
InsertDiffusion: Identity-Preserving
Visualization of Objects through a Training-Free

Diffusion Architecture

Phillip Mueller12, Jannik Wiese3, Ioan-Daniel Craciun4, and Lars Mikelsons2

1 BMW Group, Knorrstrasse 147, 80788 Munich, Germany
phillip.mueller@bmw.de

2 University of Augsburg, Am Technologiezentrum 8, 86159 Augsburg, Germany,
3 Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, 80539 Munich,

Germany,
4 Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.

Fig. 1: Realistic object representations in existing and generated backgrounds
wit InsertDiffusion without the necessity for training or finetuning any parts
of the architecture.

Abstract. Recent advancements in image synthesis are fueled by the ad-
vent of large-scale diffusion models. Yet, integrating realistic object visu-
alizations seamlessly into new or existing backgrounds without extensive
training remains a challenge. The purpose of this work is to develop a
customizable approach that simplifies object insertion while maintaining
identity and structural integrity, making high-quality visual compositions
more accessible for engineering, design, and marketing applications. We
therefore introduce InsertDiffusion, a novel training-free diffusion archi-
tecture that efficiently embeds objects into images while preserving their
structural and identity characteristics. Our approach utilizes off-the-shelf
generative models and eliminates the need for fine-tuning, making it ideal
for rapid and adaptable visualizations in product design and marketing.
We demonstrate superior performance over existing methods in terms of
image realism and alignment with input conditions. By decomposing the
generation task into independent steps, InsertDiffusion offers a scalable
solution that extends the capabilities of diffusion models for practical
applications, achieving high-quality visualizations that maintain the au-
thenticity of the original objects.
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1 Introduction

Image generation is undergoing remarkable advancements with the rise of diffu-
sion models, achieving unprecedented levels of realism and naturalness in syn-
thetic images [13, 39, 9, 34]. The evolution of latent diffusion models, especially
Stable Diffusion (SD) [31] and its variants such as Stable Diffusion XL (SDXL)
[28], continues to further improve generalization, quality, and allows for a va-
riety of conditioning mechanisms such as text and reference images. A crucial
component in these advancements is the development of CLIP [29], which pro-
vides a foundation for referencing text to visual concepts. Due to its generative
capabilities and adaptability, SD sparked a wave of subsequent modifications
and extensions to further increase the levels of image quality, customization and
user-control.

Example conditions for controlled generation include sketches and spatial
maps [52], shape-based guidance [24], as well as semantic segmentations and
keypoints [22]. Image editing has also seen significant progress. Besides text-
driven image editing [45, 1, 42], point-based dragging approaches [37, 21] and
inpainting methods [17] extend the capabilities for image editing.

In this paper, we investigate the task of realistic object visualization, which
involves inserting a given object into an existing or newly generated background
and merging both representations to create a perceptually appealing scene while
maintaining the object’s key structure and characteristics. Some examples are
visualized in Fig. 1. This task is particularly relevant for applications in prod-
uct and engineering design, as well as customer-oriented marketing. Proposed
applications include rendering geometric or CAD-like objects as realistic images
and enabling customization in advertising and personalization (e.g.: visualizing a
new car or bike in a customer’s driveway). We specifically aim to visualize tech-
nical representations of products like bicycles as well as design-representations
of consumer-products like cars.

Our approach5 aims to decouple the highly customized models and workflows
required for generating technically accurate images from the visualization and
scenic representation. By leveraging publicly available, large-scale diffusion mod-
els, we can visualize the results in realistic scenes without the need for training
or fine-tuning. This allows smaller, domain-specific models to focus on generat-
ing specific types of images while utilizing the extensive capabilities of models
trained on millions of images for realistic rendering.

Previous studies have explored this task from various angles. However, none
have addressed it from the perspective of fully leveraging existing capabilities
in foundation models as straightforward as possible while utilizing publicly-
available implementations only and avoiding training or finetuning altogether.
Methods such as TF-Icon [16], AnyDoor [6], and PrimeComposer [46] aim to
inject objects into given backgrounds. TF-Icon and PrimeComposer, which are
both training-free, modify the injected object to align with the background style,
altering its characteristics noticeably. AnyDoor learns detail- and ID-extractors

5 Code is found under: https://anonymous.4open.science/r/InsertDiffusion-C377

https://anonymous.4open.science/r/InsertDiffusion-C377
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to achieve mitigate this issue but is, therefore, not training-free. CollageDiffu-
sion [35] merges multiple images into one collage but is also not training-free.
For realistic image insertion into newly generated backgrounds, the state-of-the-
art methods ReplaceAnything [3] and ObjectDrop [47] both require training or
finetuning.

Despite the remarkable results of the existing methods, we find that they
do not fully leverage the inherent capabilities of SD. Numerous studies have
demonstrated these extensive capabilities in other domains [27, 40, 18]. To en-
sure consistency, adaptability, and ease of use, we propose a significantly sim-
pler method that utilizes off-the-shelf generative models available through the
Diffusers-library on HuggingFace [43] for all tasks. Our architecture is designed
to be adaptable to the fast-evolving field of diffusion models, allowing for the
replacement of any component in the architecture as new, improved versions
become available.

In essence, we create a mask from the object and pass it, along with the ob-
ject, to SD using the inpainting function. The inverse of the object mask defines
the area in the background-image that the model can modify, while the object
itself remains unchanged. After generating an intermediate image composition,
we apply an image-to-image transformation that noises and then denoises the
composed image again to optimize high-frequency structures.

The remainder of this work is structured into the following sections. Sec-
tion 2 provides an overview on previous works which we build upon as well as
existing methods for object insertion. Section 3 discusses the architecture of In-
sertDiffusion, its components and the specific design choices. In Section 4, we
conduct qualitative and quantitative experiments and compare the performance
of InsertDiffusion to alternative methods. We subsequently discuss the limita-
tions and directions for future research in Section 5 and the potential societal
impact of our work in Section 6 and draw a conclusion about our contribution
in Section 7.

2 Related Work

2.1 Image-to-Image Transformation

Image-to-image transformations include a variety of tasks like local image edit-
ing, colorization, inpainting, uncropping, upscaling, and style changes. Tumanyan
[42] manipulate the spatial features and self-attention layers of a pretrained SD
model during the generation process. They inject features from the initial image
into the text-guided image generation. Palette [33] pursues a different approach
in proposing a unified framework for image-to-image translations using condi-
tional diffusion models. The input image is partially noised and then iteratively
denoised. The denoising process starts at an intermediate, noisy representation
of the input image and is conditioned on text or other modalities. For latent
diffusion models like SD, the input image is encoded and noise is added to the
latent representation. The Diffusers library offers image-to-image implementa-
tions based on SD which, therefore, also operates with latent images [43]. Despite
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their versatility, existing methods for image-to-image style transformation lack
the possibility to explicitly maintain the identity of objects within the image and
do not allow for the harmonic composition of objects and novel backgrounds.

2.2 Inpainting

Inpainting is a common method for local image editing. It relies on a mask to
determine which regions in an image can be modified by the diffusion model.
In each generation step, the initial image is noised according to the current
timestep. Its unmasked regions are merged with the masked regions modified
by the diffusion model and forwarded into the next denoising timestep [17].
Inpainting functionalities based on SD are provided in Diffusers [31, 43].

2.3 Object Insertion

Object insertion is essentially an image blending task. A notable early work
that is not based on machine learning is Poisson image editing [26] which aims
to seamlessly merge an object from a source image into a destination image
by minimizing the differences in gradient across the boundary. This is done by
solving Poisson’s equation to ensure smooth transitions. However, for complex
technical and CAD-like objects, this technique produces unrealistic results, as
shown in Figure 8 in the appendix. Being a method for harmonizing both images,
the method also fails to allow for adjustments of the background image to fit the
object accurately. The same is true for more advanced harmonization approaches
based on machine learning [41, 8, 54].

Most diffusion-based works for object insertion employ finetuning or training
of an additional adapter. AnyDoor [6] is designed for zero-shot ”object telepor-
tation” into a given scene at specifiable locations by utilizing identity features
from the target image and detail features of the target-scene composition. The
identity features are extracted using a finetuned visual encoder (DINO-V2 [23]).
The detailed features are represented using high-frequency maps. These are then
mapped into the diffusion U-Net by a finetuned, ControlNet-style encoder [52].

AnyScene [5] develop a foreground injection module that guides a pretrained
diffusion model to generate cohesive scenes in harmony with the provided ob-
ject in the foreground. To enhance robust generation, they implement a layout
control strategy that prevents distortions of foreground elements. By training
the foreground injection module, the method is not training-free. ObjectDrop
[47] leverages a dataset of ”counterfactual” pairs of images that show the scene
before and after object removal. This model is used to synthetically create a
larger dataset of counterfactual image pairs and subsequently finetune SD for
object insertion. PrimeComposer [46] steers the attention weights at different
noise levels to preserve the object appearance while composing it with the back-
ground in a natural way. Additionally, they employ Classifier-Free Guidance [12]
to enhance the quality of the composed images. Paint-by-Example [50] leverages
SD [31] and Classifier-Free Guidance [12] and employ self-supervised training to
disentangle and re-organize the background image and the object.
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TF-Icon [16] is a training-free method that inverts the real images into la-
tent codes using an exceptional prompt that contains no information. The latent
codes are then used as a starting point for the text-guided image generation pro-
cess. Composite self-attention maps are injected to infuse contextual information
from the background image into the inserted object.

InpaintAnything [51] combines the inpainting mechanism used in Stable
Diffusion [31] and RePaint [17] with SegmentAnything (SAM) [14] for object-
adaptive segmentation. Although being training-free, the approach fails to seam-
lessly integrate the object into the new background, as neither the background
nor the object are semantically modified to fit together.

Shopify-Background-Replacement (SBR) [38], first extracts the object from
the original background using a depth estimation model. Then the depth image
and the text prompt are passed to SDXL-Turbo [36] augmented by a Control-
Net [52] which handles the depth map. After inferring a new background the
foreground is pasted on top it to generate the final image.

For the task of background replacement Chen et al. [3] present ReplaceAny-
thing. It is based on their previous work VirtualModel [4], which visualizes
consumer products in new backgrounds as if they were held by a human. The
VirtualModel consists of a Content-guided branch to ensure the consistency of
the product, and an Interaction-guided branch to guide the model in creating
realistic product-human interactions and is specifically trained for this task. Re-
placeAnything is currently only available as a HuggingFace demo as no paper or
code have been released.

To summarize the limitations, multiple existing methods for object insertion
are not training-free [3, 5, 6, 46, 47, 50], which poses limitations for customiza-
tion and practical applications where little or no training-data is available. The
training-free methods [16, 38, 51] have limitations in the quality of the image
composition and in maintaining the identity of the inserted object. With In-
sertDiffusion, we aim to address these limitations by proposing a modular and
training-free framework for object insertion into novel backgrounds. Our method
is presented in Section 3.

3 Method

The architecture of InsertDiffusion is shown in Fig. 2. The main idea is to modify
image characteristics, such as shadows, lighting and texture in both object and
background to obtain a realistic composition. This is done without training an
additional adapter or finetuning the diffusion model. Given an object to insert,
one can either use an existing background image or generate a new background
with SDXL [28]. Once the object is isolated from its original background, we
create a mask to ”reserve” the desired location in the new background and pass
the mask and the original object to the background refinement. This is done
to adapt the background s.t. it seamlessly incorporates the object. In a second
step, we refine this composition by adding some noise and subsequently denoising
again.
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Fig. 2: The InsertDiffusion Architecture is designed to insert an object into a
background while preserving key visual characteristics of the object. The object
is positioned by the user, while an object-mask is created and composed with
the background image. The masked background is passed to SD together with
the original object. Using image-to-image and inpainting, the original image
is layered onto the background for each denoising step. The resulting image
composition is subsequently refined by a second diffusion model (SDXL).

3.1 Core Architecture

Our core architecture is inspired by RePaint’s [17] resampling strategy and ex-
tends it by leveraging intermediate latent image compositions and using text-
conditioned guidance to introduce a multimodal layer to contextually adapt the
background. Given an isolated and user-positioned object on a white background
x(obj), the object mask m = mask(x(obj)) is obtained from x(obj) by applying
a threshold i.e. by setting all pixels brighter than the threshold to 0 and all
others to 1. Using an existing background image, the latent representation zbg
is obtained by passing it through the SD encoder. This latent representation is
then noised according to the noise schedule. For a new background, the image
is simply generated by the text-conditioned sampling with SD.

Intermediate Image Composition. The intermediate image composition
produces a modified version of the background. In general, it can be computed
by:

ẑ(comp) = m⊙ z(obj) +(1−m)⊙G(z(bg),m, z(obj), τθ(y)). (1)

Whereby, z(obj) is a latent representation of the object image obtained by passing
it through the SD encoder, z(bg) is a latent representation of the background
image obtained using the SD encoder and G is a masked diffusion process. The
term m⊙z ensures that the object area is preserved in the latent representation.
(1−m)⊙G(z(bg),m, z(obj), τθ(y)) updates the background image in the regions
where m = 0. The generation is guided by the masked object and the CLIP-
encoded text-prompt τθ(y). To iteratively refine the background and allow for
seamless object integration, the latent representation of the original object z(obj)

is injected into the background for every denoising step. This is done to keep the
object itself mostly unmodified. The update for each timestep, using the latent
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diffusion model ϵθ, is:

ẑ
(comp)
t−1 = m⊙ z

(obj)
t−1 + +(1−m)⊙ (ẑ

(comp)
t − ϵθ(ẑ

(comp)
t , τθ(y), t)). (2)

Hereby, z
(obj)
t is calculated by adding noise to the latent representation of the

object according to the noise schedule and timestep. Noise is added according
to the canonical formulation of the diffusion forward process [13] given by

xt =
√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I), αt = 1− βt, ᾱt =

t∏
s=0

αs (3)

where all βt are defined by the noise schedule. We use the default noise schedule
for each model as set in the diffusers library [43]. The masked diffusion process G
is obtained by iteratively applying Equation Eq. (2) from some initial timestep
to t = 0. To insert the object into a given background we set the initialize

t = n and obtain ẑ
(comp)
n by applying Equation Eq. (3) on a pasted composition

z(pasted) = m⊙z(obj)+(1−m)⊙z(bg). To generate a completely new background

we set t = n = T which is equivalent to initializing ẑ
(comp)
T from gaussian noise

and iteratively applying Equation Eq. (2).
Refinement. The second step aims to refine the composed intermediate

image by making it more consistent and modifying high-frequency image char-
acteristics. The intermediate image composition ẑ(comp) obtained using Equation
Eq. (1) is noised for n timesteps using Equation Eq. (3) to obtain zn. Subse-
quent denoising steps are guided by the text-prompt and iteratively computed
as follows:

zt−1 = zt − ϵθ(zt, t, τθ(y)), with t = tn, tn−1, . . . , t0. (4)

By using this refinement stage, both the background and the object undergo
minor style changes. We accept a trade-off between object consistency and over-
all image quality and realism. We opt to not copy the initial object into the
final image, as for example done by InpaintAnything [51], because this would
deprecate seamless blending. In Section 4.5, we conduct an ablation study that
compares the results with and without image refinement.

3.2 Optional Additions

To make our architecture more accessible and flexible, we provide additional
functionalities to prepare the object for insertion. Again we utilize existing mod-
els that are available within Diffusers [43] and an implementation of Language
Segment Anything (langSAM)[14, 20] found in Transformers [48].

Background Generation. If no existing background is provided, the user
can utilize text-to-image models like SD [31] or SDXL [28] and generate a new
background from a text prompt. We provide a prompt template that only re-
quires the product-type, color, and place to be filled in by the user.
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Colorization. Technical images often come as drawing- or CAD-like black-
and-white representations. We observed that inserting such images severely dep-
recates the quality of the image composition. An example of this is given in
??. Therefore, we provide a colorization scheme, visualized in Figure 3 based on
inpainting with SD. For low-resolution images, we increase the resolution using
SD upscaling. For an input image of 256 × 256 resolution we upscale it by a
factor of 4 to 1024 × 1024. The upscaled image, a mask and a text prompt are
passed to SDXL to perform colorization.

Fig. 3: Image Colorization scheme for black-and-white images. Given a mask
of the object, SDXL [28] is prompted to color the object defined by the masked
area. If the original image containing the object is of low resolution, we advise
upscaling the object by using the functionality provided by Stable Diffusion.

Object Segmentation. Since not all object images are already separated
from their original background, we include automatic object segmentation. For
this task, we utilize langSAM [14]. The user only has to provide an approximate
object category. The segmentation model is available in the Transformers-library
on HuggingFace [48].

3.3 Implementation Details

Our model architecture is set up such that the components can be updated and
replaced when more powerful models are released. For Intermediate Image Com-
position, we use SD-2.1 [31] as it provides stable image-to-image and inpainting
capabilities. To generate the intermediate composition of the object and the
background, we use 75 diffusion steps with a prompt-guidance strength of 15.
For the second stage in the architecture, we use SDXL [28] with its image-to-
image implementation. The prompt-guidance strength is 7.5 and we noise the
intermediate image for 10 out of 50 steps before denoising it again. With the
scaled linear scheduler, this corresponds to the image being noised by ∼ 20%.
For colorization, we use SDXL [28] for a total of 30 steps with an image-to-
image strength of 91%, and a prompt-guidance strength of 17. The upscaling is
done using SD-1.5 [31]. We provide a discussion of our hyperparameters in the
supplementary materials.
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4 Experiments

Our experiments are twofold. For object injection into an existing background,
we compare TF-Icon [16], AnyDoor [6] and our method. TF-Icon offers two
configurations for inserting an object while maintaining style and domain and
for inserting objects in arbitrary domains. For our evaluation, we use the same-
domain configuration, as it provides significantly better results. ObjectDrop [47]
and PrimeComposer [46] do not provide their code-base or a publicly available
implementation to evaluate their methods independently. The standard SD [31]
inpainting method shipped with the model has already been evaluated in the
TF-Icon [16] paper and is outperformed by it. The same is true for Paint-by-
Example [50], which is already outperformed by AnyDoor [6].

For generating a new background, we compare our method with ReplaceAny-
thing [3] and the Background Replacement method inspired by a HuggingFace
space provided by Shopify (SBR)[38]. At the time of writing this paper, Re-
placeAnything has not released code. We therefore use their demo space on
Huggingface for our experiments.

A high-level comparison of capabilities of relevant existing works and Insert-
Diffusion is provided in Table 1.

Table 1: Capability Overview. Our model (InsertDiffusion) provides a variety
of functionalities compared to similar approaches. Besides being training-free,
we allow for composition with both new and existing backgrounds, object con-
sistency, the processing of CAD-like images and custom user-positioning of the
object.

Model Training-
Free

New
BG

Existing
BG

Consis-
tency

CAD-
Images

Seamless
Blend-
ing

Posi-
tioning

Text-
Guidance

Poisson Blending [26] ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

SD-Inpaint [31] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓

InpaintAnything [51] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Any-Door [6] ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗

TF-Icon [16] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

SBR [38] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓

ReplaceAnything [3] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓

InsertDiffusion (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.1 Benchmarks

We evaluate our approach using two benchmark datasets. We derive the first from
the benchmark used by TF-Icon [16]. Similar to their quantitative evaluation, we
only use the Real-Real subset of their dataset to calculate metrics. Further, we
filter their dataset by removing samples that already contain an object to be re-
placed in the target image as our method is not intended for object replacement.
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The filtered benchmark contains 209 samples. The TF-Icon benchmark barely
contains images from technical, design, and advertisement domains. Hence, we
construct a second dataset to evaluate the capabilities of inserting technical
and design products into backgrounds. We use bicycle images from the BIKED
dataset [30], car images from Stanford-Cars [15] and catalog-images of consumer
products from Amazon-Berkeley-Objects [7] and Products10K [2]. From each
of the three categories, we select 20 samples randomly while manually labelling
product types and color. For insertion into existing backgrounds we generate
backgrounds using SDXL and assign backgrounds to objects at random. For the
second task of inserting objects into a newly generated background, we only
use the objects from our benchmark dataset and assign background prompts
randomly.

4.2 Metrics

In our evaluation, we aim to assess the overall image quality and appeal of the
resulting image composition, the alignment with the text-prompt and the ge-
ometric consistency of the inserted object compared to the ground-truth. We
use the HPSv2-score [49] for overall image appeal, as it aims to replicate hu-
man preferences for natural and realistic images. To assess the alignment of the
image composition with the text-prompt, we use the CLIP-score that measures
the cosine similarity of the CLIP-embedded text and image [29]. For geomet-
ric consistency, we use LPIPS [53]. In addition to the automated metrics, we
organize a user study with 15 participants to rate the overall image quality
and appeal, the consistency with the text-prompt and the geometric consistency
with the ground-truth of the composed image. We therefore randomly select
7 samples from each of our 3 benchmark categories and carry out the object-
insertion task with the corresponding methods. We again compare our method
to TF-Icon [16] and AnyDoor [6] for composition with an existing background
with ReplaceAnything [3] and SBR [38] for composition with a newly generated
background. To ensure objectivity, the human evaluation study is conducted
blind with the shown examples being in random order.

4.3 Composition into Existing Background

In Fig. 4 we present some examples of the comparison of our approach with
the existing alternatives TF-Icon [16] and AnyDoor [6]. The quantitative results
and the results from the human evaluation study are summarized in Table 2.

In terms of image quality, our approach yields more appealing image com-
positions. The target object is embedded more realistically into the semantic
framework of the existing background. The overall image appears more con-
sistent. Our approach especially excels in visualizing fine-grained or beam-like
structures. This is apparent with the bicycle images. Due to the adaptive masking
approach, our method can handle empty spaces within an object and simultane-
ously preserve the structured geometry. While the quantitative evaluation using
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Fig. 4: Qualitative comparison with existing methods for insertion of
product images into existing backgrounds, including TF-Icon [16] and
AnyDoor [6]. Our method improves seamless integration of the object into the
background while preserving the geometry and structural integrity of the object.

HPSv2 [49] moderately hints towards the supremacy of our approach, the human
evaluation study strongly favors our approach over the alternatives.

For the alignment of the composed image with the text-description, InsertD-
iffusion outperforms the alternatives across all benchmarks and metrics. While
TF-Icon [16] is within range according to the CLIP-score, it falls noticeably short
when evaluated by human annotators. AnyDoor [6] does not allow for the for-
mulation of prompt and therefore consistently achieves the lowest score for both
CLIP and human evaluation. The most significant gap again exists for structural
objects like bicycles. We suspect that this is due to the bicycle geometries be-
ing severely altered, sometimes even rendered unrecognizable, by the alternative
methods.

In analyzing the results for geometric consistency, we have to differentiate
between the quantitative metrics and the human evaluation. For the quantita-
tive LPIPS-score [53], all three models achieve similar results. On its own bench-
mark, TF-Icon [16] holds a 6% advantage over InsertDiffusion. For the remaining
datasets, the scores are almost identical. AnyDoor [6] yields to better geomet-
ric consistency for the bicycle, car and consumer-product examples, according
to the LPIPS-score. The human evaluation study paints a vastly different pic-
ture for geometric consistency. Averaged over our three benchmark sets, human
annotators rate the geometric consistency of InsertDiffusion better by a factor
of 2.4 over AnyDoor [6]. TF-Icon [16] performs reasonably well overall, but is
outperformed by our approach by a factor of 2.97 for the bicycle samples.

We assume the reasons for the sharp difference between the quantitative re-
sults in LPIPS-score and the human evaluation to be twofold. The LPIPS-score
measures the perceptual similarity of two images patches. It does not directly
evaluate the structural composition of these patches and therefore most likely
does not capture finer geometric details. By comparing solely the structural sim-
ilarity, image fidelity and realism are not accounted for. This leads to unrealistic
image compositions receiving a better LPIPS-score despite being visually and
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Table 2: Comparison results for inserting an object into an existing back-
ground. ”HPSv2”, ”CLIP” and ”LPIPS” measure image appeal, text-alignment
and geometric consistency. We compare our approach to TF-Icon [16] and Any-
Door [6].

Dataset Model CLIP (↑) HPSv2 (↑) LPIPS (↓) Overall
Appeal (↑)

Prompt
Alignment

(↑)

Geometric
Consistency

(↑)

TFI-Bench
TF-Icon 31.043 0.245 0.589 — — —
AnyDoor 29.889 0.194 0.605 — — —

Ours 31.801 0.250 0.624 — — —

Overall
TF-Icon 33.148 0.265 0.696 2.780 3.752 3.333
AnyDoor 29.2982 0.224 0.652 1.905 2.762 1.695

Ours 34.997 0.287 0.699 3.410 3.790 3.790

Bikes
TF-Icon 34.281 0.269 0.743 1.711 2.033 1.156
AnyDoor 30.804 0.231 0.709 2.038 2.714 2.114

Ours 36.058 0.286 0.757 3.211 3.900 3.433

Cars
TF-Icon 33.121 0.287 0.679 2.781 3.752 3.333
AnyDoor 27.637 0.230 0.654 1.905 2.762 1.695

Ours 34.979 0.310 0.672 3.410 3.790 3.790

Products
TF-Icon 31.987 0.238 0.647 2.743 3.248 1.895
AnyDoor 29.453 0.213 0.621 2.343 2.895 2.257

Ours 33.955 0.267 0.642 3.571 4.162 3.695

semantically unappealing. An example of this can be found in Figure 9 in the
appendix. As a second reason we suspect that the annotators in our human eval-
uation study generally prefer more realistic image compositions. With AnyDoor
[6], the object often appears to have just been pasted onto the background, while
many objects get significantly altered by TF-Icon [16].

The objective of our work is to seamlessly visualize technical objects in dif-
ferent backgrounds. Therefore we need to preserve structural integrity as well
as achieve realistic images. This is hard to capture in terms of pure quantita-
tive metrics, which is why we deem the results of the human evaluation study
important. The results confirm that InsertDiffusion reliably outperforms its al-
ternatives for the given task.

4.4 Composition with Generated Background

To compare our approach with alternatives for inserting the product-image rep-
resentations into generated backgrounds, we use the same evaluations as in the
previous section. The quantitative results and the results from the human eval-
uation are summarized in Table 3. Since AnyDoor [6] and TF-Icon [16] do not
provide for the option of novel background generation, we compare our approach
to ReplaceAnything [3] and SBR [38]. Both methods are specifically designed to
generate new backgrounds for the object to be inserted into.

In the quantitative analysis, our approach achieves superior results for hu-
man preference (HPSv2) and alignment with the text description (CLIP). On
our benchmark dataset composed of bicycle, car and product images, we surpass
ReplaceAnything by 8.67% and SBR by 16.60 % for the human preference score.
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Fig. 5: Qualitative comparison for insertion of product images into
newly generated backgrounds, including ReplaceAnything and SBR. Our
method composes the object and the background in a more natural manner,
being able to adapt the object to fit the background seamlessly while preserving
its key geometric and semantic characteristics.

Table 3: Comparison results for inserting an object into a newly generated
background. ”HPSv2”, ”CLIP” and ”LPIPS” quantitatively measure image ap-
peal, text-alignment and geometric consistency. Overall appeal, prompt- align-
ment and geometric consistency are evaluated qualitatively in our human eval-
uation study on a scale of 1 to 5, 5 being the best. We compare our approach to
SBR [38] and ReplaceAnything (ReplAny) [3].

Dataset Model CLIP (↑) HPSv2 (↑) LPIPS (↓) Overall
Appeal (↑)

Prompt
Alignment

(↑)

Geometric
Consistency

(↑)

Overall
ReplAny 31.070 0.265 0.244 3.057 3.600 4.140

SBR 30.264 0.247 0.435 2.016 2.686 3.397
Ours 33.710 0.288 0.403 3.917 3.905 3.498

Bikes
ReplAny 33.275 0.277 0.213 1.657 2.914 3.486

SBR 31.449 0.245 0.527 1.610 2.467 2.762
Ours 33.810 0.296 0.474 4.181 3.971 3.419

Cars
ReplAny 28.722 0.285 0.280 3.762 3.971 4.610

SBR 28.914 0.270 0.438 2.152 2.829 3.619
Ours 33.837 0.301 0.305 3.990 4.086 3.971

Products
ReplAny 30.977 0.236 0.242 3.743 3.914 4.324

SBR 30.430 0.227 0.341 2.286 2.762 3.810
Ours 33.483 0.268 0.430 3.705 3.752 3.210
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For the CLIP-score, our approach holds an 8.50% advantage over ReplaceAny-
thing and 11.39% over SBR. In terms of geometric consistency, ReplaceAnything
performs best according to the LPIPS-score. The object geometries in the com-
posed image are more consistent with the original. However, this consistency
comes at the cost of sacrificing the quality of the overall image composition,
as discussed before and shown in Figure 9. As shown in Fig. 5, some objects
appear to be simply cut out and pasted onto the new background. This is es-
pecially true for bicycle images. In masking the objects adaptively and then
allowing for marginal modifications, the compositions of our method look more
realistic and seamless. The human evaluation study supports this conclusion.
While the geometric consistency of ReplaceAnything is preferred by the evalu-
ators, our approach generates vastly more appealing image compositions. Over
the entire benchmark dataset, we achieve a 28.13% better evaluation score.

4.5 Ablations

To verify the efficiency of our approach, we perform a number of ablations. For
the components of the InsertDiffusion architecture, we compare different model
versions available within Diffusers. We also investigate the influence of the last
refinement step, whether increased human interference in the generative pipeline
leads to more appealing image compositions and image colorization.

InsertDiffusion Architecture. A significant ablation to the architecture
is to leave out the refinement step where the intermediate image composition
is noised and then denoised again using SDXL. To verify the usefulness of this
additional step, we evaluate the results of our architecture with and without the
refinement step on our benchmark dataset as well as on the TF-Icon benchmark.
The results are summarized in Table 4 and visualized in Figure 6. The final im-
ages are more appealing when using the additional refinement step and show
increased consistency with the text description. The intermediate compositions
show an increased geometric consistency for some cases. This is somewhat ex-
pected since the refinement step adds noise to the object and then denoises it
solely based on the guidance from the text-prompt.

Our modularized architecture (see Fig. 2) allows for the utilization of different
versions of models from Diffusers. For our architecture, we find that using SDXL
with the available inpainting function leads to worse results than using SD-2.1.
For the intermediate composition, the generated backgrounds only contain faint
and abstract structures. This is most likely an issue with the inpainting imple-
mentation. Furthermore, we observe that increasing the guidance scale reduces
the quality and conistency of the inserted object. Using SDXL to synthesize the
intermediate image composition does not allow for realistic visualizations. Exam-
ples generated using these ablated architectures are found in the supplementary
material.

Additional User Interference. We investigate the effect of giving the user
additional control by allowing to choose between 5 variations of the intermediate
and the final image compositions. We find that additional interference has no
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Fig. 6: Ablation for the image re-
finement. Top row shows the image
composition before refinement, bottom
row shows the refined image composi-
tion. Best viewed when zoomed in.

Table 4: Ablation for refinement stage.
Minor stylistic changes of the object
can occur due to the refinement.

Dataset Metric Ours Ours w\o
refinement

TFI
Benchmark

HPSv2 (↑) 0.250 0.230
CLIP (↑) 31.801 30.729
LPIPS (↓) 0.623 0.611

Overall
HPSv2 (↑) 0.287 0.275
CLIP (↑) 34.997 34.030
LPIPS (↓) 0.699 0.701

significant impact on the overall appeal and the alignment with the text descrip-
tion. It does seem to have a small impact in improving the geometric consistency.
More details are provided in the supplementary materials.

Colorization. For colorization, we compare masked SDXL, SDXL together
with a ControlNet Sketch-to-Image adapter [52] and SDXL colorization after
upsampling the input image. We observe that without upsampling, low guid-
ance leads to the object not being colorized at all while high guidance leads to
unwanted parts within the image being colorized. Upsampling the input image
before passing it to a masked SDXL image-to-image transformation colorizes the
geometry reliably.

5 Limitations and Future Work

A primary limitation of our approach is its dependence on adequate scaling and
positioning of the inserted object. Our model cannot automatically detect where
to place the object in a given background. Object misplacement can lead to
unrealistic scenarios. Since we utilize pretrained latent diffusion models without
finetuning them, our approach is limited by their generative capabilities. For
example, with the current selection of models, we can not accurately generate or
maintain text within images. The utilization of Diffusion Transformers (DiTs)
might improve this capacity [25, 11]. Another limitation is the semantic and
geometric consistency of the inserted objects, due to the final refinement step.
Future research may explore approaches to ensure the consistency of the inserted
objects by extracting targeted image features of the original object and injecting
them into the final refinement step. Two promising approaches in the field of
identity guidance are Readout Guidance [19] and InstantID [44].

6 Societal Impact

Our approach can enable improved visualizations in technical design processes
and potentially lead to more user-centered experiences in digital product market-
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ing. By eliminating the need for additional training and finetuning, we provide
an efficient with a low skill barrier to create creative product visualizations.

However, this does not come without potential risks. It can be misused to
create fake images of real objects, thereby contributing to misinformation or
deception, which is a known issue for diffusion models for image generation
[32]. The model might be used to create unethical content or violate privacy
by placing humans or their personalized objects in compromising situations.
Additionally, the automation of tasks in content creation might affect jobs in
fields like photography, graphic design or marketing. By being based on SD,
InsertDiffusion may inadvertently amplify biases present in the training data of
SD [31, 10].

7 Conclusion

With InsertDiffusion, we present a novel, training-free approach for inserting
objects into existing or newly generated backgrounds while preserving identity
and structural integrity. Unlike previous methods requiring extensive fine-tuning
or model-specific training, our approach leverages the inherent capabilities of
state-of-the-art diffusion models. By adaptively masking the target area for the
inserted object and using a step-wise combination of inpainting and image-to-
image transformations, combined with a two-step refinement process, we achieve
seamless compositions with the backgrounds and are able to visualize the objects
in realistic scenes.

Our approach outperforms alternative methods in terms of image quality
and alignment with textual descriptions and achieves on-par object consistency.
It excels at visualizing technical and CAD-like images. The modular architec-
ture of InsertDiffusion allows for easy adaptability, for example if more powerful
diffusion-based models for image generation are released.
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A Appendix
A.1 More Results

Fig. 7: More examples of achieving realistic object insertion into novel back-
grounds using InsertDiffusion

A.2 Poisson Image Blending

Fig. 8: Object insertion into given background using Poisson image editing [26].
Top row shows the object with its’ background already removed and bottom row
shows the merged image.
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A.3 LPIPS Metric

Fig. 9: Analysis of the LPIPS metric for structural similarity. The LPIPS score
favors the results produced by ReplaceAnything despite it failing to merge or
harmonize the object with the background. Maintaining the identity of the object
comes at the cost of image fidelity and sometimes produces unrealistic results.
The image composition produced with InsertDiffusion performs worse in terms
of LPIPS-score but produces a perceptually appealing and realistic image.

A.4 Human Evaluation Study

The quantitative metrics we employ to evaluate InsertDiffusion and existing al-
ternatives do not capture the task entirely. We therefore conduct an evaluation
study with human annotators who rate the results of the methods. Our study is
conducted in a blind and randomized manner, meaning that the human evalua-
tors do not know which result was obtained by which method and the presented
images are in random order. We employed a total of 15 participants for the study.

Each participant rated seven images of each method. The prompts, reference
objects, and composition backgrounds were held constant across methods. The
participants rated the general appeal and realism of the composed image, its
alignment with the given text prompt and the geometric consistency between
the object in the reference image and in the composed image. The rating was
given on a five point Likert scale where 1 denoted a very poor result and 5 a
perfect result.

A.5 Inserting Humans into Backgrounds

InsertDiffusion has the purpose of inserting (technical) objects into different
backgrounds. Our experiments on inserting images of humans into new scenes
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show that, although the insertion is not entirely seamless, it certainly is possible.
Minor alterations are visible in the composed image, especially in the area of the
face of the human. Figure 10 shows two examples.

Fig. 10: Insertion of a human into new backgrounds.
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