taku Kudo and John Richardson. 2018. SentencePiece: 373
A simple and language independent subword tok- 374
enizer and detokenizer for neural text processing. In 375
Proceedings of the 2018 Conference on Empirical 376
Methods in Natural Language Processing: System 377
Demonstrations, pages 66–71, Brussels, Belgium. 378
Association for Computational Linguistics. 379

5

https://doi.org/10.18653/v1/2020.acl-main.236
https://doi.org/10.18653/v1/2020.acl-main.236
https://doi.org/10.18653/v1/2020.acl-main.236
https://doi.org/10.18653/v1/D19-5621
https://doi.org/10.18653/v1/D19-5621
https://doi.org/10.18653/v1/D19-5621
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


Sachin Kumar and Yulia Tsvetkov. 2019. Von mises-380
fisher loss for training sequence to sequence models381
with continuous outputs. In International Conference382
on Learning Representations.383

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy384
Liang, and Tatsunori Hashimoto. 2022. Diffusion-385
lm improves controllable text generation. ArXiv,386
abs/2205.14217.387

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey388
Edunov, Marjan Ghazvininejad, Mike Lewis, and389
Luke Zettlemoyer. 2020. Multilingual denoising pre-390
training for neural machine translation. Transactions391
of the Association for Computational Linguistics,392
8:726–742.393

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey394
Dean. 2013. Efficient estimation of word representa-395
tions in vector space. In 1st International Conference396
on Learning Representations, ICLR 2013, Scotts-397
dale, Arizona, USA, May 2-4, 2013, Workshop Track398
Proceedings.399

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,400
Christian Puhrsch, and Armand Joulin. 2018. Ad-401
vances in pre-training distributed word representa-402
tions. In Proceedings of the International Conference403
on Language Resources and Evaluation (LREC 2018).404

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,405
Danish Pruthi, Xinyi Wang, and John Wieting. 2019.406
compare-mt: A tool for holistic comparison of lan-407
guage generation systems. CoRR, abs/1903.07926.408

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,409
Sam Gross, Nathan Ng, David Grangier, and Michael410
Auli. 2019. fairseq: A fast, extensible toolkit for411
sequence modeling. In Proceedings of NAACL-HLT412
2019: Demonstrations.413

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-414
Jing Zhu. 2002. Bleu: a method for automatic evalu-415
ation of machine translation. In Proceedings of the416
40th Annual Meeting of the Association for Compu-417
tational Linguistics, pages 311–318, Philadelphia,418
Pennsylvania, USA. Association for Computational419
Linguistics.420

Matt Post. 2018. A call for clarity in reporting BLEU421
scores. In Proceedings of the Third Conference on Ma-422
chine Translation: Research Papers, pages 186–191,423
Brussels, Belgium. Association for Computational424
Linguistics.425

Nils Reimers and Iryna Gurevych. 2019. Sentence-426
BERT: Sentence embeddings using Siamese BERT-427
networks. In Proceedings of the 2019 Conference428
on Empirical Methods in Natural Language Pro-429
cessing and the 9th International Joint Conference430
on Natural Language Processing (EMNLP-ĲCNLP),431
pages 3982–3992, Hong Kong, China. Association432
for Computational Linguistics.433

Evgeniia Tokarchuk and Vlad Niculae. 2022. On target434
representation in continuous-output neural machine435

translation. In Proceedings of the 7th Workshop 436
on Representation Learning for NLP, pages 227– 437
235, Dublin, Ireland. Association for Computational 438
Linguistics. 439

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 440
2010. Word representations: A simple and general 441
method for semi-supervised learning. In Proceedings 442
of the 48th Annual Meeting of the Association for 443
Computational Linguistics, pages 384–394, Uppsala, 444
Sweden. Association for Computational Linguistics. 445

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 446
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz 447
Kaiser, and Illia Polosukhin. 2017. Attention is 448
all you need. In Advances in Neural Information 449
Processing Systems, Red Hook, NY, USA. Curran 450
Associates Inc. 451

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. 452
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval- 453
uating text generation with bert. In International 454
Conference on Learning Representations. 455

Kaitlyn Zhou, Kawin Ethayarajh, Dallas Card, and Dan 456
Jurafsky. 2022. Problems with cosine as a measure 457
of embedding similarity for high frequency words. 458
In Proceedings of the 60th Annual Meeting of the 459
Association for Computational Linguistics (Volume 460
2: Short Papers), pages 401–423, Dublin, Ireland. 461
Association for Computational Linguistics. 462

A Data Statistics 463

Table 2 contains data statistics for datasets used in 464

our experiments. 465

B Models’ Training 466

B.1 Embeddings Dimensionality 467

Even though it is typical to train NLP models with 468

large embeddings dimension (𝑑 ≥ 512), we con- 469

ducted experiments on ro-en and found that smaller 470

dimensionality works better for CoNMT both with 471

random and pre-trained target embeddings Figure 5, 472

and do not harm the performance of discrete model 473

as per Figure 4. 474

We hypothesise that better performance of lower 475

dimensional embeddings on CoNMT is a direct 476

consequences of the cosine distance as a distance 477

measure. Despite its popularity, there is evidence 478

that cosine loss is not a suitable choice for mea- 479

suring the dissimilarity between high-dimensional 480

embeddings vectors (Zhou et al., 2022), and using 481

another distance metric can potentially improve 482

the results of the models with larger embeddings 483

dimensionality. We leave this question for the fu- 484

ture investigation. Since the dimensionality 128 485

performs the best among all tested dimensionalities, 486
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WMT ro-en WMT en-tr WMT en-de
train dev16 test16 train dev17 test17 test18 train valid test16 test18

sentences 612K 2K 2K 207K 1K 3K 3K 9.1M 2.2K 3K 3K

SPM vocabulary (tgt) 27.5K 23.3K 76K
SPM % oov (tgt) 0.0 0.38 0.31 0.0 0.45 0.53 0.55 0.0 0.0 0.0 0.0

Table 2: Datasets Statistics

Figure 4: BLEU score of the discrete NMT models on
newstest2016 ro-en.

we do all our experiments with dimension equal to487

128.488

B.2 Training Parameters489

We report fairseq yaml config in Listing 1.490

Language-pair–specific parameters are highlighted491

with a comment. Continuous transformer uses base492

Transformer architecture with 6 layers of encoder493

and decoder (Vaswani et al., 2017). Total number494

of training parameters is the following: ro-en dis-495

crete is 42M and ro-en continuous 74M; en-tr496

discrete is 40M and en-tr continuous 73M; en-de497

discrete is 132M and en-de continuous 123M.498

We train our models using shared GPU cluster,499

which is equipped with GeForce GTX TITAN X as500

well as NVIDIA A100.501

C Word-level Embeddings502

Since the continuous-output model struggles with503

subwords continuation and, at the same time, per-504

forms better on rare words, we conduct experiments505

on the word level. Word-level model tends to suf-506

fer from out-of-vocabulary issues (Table 2), so507

Listing 1 Training yaml config for CoNMT.
task:
_name: translation
data: language_specific_data

criterion:
_name: cosine_ar_criterion

model:
_name: continuous_transformer
decoder:
output_dim: 128
learned_pos: true

encoder:
learned_pos: true

dropout:
0.3 # ro-en and en-tr
0.1 # en-de

target_embed_path: path_to_static_embeddings
no_decoder_final_norm: false

optimizer:
_name: adam
adam_betas: (0.9,0.98)

lr_scheduler:
_name: inverse_sqrt
warmup_updates:
10000 # ro-en and en-de
4000 # en-tr

warmup_init_lr: 1e-07
dataset:
validate_after_updates: 10000
max_tokens: 4096
validate_interval_updates: 2000

optimization:
lr: [0.0005]
update_freq: [16]
max_update: 50000
stop_min_lr: 1e-09

checkpoint:
no_epoch_checkpoints: true
best_checkpoint_metric: bleu
maximize_best_checkpoint_metric: true
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Figure 5: BLEU score on ro-en newstest2016 of
continuous-output model with various dimensionalities
of random and pre-trained (MTtransfer) target embed-
dings.

discrete model performance drops respectively. Ta-508

ble 3 provides the comparison between the discrete509

word-level model and continuous-output model510

with random targets. Even though the continuous-511

output model struggles with subwords continua-512

tions, overall, using subwords allows us to have a513

stronger model both for discrete and continuous-514

output cases.515

model ro-en en-tr

discrete words 28.5 8.9
continuous random words 27.6 5.6
discrete tokens 32.1 12.7
continuous random tokens 29.2 9.3

Table 3: BLEU scores for word level and tokens level
models on validation set with greedy decoding.

C.1 Subword Embeddings516

We rely on the unigram language model for subword517

segmentation (Kudo, 2018) to train discrete and518

continuous-output NMT models as mentioned in519

Section §5. We hypothesize that it is harder for520

the continuous-output model to predict subwords521

than for the discrete model. Table 4 illustrates that522

the f1 macro average for the beginning of the spm523

tokens and continuation of the spm tokens differ a524

lot for discrete and continuous models. While the525

discrete model performs better on continuations,526

continuous models struggle with continuations of527

subwords. However, overall scores for pre-trained 528

and random targets are the same for continuation 529

and random embeddings performs slightly better 530

on the beginning of the subwords. 531

model F1
SPM start SPM cont.

discrete 0.12 0.14
pre-trained embeddings 0.10 0.09
random embeddings 0.11 0.09

Table 4: F1 score on newstest2016 ro-en for begin-
ning and continuation of the SentencePiece tokens.

D Beam Search 532

In our work, we use implementation of the beam 533

search provided by fairseq. However, insetad 534

of using log probabilities of the next token, we 535

rely on the cosine similarity scores between output 536

vector and all tokens in the vocabulary. We restrict 537

maximum length of generated sentence to be length 538

og the source sentence plus 200. For CoNMT, 539

beam search may have a probabilistic interpretation 540

by noticing that the cosine loss is equivalent to a 541

Langevin (also known as vMF) log-likelihood with 542

constant concentration parameter 𝜅: in beam search 543

we use this probabilistic interpretation and take 544

log𝑝(𝑦𝑖 = 𝑡 | 𝒚<𝑖,𝒙) = − cos(𝑬 (𝑡),𝒉)+log𝐶𝑑 (1), 545

i.e., we apply the normalizing constant of the 546

Langevin distribution for dimension 𝑑 and fixed 547

concentration 𝜅 = 1. 548

Figure 6: BLEU and BERTScores on ro-en
newsdev2016 with different values of 𝛼.
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E Combined Embeddings549

In Table 1 we report performance of combined550

embeddings with 𝛼 = 0.9. To study the effect of551

𝛼 on the models’ performance, we conduct exper-552

iments on ro-en for 𝛼 ∈ [0.5, 0.9]. As shown553

in Figure 6, for all cases combined embeddings554

outperform pre-trained and random ones on both555

metrics.556
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