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Abstract

Many training data attribution (TDA) methods aim to estimate how a model’s be-
havior would change if one or more data points were removed from the training set.
Methods based on implicit differentiation, such as influence functions, can be made
computationally efficient, but fail to account for underspecification, the implicit
bias of the optimization algorithm, or multi-stage training pipelines. By contrast,
methods based on unrolling address these issues but face scalability challenges.
In this work, we connect the implicit-differentiation-based and unrolling-based
approaches and combine their benefits by introducing SOURCE, an approximate
unrolling-based TDA method that is computed using an influence-function-like
formula. While being computationally efficient compared to unrolling-based
approaches, SOURCE is suitable in cases where implicit-differentiation-based
approaches struggle, such as in non-converged models and multi-stage training
pipelines. Empirically, SOURCE outperforms existing TDA techniques in coun-
terfactual prediction, especially in settings where implicit-differentiation-based
approaches fall short.

1 Introduction

Training data attribution (TDA) techniques are motivated by understanding the relationship between
training data and the properties of trained models [92, 17, 29, 35, 70, 24, 51]. They have diverse
applications in machine learning, such as detecting mislabeled data points [72, 50, 41], crafting data
poisoning attacks [16, 38, 69], and curating datasets [60, 90, 13]. Many TDA methods aim to perform
a counterfactual prediction, which estimates how a trained model’s behavior would change if certain
data points were removed from (or added to) the training dataset. Unlike sampling-based approaches,
which require repeated model retraining with different subsets of the dataset, gradient-based TDA
techniques estimate an infinitesimal version of the counterfactual without model retraining. Two
main strategies for gradient-based counterfactual TDA are implicit differentiation and unrolling.

Implicit-differentiation-based TDA, most notably influence functions [28, 49], uses the Implicit
Function Theorem [52] to estimate the sensitivity of the optimal solution to downweighting a training
data point. These methods are well-motivated for models with strongly convex objectives and
provide convenient estimation algorithms that depend solely on the optimal model parameters rather
than intermediate checkpoints throughout training. However, the classical formulation relies on
assumptions such as the uniqueness of and convergence to the optimal solution, which limits their
applicability to modern neural networks [6, 3, 77].

By contrast, unrolling-based methods, such as SGD-INFLUENCE [31], approximate the impact of
downweighting a data point’s gradient update on the final model parameters by backpropagating
through the preceding optimization steps. Unrolling is conceptually appealing in modern neural
networks because it does not rely on the uniqueness of or convergence to the optimal solution.
Furthermore, it can incorporate details of the training process, such as the choice of optimizer,
learning rate schedules, or a data point’s position during training. For example, unrolling-based
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approaches can support TDA for multi-stage training procedures, such as in continual learning or
foundation models, where the model undergoes multiple training phases with different objectives
or datasets. However, they require storing all intermediate variables generated during the training
process (e.g., parameter vectors for each optimization step) for backpropagation, which can be
prohibitively expensive for large-scale models. Past works have considered applying unrolling to only
the last epoch for large-scale models [31, 10], restricting their applicability in analyzing the effect of
removing a data point at the beginning of training or in analyzing multi-stage training procedures.

In this work, we connect implicit-differentiation-based and unrolling-based approaches and introduce
a novel algorithm that enjoys the advantages of both methods. We start from the unrolled differentia-
tion perspective and, after introducing suitable approximations, arrive at an influence-function-like
estimation algorithm. The key idea is to divide the training trajectory into one or more segments and
approximate the distributions of gradients and Hessians as stationary within each segment. These
segments may represent explicit training stages, such as in continual learning or foundation models,
or changes in the Hessian and gradients throughout training. We use these estimated statistical sum-
maries for each segment to approximate unrolling. Hence, we call our method SOURCE (Segmented
statiOnary UnRolling for Counterfactual Estimation). While our method approximately coincides
with influence functions in the simple setting of a deterministic objective optimized to convergence,
it applies to more general settings where unrolling is typically required.

SOURCE inherits several key advantages from unrolling. Firstly, it allows the attribution of data
points at different stages of training, providing a more comprehensive framework for TDA. Secondly,
SOURCE can incorporate algorithmic choices into the analysis, accounting for learning rate schedules
and the implicit bias of optimizers such as SGD or Adam [48]. Lastly, it maintains a close connection
with the counterfactuals, even in cases where the assumptions made in implicit-differentiation-based
methods, such as the optimality of the final parameters, are not met. However, unlike unrolling,
SOURCE does not require storing all intermediate optimization variables generated during training;
instead, it leverages only a handful of model checkpoints.

We evaluate SOURCE for counterfactual prediction across various tasks, including regression, image
classification, and text classification. SOURCE outperforms existing TDA techniques in approximating
the effect of retraining the network without groups of data points and identifying training data points
that would flip predictions on some test examples when trained without them. SOURCE demonstrates
distinct advantages in scenarios where traditional implicit-differentiation-based methods fall short,
such as models that have not fully converged or those trained in multiple stages. Our empirical
evidence suggests that SOURCE is a valuable TDA tool in various scenarios.

2 Background

Consider a finite training dataset D := {zi}Ni=1. We assume that the model parameters θ ∈ RD are
optimized with a gradient-based iterative optimizer to minimize the empirical risk on this dataset:

J (θ,D) := 1

N

N∑
i=1

L(zi,θ), (1)

where L is the (twice-differentiable) loss function. We use the notation θ⋆(S) to denote the optimal
solution obtained when the model is trained on a specific subset of the dataset S ⊆ D, and θ⋆ to
denote the optimal solution on the full dataset. In practice, it is common to employ parameters θs

that approximately minimize the empirical risk (e.g., the result of running an optimization algorithm
for T iterations), as obtaining the exact optimal solution for neural networks can be challenging and
may lead to overfitting [7]. When necessary, we use the notation θs(S;λ, ξ) to indicate the final
parameters obtained by training with the dataset S , along with hyperparameters λ (e.g., learning rate
and number of epochs) and random choices ξ (e.g., parameter initialization and mini-batch order).

2.1 Training Data Attribution

TDA aims to explain model behavior on a query data point zq (e.g., test example) by referencing data
points used to fit the model. The model behavior is typically quantified using a measurement f(zq,θ),
selected based on metrics relevant to the analysis, such as loss, margin, or log probability. Given
hyperparameters λ and a training data point zm ∈ D, an attribution method τ(zq, zm,D;λ) assigns
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a score to a training data point, indicating its importance in influencing the expected measurable
quantity Eξ [f(zq,θ

s(D;λ, ξ))], where the expectation is taken over the randomness in the training
process. In cases where an optimal solution to Equation (1) exists, is unique, and can be precisely
computed, and TDA is performed on this optimal solution, the TDA method is simply written as
τ(zq, zm,D).
One idealized TDA method is leave-one-out (LOO) retraining [88], which assesses a data point’s
importance through counterfactual analysis. Assuming the above optimality condition is satisfied, for
a chosen query data point zq and a training data point zm ∈ D, the LOO score can be formulated as:

τLOO(zq, zm,D) := f(zq,θ
⋆(D \ {zm}))− f(zq,θ

⋆). (2)
When the measurement is defined as the loss, a higher absolute LOO score signifies a more substantial
change in the query loss when the data point zm is excluded from the training dataset, particularly
when the model parameters are optimized for convergence.

2.2 Influence Functions

Influence functions estimate the change in optimal parameters resulting from an infinitesimal pertur-
bation in the weight of a training example zm ∈ D. Assuming that an optimal solution to Equation (1)
exists and is unique for various values of the data point’s weight ϵ ∈ [−1, 1], the relationship between
this weight and the optimal parameters is captured through the response function:

r(ϵ) := argmin
θ

J (θ,D) + ϵ

N
L(zm,θ). (3)

Influence functions approximate Equation (3) using the first-order Taylor expansion around ϵ = 0:

r(ϵ) ≈ r(0) +
dr

dϵ

∣∣∣
ϵ=0
· ϵ = θ⋆ −H−1∇θL(zm,θ⋆)ϵ, (4)

where the Jacobian of the response function dr/dϵ|ϵ=0 is obtained using the Implicit Function Theorem
[52] and H := ∇2

θJ (θ⋆,D) represents the Hessian of the cost function at the optimal solution. The
change in the optimal parameters due to the removal of zm can be approximated by setting ϵ = −1:

θ⋆(D \ {zm})− θ⋆ ≈ 1

N
H−1∇θL(zm,θ⋆). (5)

By applying the chain rule of derivatives, influence functions estimate the change in a measurable
quantity for a query example zq as:

τIF(zq, zm,D) := ∇θf(zq,θ
⋆)⊤H−1∇θL(zm,θ⋆). (6)

We refer readers to Koh and Liang [49] for detailed derivations and discussions of influence functions.
As observed in Equation (6), influence functions provide algorithms that only depend on the optimal
parameters θ⋆ rather than intermediate checkpoints. However, when applied to neural networks, the
connection to the counterfactual prediction is tenuous due to the unrealistic assumptions that the
optimal solution exists, is unique, and can be found [6, 3, 77]. In practice, the gradients and Hessian
are computed using the final parameters θs from a single training run instead of the optimal solution.

3 Methods

In this section, we introduce SOURCE, a gradient-based TDA technique combining the advantages
of implicit and unrolled differentiation. We motivate our approach from the unrolling perspective
and, after introducing suitable approximations, arrive at an influence-function-like algorithm. Finally,
we describe a practical instantiation of SOURCE by approximating the Hessian with the Eigenvalue-
corrected Kronecker-Factored Approximate Curvature (EK-FAC) [18] parameterization.

3.1 Motivation: Unrolling for Training Data Attribution

Consider optimizing the model parameters using SGD with a fixed batch size B, starting from the
initial parameters θ0.1 The update rule at each iteration is expressed as follows:

θk+1 ← θk −
ηk
B

B∑
i=1

∇θL(zki,θk), (7)

1For an extension to preconditioned gradient updates, see Appendix C.
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Figure 1: A simplified illustration of unrolled differentiation in SGD with a batch size of 1 and a
data point of interest zm appearing at iteration k. Unrolling backpropagates through the optimization
steps from θT to compute the total derivative with respect to ϵ.

where ηk denotes the learning rate for iteration k, zki is the i-th data point in Bk, where Bk denotes a
mini-batch of examples drawn randomly with replacement from the training datasetD, and T denotes
the total number of iterations. We aim to understand the effect of removing a training data point
zm ∈ D on the terminal model parameters θT . To this end, we parameterize the weight of zm as
1 + ϵ, where ϵ = 0 corresponds to the original training run and ϵ = −1 represents the removal of a
data point. This parameterization results in the following update rule:

θk+1(ϵ)← θk(ϵ)−
ηk
B

B∑
i=1

(1 + δkiϵ)∇θL(zki,θk(ϵ)), (8)

where δki := 1[zki = zm] is the indicator function for having selected zm. The dependence of θ on
ϵ will usually be suppressed for brevity. Similarly to other gradient-based TDA methods, such as
influence functions, we approximate the change in the terminal parameters due to the data removal
θT (−1)− θT (0) with its first-order Taylor approximation dθT/dϵ (the notation |ϵ=0 is suppressed as
it will always be evaluated at ϵ = 0). Let δk denote the number of times zm is chosen in batch Bk. By
chain rule, the contribution of iteration k to the total derivative dθT/dϵ can be found by multiplying
all the Jacobian matrices along the accumulation path, giving the value −ηk

B δkJk+1:Tgk, where:

Jk :=
dθk+1

dθk
= I− ηkHk, Jk:k′ :=

dθk′

dθk
= Jk′−1 · · ·Jk+1Jk, gk := ∇θL(zm,θk). (9)

Here, Hk := 1
B

∑B
i=1∇2

θL(zki,θk) is the mini-batch Hessian for iteration k and we define Jk:k := I
for any 0 ≤ k < T by convention. A simplified illustration of unrolling is shown in Figure 1.

ε = −1
ε = 0

ε = 1

Response Function

Unrolled Approximation

θ0

Figure 2: Illustrative comparision of influ-
ence functions and unrolling-based TDA.
Each contour represents the cost function
at different values of ϵ, which controls the
degree of downweighting a data point zm.

In contrast to influence functions, unrolling does not
assume uniqueness or convergence to the optimal solu-
tion. An illustrative comparison of the two approaches
is shown in Figure 2. Exact influence functions differen-
tiate the response function (Equation (4)), estimating the
sensitivity of the optimal solution (⋆) to downweighting
a data point. By contrast, unrolling estimates the sensitiv-
ity of the final model parameters (at the end of training)
to downweighting a data point; hence, it can account
for details of the training process such as learning rate
schedules, implicit bias of optimizers, or a data point’s
position during training. For instance, in our illustrative
example, gradient descent optimization is stopped early,
such that the optimizer makes much progress in the high
curvature direction and little in the low curvature direc-
tion. Unrolling-based TDA (but not implicit differentiation) accounts for this effect, resulting in a
smaller influence along the low curvature direction.

The effect of removing zm on any single training trajectory may be noisy and idiosyncratic. For
stability, we instead consider the expectation over training trajectories, where the selection of
training examples in each batch (and all downstream quantities such as the iterates θk) are treated as
random variables.2 We are interested in the average treatment effect E [θT (−1)− θT (0)], where the
expectation is over the batch selection, and approximate this quantity with −E [dθT/dϵ]. The expected

2We assume a fixed initialization θ0 to break the symmetry.
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total derivative can be expanded as a sum over all iterations, applying linearity of expectation:

E

[
dθT
dϵ

]
= E

[
−

T−1∑
k=0

ηk
B

δkJk+1:Tgk

]
= −

T−1∑
k=0

ηk
B

E [δkJk+1:Tgk] . (10)

In principle, we could compute a Monte Carlo estimate of this expectation by averaging many
training trajectories. For each trajectory, dθT/dϵ can be evaluated using reverse accumulation (i.e.,
backpropagation) on the computation graph. However, this approach is prohibitively expensive as it
requires storing all intermediate variables for the backward pass. Furthermore, many Monte Carlo
samples may be required to achieve accurate estimates.

3.2 Segmenting the Training Trajectory

To derive a more efficient algorithm for approximating expected total derivative E [dθT/dϵ], we
now partition the training procedure into L segments and approximate the reverse accumulation
computations for each segment with statistical summaries thereof (instead of storing all intermediate
variables). Our motivations for segmenting the training procedure are twofold. First, the training
procedure may explicitly include multiple stages with distinct objectives or datasets, as in continual
learning or foundation models. Second, the Hessians and gradients are likely to evolve significantly
over training, and segmenting the training allows us to approximate their distributions as stationary
within a segment (rather than over the entire training run).

We index the segments as ℓ = 1, . . . , L, with segment boundaries denoted as Tℓ. By convention,
TL := T and T0 := 0 denote the end of training and beginning of training, respectively, and
Kℓ := Tℓ − Tℓ−1 denotes the total number of iterations within a segment. Conceptually, we can
compute dθT/dϵ using reverse accumulation over a coarse-grained computation graph represented in
terms of segments rather than individual iterations. The Jacobian associated with each segment is
denoted as Sℓ := JTℓ−1:Tℓ

. To approximate the expected total derivative E [dθT/dϵ], we first rewrite
Equation (10) using the segment notation introduced. We then approximate the Jacobians of different
segments as statistically independent (see discussion below):

E

[
dθT
dϵ

]
= −E

[
L∑

ℓ=1

(
ℓ+1∏
ℓ′=L

Sℓ′

)
Tℓ−1∑

k=Tℓ−1

ηk
B

δkJk+1:Tℓ
gk︸ ︷︷ ︸

:=rℓ

]
≈ −

L∑
ℓ=1

(
ℓ+1∏
ℓ′=L

E [Sℓ′ ]

)
E [rℓ] , (11)

where≈ uses our independence approximation to push the expectations inward. Note that our product
notation

∏ℓ+1
ℓ′=L takes ℓ′ in decreasing order from L down to ℓ+ 1.

To obtain tractable approximations for E[Sℓ] and E[rℓ], we approximate the Hessian and gradients
distributions as stationary within each segment. This implies that the Hessians within a segment
share a common mean H̄ℓ := E[Hk] for Tℓ−1 ≤ k < Tℓ. Analogously, the gradients within a
segment share a common mean ḡℓ := E[gk]. Moreover, we approximate the step sizes within each
segment with their mean η̄ℓ. If these stationarity approximations are too inaccurate (e.g., E[Hk]
and/or E[gk] change rapidly throughout the segment), one can improve the fidelity by carving the
training trajectory into a larger number of segments, at the expense of increased computational and
memory requirements. Finally, we approximate the Hessians and gradients in different time steps as
statistically independent.3

Approximation of E[Sℓ]. We approximate E[Sℓ] in Equation (11) as follows:

E[Sℓ] = E[JTℓ−1:Tℓ
] ≈

(
I− η̄ℓH̄ℓ

)Kℓ ≈ exp(−η̄ℓKℓH̄ℓ) := S̄ℓ, (12)

where the first ≈ uses the stationary and independence approximations, and the second ≈ uses the
definition of matrix exponential. One can gain an intuition for S̄ℓ by observing that it is a matrix

3There are two sources of randomness in the gradient and Hessian at each step: the mini-batch sampling,
and the optimization iterates (which, recall, we treat as random variables). Mini-batch sampling contributes to
independent variability in different steps. However, autocorrelation of optimization iterates induces correlations
between Hessians and gradients in different time steps. Our independence approximation amounts to neglecting
these correlations.
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function of H̄ℓ.4 Let H̄ℓ = QΛQ⊤ be the eigendecomposition of H̄ℓ and let σj be the j-th eigenvalue
of H̄ℓ. The expression in Equation (12) can be seen as applying the function FS(σ) := exp(−η̄ℓKℓσ)
to each of the eigenvalues σ of H̄ℓ. The value is close to zero in high-curvature directions, so the
training procedure “forgets” the components of θ which lie in these directions. However, information
about θ is retained throughout the ℓ-th segment for low-curvature directions.

Approximation of E[rℓ]. We further approximate E[rℓ] as follows:

E[rℓ] = E

 Tℓ−1∑
k=Tℓ−1

ηk
B

δkJk+1:Tℓ
gk

 ≈ 1

N

Tℓ−1∑
k=Tℓ−1

η̄ℓ(I− η̄ℓH̄ℓ)
Tℓ−1−kḡℓ (13)

=
1

N
(I− (I− η̄ℓH̄ℓ)

Kℓ)H̄−1
ℓ ḡℓ ≈

1

N
(I− exp(−η̄ℓKℓH̄ℓ))H̄

−1
ℓ︸ ︷︷ ︸

:=Fr(σ)

ḡℓ := r̄ℓ, (14)

where Equation (13) uses the stationary and independence approximations and E[δk] = B/N, and
Equation (14) uses the finite series5 and the definition of the matrix exponential. Because all
the matrices commute, r̄ℓ can also be written in terms of a matrix function, defined as Fr(σ) :=
(1− exp (−η̄ℓKℓσ))/σ. In high-curvature directions, this term approaches to 1/σ, whereas in low-
curvature directions, it approaches to η̄ℓKℓ. The qualitative behavior of Fr can be captured with
the function Finv(σ) := 1/(σ + λ), where λ = η̄−1

ℓ K−1
ℓ , as shown in Figure 6 (Appendix C).

Applying this to H̄ℓ results in approximating Equation (14) with the damped inverse-Hessian-vector
product (H̄ℓ + λI)−1ḡℓ. This is essentially the formula for influence functions, except that H̄ℓ

and ḡℓ represent the expected Hessian and gradient rather than the terminal one, and our analysis
yields an explicit formula for the damping parameter λ. Hence, influence functions can be regarded
approximately as a special case with only a single segment, so our damped unrolling analysis gives
an alternative motivation for influence functions.

Full Procedure. We derived a closed-form term to approximate the expected total derivative:

E

[
dθT
dϵ

]
≈ − 1

N

L∑
ℓ=1

(
ℓ+1∏
ℓ′=L

S̄ℓ′

)
r̄ℓ, (15)

where S̄ℓ and r̄ℓ are obtained with Equation (12) and Equation (14), respectively. We term our
algorithm SOURCE (Segmented statiOnary UnRolling for Counterfactual Estimation) and refer
readers to Figure 3 for a visual illustration. Similarly to unrolling, SOURCE can incorporate fine-
grained information about optimization trajectories into the analysis. For instance, SOURCE can
support TDA for non-converged models, accounting for the total number of iterations T the model
was trained with. It can also support TDA for multi-stage training pipelines: when the model was
sequentially trained with two datasets D1 and D2, SOURCE can compute the contribution of a data
point zm ∈ D1 that appeared in the first segment by partitioning the training trajectory into two
segments and computing the expected total derivative at the first segment with − 1

N1
S̄2r̄1, where N1

is the size of the first training dataset.

Given terminal parameters θT from a single training run and a query data point zq, SOURCE
approximates the change in the measurable quantity due to the removal of a training data point zm as:

τSOURCE(zq, zm,D;λ) := ∇θf(zq,θT )
⊤

(
L∑

ℓ=1

(
ℓ+1∏
ℓ′=L

S̄ℓ′

)
r̄ℓ

)
. (16)

Unlike the single-training-run estimator for unrolling-based approaches, SOURCE does not require
access to the exact location where the data point zm was used during training, as it estimates the
averaged effect of removing a data point within a given segment. To further account for other sources
of randomness, such as model initialization, the multiple-training-run estimator for SOURCE averages
the final scores in Equation (16) obtained for each training run with different random choices.

4Given a scalar function F and a square matrix M diagonalizable as M = PDP−1, the matrix function is
defined as F (M) = PF (D)P−1, where F (D) applies F to each diagonal entry of D.

5For a symmetric square matrix M, we have
∑T−1

i=0 Mi = (I−MT )(I−M)−1. When I−M is singular,
we can replace (I−M)−1 with the pseudoinverse (I−M)+.
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Segment 3Segment 2

at Segment 1 at Segment 2 at Segment 3

Segment 1

Figure 3: A simplified illustration of SOURCE with 3 segments (L = 3). SOURCE divides the training
trajectory into one or more segments and approximate the gradient ḡℓ and Hessian H̄ℓ distributions
and learning rate η̄ℓ as stationary within each segment ℓ to approximate unrolling. SOURCE does not
require storing the entire intermediate variables throughout training. Instead, it requires a handful of
checkpoints throughout training to approximate the means of the Hessians and gradients.

3.3 Practical Algorithm for SOURCE

We now describe an instantiation of SOURCE which is practical to implement. Given the C model
checkpoints saved during training, SOURCE begins by organizing them into L distinct segments.
These segments may represent explicit stages in training (e.g., continual learning) or account for the
change in Hessian and gradient throughout training. Within each segment ℓ, SOURCE estimates the
stationary Hessian H̄ℓ and gradient ḡℓ by averaging the Hessian and gradient across all checkpoints
in the segment. SOURCE further estimates η̄ℓ by averaging the learning rates used within a segment.

However, computing Equation (15) has two practical bottlenecks for neural networks: computation
of the Hessian and its matrix exponential. We fit a parametric approximation to the Hessian using
EK-FAC [18]. EK-FAC parameterization is convenient for SOURCE as the approximate Hessian
has an explicit eigendecomposition, which enables efficient computation of S̄ℓ and r̄ℓ by applying
appropriate matrix functions to the eigenvalues. Note that EK-FAC approximates the Hessian with the
Gauss-Newton Hessian (GNH) [63]. Unlike the Hessian, the GNH is guaranteed to be positive semi-
definite, as long as the loss function is convex in the model outputs [62]. The GNH approximation
within EK-FAC is also advantageous for SOURCE as it can avoid numerical instability in computing
Equation (15), especially when the Hessian has negative eigenvalues. The implementation details are
provided in Appendix D.

Compared to influence functions with the same EK-FAC approximation [24], SOURCE requires
computing the EK-FAC factors and training gradients for each model checkpoint when performing
TDA on all segments. Hence, SOURCE is C times more computationally expensive, where C is the
number of checkpoints. In Appendix F.2, we introduce a more computationally efficient version
of SOURCE, where we average the parameters within a segment instead of averaging Hessians
and gradients. This variant of SOURCE is L times more computationally expensive than influence
functions, as the EK-FAC factors and gradients only need to be computed once for each segment.

While we described one instantiation of SOURCE with the EK-FAC approximation, we note that
SOURCE can be integrated with other techniques used for approximating implicit-differentiation-
based TDA methods, such as TRAK [70], DATAINF [55], and LOGRA [11]. For example, with TRAK,
we can use random projection [43] and efficiently compute the averaged Hessian and gradients in the
lower-dimensional space. TRAK can be advantageous over the EK-FAC approximation when there
are a large number of query data points, as it caches the compressed training gradients in memory,
avoiding the need to recompute them for each query.

4 Related Works

Modern TDA techniques for neural networks can be broadly categorized into three main groups:
sampling-based, representation-based, and gradient-based. For a comprehensive overview of TDA,
including practical applications, we refer the reader to Hammoudeh and Lowd [27] and Mucsányi
et al. [66]. Sampling-based (or retraining-based) approaches, such as Shapley-value estimators
[78, 21, 39, 54, 87], DOWNSAMPLING [17, 96], DATAMODELS [35], and DATA BANZHAF [5, 86],
approximate counterfactuals by repeatedly retraining models on different data subsets. Although
effective, these methods are often impractical for modern neural networks due to the significant
computational cost of repeated model retraining.
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Representation-based techniques evaluate the relevance between a training and query data point by
examining the similarity in their representation space (e.g., the output of the last hidden layer) [9, 30].
These techniques offer computational advantages compared to other attribution methods, as they only
require forward passes through the trained network. Rajani et al. [74] further improves efficiency by
caching all hidden representations of the training dataset and using approximate nearest neighbor
search [42]. Past works have also proposed model-agnostic TDA approaches, such as computing
the similarity between query and training sequences with BM25 [75] for language models [1, 56]
or with an embedding vector obtained from a separate pre-trained self-supervised model for image
classification tasks [79]. However, representation-based and input-similarity-based techniques lack a
connection to the counterfactual and do not provide a notion of negatively influential data points.

Two main strategies for gradient-based TDA are implicit differentiation and unrolling. To the best
of our knowledge, the largest model to which exact unrolling has been applied is a 300 thousand
parameter model [31]. Our experiments in Section 5 cover TDA for models ranging from 560 thousand
parameters (MNIST & MLP) to 120 million parameters (WikiText-2 & GPT-2). SGD-INFLUENCE
[31] also considers applying unrolling to only the last epoch for large-scale models. However, this
limits its applicability in analyzing the effect of removing a data point at the beginning of training
or analyzing multi-stage training processes. In contrast, HYDRA [10] approximates the mini-batch
Hessian Hk in Equation (10) as zero when computing the total derivatives, avoiding the need to
compute Hessian-vector products (HVPs) for each optimization step. However, in Appendix F.1,
we empirically observe that an accurate approximation of the Hessian is important to achieve good
TDA performance. Both approaches require storing a large number of optimization variables during
training. Relatedly, Nickl et al. [68] use local perturbation methods [37] to approximate the data
point’s sensitivity to the training trajectory.

Apart from implicit-differentiation-based and unrolling-based approaches, TRACIN [72] is another
prominent gradient-based TDA technique, which estimates the importance of a training data point by
approximating the total change in the query’s measurable quantity with the gradient update from this
data point throughout training. Similarly to SOURCE, the practical version of TRACIN (TRACINCP)
leverages intermediate checkpoints saved during training. While TRACINCP is straightforward to
implement as it does not involve approximation of the Hessians, its connection to the counterfactual
is unclear [27, 77]. However, past works have shown its strengths in downstream tasks, such as
mislabeled data detection [72] and curating fine-tuning data [90].

5 Experiments

Our experiments investigate two key questions: (1) How does SOURCE compare to existing TDA
techniques, as measured by the linear datamodeling score (LDS) [70] and through subset removal
counterfactual evaluation [33, 93, 35, 97, 70, 8, 79, 19]? (2) Can SOURCE support data attribution
in situations where implicit-differentiation-based approaches struggle, particularly with models that
have not converged or have been trained in multiple stages with different objectives or datasets?

We compare SOURCE against existing TDA techniques: representation similarity (REPSIM) [9, 30],
TRACIN [72], TRAK [70], and influence functions (IF) with the EK-FAC approximation [24]. For
consistency with Park et al. [70], the measurement f is defined as the margin for classification tasks
and the absolute error for regression tasks. Our evaluations are conducted under two separate settings.
First is a single model setup, where TDA techniques use model checkpoints from a single training run.
Unless specified otherwise, REPSIM, TRAK, and IF are computed at the final training checkpoint,
and TRACIN and SOURCE use at most 6 intermediate checkpoints saved throughout training. In the
second setting, TDA techniques use checkpoints from 10 distinct models, each trained with varying
sources of randomness. Past works have shown that ensembling attribution scores across models
can improve TDA performance [70, 67]. For all TDA techniques, including SOURCE, we simply
average the final attribution scores from distinctly trained models with the full dataset, except for
TRAK, which uses its custom ensembling procedures with models each trained on sampled 50% of
the original dataset.

Our experiments consider diverse machine learning tasks, including: (a) regression using datasets from
the UCI Repository [45], (b) image classification with datasets such as MNIST [57], FashionMNIST
[91], CIFAR-10 [53], RotatedMNIST [20], and PACS [58], and (c) text classification using the GLUE
benchmark [85]. Our tasks can be categorized into three groups:
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Figure 4: LDS at α = 0.5 for SOURCE and baseline techniques on regression, image classifi-
cation, and text classification tasks. The error bars represent 95% bootstrap confidence intervals
(Appendix E.2).

Concrete, FashionMNIST, CIFAR-10, & RTE. Models fully trained using a fixed dataset D, where
implicit-differentiation-based methods are expected to perform similarly to unrolling-based methods.
We use 6 intermediate checkpoints throughout training for TRACIN and SOURCE. SOURCE use 3
segments (L = 3) equally partitioned at the early, middle, and late stages of training to account for
the changes in distributions of Hessian and gradients during training.

Concrete-N & FashionMNIST-N. Non-converged models trained with a smaller number of update
steps. This is a challenging setup for implicit-differentiation-based methods, such as TRAK and IF,
as they inherently assume that TDA is performed on the optimal solution. We use versions of the
Concrete and FashionMNIST datasets that have been modified, either by corrupting target values or
relabeling 30% of the data points. Then, we train the models for only 3 epochs to avoid overfitting.
We use 3 checkpoints (at the end of each epoch) for TRACIN and SOURCE (L = 3).

RotatedMNIST & PACS. Models initially trained with a dataset D1, and subsequently trained with
another dataset D2 (a common setup in continual learning). We use test examples from D2 for query
data points and attribute the final model’s behavior to the first dataset. Since implicit-differentiation-
based methods do not provide any way to separate multiple stages of training, for TRAK and IF, we
simply combine the data from both stages into a larger dataset for TDA. We use two segments for
SOURCE, partitioned at different stages, and perform TDA only for the first segment. Our experiments
use the RotatedMNIST and PACS datasets, both containing multiple data distributions. We select one
of these domains for the second training stage, while the remaining ones are used in the first stage.

The detailed description of the experimental setup is provided in Appendix E. Additional results,
including comparisons on additional tasks and with additional baselines, further analysis on linear
models, and visualizations of the top influential images obtained by each TDA technique, are shown
in Appendix F.

5.1 TDA Evaluations with Linear Datamodeling Score (LDS)

We evaluate TDA techniques using the linear datamodeling score (LDS) from Park et al. [70]. To
compute LDS, we first generate M random subsets {Sj}Mj=1 from the training dataset, each containing
⌈αN⌉ data points for some α ∈ (0, 1). Given a query data point zq and hyperparameters λ used to
train the original model, the expected measurable quantity for each data subset Eξ[f(zq,θ

s(Sj ;λ, ξ))]
is estimated by retraining the model R times under different random choices (which requires MR
model retrainings in total). The LDS measures the Spearman correlation [81] between the estimated
quantities and the predictions made by the TDA method. Note that, although a TDA method in
Section 2.1 assigns a score to each pair of a query and training data point, the inherently additive
nature of most TDA techniques allows for the computation of a group prediction score for the data
subset S by summing the individual scores attributed to each data point within this subset. The final
LDS is obtained by averaging the scores across many (typically up to 2000) query data points. We
use 100 data subsets (M = 100) and conduct a minimum of 5 retraining iterations (R ≥ 5) for each
subset. We refer readers to Appendix A for the detailed formulation and to Appendix E.2 for the
practical procedures.

The LDS at α = 0.5 for SOURCE and baseline TDA techniques are shown in Figure 4. SOURCE
consistently outperforms all baseline methods in a single model setup, achieving high LDS. When
aggregating TDA scores from multiple models, we observe a large improvement in the LDS, particu-
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Figure 5: Subset removal counterfactual evaluation for SOURCE and baseline TDA techniques, where
the top positively influential data points predicted by each TDA method are removed, and the model
is retrained to examine if (previously correctly classified) test data point gets misclassified.

larly for TRAK, IF, and SOURCE. Our method achieves the highest LDS across all tasks, except for
the CIFAR-10 classification task using ResNet-9. SOURCE especially performs strongly against other
baseline techniques on settings that pose challenges to implicit-differentiation-based approaches (e.g.,
non-converged models and models trained with multiple stages), and indeed, even the non-ensembled
version of SOURCE typically outperforms the ensembled versions of the competing methods.

5.2 TDA Evaluations with Subset Removal

Subset removal counterfactual evaluation examines the change in model behavior before and after
removing data points highly ranked by a TDA technique. For classification tasks, we consider 100
test data points that are correctly classified when trained with the full dataset (across all 5 random
seeds) and, for each test data point zq , examine if removing and retraining without the top-k positively
influential data points can cause misclassification on average (over 3 random seeds). By assessing
the impact of removing influential training examples on the model’s performance, counterfactual
evaluation provides a direct measure of the effectiveness of TDA techniques in identifying data
points that significantly contribute to the model’s behavior. The detailed procedures are described in
Appendix E.3. In Figure 5, we show the fraction of test examples (out of the selected 100 test points)
that get misclassified on average after removing at most k positively influential training examples
identified by each TDA method. We observe that SOURCE better identifies the top influential data
points causing misclassification than other baseline TDA techniques. The improvement is more
substantial for settings that pose challenges to implicit-differentiation-based methods.

6 Conclusion

We introduced SOURCE (Segmented statiOnary UnRolling for Counterfactual Estimation), a novel
TDA technique that combines the strengths of implicit-differentiation-based and unrolling-based
techniques. SOURCE approximates unrolled differentiation by partitioning the training trajectory
into one or more segments and approximating the gradients and Hessians as stationary within each
segment, yielding an influence-function-like estimation algorithm. We showed one instantiation of
SOURCE by approximating the Hessian with the EK-FAC parameterization. On a diverse task set, we
demonstrated SOURCE’s effectiveness compared to existing data attribution techniques, especially
when the network has not converged or has been trained with multiple stages.
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A Evaluation of TDA Techniques

Given the focus on counterfactual prediction in many TDA methods, LOO estimates, defined in
Equation (2), are often considered a ground truth for evaluating these techniques. However, the
computation of LOO scores in neural networks encounters several computational and conceptual
challenges, as detailed in Appendix B. For a robust and standardized measure for evaluating TDA
techniques, we instead use the linear datamodeling score (LDS) from Park et al. [70] as well as subset
removal counterfactual evaluation [33, 93, 35, 97, 70, 8, 79, 19].

Linear Datamodeling Score (LDS). A TDA method τ , as detailed in Section 2.1, assigns a score
to each pair of a query and training data point. The inherently additive nature of most TDA techniques
allows for the computation of a group attribution score for a specific training data subset S ⊂ D.
The importance of S on the measurable quantity f is estimated by summing the individual scores
attributed to each data point within this subset. The group attribution is expressed as follows:

gτ (zq,S,D;λ) :=
∑
z∈S

τ(zq, z,D;λ). (17)

Consider M random subsets {Sj}Mj=1 from the training dataset, each containing ⌈αN⌉ data points
for some α ∈ (0, 1). Given a hyperparameter configuration λ to train the model, the LDS for a query
point zq is defined as:

LDSα(zq, τ) := ρ ({Eξ [f(zq,θ
s(Sj ;λ, ξ))] : j ∈ [M ]}, {gτ (zq,Sj ,D;λ) : j ∈ [M ]}) , (18)

where ρ represents the Spearman correlation [81]. This expected measurable quantity is approximated
by retraining the network R times under different random choices. The final LDS is obtained by
averaging the scores across many (typically up to 2000) query data points. In our experiments,
we use 100 data subsets (M = 100) and conduct a maximum of 100 retraining iterations (R ∈
{5, 10, 20, 100}) for each subset to compute the LDS.

Subset Removal Counterfactual Evaluation. Subset removal counterfactual evaluation examines
the change in model behavior before and after removing data points that are highly ranked by an
attribution technique. For classification tasks, we consider 100 test data points that are correctly
classified when trained with the full dataset and, for each test data point, examine if removing and
retraining without the top-k positively influential data points can cause misclassification on average
(trained under different random choices).6 By assessing the impact of removing influential data points
on the model’s performance, counterfactual evaluation provides a direct measure of the effectiveness
of TDA techniques in identifying data points that significantly contribute to the model’s behavior.

Downstream Task Evaluation. TDA techniques have also been evaluated on their performance on
downstream tasks, such as mislabeled data detection [46, 72, 47], class detection [30, 55], finding
hallucinations in the training dataset [56], and retrieving factual knowledge from the training dataset
[1]. These tasks can offer additional insights into the effectiveness and applicability of data attribution
methods in practical scenarios. However, the connections between these tasks and counterfactual
prediction are often unclear [44, 70], and it is uncertain whether algorithmic improvements in
counterfactual prediction will directly result in improved performance on these downstream tasks.

B Limitations of Leave-One-Out Estimates

The computation of leave-one-out (LOO) scores in Equation (2) presents several computational and
conceptual challenges for neural networks. Firstly, calculating the LOO score for all training data
points requires retraining the model N times, where N is the size of the training dataset. This process
can be prohibitively expensive for large datasets and network architectures.

Moreover, the formulation of LOO assumes that an optimal solution to Equation (1) exists, is unique,
and can be precisely computed, and that TDA is performed on this optimal solution. However, within
the context of neural networks, these assumptions often do not hold, leading to ambiguities in the

6The literature also uses terms such as helpful [49], proponent [72], and excitatory [92] to describe positively
influential training data points.
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computation of LOO estimates. Previous works have investigated various LOO variants as a means
to establish counterfactual ground truths [49, 6, 44, 40, 3, 14, 67]. For example, Koh and Liang [49]
and Basu et al. [6] formulated the LOO ground truth by training the network for an additional number
of steps from the final parameters θs without a specific training data point. However, as noted by Bae
et al. [3], these estimates may reflect the effect of training the network for additional steps instead of
retraining without a data point, especially when the network has not converged.

A more standardized extension of LOO for neural networks is the expected leave-one-out (ELOO)
retraining [44], formulated as:

τELOO(zq, zm,D;λ) := Eξ [f(zq,θ
s(D \ {zm};λ, ξ))]− Eξ [f(zq,θ

s(D;λ, ξ))] , (19)

where λ denotes the hyperparameters used to train the model, and the expectation is taken over the
randomness in the training process (typically estimated by retraining the network R times). Note that
the ELOO can also be seen as the ground truth for the linear datamodeling score (LDS) (defined in
Appendix A) with α = 1− 1/N . Past works have demonstrated the unreliability of ELOO estimates
due to stochasticity in model training, such as model initialization and batch ordering [44, 14, 67].
Specifically, Nguyen et al. [67] observed that the noise from the stochasticity often overshadows
the actual signal of removing a single data point. In Appendix F.3, we also observe that the LDS
significantly drops at α = 1 − 1/N, suggesting that the counterfactual ground truth for removing
a single data point can be difficult to obtain, as it can be extremely noisy for most training data
examples.

C SOURCE with Preconditioning Matrix

In Section 3.1, we motivated our proposed algorithm, SOURCE, for cases where the parameters are
optimized using stochastic gradient descent (SGD). In this section, we present the formulation of
SOURCE when preconditioned optimizers, such as RMSProp [82], Adam [48], and K-FAC [63], are
used to train the model.

To investigate the impact of removing a training data point zm ∈ D, we follow a similar derivation as
in Section 3.1, but now considering the preconditioning matrix:

θk+1(ϵ)← θk(ϵ)−
ηk
B

Pk

(
B∑
i=1

(1 + δkiϵ)∇θL(zki,θk(ϵ))
)
, (20)

where Pk is a (positive definite) preconditioning matrix and δki := 1[zki = zm] is the indicator
function for having selected zm.

By applying the chain rule of derivatives, the contribution of iteration k to the total derivative can be
found by multiplying all the Jacobian matrices along the backward accumulation path, giving the
value −ηk

B Jk+1:TPkgk, where we have:

Jk :=
dθk+1

dθk
= I− ηkPkHk

Jk:k′ :=
dθk′

dθk
= Jk′−1 · · ·Jk+1Jk

gk := ∇θL(zm,θk).

(21)

Hence, by applying the linearity of expectation, the expected total derivative of the terminal parameters
θT with respect to the perturbation ϵ is expressed as:

E

[
dθT
dϵ

]
= −

T−1∑
k=0

ηk
B

E[δkJk+1:TPkgk], (22)

As discussed in Section 3.2, we group the training trajectories into multiple segments to approximate
the expected total derivative for each segment with statistical summaries thereof. In addition to the
approximations introduced in Section 3.2, we approximate preconditioning matrices as stationary
within a segment and represent it as P̃ℓ := Pk for Tℓ−1 ≤ k < Tℓ.
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Approximation of E[Sℓ]. We approximate E[Sℓ] in Equation (11) as follows:

E[Sℓ] = E[JTℓ−1:Tℓ
] ≈

(
I− η̄ℓP̄ℓH̄ℓ

)Kℓ ≈ exp(−η̄ℓKℓP̄ℓH̄ℓ)

= P̃
1/2
ℓ exp(−η̄ℓKℓP̄

1/2
ℓ H̄ℓP̄

1/2
ℓ )P̃

−1/2
ℓ := S̄ℓ.

(23)

Note that the last line uses the properties of the matrix exponential.7

Approximation of E[rℓ]. We further approximate E[rℓ] as follows:

E[rℓ] = E

 Tℓ−1∑
k=Tℓ−1

ηk
B

δkJk+1:Tℓ
Pkgk

 (24)

≈ 1

N

Tℓ−1∑
k=Tℓ−1

η̄ℓ(I− η̄ℓP̃ℓH̄ℓ)
Tℓ−1−kP̃ℓḡℓ (25)

=
1

N
(I− (I− η̄ℓP̃ℓH̄ℓ)

Kℓ)H̄−1
ℓ ḡℓ (26)

≈ 1

N
(I− exp(−η̄ℓKℓP̃ℓH̄ℓ))H̄

−1
ℓ ḡℓ (27)

=
1

N
P̃

1/2
ℓ (I− exp(−η̄ℓKℓMℓ))M

−1
ℓ︸ ︷︷ ︸

:=Fr

P̃
1/2
ℓ ḡℓ := r̄ℓ, (28)

where we define Mℓ := P̄
1/2
ℓ H̄ℓP̄

1/2
ℓ and the last line uses the properties of matrix exponential, as

done in Equation (23). Similarly to our analysis presented in Section 3.2, we can represent r̄ℓ with
the matrix function of Mℓ. Let Mℓ = QΛQ⊤ be the eigendecomposition of Mℓ and let σj be the
j-th eigenvalue of Mℓ. The expression can be seen as applying the matrix function, defined as:

Fr(σ) :=
1− exp (−η̄ℓKℓσ)

σ
. (29)

The qualitative behavior of Fr can be captured with the function Finv(σ) := 1/(σ + λ), where
λ = η̄−1

ℓ K−1
ℓ (see Section 3.2 for details). Hence, one way to understand Equation (28) is by

expressing it as the damped inverse Hessian-vector product (iHVP):

r̄ℓ ≈
1

N
P̄

1/2
ℓ (Mℓ + λI)−1P̄

1/2
ℓ ḡℓ (30)

=
1

N
P̄

1/2
ℓ (P̄

1/2
ℓ H̄ℓP̄

1/2
ℓ + λI)−1P̄

1/2
ℓ ḡℓ (31)

=
1

N
(H̄ℓ + λP̃−1

ℓ )−1ḡℓ. (32)

In a case where P̃ℓ is a diagonal matrix, Equation (32) can be seen as a special case for influence
functions with a specific diagonal damping term λP̃−1

ℓ . Using the derived S̄ℓ and r̄ℓ, we approximate
the total expected derivative using Equation (15).

D Implementation Details

This section describes the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-
FAC) [18] and how we computed SOURCE using this EK-FAC parameterization. The code for
implementing SOURCE (as well as baseline techniques) will be provided at https://github.com/
pomonam/kronfluence. For details on the EK-FAC approximation specific to influence functions,
we refer readers to Grosse et al. [24].

7For a square matrix M and a square positive definite matrix D, we have exp(M) =
∑∞

k=0
1
k!
Mk =

D1/2

[∑∞
k=0

1
k!

(
D−1/2MD1/2

)k
]
D−1/2 = D1/2 exp(D−1/2MD1/2)D−1/2.
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Figure 6: A demonstration of the match in qualitative behavior between Fr and Finv, where we set
η̄ℓ = 0.1 and Kℓ = 100.

D.1 Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC)

Kronecker-Factored Approximate Curvature (K-FAC) [63] and EK-FAC [18] introduce a parametric
approximation to the Fisher information matrix (FIM) of a neural network, defined as:

F := Ex∼pdata,ŷ∼Pŷ|x(θ)

[
∇θ log p(ŷ|θ,x)∇θ log p(ŷ|θ,x)⊤

]
, (33)

where pdata is the data distribution and Pŷ|x(θ) is the model’s output distribution. For many commonly
used loss functions, such as softmax-cross-entropy and squared-error, the FIM is equivalent to the
Gauss-Newton Hessian (GNH) [62], denoted as G. The GNH can be seen as an approximation to the
Hessian H, where the network is linearized around the current parameters [22]. Different from the
Hessian, the GNH is guaranteed to be positive semi-definite (PSD) when the loss function is convex
with respect to the model output.

While K-FAC and EK-FAC were originally formulated for multilayer perceptrons (MLPs), they were
later extended to other architectures, such as convolutional neural networks [23], recurrent neural
networks [64], graph neural networks [36], or to be learnable by gradient-based optimizers [4]. We
refer readers to Eschenhagen et al. [15] for a comprehensive overview. This section describes the
EK-FAC formulation in the context of MLPs.

Consider a l-th layer of the network with input activations al−1 ∈ RI and pre-activation output
sl ∈ RO such that sl := Wlal−1, where W ∈ RO×I is the weight matrix (we drop the layer
subscript to avoid clutter and ignore the bias term for simplicity). The pseudo-gradient (where the
target is sampled from the model’s output distribution; see Equation (33)) is given by DW := Dsa⊤.
K-FAC makes two core approximations: (1) layerwise independence approximation, where GNH
is approximated as block-diagonal with each block corresponding to GNH of some specific layer,
and (2) input activations a and pseudo-gradient of the pre-activations Ds are independent under the
model’s predictive distribution. The layerwise GNH can be approximated as:

G = E
[
vec(DW)vec(DW)⊤

]
= E

[
aa⊤ ⊗DsDs⊤

]
≈ E[aa⊤]⊗ E

[
DsDs⊤

]
:= A⊗ S, (34)

where ⊗ denotes the Kronecker product. The matrices A ∈ RI×I and S ∈ RO×O in Equation (34)
represent the uncentered covariance matrices of the activations and the pseudo-gradients with respect
to the pre-activations, respectively. These covariance matrices can be estimated by computing the
statistics over many data batches and taking the average.

Denoting the eigendecomposition of these covariance matrices as A = QAΛAQ⊤
A and S =

QSΛSQ
⊤
S , using properties of the Kronecker product, we can express the eigendecomposition of

A⊗B as:
A⊗B = (QA ⊗QS)(ΛA ⊗ΛS)(QA ⊗QS)

⊤. (35)

EK-FAC introduces a more accurate approximation to the GNH by introducing a compact represen-
tation of the eigenvalues (instead of representing them as the Kronecker product ΛA ⊗ΛS). The
layerwise GNH for EK-FAC is represented as follows:

G ≈ (QA ⊗QS)Λ(QA ⊗QS)
⊤. (36)

Here, the corrected eigenvalues Λ ∈ RIO×IO are defined as:
Λii := E[((QA ⊗QS)vec(DW))2i ]. (37)

The corrected eigenvalues in Equation (37) minimize the approximation error with the GNH measured
by the Frobenius norm, where we refer readers to George et al. [18] for the derivations.
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D.2 EK-FAC Computations for SOURCE

As detailed in Section 3.3, our practical instantiation of SOURCE requires averaging the Hessians
across checkpoints within a segment. We use a common averaging scheme in the optimization
literature [63, 18, 26] to compute the averaged EK-FAC factors. We first compute the activation
covariance matrices A and pseudo-gradient covariance matrices S for all model checkpoints. These
matrices are obtained by computing the statistics over all data points once (1 epoch). Then, we take the
average over these covariance matrices to obtain Ā = 1

Cℓ

∑Cℓ

k=1 Ak and S̄ = 1
Cℓ

∑Cℓ

k=1 Sk, where Cℓ

is the total number of model checkpoints for the ℓ-th segment and Ak and Sk are covariance matrices
for the k-th checkpoint. Then, we perform eigendecomposition on these averaged covariance matrices
to obtain the eigenvectors Q̄A and Q̄S. Under the eigenbasis Q̄A ⊗ Q̄S, we compute the corrected
eigenvalues Λk for each model checkpoint (Equation (37)) and then average the eigenvalues to obtain
Λ̄. In summary, the averaged (Gauss-Newton) Hessian for a particular segment is approximated as:

Ḡ ≈ (Q̄A ⊗ Q̄S)Λ̄(Q̄A ⊗ Q̄S)
⊤. (38)

SOURCE requires computing the covariance matrices and corrected eigenvalues for each model
checkpoint. Moreover, calculating the TDA scores for all training data points requires computing
the training gradients C times, where C is the total number of checkpoints. Hence, SOURCE is
approximately C times more computationally expensive than influence functions evaluated at the final
checkpoint. In Section 3.3, we introduced a more efficient variant, which averages the parameters
within a segment instead. This variant only needs to compute the EK-FAC factors once for each
segment and requires computing the EK-FAC factors and gradients L times. Hence, it is L times
more computationally expensive than influence functions.

When the model is trained with SGD with a heavy ball momentum β (SGDm), we scaled the
learning rate used in SOURCE as η̄ℓ(1 − β)−1 to account for the effective learning rate (terminal
velocity). In cases where AdamW optimizers are used as in Appendix C, computing the matrix
exponential for P̄1/2

ℓ H̄ℓP̄
1/2
ℓ is challenging with EK-FAC. We additionally keep track of the diagonal

Hessian approximation (which can be easily and efficiently obtained when computing the corrected
eigenvalues in Equation (37)) and use the diagonal Hessian approximation for computing the matrix
exponential in Equation (23) and Equation (27). Note that we still use the EK-FAC factors to compute
H̄−1

ℓ ḡℓ in Equation (27).

D.3 Applicability to Other Approximation Techniques

While we described one instantiation of SOURCE with the EK-FAC approximation, SOURCE can be
integrated with other techniques used for approximating implicit-differentiation-based TDA methods,
such as TRAK [70] and DATAINF [55]. For example, as in TRAK, we can use random projection [43]
to efficiently compute the averaged Hessian and gradients in a lower-dimensional space. TRAK is
advantageous over the EK-FAC approximation when there are many query data points, as it caches
compressed training gradients in memory, avoiding recomputing them for each query.

E Experimental Setup

This section describes the experimental setup used to obtain the results presented in Section 5.
This includes a description of each task (Appendix E.1) and the methodology for computing the
linear datamodeling score (LDS) (Appendix E.2). Implementation details of the subset removal
counterfactual evaluation and baseline techniques are provided in Appendix E.3 and Appendix E.4,
respectively. All experiments were conducted using PYTORCH version 2.1.0 [71]. We used CPUs
to conduct UCI regression experiments, A100 (80GB) GPUs to conduct GLUE and WikiText-2
experiments, and A6000 (48GB) GPUs for other experiments. A single GPU was used to run
SOURCE and baseline techniques. The internal cluster was used to run the experiments. Since our
ground truth requires a lot of model retraining with different random choices (e.g., initialization and
batch ordering), we considered tasks that train (or fine-tune) with less than 20 minutes using the
abovementioned compute resources. For example, the generation of the LDS ground truth for a given
task and data sampling ratio α ∈ (0, 1) takes at most 210 hours of computational resources.
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E.1 Datasets and Models

We conducted systematic hyperparameter optimization for all tasks. This process involved conducting
grid searches to find hyperparameter configurations that achieve the best average validation perfor-
mance (accuracy for classification tasks and loss for others). The average validation performance
was obtained by retraining the network 5 times using different random seeds. For models trained
with SGD with a heavy ball momentum of 0.9 (SGDm), our search spaces for learning rate and
weight decay were {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and {3e-2, 1e-2, 3e-3,
1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 0.0}, respectively. For models trained with AdamW [61], the search
spaces were {1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} for learning rate and {3e-2, 1e-2, 3e-3, 1e-3,
3e-4, 1e-4, 3e-5, 1e-5, 0.0} for weight decay. In cases where the original experimental setup from
which we adapted had a pre-specified learning rate and weight decay, these hyperparameters were
incorporated into our search space.

UCI Datasets (Regression). For regression tasks, we used the Concrete [94] and Parkinson [83]
datasets from the UCI Machine Learning Repository [45]. Both datasets were pre-processed to have
a zero mean and unit variance for input features and targets. We trained a three-layer multilayer
perceptron (MLP), where each layer consisted of 128 hidden units and the RELU activation function.
The models were optimized using SGDm for 20 epochs with a batch size of 32 and a constant learning
rate schedule. A learning rate of 3e-2 and a weight decay of 1e-5 were used for the Concrete dataset.
For the Parkinson dataset, the learning rate was set to 1e-2 with a weight decay value of 3e-5. We
saved 6 intermediate checkpoints throughout training. For the noisy Concrete (Concrete-N) dataset,
we randomly modified 30% of the targets by sampling from a Normal distribution with zero mean
and unit variance. We used the same hyperparameters but trained the models for 3 epochs.

MNIST & FashionMNIST (Image Classification). Following the experimental setup from Koh
and Liang [49] and Bae et al. [3], we trained a three-layer multilayer perceptron (MLP) on approxi-
mately 10% of MNIST [57] and FashionMNIST [91] datasets. Smaller versions of these datasets
were used to compute the counterfactual ground truth more efficiently. The models were trained
with SGDm for 20 epochs with a batch size of 64 and a constant learning rate. The learning rate and
weight decay were set for both datasets to 3e-2 and 1e-3, respectively. We saved 6 checkpoints during
training and utilized them for TRACIN and SOURCE. For the noisy FashionMNIST (FashionMNST-N)
experiment, we randomly relabeled 30% of the training dataset. The network was only trained for 3
epochs with a learning rate 1e-2 and weight decay 3e-5.

CIFAR-10 (Image Classification). For the CIFAR-10 dataset [53], we trained the ResNet-9 model
[32],8 following the standard data augmentation procedure from Zagoruyko and Komodakis [95].
This included extracting images from a random 32× 32 crop after applying zero-padding of 4 pixels,
with a 50% probability of horizontal flipping. The network was trained for 25 epochs using SGDm
with a batch size of 512 and a cyclic learning rate schedule, peaking at 0.5. The initial learning rate
was set to 0.4 with a weight decay of 1e-3, and 6 intermediate checkpoints were saved throughout
training.

GLUE (Text Classification). We fine-tuned the BERT model [12] on SST-2, RTE, and QNLI
datasets from the GLUE benchmark [85] with the training script from the Transformers library
[89].9 Following the experimental setup from Park et al. [70], we capped the training dataset at
a maximum of 51200 examples to compute the LDS efficiently. However, we did not modify the
original architecture (e.g., removing the last TANH layer) and trained the network with the AdamW
optimizer. The weight decay was set to 1e-2 for all tasks, and the learning rates were set as follows:
3e-5 for SST-2, 1e-5 for QNLI, and 2e-5 for RTE. We saved 6 intermediate checkpoints for each
training run.

WikiText-2 (Language Modeling). For the language modeling task, we fine-tuned the GPT-2
model [73] using the WikiText-2 dataset [65]. We followed the training script from the Transformer

8https://github.com/MadryLab/trak/blob/main/examples/cifar_quickstart.ipynb.
9https://github.com/huggingface/transformers/blob/main/examples/pytorch/

text-classification/run_glue_no_trainer.py.
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library but set the maximum sequence length to 512.10 During fine-tuning with AdamW, we saved 6
intermediate checkpoints for data attribution. The learning rate, weight decay, and batch size were set
to 3e-5, 1e-2, and 8, respectively. We set the measurement f as a loss for the language modeling task.

RotatedMNIST & PACS (Image Classification). We used the RotatedMNIST dataset [20] and
the PACS dataset [58], following the data pre-processing procedures from Gulrajani and Lopez-Paz
[25].11 The training process was divided into two distinct stages for both tasks. During the initial
stage of the training, we trained the network with the dataset D1, while the second stage used dataset
D2. For RotatedMNIST, the first dataset D1 was comprised of images rotated at 0, 15, 45, and
60 degrees, whereas the second dataset D2 contained images rotated at 30 degrees. We trained a
three-layer MLP for 30 (20/10) epochs using SGDm and a batch size of 128. The learning rate and
weight decay were set to 1e-1 and 1e-5. For PACS, the first dataset D1 included images from the
cartoon, photo, and sketch categories, and the second dataset D2 had art paintings. We fine-tuned
ResNet-50 [32], initialized from the pre-trained parameters,12 using SGDm for 40 (30/10) epochs
with a batch size of 128, a learning rate of 1e-4, and a weight decay of 3e-5.

E.2 Linear Datamodeling Score

We follow a methodology proposed by Park et al. [70] to compute the linear datamodeling score
(LDS). Let λ represent the set of hyperparameters used for training the model on a specified task,
such as the choice of optimizer and the number of training epochs. Let α ∈ (0, 1) denote the data
sampling ratio. The process for obtaining the LDS involves several steps:

1. We generate M data subsets, denoted as {Sj}Mj=1, each being a uniformly sampled subset
of the original training dataset D. Each subset Sj ⊂ D contains ⌈αN⌉ data points, where
N denotes the total number of training data points.

2. For each data subset Sj , the model is trained R times using different random seeds {ξr}Rr=1
(e.g., model initialization and batch ordering).

3. Given an attribution method τ and a query example zq, we measure the Spearman correla-
tions [81] between the prediction and the estimated expected measurable quantity:

ρ

({
1

R

R∑
r=1

f(zq,θ
s(Sj ;λ, ξr)) : j ∈ [M ]

}
, {gτ (zq,Sj ,D;λ) : j ∈ [M ]}

)
, (39)

where g represents the group attribution prediction, expressed as:

gτ (zq,S,D;λ) :=
∑
z∈S

τ(zq, z,D;λ). (40)

4. To obtain the final LDS, we average the correlations over a set of query data points (up
to 2000 in our experiments) and report the score with 95% bootstrap confidence intervals,
which accounts for resampling of the data subset Sj (see Park et al. [70] for details).

For a given data sampling ratio α, the networks must be retrained MR times in total to compute the
LDS ground truth. In our experiments, we used 100 subsets (M = 100). The repeat R was set to 100
for UCI regression tasks, 10 for MNIST classification tasks, 20 for CIFAR-10 image classification
task, 5 for GLUE text classification and WikiText language modeling task, and 20 for RotatedMNIST
and PACS image classification tasks. We used the largest feasible R based on our computational
budget because we observed improvements in LDS for baseline techniques (especially TRAK, IF,
and SOURCE) with larger R.

E.3 Subset Removal Counterfactual Evaluation

For the subset removal counterfactual evaluation, we first train the model with the full datasetD under
different random choices (over 5 random seeds) and select 100 test data points correctly classified on

10https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm_no_trainer.py.

11https://github.com/facebookresearch/DomainBed.
12https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.

html.
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all random choices. Then, for each test data point and attribution technique, we remove the top-k
data points from the pre-defined interval k1, . . . , kI (such that k1 < · · · < kI ), as indicated as highly
positively influential by the data attribution technique, retrain the network with this modified dataset,
and examine if the original test data point gets misclassified on average under different random
choices (over 3 random seeds). Finally, for each value of k in the pre-defined interval, we report the
fraction of test data points that get misclassified after removing at most top-k training data points and
retraining the network with the modified dataset.

For each TDA technique, this process requires retraining the model 100× I × 3 times, where I is the
pre-defined interval size. We set I = 6 for all experiments, leading to the retraining of the model
1800 times. To reduce the computational cost, we start from the smallest subset removal size k1,
and if the test data point gets misclassified under the current subset, we do not consider it for the
larger subset removal size (e.g., k2). Hence, this can be seen as the fraction of test data points that
get misclassified by removing at most k training data points (evaluated at a fixed interval). We note
that Singla et al. [79] instead use a bisection search to find the smallest subset size in which a test
data point can be misclassified, whereas Ilyas et al. [35] use more fine-grained intervals with more
number of seeds (e.g., 8 intervals and 20 seeds). While it is possible to use a larger number of seeds
(20 seeds as in Ilyas et al. [35]), because of computational limitations, we use 3 seeds to estimate the
averaged misclassification. We used SOURCE and baseline techniques described in Appendix E.4 to
identify positively influential training data points. We also included a RANDOM baseline, where we
removed the training data points belonging to the same class as the target test example.

E.4 Baselines

This section describes the baseline techniques used in Section 5. Unless specified otherwise, we
describe them in the context of a single-training-run estimator, where the TDA techniques use the final
parameters θs obtained with hyperparameters λ and some random choice ξ (the multiple-training-
runs estimators simply average the TDA scores obtained from models trained with different random
choices ξ).

Representation Similarity (REPSIM). Representation similarity technique [9] evaluates the im-
portance of a training data point zm ∈ D to a specific query data point zq by comparing the latent
representations of these data point pairs. This can be formulated as follows:

τREPSIM(zq, zm,D;λ) := similarity(ϕθs(zq), ϕθs(zm)). (41)

Here, similarity(v1,v2), where v1 and v2 are some vectors, is typically defined through the ℓ2 metric,
dot metric, or cosine metric [30]. In our experiments, the function ϕθs(z) was designed to map a data
point to its last hidden activations (before the final output layer), using a forward pass through the
final parameters θs. We used the cosine metric to compute the attribution score but observed similar
performance when using the ℓ2 metric, aligning with observations in previous studies [35, 70, 79].

TRACIN. We used the TRACINCP estimator from Pruthi et al. [72], defined as:

τTRACIN(zq, zm,D;λ) :=
C∑

k=1

ηk · ∇θf(zq, θ̂k) · ∇θL(zm, θ̂k), (42)

where C represents the number of checkpoints, θ̂k represents the parameters at the k-th checkpoint,
and ηk is the learning rate applied at the corresponding checkpoint. The last checkpoint is typically
set to the final model parameters θs. While there is an option to compress the gradients using a
random projection as suggested by Pruthi et al. [72], our experiments used the full gradients to obtain
a stronger baseline. The checkpoint selection details are described in Appendix E.1.

Influence Functions (IF). As detailed in Section 2.2, training data attribution with influence
functions is formulated as follows:

τIF(zq, zm,D;λ) := ∇θf(zq,θ
s)⊤H−1∇θL(zm,θs), (43)

where H denotes the Hessian of the cost at the final parameters θs. To make influence functions
scalable to large neural networks, we used the Eigenvalue-corrected Kronecker-Factored Approximate
Curvature (EK-FAC) parameterization [18] to approximate the Hessian, as proposed by Grosse et al.
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[24]. We refer readers to Grosse et al. [24] and Appendix D for details on the EK-FAC computation.
Relatedly, Schioppa et al. [76] use Arnoldi iterations [2], and Kwon et al. [55] utilize the parameter-
efficient fine-tuning (PEFT) [34] strategy to efficiently approximate influence functions. More
recently, Choe et al. [11] further utilized low-dimensional gradient projection to compute influence
functions more efficiently.

While Grosse et al. [24] only consider the computation of influence scores to the MLP layers of
transformers [84], in our experiments, we extended this computation to include the attention layers as
well. We excluded layer normalization, batch normalization, and embedding layers from the influence
computation. Influence functions have an additional hyperparameter λ > 0, which is used to compute
the damped inverse Hessian-vector product (IHVP), denoted as (H+ λI)−1v for some vector v. We
used a small damping term for consistency with TRAK [70] and set it to 1e-8 to avoid numerical
instability (note that TRAK sets the damping term to 0).

TRAK. In contrast to the traditional formulation of influence functions, TRAK [70] leverages random
projections [43], Generalized Gauss-Newton approximation, and ensembling for data attribution.
Specifically, given a random projection matrix P ∼ N (0, 1)M×K , where K denotes the projection
dimension, the final model parameters θs, and a model output function f(z,θ), TRAK projects all
training and query gradients into K-dimensional vectors. The feature map is defined as:

ϕ(z) := P⊤∇θf(z,θ
s). (44)

We further define Φ := [ϕ1; . . . ;ϕN ] ∈ RN×K as stacked projected gradients for all training
data points, where each ϕi corresponds to ϕ(zi). Subsequently, TRAK’s single model estimator is
formulated as:

τTRAK(zq, ·,D;λ) := ϕ(zq)
⊤(Φ⊤Φ)−1Φ⊤Q, (45)

with Q being a N ×N diagonal matrix for weightings. Here, τTRAK represents a vector of dimension
N , containing attribution score for each training data point. TRAK uses an ensemble of single model
estimators, each derived from models trained with distinct configurations and projection matrices.
We refer readers to Park et al. [70] and Engstrom et al. [13] for detailed derivations and discussions
of TRAK.

We used the final checkpoints for TRAK in our experimental setup involving a single model. We
computed TRAK using the last checkpoint of 10 differently trained models (each trained with 50% of
the dataset) for experiments with multiple model setups. TRAK has a hyperparameter that determines
the dimension of the random projection K. We set the projection dimension to 20480 for ResNet-9
and RotatedMNIST, 8192 for ResNet-50 on the PACS dataset, 1024 for BERT trained on the RTE
dataset and 512 for MLP trained on the Concrete dataset (due to the datasets’ smaller size), and 4096
for all other tasks. All experiments were conducted using TRAK’s official implementation.13

Empirical Influence (EI). To compute the empirical influence (DOWNSAMPLING) [17], we first
create M data subsets {Sj}Mj=1, each being a uniformly sampled subset of the original training dataset.
Each subset Si contains ⌈αN⌉ data points, where α ∈ (0, 1) is the data sampling ratio. Given a
training data point zm ∈ D, we define Mm as the total number of data subsets containing zm. The
empirical influence scores are formulated as follows:

τEI(zq, zm,D;λ) := 1

M −Mm

M∑
j=1

1[zm /∈ Sj ]f(zq,θs(Sj ;λ, ξj)) (46)

− 1

Mm

M∑
j=1

1[zm ∈ Sj ]f(zq,θs(Sj ;λ, ξj)), (47)

where 1[·] is an indicator function to determine if the training data point zm is contained in the j-th
data subset Sj . Intuitively, Equation (46) computes the averaged query measurement when data point
zm is not used in training, whereas Equation (47) computes the averaged measurement when the data
point is used in training. Following Zheng et al. [97], we created 512 data subsets (M = 512) with
a sampling ratio α = 0.5, which requires retraining the model 512 times with 50% of training data
points removed.

13https://github.com/MadryLab/trak.
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Methods LDS

Single Model Multiple Models

REPSIM [9] 0.03± 0.02 0.04± 0.02
TRACIN [72] 0.20± 0.02 0.21± 0.03
TRAK [70] 0.08± 0.01 0.26± 0.00
IF [49, 24] 0.30± 0.01 0.45± 0.01
DOWNSAMPLING [17] - 0.11± 0.02
HYDRA [10] 0.16± 0.02 0.17± 0.02
SOURCE with averaged parameters (ours) 0.42± 0.01 0.48± 0.02
SOURCE (ours) 0.46 ± 0.01 0.53 ± 0.01

Table 1: LDS at α = 0.5 for SOURCE (L = 3) and baseline TDA techniques (including DOWNSAM-
PLING and HYDRA) on the FashionMNIST dataset. We show the 95% bootstrap confidence intervals.
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Figure 7: LDS at α = 0.5 for influence functions, FAST-SOURCE (see Appendix F.2), and SOURCE.
The LDS is shown for a single model (single-training-run) setup.

HYDRA. We used the fast version of HYDRA [10], formulated as:

τHYDRA(zq, zm,D;λ) :=
T−1∑
k=0

ηk · 1[zm ∈ Bk] · ∇θf(zq,θ
s) · ∇θL(zm,θk), (48)

where T represents the total number of gradient update steps, θk denotes the parameters at the k-th
iteration, and ηk is the corresponding learning rate. Here, Bk denotes the batch of data points used at
the corresponding update, and 1[zm ∈ Bk] is the indicator function for having selected zm in the
update. Note that HYDRA requires storing all parameter vectors used for training. We refer readers to
Hammoudeh and Lowd [27] for derivations and detailed discussions of HYDRA.

F Additional Results

In this section, we present additional experimental results, including a comparison with additional
baseline TDA techniques (Appendix F.1), an LDS evaluation of a computationally faster variant
of SOURCE (Appendix F.2), an LDS evaluation at various sampling ratios and for more tasks
(Appendix F.3), counterfactual evaluation on linear models (Appendix F.4), and visualizations of the
top positively and negatively influential training data points for each TDA technique (Appendix F.5).

F.1 Additional Baseline Comparisons

We compare SOURCE with empirical influence (DOWNSAMPLING) [17] and the fast version of
HYDRA [10] on the FashionMNIST task. Results for these techniques on other tasks were omitted,
since DOWNSAMPLING requires retraining the model over 500 times and HYDRA necessitates
saving all intermediate checkpoints throughout training. The implementation details are provided
in Appendix E.4, and the results are shown in Table 1. SOURCE achieves the highest LDS on both
single and multiple model setups compared to existing baseline TDA techniques we considered.

F.2 SOURCE with Averaged Parameters

In Section 3.3, we introduced a more computationally efficient version of SOURCE, which averages
the parameters within a segment instead of Hessians and gradients. Here, we present the LDS results
at α = 0.5 for the faster version, termed FAST-SOURCE, for FashionMNIST, CIFAR-10, RTE,

25



0.3 0.5 0.7 0.9N−1
N

0.0

0.5
L

D
S

Concrete (MLP)

0.3 0.5 0.7 0.9N−1
N

α

0.0

0.1

CIFAR-10 (ResNet-9)

0.3 0.5 0.7 0.9N−1
N

0.00

0.25

RTE (BERT)

REPSIM TRACIN TRAK IF SOURCE (L = 1) SOURCE (L = 3)

Figure 8: LDS across a range of data sampling ratios α for SOURCE (L = {1, 3}) and baseline TDA
techniques. The LDS is measured for a single model setup, and error bars represent 95% bootstrap
confidence intervals.
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Figure 9: LDS at α = 0.5 for SOURCE (L = 3) and baseline TDA techniques on models fully trained
using a fixed dataset, where methods based on implicit differentiation and unrolling are expected to
perform similarly. The error bars represent 95% bootstrap confidence intervals. (Results for TRAK on
WikiText-2 are omitted due to the lack of publicly available implementations for language modeling
tasks.)

and FashionMNIST-N tasks. The results are shown in Figure 7. We observe that FAST-SOURCE
outperforms influence functions on these tasks, while it generally achieves a lower LDS compared to
SOURCE.

F.3 Additional LDS Results

Here, we present additional results, evaluating TDA techniques with LDS at various sampling ratios
and considering more tasks, where models are fully trained using a fixed dataset. We first consider
computing the LDS across a range of data sampling ratios α. (The procedures to compute the LDS
are described in Appendix E.2.) The performance of SOURCE and other baseline attribution methods
is shown in Figure 8. SOURCE consistently achieves higher LDS than the baseline methods across
diverse α values. However, an exception is noted at α = 1− 1/N (e.g., removing a single training
data point), where a significant drop in correlations is observed for all TDA methods. This finding is
consistent with previous studies that highlight the limitations of LOO estimates in reliably evaluating
attribution techniques [44, 14, 67] (see Appendix B for a detailed discussion). Additionally, our
results suggest that while SOURCE with a single segment can be effective, using multiple segments
typically improves LDS performance. Lastly, we observe that the relative rankings of TDA techniques
typically remain consistent across various α values

Next, we present the LDS results at α = 0.5 for additional tasks in Figure 9. SOURCE consistently
outperforms baseline methods in a single model setup, achieving higher correlations with the ground
truth. When aggregating TDA scores from multiple models, we observe a large improvement in the
LDS. Our method obtains the highest LDS across all tasks, except for the CIFAR-10 classification task
using ResNet-9. However, we show that our method outperforms baseline methods on the CIFAR-10
task for subset removal counterfactual evaluation in Section 5.2. We note that the tasks in Figure 9
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Figure 11: LDS on linear regression and logistic regression tasks for influence functions when TDA
is performed on the optimal solution.

consider models sufficiently trained near convergence (with carefully chosen hyperparameters), where
implicit-differentiation-based methods are expected to perform similarly to unrolling-based methods.

F.4 Counterfactual Evaluations on Linear Models

In this section, we demonstrate the effectiveness of SOURCE on linear models when the model has
not been trained until convergence. We trained linear regression on the Concrete dataset and logistic
regression on the Diabetes dataset [80] for 3 epochs with a batch size of 32. We also constructed the
LDS ground truth using SGD with the same hyperparameters. We applied TRACIN, IF, and SOURCE
(with L = 1) to the trained model and computed the LDS for various data sampling ratios α. The
results are shown in Figure 10 (Left & Middle). SOURCE achieves higher LDS on all data sampling
ratios for both regression and classification tasks. We further show the LDS at α = 0.9 with varying
numbers of epochs in Figure 10 (Right). (The LDS ground truth is recomputed at each epoch.) We
observe a larger LDS gap between SOURCE and IF when the model was only trained for a small
number of epochs, and the gap reduces as we train the model for a larger number of iterations. These
results show that our formulation for SOURCE better supports TDA when the network has not fully
converged, even in the case of linear models.

For completeness, we show the LDS for influence functions when the TDA is performed on the
optimal solution in Figure 11. For each model, we computed the optimal solution (for logistic
regression, we used the L-BFGS [59]), computed the influence function estimates, and evaluated
their accuracy with LDS (also obtained by computing the optimal solution without some data points).
As shown in Figure 11, influence functions obtain high correlations with the ground truth across
various values of data sampling ratio α. In contrast to neural network experiments in Appendix F.3,
we observe an increase in the LDS as the data sampling ratio α increases (predicting the effect
of removing a smaller number of data points), as the group influence predictions introduce more
approximation error [3]. Notably, we obtain a high LDS when α = (N − 1)/N (removing a single data
point), as the LDS is computed at the precise optimal solution (see Appendix B for the discussion).
TRACIN and SOURCE are not applicable in these contexts, as we computed the optimal solution with
the direct solution or with L-BFGS, instead of with gradient descent.

F.5 Qualitative Results

We first present the top positively and negatively influential data points obtained by each TDA
technique on multiple model settings. Note that for these multiple model settings, REPSIM, TRACIN,
TRAK, IF, and SOURCE use an ensemble of 10 models trained with different random choices. The
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results for FashionMNIST, CIFAR-10, and RotatedMNIST are shown in Figure 12, Figure 13, and
Figure 14, respectively. We also show the top positively and negatively influential data points on the
CIFAR-10 dataset for a single model setup in Figure 15. In Table 2, we present the top positively and
negatively influential data points obtained by SOURCE on the RTE dataset.

G Broader Impact & Limitations of SOURCE

Broader Impact. Our paper focuses on improving training data attribution, especially in cases
where traditional implicit-differentiation-based methods, such as influence functions, struggle. While
our work does not have a direct societal impact, as it focuses on algorithmic improvements, there may
be societal implications for improving TDA techniques. On the positive side, as shown in Grosse et al.
[24], TDA techniques can be used to understand and debug the misbehavior of neural networks (e.g.,
LLMs), which can promote trust in deploying machine learning systems. By identifying the training
data points responsible for specific model behaviors, TDA can help improve model interpretability,
fairness, and robustness. This, in turn, can lead to more reliable and equitable AI systems that benefit
society. However, TDA techniques also allow for the analysis of the impact of training data points
on trained models, which can be used for crafting data poisoning attacks [16, 38, 69]. Malicious
actors could potentially use TDA to identify and manipulate influential data points, leading to the
creation of biased or misleading models. This could have negative consequences, such as the spread
of disinformation or unfair treatment of specific groups. To mitigate these risks, it is essential to
develop responsible practices for using TDA techniques.

Limitations. Compared to the influence function employing the same EK-FAC parameterization
[24], the practical implementation of the SOURCE requires the computation of EK-FAC factors and
gradients for all checkpoints (when performing TDA on all segments). Note that, when TDA is
performed on one specific segment ℓ, the gradients only need to be computed for checkpoints within
a segment (instead of all checkpoints). Denoting the total number of checkpoints as C and the total
number of segments as L, SOURCE on all segments exhibits an approximate computational cost of
C times higher. Our experiments used configurations with C ∈ {3, 6} and L ∈ {2, 3}. We also
introduced a faster version of SOURCE in Appendix F.2, which directly averages the parameters
instead of averaging the EK-FAC factors and gradients; the faster version is L times computationally
expensive compared to the EK-FAC influence functions.

Compared to implicit-differentiation-based TDA techniques, SOURCE requires access to intermediate
checkpoints throughout the training process and corresponding hyperparameters such as learning rate,
number of iterations, and preconditioning matrix. In cases where the details of the training process
are not available, implicit-differentiation-based TDA techniques, such as TRAK [70] and influence
functions [49, 24], may be preferable.

Moreover, SOURCE approximates the distributions of the Hessian and gradient as stationary within
each segment of the training trajectory. In certain scenarios, this may not be a reasonable approxima-
tion. For instance, when pre-training large transformer models, the Hessian or gradients may undergo
drastic changes throughout the training process. If the stationarity approximation is too inaccurate,
one can enhance the fidelity of SOURCE by dividing the training trajectory into a larger number of
segments, albeit at the cost of increased computational requirements. While we used a fixed number
of segments and checkpoints, partitioned equally at the early, middle, and late stages of training, we
can extend SOURCE by automatically determining when to segment by examining the changes in the
Hessian or gradients, which we leave for future work. Lastly, SOURCE approximate the Hessians and
gradients at different time steps as statistically independent to obtain a tractable approximation for
the expected total derivative in Section 3.2. As discussed, this independence approximation amounts
to neglecting the autocorrelation of optimization iterates.
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Figure 12: Top positively and negatively influential training images identified by SOURCE and
baseline TDA techniques on the FashionMNIST dataset.

29



REPSIM

truck

Query Image

truck truck

Top Positively Influential Images

truck truck dog dog

Top Negatively Influential Images

dog dog

ship ship ship ship ship bird deer bird bird

TRACIN

truck

Query Image

truck truck

Top Positively Influential Images

truck truck car car

Top Negatively Influential Images

car car

ship ship ship ship ship airplane airplane truck airplane

TRAK

truck

Query Image

truck truck

Top Positively Influential Images

car cat car car

Top Negatively Influential Images

dog bird

ship ship ship ship ship car ship truck car

IF

truck

Query Image

truck truck

Top Positively Influential Images

truck truck car car

Top Negatively Influential Images

car car

ship ship ship ship ship truck car airplane airplane

SOURCE

truck

Query Image

truck truck

Top Positively Influential Images

truck truck car car

Top Negatively Influential Images

car car

ship ship ship ship ship car car truck car

Figure 13: Top positively and negatively influential training images identified by SOURCE and
baseline TDA techniques on the CIFAR-10 dataset. Note that we labeled the “automobile” class as
“car”.
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Figure 14: Top positively and negatively influential training images identified by SOURCE and
baseline TDA techniques on the RotatedMNIST dataset.
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Dana Reeve, the widow of the actor
Christopher Reeve, has died of lung can-
cer at age 44, according to the Christo-
pher Reeve Foundation. / Christopher
Reeve had an accident. (not entailment)

Though fearful of a forthcoming perfor-
mance evaluation by her boss, Zoe must
unravel the life of a man just found dead
of a heart attack, who was supposed to
have died three years earlier in a boating
accident. / Zoe died in a boating accident.
(not entailment)

Actor Christopher Reeve, best known for
his role as Superman, is paralyzed and
cannot breathe without the help of a res-
pirator after breaking his neck in a riding
accident in Culpeper, Va., on Saturday. /
Christopher Reeve had an accident. (en-
tailment)

Yet, we now are discovering that antibi-
otics are losing their effectiveness against
illness. Disease-causing bacteria are mu-
tating faster than we can come up with
new antibiotics to fight the new variations.
/ Bacteria is winning the war against an-
tibiotics. (entailment)

The papers presented show that all Euro-
pean countries are experiencing rapidly
aging populations that will cause sharp
increases in the cost of retirement income
over the next several decades. / National
pension systems currently adopted in Eu-
rope are in difficulties. (entailment)

Humans have won notable battles in the
war against infection - and antibiotics are
still powerful weapons - but nature has
evolution on its side, and the war against
bacterial diseases is by no means over. /
Bacteria is winning the war against an-
tibiotics. (not entailment)

Security forces were on high alert after
an election campaign in which more than
1,000 people, including seven election
candidates, have been killed. / Security
forces were on high alert after a cam-
paign marred by violence. (entailment)

Police sources stated that during the
bomb attack involving the Shining Path,
two people were injured. / Two people
were wounded by a bomb. (entailment)

Pakistan President Pervez Musharraf has
ordered security forces to take firm action
against rioters following the assassina-
tion of opposition leader Benazir Bhutto.
The violence has left at least 44 people
dead and dozens injured. Mr. Musharraf
insisted the measures were to protect peo-
ple. VOA’s Ayaz Gul reports from Islam-
abad that a bitter dispute has also erupted
over how the 54-year-old politician died
and who was behind her assassination.
/ Musharraf has ordered rioters to take
firm action against security forces. (not
entailment)

In 1979, the leaders signed the Egypt-
Israel peace treaty on the White House
lawn. Both President Begin and Sadat re-
ceived the Nobel Peace Prize for their
work. The two nations have enjoyed
peaceful relations to this day. / The Israel-
Egypt Peace Agreement was signed in
1979. (entailment)

Following the Israel-Egypt Peace Treaty
of 1979, Israel agreed to withdraw from
the Sinai Peninsula, in exchange for
peace with its neighbor. For over two
decades, the Sinai Peninsula was home
to about 7,000 Israelis. / The Israel-Egypt
Peace Agreement was signed in 1979.
(entailment)

Canada and the United States signed an
agreement on January 30, 1979, to amend
the treaty to allow subsistence hunting
of waterfowl. / The Israel-Egypt Peace
Agreement was signed in 1979. (not en-
tailment)

Table 2: Top positively and negatively influential data points identified by SOURCE on the RTE
dataset. A data point in the RTE dataset consists of a pair of sentences (separated by a forward slash
“/”) and a label indicating whether the second sentence entails the first sentence (entailment) or not
(not entailment).
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Figure 15: Top positively and negatively influential training images identified by SOURCE and
baseline TDA techniques (single model setting) on the CIFAR-10 dataset.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made in the abstract and introduction reflect the paper’s contribution
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of SOURCE in Appendix G. These limitations are
also mentioned throughout the paper, such as in Section 3.2 (core approximations) and in
Section 3.3 (additional computational overheads).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34



Answer: [Yes]
Justification: We provide a full set of approximations in Section 3.2 and describe the
equations in depth throughout the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information to reproduce the main experimental results of
the paper in Appendix E. Implementation details are provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not release the code. However, we described the data preparation
procedures and the URLs to baseline techniques we used as a comparison in Appendix E.
We used publicly available data for our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information about the training and test details in Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the LDS evaluation, we show the error bars representing 95% bootstrap
confidence intervals, which account for resamplings of data subsets. The subset removal
evaluation requires at most 1800 model retrainings for each pair of task and TDA technique.
The reported numbers are averages from 3 seeds. Details are provided in Appendix E.2 and
Appendix E.3, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the computer resources (CPU or GPU), which
were used to conduct our experiments Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide discussions on the broader impact of our work in Appendix G.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the original owners of the code, data, and models used in the
paper (they are all publicly available).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve any crowdsourcing, and we do not perform research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve any crowdsourcing, and we do not perform research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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