
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONE DIRECTION TO RULE THEM ALL: TOWARD GEN-
ERALIZABLE SOLVING STRATEGIES ACROSS COMBINA-
TORIAL OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many combinatorial optimization problems (COPs) share latent structure despite
differing in surface form, allowing classical heuristics to transfer with minimal
adaptation. In contrast, most learning-based solvers are trained in isolation and
fail to leverage cross-problem commonalities. This paper explores the possibility
of learning generalized solving strategies that capture shared structures across
different COPs, enabling easier adaptation to new tasks. We leverage a header-
encoder-decoder architecture in which light problem-specific headers and decoders
handle inputs and outputs, while a shared, heavy encoder is trained to capture
problem-agnostic solving strategies. The key is to align the encoders optimization
behavior across tasks by enforcing gradient consistency, making updates induced
by different COP objectives point in similar directions with comparable magnitudes.
We realize this via task-specific feature rotation matrices and loss weights that steer
the encoders gradients, learned alongside the solver in a bi-level procedure: an
inner loop optimizes each task with reinforcement learning on its true objective,
and an outer loop tunes rotations and weights through a gradient consistency loss.
Experiments on six COPs show that it enhances the model’s ability to generalize
COPs. The learned encoder on several problems can directly perform comparably
on new problems to models trained from scratch, suggesting its potential to support
developing the foundational model for combinatorial optimization.

1 INTRODUCTION

Combinatorial optimization problems (COPs), which involve optimizing discrete variables under
specific objectives, are fundamental and serve widespread practical applications (Hong et al., 2010;
Mironov & Zhang, 2006; Ganzinger et al., 2004). Despite decades of progress, the inherent com-
putational complexity of COPs still demands substantial expert effort to craft effective heuristics.
Recently, advances in machine learning (ML) have demonstrated the potential to automatically learn
solving heuristics from data, improving solution quality and speed when the problem instances fall
within certain distributions (Bengio et al., 2021; Kool et al., 2018; Joshi et al., 2019; Kwon et al.,
2020; Sun & Yang, 2023; Li et al., 2023). However, these gains often remain isolated: most learned
solvers are trained per problem and struggle to transfer knowledge across tasks, even when those
tasks share striking structural similarities.

Despite their complexity, many COPs share common structures, exhibiting similarities in optimization
objectives, decision variables, or constraints (Kool et al., 2018; Kwon et al., 2020), and are often
connected by polynomial-time reductions (Kleinberg & Tardos, 2006). The presence of these com-
monalities suggests that techniques designed for one COP may have broader relevance, offering the
potential for more generalizable and adaptable solutions. Historically, classical heuristics (Papadim-
itriou & Steiglitz, 2013; Dorigo et al., 2006) have demonstrated this versatility, proving effective
across various related problems with minimal adaptation. This observation raises the possibility that
machine learning models, when trained on diverse COPs, could similarly capture shared knowledge
across tasks, learning generalized problem-solving strategies. Such an approach could enable these
models to perform well on new, unseen problems with minimal task-specific fine-tuning.

This paper tries to learn generalized solving models that are effective across multiple COPs. One cru-
cial characteristic of COPs is their deterministic optimization objectives that directly evaluate solving

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

TSP
Header

VRP
Header

OP
Header

...

Shared
Encoder

TSP
Decoder

VRP
Decoder

OP
Decoder

...

!∗
!∗

!(#)Direction

Magnitude

Gradient Landscape

𝜵𝜽𝒔𝓛𝑻𝒊 𝜽𝒔, 𝜽𝑻𝒊
= 𝜵𝜽𝒔𝓛𝑻𝒋 𝜽𝒔, 𝜽𝑻𝒋 			∀	𝒊, 𝒋	

𝐦𝐢𝐧
𝜽𝒔,	⋃ 𝜽𝑻𝒊𝒊 	

-𝓛𝑻𝒊 𝜽𝒔, 𝜽𝑻𝒊
𝒊

Gradient Consistency Constraint

Overall Objective

Figure 1: The GCNCO framework utilizes light-parametered headers and decoders to handle problem-
specific inputs and outputs, respectively, and enforces a gradient consistency constraint on the heavy-
parametered shared encoder to extract generalized strategies. The gradient consistency constraint
involves homogenizing the gradients of different problems regarding direction and magnitude.

performance, enabling the training loss to align precisely with the testing evaluation metric through
reinforcement learning. By incorporating objectives into the training phase, the gradients explicitly
reflect how updates to the models internal strategy representation improve solving performance. This
objective correspondence motivates the use of gradient-based methods to regularize the learning
process. Furthermore, while COPs vary in form, many NP-hard problems share polynomial-time
reducibility (e.g., TSP reduces to VRP). We hypothesize that different COPs may exhibit structural
similarities in a unified latent space, allowing their optimization behaviors to be homogenized.

As shown in Fig. 1, we introduce gradient-consistent neural combinatorial optimization (GCNCO)
to enforce the gradient consistency of the optimization across tasks and promote the learning of
generalizable strategies. At its core, GCNCO employs a header-encoder-decoder architecture that
processes diverse problems in a unified manner. The header and decoder handle problem-specific
inputs and outputs, and the encoder is designed to learn generalized strategies within a shared latent
space. We enforce gradient consistency on the encoder so that updates induced by different COP
objectives point in similar directions and have comparable magnitudes. When a models optimization
trajectory, reflected in both gradient directions and magnitudes, is consistent across tasks, it indicates
that optimizing for one task simultaneously improves the models efficacy on others, suggesting that
the model is acquiring a shared, underlying solution strategy applicable to various COPs.

Specifically, we propose to align both gradient directions and magnitudes of the encoder during
training through task-specific feature rotation matrices and loss weights, which steer the encoders
gradients. The feature rotation matrices rotate the input features and output features of the encoder to
homogenize its optimization landscape and thus adjust the gradient direction, while the loss weights
modulate the gradient magnitude. The whole framework follows a bi-level optimization process
where the original models are optimized through the solving objective of different problems by
reinforcement learning, and the additional rotation matrices and loss weights are optimized through a
gradient-consistent loss reflecting the gradient homogenization.

Our experiments cover six combinatorial optimization problems: Travelling Salesman Problem (TSP),
Vehicle Routing Problem (VRP), Split Delivery VRP (SDVRP), Orienteering Problem (OP), Prize
Collecting TSP (PCTSP), and Stochastic PCTSP (SPCTSP). We analyze the relationships between
tasks by studying the gradient alignment across problems. We then demonstrate the effectiveness of
GCNCO in learning a general solving strategy by evaluating its performance on both training tasks and
new, unseen problems under zero-shot evaluation and fine-tuning settings. Remarkably, our learned
encoder on new problems achieves results comparable to models trained from scratch, highlighting
the potential of our approach to serve as a foundational model for combinatorial optimization.

2 RELATED WORK

Neural Combinatorial Optimization. Recent advancements in machine learning for combinatorial
optimization (CO) include constructive and improvement-based approaches. Constructive methods,
including autoregressive techniques (Khalil et al., 2017; Kool et al., 2018; Kwon et al., 2020; Hottung
et al., 2021; Kim et al., 2022), sequentially determine decision variables to build complete solutions,
while non-autoregressive strategies (Joshi et al., 2019; Fu et al., 2021; Geisler et al., 2022; Qiu

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2022; Sun & Yang, 2023) generate soft-constrained solutions in a single pass and then enforce
post-processing for feasibility. In contrast, improvement-based solvers (d O Costa et al., 2020; Wu
et al., 2021; Chen & Tian, 2019; Li et al., 2021; Hou et al., 2023) iteratively refine existing solutions
using local search operators to optimize the objective. Recently, generative modeling has shown
promise in CO, e.g., diffusion models (Sun & Yang, 2023; Li et al., 2023), GFlowNets (Zhang et al.,
2023), and consistency models (Li et al., 2024), framing problem-solving as a conditional generation
task to learn solution distributions tailored to specific instances.

Multi-Task learning. Multi-Task Learning (MTL) seeks to address multiple tasks by training a
unified model that captures shared insights across these tasks. Studies have tackled MTL from
different angles, such as striking a balance in the loss functions of various tasks (Mao et al., 2021; Dai
et al., 2023), developing mechanisms for module sharing (Javaloy & Valera, 2021), and leveraging
meta-learning (Wang et al., 2021). To improve MTL efficiency and reduce the detrimental effects of
negative transfer (Jiang et al., 2024), some research has turned to task grouping strategies (Fifty et al.,
2021), to discern task relationships and facilitate learning within these groups to minimize negative
transfer between conflicting tasks. MTL has found widespread application in many fields (Allenspach
et al., 2024; Zhang et al., 2024). However, there is little research on applying MTL to COPs.

MTL for CO. Unified models capable of simultaneously addressing multiple COPs is still in early
stages. Wang et al. (2025) proposes a multi-armed bandit approach to solve multiple COPs by
alternating optimizing different problems. For specialized problems like Vehicle Routing Problems
(VRPs), Lin et al. (2024) suggest training a shared backbone model, which can then be fine-tuned for
different VRP variants using linear projections. Additionally, Zhou et al. (2024); Liu et al. (2024);
Berto et al. (2024) apply attribute composition to achieve (zero-shot) generalization across various
VRP variants. While these approaches treat a set of problem variants as extensions of a single-task
model with varying attributes, this paper explores learning generalized strategies across different
problems, aiming to prune the single-task model for its generalized part rather than expanding it.

3 PRELIMINARIES

Following Karalias & Loukas (2020); Wang et al. (2022), we define G as the set of CO problem in-
stances represented by graphs G(V,E) ∈ G, where V and E denote the nodes and edges, respectively.
CO problems can be classified into two types: edge-decision problems, which involve selecting edges,
and node-decision problems, which involve selecting nodes. Let x ∈ {0, 1}N be the optimization
variable, where each entry indicates inclusion in the solution. For edge-decision problems, N = n2,
and xi,j denotes whether edge Ei,j is included. For node-decision problems, N = n, and xi denotes
whether node Vi is included. The feasible set Ω consists of all x that satisfy the problems constraints.
A CO problem on G seeks a feasible x that minimizes the objective l(·;G) : {0, 1}N → R≥0:

min
x∈{0,1}N

l(x;G) subject to x ∈ Ω (1)

Different COPs exhibit variations in their loss functions and constraints. In this paper, we consider
several such problems: TSP, an edge-decision problem where the goal is to find the shortest tour that
visits each node once and returns to the starting point; CVRP, which involves determining vehicle
routes starting and ending at a depot, while ensuring the total demand on each route does not exceed
vehicle capacity; SDVRP, which extends VRP by allowing deliveries to be split across multiple routes;
OP, a variant of TSP aimed at maximizing the total prize collected from visited nodes under a distance
constraint, without requiring every node to be visited; PCTSP, where each node has both a prize and
a penalty for being unvisited, and the goal is to collect a minimum total prize while minimizing the
tour length and unvisited-node penalties; and SPCTSP, which introduces uncertainty by revealing the
actual prize only when a node is visited, while the expected prize is known beforehand.

4 GRADIENT-CONSISTENT NEURAL COMBINATORIAL OPTIMIZATION

4.1 OPTIMZIATION FOR GENERALIZED STRATEGIES

Consider a set of tasks {Ti}ki=1, where the goal is to learn a neural network solver Sθ that maps Xi

to Yi, i.e., Sθ : Xi → Yi. The primary aim is to learn a generalizable solution strategy that captures
the shared information across multiple tasks while also maintaining task-specific capabilities. As a
result, this model processes the learned strategies being effective across multiple tasks, which may

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

potentially be effective for new, unseen tasks. This model can serve as a pre-trained model, where its
performance on a specific task can be optimized through tuning.

To achieve this, we structure the model with a shared network θs responsible for learning generalized
strategies, supplemented by task-specific modules θTi designed to handle the unique input and output
form of each task. The complete model is represented as {θs, θTi , . . . , θTk

}, where for a particular
task Ti, the parameters involved are {θs, θTi}. The shared network θs captures knowledge common
across tasks, while the task-specific modules θTi

ensure sufficient specialization for each problem.

The optimization objective for learning these generalized strategies is to ensure that, with the support
of the task-specific modules θTi , the relationship P (Xi → Yi) remains consistent and stable across
tasks, reflecting a potential unified problem-solving strategy. This can be expressed as:

P (Xi → Yi|θTi) = P (Xj → Yj |θTj), ∀i, j (2)
Then, there exists a neural model θs corresponding to this mapping relation, and this consistency in
problem-solving strategies across tasks ensures that updates to θs lead to simultaneous improvements.
In other words, the shared parameters θs should contribute to all tasks in a stable and coherent manner.

A key characteristic of COPs is their deterministic optimization objectives, which enables the training
loss to align precisely with the evaluation metric (via reinforcement learning), further ensuring that
gradients during training explicitly reflect improvements in solving performance. Thus, we derive a
gradient consistency constraint during the optimization process to ensure coherent improvements
from θs updates across COPs. This constraint ensures that the gradient directions and magnitudes for
θs across tasks remain aligned, thereby guiding the model toward a generalized solution:

min
θs,

⋃
i θTi

∑
i

LTi(θs, θTi)

s.t. ∇θsLTi
(θs, θTi

) = ∇θsLTj
(θs, θTj

), ∀i, j
(3)

Therefore, gradient alignment ensures the shared network learns strategies beneficial across all tasks,
enhancing generalization and robustness in the learned solution strategies.

4.2 THE GENERAL MODEL DESIGN

To facilitate direct performance correspondence and simplify constraint handling, we directly take the
problem objectives as the training loss through reinforcement learning and use a sequential decision-
making approach, where a point is selected at each step to be integrated into the current partial
solution, ultimately creating a complete solution. This method ensures that constraints are met at
each step, thus addressing the differences in constraints across multiple problems in a unified manner.
Without loss of generality, taking TSP as an example, the solution sequence π = (π1, π2, . . . , πn) is
treated as a permutation of nodes, depending on the problem type. The model defines a stochastic
policy pθ(π|s) for selecting the sequence solution π given a problem instance G:

pθ(π|G) =

n∏
t=1

pθ(πt|G, π1:t−1), (4)

where πt represents the decision at step t, conditioned on the current partial solution π1:t−1 and
problem instance s. The policy pθ is parameterized by θ, typically learned through a graph neural
network or attention mechanism. The probability distribution pθ(πt|G, π1:t−1) determines the
selection of the next node based on the current graph context and previously selected components. The
model can be directly optimized through the expectation of the given problem objective L(θ|G) =
Epθ(π|G)[L(π)]. We optimize L by gradient descent, using the REINFORCE (Williams, 1992)
gradient estimator with baseline b(G) following Kool et al. (2018); Kwon et al. (2020):

∇L(θ|G) = Epθ(π|G) [(L(π)− b(G))∇ log pθ(π|G)] . (5)

Many NP-hard COPs exhibit structural similarities due to polynomial-time reducibility (e.g., TSP
to VRP), suggesting the existence of a potential unified latent space where solution strategies can
be homogenized. To capitalize on these structural commonalities and enforce gradient consistency
within a coherent latent space, we adopt separate headers and decoders for each problem to handle
problem-specific inputs and outputs. The entire model follows a header-encoder-decoder framework,
where the headers and decoders consist of a single layer each, while the encoder, with significantly
larger parameters, is designed to learn the core solving strategy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝒙

Instance

𝒘! 𝒛!

𝒚"

𝒘#

𝒘"

𝑓!! 𝒛#

𝒛"

𝑓!"

𝑓!#
𝑹"$

𝑹!$

𝑹#$

𝒓𝒘!

𝒓𝒘!

𝒓𝒘!

𝑓"

Input Feature Rotation

𝑹"

𝑹!

𝑹#

𝒓𝒛"

𝒓𝒛!

𝒓𝒛#

𝑓#"

𝑓#!

𝑓##

Output Feature Rotation

𝒚!

𝒚#

.

Solutions

Figure 2: Representation flow of the GCNCO framework. fhi , fθ, fdi denote the mappings of the
header, encoder, and decoder, respectively. R′

i,Ri denote the introduced rotation matrices that
correspond to the input features and the output features.

The headers preprocess raw input from various COPs, converting data like coordinates, demands,
rewards, and penalties into unified vector representations. The shared encoder follows Trans-
former (Vaswani, 2017) principles, mapping inputs to Q,K, V via linear layers Wq,Wk,Wvthen
applying multi-head attention. The output is combined with the input via residual connections and
layer normalization, before being processed by a feed-forward network to extract task-specific fea-
tures. The decoding process differs from the Transformer decoder, using a combination of multi-head
and single-head attention. In the final step, attention scores and embedding vectors are generated
based on the current problem state (e.g., current node, remaining capacity) using multi-head attention,
followed by single-head attention to compute action probabilities, simplifying the action selection
process and outputting the probability distribution, which is more suitable for optimization tasks.

4.3 GRADIENT HOMOGENIZATION

To enable the encoder to learn a unified strategy effective across all tasks, corresponding to the
relationship P (Xi → Yi|θTi

), its gradient-based optimization behavior should be consistent across
tasks within a shared latent space. Since directly estimating the full gradient field is intractable, we
instead standardize the encoders gradients along the optimization trajectory. Specifically, we follow
Javaloy & Valera (2021) here to homogenize the gradients of the encoder in a header-encoder-decoder
architecture regarding gradient directions and magnitudes. However, unlike traditional multi-task
learning settings with a single shared feature stream as in Javaloy & Valera (2021), our design
introduces task-specific input and output transformations, invalidating the assumption of identical
feature flows. We therefore adapt the gradient-alignment mechanism to this architecture via a bi-level
scheme that explicitly accounts for the encoders input and output features, as detailed below.

Feature-Level Gradients. Directly homogenizing the gradients of encoder parameters across COPs
incurs significant computational overhead. Thus, we resort to homogenizing gradients of output
features of the encoder. Since different headers may process the same instance (with slight variations,
e.g., additional constraints) into distinct representations, we denote the header output feature for task
Ti as wi and the encoder output feature for task Ti as zi. The representation flow is shown in Fig. 2.
Traditionally, when the shared encoder receives identical data inputs, the encoder output feature is
shared, and the gradient of the loss LTi

with respect to the encoder parameters θ can be expressed
as ∇θLTi

= ∇θz · ∇zLTi
, where ∇θz is shared across tasks, and ∇zLTi

captures task-specific
variations (Javaloy & Valera, 2021). However, in our header-encoder-decoder framework, inconsistent
wi induce distribution shifts in encoder inputs, undermining this approximation. Without constraining
the gradient directions of wi, different headers may project the original input x into significantly
divergent latent spaces (e.g., w1 and w2 may exhibit distribution shifts). This undermines the
effectiveness of the feature-level gradient approximation.

To this end, we additionally enforce consistency in the gradient directions of ∇wi
LTi

to implicitly
align the input feature spaces, ensuring that the encoder receives inputs with similar optimization-
driven feature evolution patterns. This reduces the encoder’s burden of adapting to task-specific
noise and allows it to focus on capturing cross-task commonalities. If the input gradients of tasks i
and j satisfy ∇wiLTi ∝ ∇wjLTj , The header networks adjust mappings in a consistent direction.
Consequently, although the shared encoder receives input features wi from different tasks, their
optimization-driven feature changes follow a similar pattern. This alignment enables the encoder
parameters θ to focus on learning shared strategies rather than overfitting task-specific variations.

Gradient Magnitude Homogenization. We adopt a hyperparameter-free method normaliz-
ing gradient magnitudes across tasks, following Normalized Gradient Descent (Cortés, 2006)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and Javaloy & Valera (2021). Let the feature-level gradients of the task Ti for the k-th data
point be denoted as gTi,k = ∇zk

LTi
(zk), and the batch gradient for task Ti is represented as

G⊤
Ti

:= [gTi,1,gTi,2, . . . ,gTi,B], where B is the batch size. Then, we can intuitively rescale the

gradients of different problems through the normalization: UTi
=

GTi

∥GTi
∥ , ∀i, which balances the

gradient magnitudes across different tasks to gradient units. Denoting the common scalar magnitude
for all task gradients denoted as C, so the final gradients become CUTi

. We define C as a convex
combination of task-specific gradient magnitudes at t:

C :=
∑
i

αTi
∥GTi

∥, (6)

where the weights αTi
(which sum to 1) reflect each tasks convergence speed and are defined as:

αTi =
∥GTi

∥/∥G0
Ti
∥∑

j ∥GTj∥/∥G0
Tj
∥
, (7)

where G0
Ti

is the initial gradient for task Ti (i.e., at train iteration t = 0). This arrangement
dynamically adjusts the scaling based on the convergence speed of each task, allowing tasks with
slower convergence larger step sizes, while those that converge more quickly receive smaller updates.
As a result, the optimization of the solving objectives can be adjusted to a weighted loss minimization
process, where the loss weight for problem Ti is C

∥GTi
∥ . The optimization is then modified as:

min
θs,

⋃
i θTi

∑
i

C

∥GTi∥
LTi(θs, θTi). (8)

Gradient Direction Homogenization. To homogenize the gradient directions, we follow Javaloy &
Valera (2021) and introduce problem-specific rotation matrices on the hidden representations to rotate
the optimization landscape, thereby adjusting the optimization directions for gradient consistency.
However, since the inputs to the shared encoder are derived from different headers, in addition to
constraining ∇zi

LTi
, we also enforce consistency in the gradient directions of ∇wi

LTi
to implicitly

align the input feature spaces of the encoder. For each task Ti, we introduce rotation matrices
R′

i,Ri ∈ SO(d) to align the input gradients and output gradients of the shared encoder with a unified
direction. Then optimizing the loss calculated with the rotated latent representation rwi

= R′
iwi

and rzi = Rizi can lead to the rotation of the optimization landscapes (Soltanolkotabi et al., 2018),
thereby homogenize the gradients across tasks.

Since the rotation matrices introduce additional parameters that only affect the gradient directions for
different tasks, we optimize them by minimizing the conflict between the task-specific gradients of
the encoder by aligning them toward a common direction. This is achieved by maximizing the cosine
similarity of task gradients. The objective for optimizing the rotation matrices is to minimize:

Lrot(R1,R2, · · · ,Rk) = −
∑
i

⟨R⊤
i ∇rzi

LTi
,Ej(UTj

)⟩

L′
rot(R

′
1,R

′
2, · · · ,R′

k) = −
∑
i

⟨R′⊤
i ∇rwi

LTi
,Ej(U

′
Tj
)⟩

(9)

where UTj
and U′

Tj
denotes the normalized gradients of the output and input feature of the encoder

for problem Tj . Ej(UTj
) and Ej(UTj

) is the target direction that all task gradients should point
toward, which we select as the average normalized gradient direction across all tasks.

4.4 OVERVIEW

Based on the header-encoder-decoder architecture, when optimizing the objective function, we
additionally attach rotation matrices for different tasks to transform the input and output features of
the encoder. These transformed features are decoded via problem-specific decoders to obtain the
results, and the model is optimized by Eq. 8. Simultaneously, we update the parameters of the rotation
matrix via Eq. 9, optimizing the rotation matrix to align gradient directions consistently across tasks.

In this framework, the model is trained simultaneously on data from multiple COPs, encouraging the
encoder to capture shared problem-solving strategies that transcend individual tasks. These strategies
are designed to generalize to unseen problems, reducing the need for extensive retraining when

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

encountering new tasks. After the initial training phase, when applied to a new problem, the encoder
can remain frozen, leveraging its pre-learned strategies to provide strong initial performance. In this
scenario, only the lightweight, problem-specific header and decoder need to be retrained, significantly
reducing computational overhead. Alternatively, the encoder can be fine-tuned on new tasks to further
specialize its problem-solving capabilities, potentially achieving higher performance.

5 EXPERIMENTS

This section provide empirical validations by analyzing the relationship between different COPs
through gradient similarity, assessing the in-distribution solving performance, and investigating the
model’s generalization ability across tasks, both in a zero-shot setting and with fine-tuning.

5.1 EXPERIMENTAL SETUP

Datasets. The node coordinates of different problems are uniformly sampled within the unit square
[0, 1]2, with additional constraints identified by sampling rules specified in Appendix C. All settings
mentioned above are a standard procedure as adopted in Kool et al. (2018); Hottung et al. (2021); Sun
& Yang (2023); Li et al. (2023). We experiment on the problem scales of 20 and 50 for every COP.

Baselines. We compare our model to the baseline from Wang et al. (2025), which proposes a
multi-task learning framework based on the Multi-Armed Bandit (MAB) for dynamically selecting
training tasks for COPs, using identical experimental settings. It employs the MAB algorithm to
select the task to be optimized in each round, constructs reward signals through loss decomposition
and guides the task selection strategy. We also include AM models (Kool et al., 2018), which do not
incorporate multi-task considerations, for additional comparison. To further evaluate performance, we
benchmark against several mainstream heuristic solvers: LKH (Helsgaun, 2017), which dynamically
adjusts edge exchanges in paths to eliminate crossings and approximate the optimal solution;
Gurobi (Gurobi Optimization, 2020), which combines exact algorithms like branch-and-bound and
cutting-plane methods with preprocessing and heuristics to solve COPs; and Compass (Kobeaga
et al., 2018), which uses a directional search-based heuristic to balance local optimization with global
search capabilities in combinatorial optimization.

Metrics. Following Kool et al. (2018); Joshi et al. (2019); Sun & Yang (2023); Li et al. (2023),
we adopt two metrics: 1) Obj: the value of the objective function, which is the actual result of the
optimization. In a minimization problem, the smaller the objection value, the better the solution,
while in a maximization problem, a larger objection value is preferred. 2) Gap: the closeness of the
solution to the optimal solution, representing the difference between the current solution and the
known reference solution or the theoretical bound.

5.2 PROBLEM RELATIONSHIP AND GENERALIZATION MEASURE

In this experiment, we aim to analyze the underlying relationships between different CO problems by
examining the similarity of their gradients during optimization, which can also serve as an indicator of
how generalized the learned model is. We train the model simultaneously on classic routing problems,
including TSP variants and VRP variants, using the rotation matrices to enforce consistency in the
gradient directions across problems. By monitoring the gradients, we observe the degree of alignment
between the problems, which reveals the extent of shared structure in the optimization process. The
gradient similarity is computed using the cosine similarity of the gradients across tasks, demonstrating
how related the optimization landscapes of different CO problems are.

Results. Fig. 3 (a) shows the trend of task correlation reflected by the cosine similarities of the
encoder gradients across problem pairs, compared to the direct baseline MCOMAB (Wang et al.,
2025). It shows the training process in fine detail, where our method not only outperforms the
baseline in all task pairs but also converges in the later stages of training, demonstrating its potential
to learn inter-task correlations. Fig. 3 (b) presents the comparison of the problem correlation heatmaps
between our method and the baseline method. The problem similarities learned from different models
are measured by the average cosine similarities of the encoder gradients across the training process.
GCNCO shows improvement across major tasks, which enables learning more inter-task correlations
during the training process. On the other hand, we discover a higher correlation between the TSP and
VRP variants, while it is more challenging to homogenize OP and other routing problems.

5.3 IN-DISTRIBUTION SOLVING PERFORMANCE

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Training-time cosine similarities (b) Correlation heatmap of average cosine similarities
Figure 3: (a) The cosine similarities of the encoder gradients in the training process across problem
pairs. (b) The correlation heatmaps of average cosine similarities of the encoder gradients across
problem pairs for GCNCO and MCOMAB, where GCNCO achieves clearly higher similarity scores.

Figure 4: In-distribution solving performance. *
indicates reference for computing gaps.

PROBLEM ALGO. n = 20 n = 50

Obj. Gap Obj. Gap

TSP

LKH3 3.84∗ 0.00% 5.70∗ 0.00%
AM 3.85 0.08% 5.71 0.35%

MCOMAB 3.84 0.04% 5.70 0.30%
GCNCO 3.84 0.03% 5.70 0.25%

CVRP

LKH3 6.13∗ 0.00% 10.38∗ 0.00%
AM 6.19 0.93% 10.61 2.20%

MCOMAB 6.18 0.86% 10.59 2.15%
GCNCO 6.17 0.68% 10.56 1.77%

SDVRP
AM 6.25 3.96% 10.59∗ 0.00%

MCOMAB 5.96∗ 0.00% 10.81 2.13%
GCNCO 6.03 1.15% 10.81 2.11%

PCTSP

Gurobi 3.13∗ 0.00% 4.48∗ 0.00%
AM 3.19 1.88% 4.60 2.74%

MCOMAB 3.34 6.79% 4.56 1.83%
GCNCO 3.24 3.67% 4.53 1.32%

SPCTSP
AM 3.26 0.07% 4.64 0.69%

MCOMAB 3.25 0.03% 4.67 1.31%
GCNCO 3.24∗ 0.00% 4.61∗ 0.00%

OP

Compass 5.37∗ 0.00% 16.17∗ 0.00%
AM 5.30 1.56% 16.08 0.53%

MCOMAB 5.34 0.70% 16.08 0.58%
GCNCO 5.34 0.43% 16.09 0.46%

This experiment evaluates the model’s in-
distribution solving performance on multiple CO
tasks. We jointly train the model on the six CO
tasks and measure its performance on these tasks.
The encoder is designed to capture shared strate-
gies, while problem-specific rotation matrices and
decoders handle individual task outputs. After
the joint training, we then perform additional fine-
tuning on each task individually to assess whether
further improvements can be obtained. The perfor-
mance is evaluated based on standard metrics such
as solution quality and computational efficiency.

Results. The in-distribution performance reflects
how well the model handles tasks on which it has
been trained. Since learning generalized strategies
may reduce the model’s focus on task-specific
structures, we further fine-tune the pre-trained
models on individual tasks. Table 4 shows the
superiority of GCNCO. The performance gains of
GCNCO compared to MCOMAB are especially
consistent on 50-node instances.

5.4 CROSS-PROBLEM GENERALIZATION

One of the key strengths of GCNCO lies in its ability to generalize across different CO problems. To
evaluate this, we conduct experiments that assess the model’s cross-task generalization under two
settings: task-specific fine-tuning and zero-shot generalization with the pretrained encoder.

5.4.1 ZERO-SHOT CROSS-PROBLEM GENERALIZATION

We investigate the model’s ability to generalize to new tasks without additional training. We freeze
the encoder after training it on five CO tasks and directly apply it to solve the sixth, previously unseen
task. This zero-shot setting allows us to assess the extent to which the learned solving strategies can
be transferred to new tasks. We evaluate the model’s performance on the new task and compare it to
the performance of models trained from scratch on the same task, highlighting the effectiveness of
the shared encoder in transferring knowledge across problems.

Results. We freeze the encoder parameters that has already been trained on five tasks, and compare its
performance with a model trained from scratch using AM (Kool et al., 2018) and MCOMAB (Wang
et al., 2025), all trained under identical conditions. Metrics are evaluated on the previously unseen
problem to assess generalization. As shown in Table 5, even without task-specific training, the frozen
encoder outperforms baselines specifically trained or fine-tuned on the target task, highlighting the
ability of multi-task training to capture commonalities across different CO tasks.

5.4.2 FINETUNING FOR CROSS-PROBLEM GENERALIZATION

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Cross-problem generalization with
models trained on five problems and evaluated
on the left-out problem. * indicates the baseline
for computing the performance gap.
PROBLEM ALGO. n = 20 n = 50

Obj. Gap Obj. Gap

TSP

LKH3 3.84∗ 0.00% 5.70∗ 0.00%
AM 3.85 0.09% 5.71 0.38%

MCOMAB-ftune 3.84 0.05% 5.71 0.35%
GCNCO-frozen 3.84 0.05% 5.71 0.33%
GCNCO-ftune 3.84 0.04% 5.70 0.29%

CVRP

LKH3 6.13∗ 0.00% 10.38∗ 0.00%
AM 6.19 0.91% 10.61 2.24%

MCOMAB-ftune 6.19 0.93% 10.60 2.09%
GCNCO-frozen 6.18 0.82% 10.58 1.89%
GCNCO-ftune 6.17 0.71% 10.55 1.64%

SDVRP

AM 6.25 5.22% 10.59∗ 0.00%
MCOMAB-ftune 6.06 2.02% 11.73 10.71%
GCNCO-frozen 6.07 2.19% 10.65 0.60%
GCNCO-ftune 5.94∗ 0.00% 10.60 0.08%

PCTSP

Gurobi (10s) 3.13∗ 0.00% 4.48∗ 0.00%
AM 3.19 1.82% 4.58 2.04%

MCOMAB-ftune 3.63 14.01% 5.34 19.29%
GCNCO-frozen 3.44 9.87% 4.62 3.19%
GCNCO-ftune 3.18 1.56% 4.53 1.31%

SPCTSP

AM 3.26 1.62% 4.64 3.40%
MCOMAB-ftune 3.33 3.77% 4.68 4.29%
GCNCO-frozen 3.28 2.30% 4.54 1.14%
GCNCO-ftune 3.21∗ 0.00% 4.49∗ 0.00%

OP

Compass 5.37∗ 0.00% 16.17∗ 0.00%
AM 5.31 1.16% 16.08 0.54%

MCOMAB-ftune 5.34 0.51% 16.10 0.43%
GCNCO-frozen 5.34 0.55% 16.08 0.55%
GCNCO-ftune 5.34 0.43% 16.10 0.43%

To further explore the generalization ability of the
model, we evaluate the performance of fine-tuning
the pre-trained encoder on the new task. In this
setting, after initially freezing the encoder, we
perform additional fine-tuning on the new task-
specific data.This quantifies how well the model
adapts to new tasks when a small amount of task-
specific data is available. The results of this exper-
iment are compared to the zero-shot setting and
the baseline models trained from scratch, demon-
strating the encoder’s flexibility in handling both
new and previously seen tasks.

Results. We further fine-tune the learned encoder
and compare its performance with AM (Kool
et al., 2018) trained from scratch and fine-tuned
MCOMAB (Wang et al., 2025). Table 5 shows
that, under the same training setup with five CO
tasks, our model achieves a larger gap improve-
ment on unseen tasks after fine-tuning, with re-
sults numerically closer to the optimal solutions
provided by heuristic solvers. This indicates that
fine-tuning on the target task complements the
model’s ability to incorporate task-specific infor-
mation and improve performance, highlighting its
potential as a foundation model for various tasks. Compared to the baselines, the task-specific
fine-tuning process yields clear gains over the frozen encoder, and in the full training, GCNCO
substantially outperforms the MCOMAB baseline.

5.5 ABLATION STUDY OF GRADIENT MAGNITUDE AND DIRECTION HOMOGENIZATION

Figure 6: Ablation study on gradient magnitude and
direction homogenization. Models trained on five
COPs, fine-tuned and tested on TSP & CVRP.

ALGORITHM
TSP CVRP

Obj. Gap Obj. Gap

LKH3 3.848∗ 0.00% 6.134∗ 0.00%
w/o mag. homog., w/o dir. homog. 3.851 0.08% 6.191 0.93%
w/ mag. homog., w/o dir. homog. 3.850 0.06% 6.185 0.83%
w/o mag. homog., w/ dir. homog. 3.849 0.06% 6.188 0.88%
w/ mag. homog., w/ dir. homog. 3.849 0.04% 6.176 0.71%

To assess the core componentsgradient mag-
nitude homogenization (a) and gradient direc-
tion homogenization (b), we perform ablation
studies in our full fine-tuning pipeline. Mod-
els are trained on five COPs, then fine-tuned
on the held-out problem, with TSP and CVRP
used as examples. We compare variants with-
out either technique, with only (a), with only
(b), and with both (a) and (b). Each technique
boosts cross-problem generalization, while their combination yields the largest gains, confirming the
need to align both gradient magnitudes and directions.

Results. Table 6 shows that both magnitude and direction homogenization individually improve over
the no-homogenization baseline, with comparable gains. Crucially, applying both together yields the
largest gap reduction on TSP and CVRP, demonstrating that synchronizing gradient magnitudes and
directions is key to optimal performance.

6 CONCLUSION AND FUTURE WORK

This paper introduces a novel approach for learning shared-solving strategies across diverse COPs
by enforcing gradient consistency throughout the optimization process. Built on a header-encoder-
decoder architecture, our method explicitly separates problem-specific components (header and
decoder) from a generalized, problem-agnostic encoder. By leveraging problem-specific rotation
matrices and loss weights, the encoder effectively learns and generalizes solving strategies across
multiple COPs. Experiments on six distinct CO problems demonstrate strong in-distribution perfor-
mance and robust generalization in zero-shot and fine-tuned cross-problem scenarios. Our findings
highlight the potential of the learned encoder as a foundation for CO models, enabling adaptation
to new problems without retraining from scratch. This opens up avenues for future work, including
extending the method to larger data and exploring specific fine-tuning methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study was conducted in accordance with the ICLR Code of Ethics and guided by principles
of responsible research. It does not involve human subjects, the use of sensitive personal data,
or applications with foreseeable harmful potential. We emphasize transparency, reproducibility,
and scientific integrity, with methods, datasets, and evaluations documented and results reported
accurately. The authors declare no competing interests or funding-related conflicts that could influence
the work. Our goal is to contribute positively to the machine learning community and society by
promoting fairness, accessibility, and open scientific inquiry, and we remain committed to proactively
identifying and responsibly addressing any unforeseen broader impacts.

REPRODUCIBILITY STATEMENT

We uphold the highest standards of scientific rigor and transparent reporting. To enable faithful
reproducibility, we furnish exhaustive documentation of our methodology (Section 4.2), architectural
specifications (Subsection 4.3), hyperparameter configurations (Appendix D), inference algorithm
(Algorithm 4.2), and dataset curation and configuration (Appendix 5.1) throughout the paper. Code
will be made publicly available upon acceptance.

REFERENCES

Stephan Allenspach, Jan A Hiss, and Gisbert Schneider. Neural multi-task learning in drug design.
Nature Machine Intelligence, 6(2):124–137, 2024.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour dhorizon. European Journal of Operational Research, 2021.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
arXiv preprint arXiv:2406.15007, 2024.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Jorge Cortés. Finite-time convergent gradient flows with applications to network consensus. Auto-
matica, 42(11):1993–2000, 2006.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian Conference on
Machine Learning, pp. 465–480, 2020.

Yanqi Dai, Nanyi Fei, and Zhiwu Lu. Improvable gap balancing for multi-task learning. In Uncertainty
in Artificial Intelligence, pp. 496–506. PMLR, 2023.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying
task groupings for multi-task learning. Advances in Neural Information Processing Systems, 34:
27503–27516, 2021.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Dpll (t):
Fast decision procedures. In International Conference on Computer Aided Verification, 2004.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
International Conference on Learning Representations, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com, 2020.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50, 2017.

Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel Kaleq, Nagib Hakim,
Helia Naeimi, Donald S Gardner, and Subhasish Mitra. Qed: Quick error detection tests for
effective post-silicon validation. In IEEE International Test Conference, 2010.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. arXiv
preprint arXiv:2103.02631, 2021.

Junguang Jiang, Baixu Chen, Junwei Pan, Ximei Wang, Dapeng Liu, Jie Jiang, and Mingsheng
Long. Forkmerge: Mitigating negative transfer in auxiliary-task learning. Advances in Neural
Information Processing Systems, 36, 2024.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. arXiv preprint arXiv:2205.13209, 2022.

Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

Gorka Kobeaga, Marı́a Merino, and Jose A Lozano. An efficient evolutionary algorithm for the
orienteering problem. Computers & Operations Research, 90:42–59, 2018.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34:26198–26211, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and
Senthilnath Jayavelu. Cross-problem learning for solving vehicle routing problems. arXiv preprint
arXiv:2404.11677, 2024.

11

http://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898–1908, 2024.

Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin, and Wenbin Hu. Banditmtl: Bandit-based multi-
task learning for text classification. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 5506–5516, 2021.

Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash functions. In
International Conference on Theory and Applications of Satisfiability Testing, 2006.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 2013.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. arXiv preprint arXiv:2210.04123, 2022.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Chenguang Wang, Zhang-Hua Fu, Pinyan Lu, and Tianshu Yu. Efficient training of multi-task neural
solver for combinatorial optimization. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=HJbcwRbMQQ.

Haoxiang Wang, Han Zhao, and Bo Li. Bridging multi-task learning and meta-learning: Towards
efficient training and effective adaptation. In International conference on machine learning, pp.
10991–11002. PMLR, 2021.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning systems, 33(9):
5057–5069, 2021.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

Wenlong Zhang, Xiaohui Li, Guangyuan Shi, Xiangyu Chen, Yu Qiao, Xiaoyun Zhang, Xiao-Ming
Wu, and Chao Dong. Real-world image super-resolution as multi-task learning. Advances in
Neural Information Processing Systems, 36, 2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029, 2024.

12

https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=HJbcwRbMQQ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed a large language model exclusively for editorial assistance, i.e., copyediting, rephrasing
for clarity, grammar and style consistency, and improving readability and flow. The LLM did not
generate ideas, analyses, models, code, experiments, or results, nor did it access proprietary data. All
scientific content, methodological choices, and conclusions are the authors own, and all suggested
edits were reviewed and verified by the authors before incorporation.

B PROBLEM DESCRIPTION AND INSTANCE GENERATION

B.1 TRAVELING SALESMAN PROBLEM (TSP)

The Traveling Salesman Problem (TSP) aims to find the shortest possible route that visits a set
of cities exactly once and returns to the starting city. The objective is to minimize the total travel
distance or cost. In the Euclidean version of TSP, the cities are represented as points in a plane, and
the distances between cities are the Euclidean distances between their coordinates.

For all TSP instances, the n nodes locations are sampled uniformly at random in the unit square.

Vehicle Routing Problem (VRP). The Vehicle Routing Problem (VRP) involves a fleet of vehicles
tasked with delivering goods to a set of customers. Each vehicle has a limited capacity, and each
customer has a specific demand. The objective is to determine an optimal set of routes for the vehicles
to minimize the total travel distance or cost while satisfying constraints such as vehicle capacity and
customer demands. The classic VRP assumes that all customers must be visited, and each route starts
and ends at a central depot.

In this problem formulation, we introduce a special depot node (indexed as 0) with coordinates x0.
Each vehicle has a capacity D > 0, and each regular node i ∈ {1, . . . , n} has a demand δi where
0 < δi ≤ D. Each route begins and ends at the depot, and the total demand of each route must not
exceed the vehicles capacity. We denote by Rj the set of node indices assigned to route j, ensuring
that

∑
i∈Rj

δi ≤ D. For simplicity, we normalize the demands by setting D̂ = 1, using normalized

demands δ̂i = δi
D .

Following Nazari et al. (2018); Kool et al. (2018), we generate instances for n = 20, 50, normalizing
the demands according to the vehicle capacity. The depot location and node positions are randomly
sampled within a unit square, with node demands defined as δ̂i = δi

D , where δi is the discrete demand
sampled uniformly from {1, . . . , 9}. Specific demand values for each instance size are D20 = 30,
and D50 = 40.

Split Delivery VRP (SDVRP). The Split Delivery Vehicle Routing Problem (SDVRP) is a variant of
the VRP where customer demands may be split across multiple deliveries. This allows a vehicle to
make more than one visit to a customer if needed. The objective is to minimize the total distance
traveled while satisfying the capacity constraints and meeting the customer demands, which can be
split across different routes.

The Split Delivery Vehicle Routing Problem (SDVRP) is a generalization of CVRP, where a node can
be visited multiple times, and only a portion of the demand needs to be delivered on each visit. Both
CVRP and SDVRP are specified similarly, with instances defined by the number of nodes, the depot
location x0, and the normalized demands δ̂i for each node i. For instance, the problem instances with
n nodes and depot at x0 use normalized demands 0 < δ̂i ≤ 1, with i = 1, . . . , n.

The instance generation process of SDVRP follows the VRP setting.

Orienteering Problem (OP). In the Orienteering Problem (OP), each node is associated with a
prize ρi, and the goal is to maximize the total prize collected from visited nodes while ensuring that
the total length of the route does not exceed a maximum length T . This differs from the Traveling
Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) because visiting each node is
optional. To formulate the problem, we introduce a special depot node indexed as 0, located at

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

coordinates x0. If the model selects the depot, we consider the route to be completed once the depot
is revisited. However, to prevent infeasible solutions, we allow visiting the depot only if a return
to the depot is still possible within the maximum distance constraint. Its worth noting that visiting
the depot is suboptimal if additional nodes can still be visited within the length limit, and we do not
enforce that constraint explicitly.

For instance generation, the depot location, along with the n node locations, are uniformly sampled
within a unit square. For the prize distribution, the prize is proportional to the distance from the
depot, where ρi = 1 +

∣∣∣99− doi

maxj doj

∣∣∣ and ρ̂i =
ρi

100 , encouraging visits to nodes farther from the
depot. The maximum length Tn for instances with n nodes (and the depot) is set to approximately
half the length of the average TSP tour for uniformly distributed TSP instances. This design aims to
produce challenging instances by maximizing the number of possible node selections, which occurs
when k = n

2 . Fixed maximum lengths are set for different instance sizes: T 20 = 2, and T 50 = 3,
adjusted according to the instance size. The length is normalized to align with the unit scale of the
node coordinates, ensuring consistency with the normalized prize values.

Prize Collecting TSP (PCTSP). The Prize Collecting Traveling Salesman Problem (PCTSP) involves
nodes with associated prizes and penalties. The goal is to determine a route that maximizes the total
prize collected while minimizing the total travel distance and the penalties for unvisited nodes. In
PCTSP, the route is completed once the depot is visited again, but not all nodes need to be visited.
The objective is to balance collecting prizes with avoiding penalties, with the total prize constraint
being satisfied as a minimum requirement.

For instance generation, the depot and n node locations are randomly sampled in the unit square. The
prizes are uniformly distributed with ρi ∼ Uniform(0, 1), and the expected total prize for any subset
of n

2 nodes is n
4 . The prize for each node is normalized, so ρ̂i =

ρi

n . In cases where the total prize of
visited nodes is less than 1, the prize constraint may be violated, but it is only allowed to return to the
depot once all nodes have been visited.

Penalties are also sampled for each node. If the penalties are too small, the selection of nodes is
determined almost entirely by the minimum total prize constraint. If the penalties are too large, all
nodes are visited, making the total prize constraint irrelevant. To ensure that penalties are meaningful,
we sample the penalty values βi ∼ Uniform(0, 2 · Ln

n), where Ln is the expected length of the
TSP tour with n nodes. This formulation ensures that penalties contribute to the overall objective,
balancing the prize collection and penalty minimization.

Stochastic Prize Collecting TSP (SPCTSP). The Stochastic Prize Collecting Traveling Salesman
Problem (SPCTSP) is an extension of the PCTSP, where the prize collected at each node is uncertain
and only revealed when the node is visited. The expected prize ρ̂i is known in advance, but the
actual prize ρ∗i follows a uniform distribution, with ρ∗i ∼ Uniform(0, 2ρ̂i). The objective in SPCTSP
remains to maximize the total prize collected while minimizing the total travel distance, but the
uncertainty in the actual prizes adds an additional layer of complexity to the problem.

For instance generation, the depot and n node locations are sampled uniformly at random within
the unit square. Prizes for the nodes are uniformly distributed, with ρ̂i ∼ Uniform(0, 1), and the
expected total prize for any subset of n

2 nodes is n
4 . The normalized prize for each node is given by

ρ̂i =
ρi

n . Penalties are also assigned, and they are sampled as βi ∼ Uniform(0, 2 · Ln

n), where Ln is
the expected length of the TSP tour with n nodes. The instance settings follow those used for the
PCTSP, with adjusted parameters for the stochastic nature of the prizes.

C MODEL ARCHITECTURE

The architecture of the shared encoder follows the transformer architecture adopted in Kool et al.
(2018) with 66 attention layers. In decoding, there is also a common handling approach. After
obtaining the query vectors for each task, the model computes the multi-head attention output and
passes it through a linear layer to integrate the attention results back into the original embedding
space. Finally, a single-head attention is used to calculate the score for the current task. This score is
scaled and clipped, generating the final probability distribution for the optimal path selection of the
given node sequence. The mask is used to handle invalid nodes, ensuring that these nodes are not
selected. The designs of the problem-specific headers and decoders are presented below.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.1 TRAVELLING SALESMAN PROBLEM

Header. The input of the TSP Problem consists of the coordinates of each node, and the architecture
uses a single fully connected layer to map these 2 features to the desired embedding dimension.

Decoder. The input for the TSP Problem consists of two components: (1) Last Node Encoding: The
encoded representation of the last node, described by embedding dim features. (2) Mask for Invalid
Nodes: The mask that handles invalid nodes. The Decoder Architecture uses two fully connected
linear layers: one processes the encoded representation of the first query, while the other processes
the encoded representation of the last node. After passing through the linear layers, the query vectors
are reshaped to prepare them for the multi-head attention mechanism. The query vector for the
last node is then combined with the saved first query vector, forming the final query vector q. This
combined query vector is used in the attention mechanism to consider both the first and last nodes
when selecting the optimal path.

C.2 VEHICLE ROUTING PROBLEM

Header. The input for the CVRP Problem consists of three components: (1) Depot Coordinates:
The location of the depot, described by 2 features. (2) Node Coordinates: The location of each
node, described by 2 features. (3) Node Demand: The demand at each node, described by 1 feature.
The Header Architecture has a fully connected linear layer that processes the depot’s 2-dimensional
coordinates to generate its embedding. A separate fully connected linear layer embeds the 3-
dimensional features of each node, which include the coordinates and demand. These embeddings are
then concatenated to combine spatial and demand information, allowing the model to jointly consider
the locations, delivery requirements, and capacity constraints.

Decoder. The input for the CVRP Problem consists of three components: (1) Last Node Encoding:
The encoded representation of the last node, described by embedding dimension features. (2) Load
Information: The load at each node, described by 1 feature. (3) Mask for Invalid Nodes: The mask
that handles invalid nodes. The Decoder Architecture uses a fully connected linear layer which
processes the concatenated input of the last node encoding and the load information. After passing
through the linear layer, the query vector for the last node is reshaped using to prepare it for the
multi-head attention mechanism. The saved first query vector, is not used in this case, and the final
query vector q is solely formed from the query of the last node. This query vector is then used in
the attention mechanism to consider the relationships between the last node and the subsequent path
decisions in the context of the vehicle’s load and capacity constraints.

C.3 SPLIT DELIVERY VRP

SDVRP extends CVRP by allowing split deliveries, the model structure and initial embedding steps
remain consistent.

C.4 ORIENTEERING PROBLEM

Header. The input for the OP Problem consists of three components: (1) Depot Coordinates:
The location of the depot, described by 2 features. (2) Node Coordinates: The location of each
node, described by 2 features. (3) Prize: The reward associated with each node, described by 1
feature. The Header Architecture has a fully connected linear layer that processes the depot’s 2-
dimensional coordinates to generate its embedding. A separate fully connected linear layer embeds the
3-dimensional features of each node, which include the coordinates and prize information. The node
features, consisting of coordinates and prize, are concatenated and passed through the embedding
layers. Finally, the processed depot and node embeddings are concatenated together to form the
complete input representation for downstream tasks.

Decoder. The input for the OP Problem consists of two components: (1) Last Node Encoding: The
encoded representation of the last node, described by embedding features. (2) Remaining Distance
Information: The remaining distance to each node, described by 1 feature. (3) Mask for Invalid
Nodes: The mask that handles invalid nodes. The Decoder Architecture uses a fully connected linear
layer which processes the concatenated input of the last node encoding and the remaining distance
information. After passing through the linear layer, the query vector for the last node is reshaped to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

prepare it for the multi-head attention mechanism. Since no first query vector is used for this problem,
the final query vector q is solely formed from the query of the last node. This query vector is then
used in the attention mechanism to determine the optimal path considering the remaining distances to
the nodes.

C.5 PRIZE COLLECTING TSP

Header. The input for the PCTSP Problem consists of two components:(1)Depot Coordinates:
Represents the starting point, characterized by 2 features.(2)Node Coordinates: Represent cities in
the problem, each described by 4 features, including attributes such as prizes (rewards for visiting the
node) and penalties (costs for not visiting it).The Header Architecture has a fully connected linear
layer processes the depots 2-dimensional features to generate its embedding and a separate fully
connected linear layer embeds the 4-dimensional features of each node.The embedded node features
are concatenated with their corresponding prize and penalty values, forming an augmented feature
tensor.Finally, the processed depot and node embeddings are merged to construct the complete input
representation for downstream computation.

Decoder. The input for the PCTSP Problem consists of two components: (1) Last Node Encoding:
The encoded representation of the last node, described by embedding features. (2) Reward Constraint:
The additional reward constraint information associated with each node, described by 1 feature. (3)
Mask for Invalid Nodes: The mask that handles invalid nodes. The Decoder Architecture uses a
fully connected linear layer which processes the concatenated input of the last node encoding and
the reward constraint information. After passing through the linear layer, the query vector for the
last node is reshaped to prepare it for the multi-head attention mechanism. The final query vector
q is solely formed from the query of the last node. This query vector is then used in the attention
mechanism to determine the optimal path, considering both the last node’s position and the associated
reward constraint.

C.6 STOCHASTIC PRIZE COLLECTING TSP

The architecture for SPCTSP is the same as that for PCTSP, with the difference being that SPCTSP
allows for probabilistic node visits. Despite this, the model structure and initial embedding steps,
remain consistent between the two.

D EXPERIMENTAL SETTINGS

D.1 PROBLEM RELATIONSHIP AND GENERALIZATION MEASURE

In this study, the model is trained over 500 epochs, processing 100,000 instances per epoch across two
tasks, with a batch size of 512. Optimization is performed using the Adam algorithm, with a learning
rate of 1× 10−4 for model parameters, and the SGD algorithm with a learning rate of 1× 10−5 for
rotation matrices. A key aspect of this study is task-related learning, where the model is trained on
both tasks simultaneously. The relationship between the tasks is captured by calculating the cosine
similarity of the gradients with respect to the model parameters. This measure reflects how aligned
the tasks are in terms of their contributions to learning, which is critical for understanding how the
model generalizes and adapts to multiple tasks concurrently.The model is trained on a single Nvidia
H100 GPU. This setup offers valuable insights into the problem’s relationships and the model’s
generalization capabilities, with an emphasis on its adaptability and robustness throughout different
training phases.

D.2 IN-DISTRIBUTION SOLVING PERFORMANCE

In this study, the model is trained over 500 epochs, processing 100,000 instances per epoch across six
tasks, with a batch size of 512. Optimization is carried out using the Adam algorithm with a learning
rate of 1× 10−4 for model parameters and the SGD algorithm with a learning rate of 1× 10−5 for
rotation matrices. The key focus of this study is on In-distribution Solving Performance, where the
model is trained using collaborative multi-task learning across six tasks. During training, the model
learns to simultaneously handle all six tasks. Afterward, the encoder layer parameters are fine-tuned

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

on one of these tasks using the Adam algorithm with a learning rate of 1×10−5. Initially, the encoder
layers are frozen for 100-150 epochs, and then all model parameters are fine-tuned together on the
chosen task for another 100-150 epochs. This setup allows for evaluating the model’s performance
in solving a single task after multi-task learning. The model is trained and evaluated on a single
Nvidia H100 GPU, and this setup provides valuable insights into the models in-distribution solving
capabilities, focusing on its adaptability and robustness in solving seen-tasks within the distribution it
was trained on.

D.3 CROSS-PROBLEM GENERALIZATION

In this study, the model is trained over 500 epochs, processing 100,000 instances per epoch across five
tasks, with a batch size of 512. Optimization is carried out using the Adam algorithm with a learning
rate of 1× 10−4 for model parameters and the SGD algorithm with a learning rate of 1× 10−5 for
rotation matrices. The key focus of this study is on In-distribution Solving Performance, where the
model is trained using collaborative multi-task learning across five tasks. During training, the model
learns to simultaneously handle all five tasks. Afterward, the encoder layer parameters are fine-tuned
on a sixth, unseen task which is using the Adam algorithm with a learning rate of 1× 10−5. Initially,
the encoder layers are frozen for 100-150 epochs, and then all model parameters are fine-tuned
together on the chosen task for another 100-150 epochs. This setup allows for evaluating the model’s
ability to generalize to a task outside the distribution of the five training tasks. The model is trained
and evaluated on a single Nvidia H100 GPU, and this setup provides valuable insights into the models
cross-problem generalization capabilities, focusing on its ability to adapt and perform on an unseen
problem after training on multiple related tasks.
Table 1: Results on TSPLIB 50–150. Models are trained on other COPs and fine-tuned on TSP-50.

AM MCOMAB GCNCO
eil51 15.216% 1.723% 0.973%
berlin52 4.237% 1.134% 0.547%
st70 1.601% 0.913% 1.752%
eil76 2.123% 2.628% 1.654%
pr76 0.764% 1.145% 0.816%
rat99 2.297% 2.954% 2.451%
kroA100 4.002% 3.127% 2.291%
rd100 3.121% 2.674% 2.118%
eil101 2.754% 2.216% 1.763%
lin105 1.616% 3.647% 1.922%
pr107 3.884% 3.195% 1.971%
bier127 6.349% 7.521% 4.782%
ch130 2.668% 2.145% 1.973%
pr144 7.429% 5.913% 4.007%
kroA150 3.612% 2.067% 3.324%

average 4.112% 2.866% 1.935%

D.4 ADDITIONAL EXPERIMENT ON TSPLIB

To evaluate the models ability to transfer from synthetic data to real benchmark instances, we conduct
an additional study on the TSPLIB corpus. Concretely, all models are first trained on five COPs
drawn from our main suite and then fine-tuned only on TSP-50 before being testedwithout further
adjustmenton TSPLIB instances containing between 50 and 150 nodes. This protocol isolates the
encoders capacity to generalize across both distribution and size shifts.

Results. Table 1 indicates that GCNCO attains the lowest optimality gaps on nearly every TSPLIB
instance and delivers the best overall average, whereas MCOMAB(Wang et al., 2025) performs
second and AM(Kool et al., 2018) lags behind. These outcomes confirm that the gradient-consistent
backbone learned on diverse COPs transfers robustly to classical benchmarks with varying structures
and scales.

17

	Introduction
	Related Work
	Preliminaries
	Gradient-Consistent Neural Combinatorial Optimization
	Optimziation for Generalized Strategies
	The General Model Design
	Gradient Homogenization
	Overview

	Experiments
	Experimental Setup
	Problem Relationship and Generalization Measure
	In-distribution Solving Performance
	Cross-problem Generalization
	Zero-shot Cross-problem Generalization
	Finetuning for Cross-problem Generalization

	Ablation Study of Gradient Magnitude and Direction Homogenization

	Conclusion and Future Work
	The Use of Large Language Models (LLMs)
	Problem Description and Instance Generation
	Traveling Salesman Problem (TSP)

	Model Architecture
	Travelling Salesman Problem
	Vehicle Routing Problem
	Split Delivery VRP
	Orienteering Problem
	Prize Collecting TSP
	Stochastic Prize Collecting TSP

	Experimental Settings
	Problem Relationship and Generalization Measure
	In-distribution Solving Performance
	Cross-problem Generalization
	Additional experiment on TSPLib

