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ABSTRACT

We introduce two temporal attention modules which can be plugged into tra-
ditional memory–augmented recurrent neural networks to improve their perfor-
mance in natural language processing tasks. The temporal attention modules pro-
vide new inductive biases allowing the models to compute attention distributions
over the different time steps of input sequences. The values of these attention
distributions can be inspected to identify the sequence’s elements that the model
considered relevant during the inference. Using the Entity Network (Henaff et al.,
2016) as the model backbone, experiments were made on the dataset bAbI tasks,
a set of QA tasks. Due to the addition of the temporal attention modules, the per-
formance metric increased 26% when the temporal attention was supervised, and
13,5% when it wasn’t. Moreover, the usage of temporal attention modules proved
useful at resolving reasoning tasks that the original model was unable to solve.

1 INTRODUCTION

Recent advances in deep learning rarely consider explainability and interpretability as first–class
citizens (Freitas, 2014; Guidotti et al., 2018). A possible cause of this phenomenon is the existence
of a trade–off between explainability and learning capacity: decision trees are models that are easily
interpreted due to their graphic nature, but they have a low learning capacity compared to deep
learning models, which in turn have poor or non–existent innate explainability attributes.

This work seeks to push this trade–off by adding explainability attributes to deep learning mod-
els, without sacrificing performance on the task at hand. In particular, we’ll design two modules
that implement inductive biases capable of increasing the performance of a model, while adding
interpretability attributes absent in the original model. We’ll enrich the Entity Network (Henaff
et al., 2016), a memory–augmented recurrent neural network, applied to natural language process-
ing (NLP) tasks.

This work introduces two classes of temporal attention modules that can be used to add explain-
ability attributes to the predictions of memory–augmented models. The designed modules will be
evaluated in the NLP task known as question answering (QA). The temporal attention mechanisms
allow the model to learn to identify which elements of the input factual sequence are important to
answer a given query.

In essence, temporal attention allows the model to more easily infer answers by removing noise
associated to elements of the sequence of facts that are irrelevant to the query. It also adds inter-
pretability attributes to the original models. Interpretability is achieved by looking at the attention
over time values: elements of the sequence of facts with high scores were relevant to answer the
query, while those with small scores were not considered important by the model.

Two families of temporal attention modules will be designed and implemented. The first class
consists of pre–hoc modules, that is, they calculate the temporal attention distributions before per-
forming the answer prediction step. On the other hand, the second family is the post–hoc modules,
that is, they execute post–hoc the calculation of temporal attention after having done the answer
inference. Both classes of modules have advantages and disadvantages that will be deeply analyzed
throughout the paper.
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2 RELATED WORK

2.1 ATTENTION MECHANISMS

Sutskever et al. (2014) proposed the sequence–to–sequence architecture in an attempt to solve tasks
that can be framed as mappings between pairs of source–target sequences. Many tasks can be
adjusted to this framework: machine translation, summarization, question answering, among others.
A limitation of this work is that it relies in an fixed–size intermediate vector which is an information
bottleneck in the case of complex tasks with long sequences.

In Bahdanau et al. (2014) attention mechanisms are introduced that do not use a single intermediate
vector of fixed dimensionality. Instead, they enable the model to automatically perform searches
on relevant representations in the source sequence conditioned on the current state of the output
sequence.

Pointer networks (Vinyals et al., 2015) have used the previously exposed notions of attention in an
extractive approach. Unlike Bahdanau et al. (2014), where attention is used to build a mixture of the
hidden states of the origin sequence, in Vinyals et al. (2015) attention is used as the model output by
pointing directly to the origin sequence, enabling predictions to be made in tasks where the output
vocabulary is not known a priori.

2.2 MEMORY-AUGMENTED NEURAL NETWORKS

An approach adopted to facilitate the learning of recurrent models has been the enrichment of
these networks by the usage of external memories (Graves et al., 2014; 2016; Weston et al., 2015;
Sukhbaatar et al., 2015). External memories are a set of vectors that are usually accessed through
location or content-based addressing mechanisms. In essence, this family of models is inspired by
classic computer architectures such as Von Neumann’s (Von Neumann, 1993), where in addition to
memory registers present in the processing and control units, there are external memory units that
store data and instructions in the long term, or Turing’s machine, where a finite automata is enriched
with an infinite memory tape.

An instance of a memory–augmented neural network is the Entity Network (Henaff et al., 2016).
Due to the modular nature of the Entity Network and the semantic content it learns to store in
the external memory vectors (w, h), it has been used as a starting point to design new modules
that add attributes and capabilities that the original model does not have. For example, Bansal
et al. (2017) modified the dynamic memory module to incorporate relational reasoning capabilities
between entities.

2.3 QUESTION ANSWERING

The resolution of the WikiQA (Yang et al., 2015) and SQuAD (Rajpurkar et al., 2018) datasets
has focused much of the QA–task recent efforts of the NLP community (Devlin et al., 2018; Yang
et al., 2019). However, for the purposes of this work, both datasets present two issues. First, it is
not possible to easily analyze the reasoning capacities that the evaluated models have, since only
the correctness of the responses predicted by the model is measured. Second, an important goal of
this work is to add the ability to point to the relevant information that the model considers when
making inferences, to articulate an explanation that the end user uses to understand the behavior of
the model. The datasets presented above lack information regarding which are the supporting facts
in the context paragraphs, so it is difficult to measure the degree of success of this goal.

Considering the previous point, a dataset that is interesting is the bAbI tasks (Weston et al., 2016).
It consists of twenty QA tasks that allow different cognitive reasoning skills to be tested. Each
task consists of 1,000 training examples and 1,000 text test examples. Each instance of the dataset
consists of: a sequence of facts, a question, an answer and the supporting facts, which consist of a
subset of facts with the minimum information needed to answer the query. The construction of the
tasks is done synthetically, by simulating a world where different entities interact with each other.
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Figure 1: Intra– and inter–temporal attention. The relevance of each input sequence element can be
assessed by inspecting their associate intertemporal attention value.

3 TEMPORAL ATTENTION MODULES

The Entity Network (Henaff et al., 2016) will be enriched with the modules introduced in this work.
It is a memory–augmented recurrent neural network whose original operations are described in the
appendix. This paper extends the operations in the original output module.

3.1 INTRA– AND INTER–TEMPORAL ATTENTION

Before we introduce the proposed modules, we will define the concepts of intra– and inter–temporal
attention, illustrated in Figure 1. Let {s1, . . . , sL} be a sequence of vectors representing facts with
the information needed to answer a query q. Furthermore, let htj be the hidden states of the j-th
memory block after processing st, and wj the j-th memory block key.

Intra–temporal attention is defined as some function f such that intra–attentiontj = f(htj , wj , q).
The function f produces a distribution of attention over the dynamic memory blocks. This intra–
temporal attention allows to put emphasis on those blocks of memory relevant to answer the query
q, for each timestep t.

On the other hand, inter–temporal attention is defined as some function g such that
inter–attentiontj = g(vt, q). The argument vt is a summary of the dynamic memory blocks. vt
is calculated as the sum of the memory blocks weighted by the intra–temporal attention values at
timestep t. The inter–temporal attention can be interpreted as a distribution of attention over the
elements of the input sequence. This attention can be supervised during training by incorporating it
into the loss function and considering the relevant facts of the story as the ground truth. In addition,
inter–temporal attention can be interpreted as an explanation of the predictions made by the model,
because it will point to the time steps that the model considered relevant to answer the query q.

3.2 PRE–HOC TEMPORAL ATTENTION MODULE

The pre–hoc temporal attention module, illustrated in Figure 2, performs the temporal attention
computation before making the answer prediction. It should be noted that the original model only
uses the hj memories stored after processing the entire sequence. The pre–hoc module leverages
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Figure 2: Pre–hoc temporal attention module. This module completely replaces the original output
module.

all htj memory values. This module has a great impact on the QA task predictions because its
operations are immediately upstream of the QA operations. The pre–hoc temporal attention module
completely replaces the Entity Network’s output module. It implements the following operations:

intra–alignmenttj = vTtanh(Ahtj +Bwj + Cq) (1)

intra–attentiontj = Softmaxt(intra–alignmenttj) (2)

temporal–memoryt =
∑
j

intra–attentiontjhtj (3)

inter–alignmentt = wTtanh(Dtemporal–memoryt + Eq) (4)
inter–attentiont = Softmax(inter–alignmentt) (5)

u =
∑
t

inter–attentionttemporal–memoryt (6)

y = Softmax(Rφ(q +Hu)) (7)

The operation of this module is decomposed in three stages. First, the calculation of the intra–
temporal attention is used to build temporal–memoryt vectors that summarize the memories, condi-
tioned on the query q, for each instant of time t. Next, the calculation of the inter–temporal attention
is used to compute the vector u corresponding to a summary of the entire dynamic memory, again
conditioned to the query q. Finally, the answer prediction is performed with similar operations as
the ones the original model uses.

Regarding the intra–temporal attention calculation, the module evaluates the alignment of the con-
tent of the memories htj and their keys wj with the query vector q. These alignments are com-
puted by using additive attention mechanisms as observed in equation 1. Then, the alignments are
activated by a softmax function, which outputs an intra–temporal attention distribution over the
memory blocks for each timestep t. The attention distribution is used to build summary vectors
temporal–memoryt, which is shown in equation 3.

The second stage determines the inter–temporal alignments between the content of
temporal–memoryt and the query vector q. Like the intra–temporal attention mechanism,
this alignment is calculated using additive attention mechanisms. Then, the alignments are activated
with a softmax function building an inter–temporal attention distribution over time, as shown in
equation 5.
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Figure 3: Post–hoc Temporal Attention Module. This module extends the original output module
operations.

The last stage of the module is to summarize the information of the memories in a u vector by sum-
ming the temporal–memoryt vectors weighted by intertemporal–attentiont. This vector is projected
into a space of dimensionality equal to the size of the vocabulary of possible answers, as observed
in equation 7, to build a probability distribution of answers.

3.3 POST–HOC TEMPORAL ATTENTION MODULE

This module extends the original output module, leaving the operations to perform the answer pre-
diction the same as the original model. The post–hoc temporal attention module, unlike the pre–hoc
one, performs the calculation of the inter–temporal attention after predicting the question answer.
The operations of this module are illustrated in Figure 3. In other words, it implements calculations
that in the model computational graph that are downstream from the answer prediction operations:

intra–alignmenttj = vTtanh(Ahtj +Bwj + Cconcat(q, ans)) (8)

intra–attentiontj = Softmaxt(intra–alignmenttj) (9)

temporal–memoryt =
∑
j

intra–attentiontjhtj (10)

inter–alignmentt = wTtanh(Dtemporal–memoryt + Econcat(q, ans)) (11)
inter–attentiont = Softmax(inter–alignmentt) (12)

The model operations are similar to those used in the pre–hoc temporal attention module. Essen-
tially, through mechanisms of additive attention over time, the model measures the relevance of the
different timesteps to answer the query q.

Another important difference, related to the previous point, is that when calculating the intra– and
inter–temporal alignments, the post–hoc temporal attention module is able to consider the informa-
tion of the predicted answer ans. This way, the task of predicting the temporal attention distribution
is enriched.

By using the post–hoc temporal attention module, it is expected to add explainable attributes and
improve performance on the QA task. The values of the inter–temporal attention are interpreted as
the probability that a piece of information is relevant to answer the query q. On the other hand,
by performing the task of identifying supporting facts, we enrich the learning of better internal
representations enhancing the model performance in the QA task.

4 EXPERIMENTS

The modules were trained and evaluated on the bAbI tasks dataset (Weston et al., 2016). More
information about the dataset and its structure can be found in Appendix B.
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A loss function Lqa(D,Θ) of cross entropy is used to supervise the QA task On the other hand,
a loss function Lsf(D,Θ) of binary cross entropy is used to supervise the task of identifying the
supporting facts. In both terms, D is the bAbI task dataset and Θ are the weights that parameterize
the model.

To facilitate the learning process, the terms of theLsf(D,Θ) loss function associated with supporting
facts are weighted by a

nneg

npos
scalar, where nneg and npos are the number of non–relevant and relevant

facts, respectively.

The complete loss function of the models is a weighted sum of the loss terms of each task defined as

Ljoint(D,Θ) = λqaLqa(D,Θ) + λsfLsf(D,Θ) . (13)

Where λqa and λsf are scalar hyperparameters that weigh the importance of the QA tasks and sup-
porting facts identification, respectively. Both hyperparameters are equal to 1, i.e., the terms are
considered with equal importance, unless stated differently. The rest of the model’s hyperparame-
ters values are in the appendix.

A multitasking training configuration is observed, where two tasks are trained in parallel.

4.1 PRE–HOC TEMPORAL ATTENTION MODULE

During the end–to–end training, the pre–hoc temporal attention module learns to perform both tasks
simultaneously. It is interesting to evaluate the interaction between the tasks of QA and supporting
facts identification. For this purpose, the following experiments will be performed:

1. Train the model with a loss function with values of λqa = 1 and λsf = 0. In this setting,
we evaluate the model’s ability to learn to answer questions and identify supporting facts
without supervision in the latter task. This setting will be referred to as the weak pre–hoc
module.

2. Train the model with a loss function with λqa = λsf = 1, i.e., supervision is given to both
tasks.

The results of the model on the task of identifying the supporting facts of a story can be seen in
Table 1. It can be seen that the weak pre–hoc module reaches an F1 score equal to 48%. This is
an important result, because even though we did not directly supervise the supporting facts task, the
model is capable of learning to identify part of them solely from the QA task supervision. By adding
supervision in the task of identifying supporting facts, the F1 score increases by 11.4% percentage
points to 59.4%.

When evaluating the performance of the model in the QA task, the results reported in Table 1 are
observed. The average error of 25.6% achieved by the weak pre–hoc module shows that even with-
out supervision of supporting facts it is possible to improve the performance in the QA task. A
hypothesis explaining this behavior is that due to the addition of the temporal attention module, the
complete model has better inductive biases to solve these tasks than the bare model backbone. On
the other hand, incorporating the additional supervision results in an average error of 21.9%.

4.2 POST–HOC TEMPORAL ATTENTION MODULE

Unlike the pre–hoc temporal attention module, the post–hoc module operations to identify the sup-
porting facts of a story are downstream of the operations used to solve the QA task. Therefore, the
supporting facts identification task will be conditioned by the predicted answer of the QA task.

The results of the QA and identification of relevant facts tasks are also found in Table 1.

It can be seen that in the QA task an average error equal to 24.8% is reached, corresponding to a
decrease of 4.8 percentage points with respect to the metric reached by the original Entity Network.
The intuition behind this increase in performance is that supervising the supporting facts identifi-
cation task induces the model to learn representations that are richer in semantics, allowing it to
improve performance on the upstream QA task. However, the post–hoc module does not achieve the
same performance as the pre–hoc module in the task of answering questions.
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Table 1: Results of the temporal attention modules on the bAbI tasks test split. EntNet is the Entity
Network. Weak pre–hoc is the weakly supervised pre–hoc temporal attention module.

Accuracy error F1 score

# Task name EntNet Weak
pre–hoc Pre–hoc Post–

hoc
Weak

pre–hoc Pre–hoc Post–
hoc

1 QA with single supporting fact 0.7% 0.0% 0.3% 0.0% 100.0% 91.4% 96.3%
2 QA with two supporting facts 56.4% 69.5% 70.3% 64.4% 4.4% 12.2% 18.3%
3 QA with three supporting facts 69.7% 74.5% 67.3% 75.9% 0.1% 3.5% 0.3%
4 Two argument relations 1.4% 0.2% 0.0% 2.1% 75.6% 100.0% 98.0%
5 Three argument relations 4.6% 20.6% 19.8% 10.7% 55.3% 59.3% 81.8%
6 Yes/No questions 30.0% 23.5% 9.5% 11.6% 45.0% 82.0% 82.5%
7 Counting 22.3% 20.3% 17.1% 16.7% 36.9% 56.8% 57.6%
8 Lists/Sets 19.2% 7.9% 6.5% 4.5% 51.6% 58.0% 66.3%
9 Simple negation 31.5% 15.9% 8.1% 4.1% 54.6% 78.1% 84.8%
10 Indefinite knowledge 15.6% 25.6% 15.8% 5.9% 61.8% 78.9% 81.5%
11 Basic coreference 8.0% 5.3% 0.4% 6.9% 61.4% 56.1% 53.0%
12 Conjunction 0.8% 0.0% 0.5% 0.5% 100.0% 86.8% 90.0%
13 Compound coreference 9.0% 7.5% 0.2% 6.0% 59.9% 53.4% 52.2%
14 Time manipulation 62.9% 23.0% 22.6% 32.2% 29.4% 43.6% 55.7%
15 Basic deduction 57.8% 29.4% 18.1% 60.5% 47.1% 64.0% 66.7%
16 Basic induction 53.2% 50.2% 52.0% 52.7% 6.7% 25.6% 49.9%
17 Positional reasoning 46.4% 41.0% 41.0% 40.9% 69.7% 82.1% 66.7%
18 Reasoning about size 8.8% 9.2% 4.5% 9.5% 2.7% 34.8% 41.7%
19 Path finding 90.4% 88.7% 83.1% 89.8% 0.0% 21.2% 25.7%
20 Motivations 2.6% 0.0% 0.0% 1.0% 97.7% 100.0% 100.0%

Mean 29.6% 25.6% 21.9% 24.8% 48.0% 59.4% 63.4%

The post–hoc module achieves an F1 score equal to 63.4% in the supporting facts identification task.
In this task, the post–hoc module has better performance to any version of thepre–hoc module.

In other words, if a practitioner wants to prioritize the model’s ability to identify supporting facts in
a story, the post–hoc module is the most convenient. On the other hand, if the performance in the
task of answering questions is more important, the pre–hoc module seems to be the most suitable
choice.

4.3 SUPPORTING FACTS PREDICTION

We are not aware of other work leveraging the bAbI tasks supporting facts features and reporting
metrics on the task of predicting them that would enable quantitatively analysis and comparison.
Nevertheless, it is possible to do a qualitative analysis by observing a sample of dataset records and
the predictions made by the model.

The analyzed examples are records of the test dataset. The best weak pre–hoc temporal attention
module was used to process the records, so the only supervision the model received during train-
ing was the ground truth answer. Facts with a red background are those marked in the dataset as
supporting facts.

An example of the bAbI task #1 which has only one supporting fact in throughout its records is
observed in Figure 4a. It can be seen how the temporal attention module focus its attention on the
last element of the story, which are the supporting fact labeled in the data set.

An interesting aspect of the behavior of the model is that it focus mass of the inter–temporal attention
distribution on elements of the story that, although weren’t labeled as supporting facts, involve the
query main entity. This can be clearly seen in the examples in Figures 4a and 4b. The above is an
example of the explainable attributes that the temporal attention modules add to the model, since
it’s possible to check that the model is putting greater emphasis to the information that should be
considered.
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Fact
John traveled to the hallway. 0,00
Mary journeyed to the bathroom. 0,00
Daniel went back to the bathroom. 0,00
John moved to the bedroom. 0,00
John went to the hallway. 0,00
Sandra journeyed to the kitchen. 0,00
Sandra traveled to the hallway. 0,05
John went to the garden. 0,00
Sandra went back to the bathroom. 0,26
Sandra moved to the kitchen. 0,69

Where is Sandra?
Ground
truth:

kitchen.
Prediction: kitchen.

(a) bAbI task #1 “QA with single supporting fact”.

Fact
Mary got the milk there. 0,00
John moved to the bedroom. 0,00
Sandra went back to the kitchen. 0,01
Mary traveled to the hallway. 0,00
John got the football there. 0,00
John went to the hallway. 0,78
John put down the football. 0,00
Mary went to the garden. 0,04
John went to the kitchen. 0,15
Sandra traveled to the hallway. 0,03

Where is the football?
Ground
truth:

hallway.
Prediction: bedroom.

(b) bAbI task #2 “QA with two supporting
facts”.

Figure 4: Sample bAbI task records with its predicted inter–temporal attention values in the second
column

5 CONCLUSIONS AND DISCUSSION

This work successfully shows that the temporal attention modules to a recurrent model with external
memory increases performance in QA tasks and, simultaneously, adds interpretability attributes pre-
viously unavailable in the original model. In the best configuration, an average accuracy error equal
to 21,9% is observed, which corresponds to a 26% improvement compared to the error obtained by
the base model called the Entity Network.

Although it is not possible to carry out a quantitative comparison on the performance obtained in
the task of identifying supporting facts, which is what adds the component of explainability to the
model, the qualitative analysis of the results obtained is also satisfactory. The model is able to learn
to point to the supporting facts of a given story and question even without explicit supervision.

A future line of work is to validate the benefits of the temporal attention modules with other instances
of memory–augmented neural networks. Due to the modular nature of the proposed architectures, it
is possible to integrate them into models such as the Memory Network (Sukhbaatar et al., 2015) or
the Differentiable Neural Computer (Graves et al., 2016), among others.

During the development of this work, much of the progress done in the NLP community has been
due to the application of large models with hundreds of millions of parameters in massive datasets
(Devlin et al., 2018; Yang et al., 2019). In comparison, the complete models presented in this work
have 4 orders of magnitude less complexity in terms of the number of parameters. An interesting
line of research in the future is to quantify the impact on model performance that would be produced
by the effect of scaling the number of parameters of the model. If this line is continued, there are
more complex datasets that may be more convenient to use (Yang et al., 2018).
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A ENTITY NETWORK

The Entity Network (Henaff et al., 2016) is a recurrent model with an external memory capable
of solving question answering and dialogue tasks, among others. This model introduces inductive
biases to identify entities in the input domain, in order to track relevant properties of them.

The model is decomposed into three modules: one input module, one dynamic memory and finally
an output module. The new modules proposed in this work extend the output module, adding ex-
plainability attributes. The original modules in a question answering setting will be described below
to contextualize the reader.

A.1 INPUT MODULE

Under the QA setting, the Entity Network’s input module receives a sequence of vectors
{e1, . . . , eL}, where ei ∈ Re is the i-th token embedding of a sentence and L is the sentence
length. The input module is responsible of building a fixed dimensionality vector st for each time
instant t. This vector st is calculated in the following way.

st =
∑
i

fiei st, fi, ei ∈ Re (14)

The multiplicative masks {f1, . . . , fL} are trainable weights of the model. This encoding method
is a generalization of a bag of words encoding (Harris, 1954), which occurs when the multiplica-
tive masks weights are exactly 1 in all their entries. This encoding method provides flexibility to
differently assess the importance of each token according to its location within a sentence.

A.2 DYNAMIC MEMORY MODULE

The dynamic memory module receives the st vectors, process them sequentially and updates the
corresponding memory blocks. The dynamic memory consists of pairs (wj , hj), j ∈ {1, . . . ,M},
where wj and hj is a key–value pair corresponding to the j-th memory and M is the number of
memory blocks. The wj keys, which are trainable weights, remain frozen while a sequence is
processed. On the other hand, the hj values are updated at each timestep, according to a behavior
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inspired by a gated recurrent network. The equations used in each recurrent step to update the
dynamic memory module are described below.

gj = σ(sT
twj + sT

t hj + bj) gj , bj ∈ R;wj , hj ∈ Re (15)

h∼j = φ(Uhj + V wj +Wst + bh) h∼j , bh ∈ Re;U, V,W ∈ Re×e (16)

hj = hj + gjh
∼
j hj ∈ Re (17)

hj =
hj
‖hj‖

hj ∈ Re (18)

σ and φ are the sigmoid and PReLU (He et al., 2015) activation functions, respectively. The value
of gj is a scalar that acts as a gate mechanism and determines how much the j-th memory should be
updated at the current step. The similarity of the input vector st and the vectors wj and hj determine
how much should the gate close. Next, a candidate vector h∼j is computed according to a set of linear
transformations of hj , wj and st which are added together and activated by φ. The candidate vector
h∼j is used to update the memory value hj by weighting all its components by the gate scalar gj .
Finally, the updated vector hj is normalized inside the unitary sphere by dividing it by its L2 norm,
which allows forgetting non-relevant information.

A.3 OUTPUT MODULE

The original output module computes, through attention mechanisms over the resulting memories,
the answer to some query represented by q. A query is a sequence of token embeddings e1, . . . , eL
that is processed through a mechanism similar to the input module. Each embedding ei is weighted
by multiplicative masks {f1, . . . , fL} and then summed to compute the query representation q. It’s
important to note that these multiplicative masks are different from those used in the input module.

Once the representation of the q query is calculated, it’s possible to predict the answer to it using the
information stored in the memory blocks.

pj = Softmax(qThj) pj ∈ R; q ∈ Re (19)

u =
∑
j

pjhj u ∈ Re (20)

y = Softmax(Rφ(q +Hu)) y ∈ RV ;R ∈ RV×e;H ∈ Re×e (21)

The attention scores pj are computed through a dot–product attention mechanism between the rep-
resentation of the query q and the memory value hj . Then, a vector u is calculated, which is a
summary of the dynamic memory, focusing on those blocks that are relevant to answer the query.
Finally, a softmax distribution is computed over the answer vocabulary conditioned on the query
representation q.

This paper extends the operations in the original output module. The proposed enhancements im-
plement temporal attention modules, adding explainability attributes and improving the model per-
formance at the same time.

B BABI TASKS

Both modules will be evaluated in the bAbI tasks dataset. The bAbI tasks are a collection of twenty
question answering tasks, where each one of them a different type of cognitive reasoning capability.
The dataset is constructed synthetically, simulating entities that interact with each other altering the
fictional world state where they live.

Each task consists of several training examples. Each training example is composed of:

• a story or sequence of facts {fact1, . . . , factT }, where each fact is a sequence of natural
language tokens {x1, . . . , xLf

},
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1 The suitcase is bigger than the container.
2 The container fits inside the box.
3 The chest is bigger than the chocolate.

4 The suitcase fits inside the box.
5 The chest fits inside the box.

Query: Does the chocolate fit in the box?
Answer: Yes

Figure 5: bAbI task #18 training record example. It’s composed by a facts sequence
{fact1, . . . , fact5}, a query q and the answer ans to that question. The supporting facts have a
red background color.

• a question q structured as a sequence of natural language tokens {x1, . . . , xLq
},

• an natural language answer ans to the question, and

• the set of relevant facts supporting–facts, which are the smallest subset of facts with suffi-
cient information to answer the question.

An example of a training record of the dataset is in Figure 5.

Models designed to solve the bAbI tasks can be classified into two training strategies: a weakly
supervised one, where only the ground truth answer is provided as supervision, and another strongly
supervised, where both the ground truth answer and the subset of supporting facts are given as
supervision. The pre hoc temporal attention module is able to operate on both weakly and strongly
supervised settings. On the other hand, the post hoc temporal attention module operates exclusively
in the strongly supervised mode.

The bAbI tasks are available in two versions: the 1k one with 1,000 training examples and the 10k
one with 10,000 training examples for each task. Both versions have test datasets with the same
number of instances as the training split. Generally, the 1k version of the dataset is considered to
be more difficult to solve than the 10k one because it offers an order of magnitude less training
examples to learn the different types of reasoning needed to solve the tasks.

The augmented–modules presented in this work learn to predict both the answers and supporting
facts of the bAbI tasks. The identification of those supporting facts is done using the intertemporal
attention distributions. The resolution of this task provide explainable attributes to the models.

C HYPERPARAMETERS

Each training experiment is performed during 200 epochs. At the end of each epoch, the loss func-
tion is evaluated on a validation split, built as a random sample of 10% of the training split. Finally,
the model that minimizes the loss function on the validation data split is evaluated on the test subset.

The learning rate varied cyclically (Smith, 2017) between 5 × 10−3 and 5 × 10−5 with a period of
6 epochs. The embedding size was 100 and 20 blocks of dynamic memory were used. The linear
transformations observed in equation 1, equation 4, equation 8 and equation 11 projected the inputs
into a space of dimensionality equal to 50.

Parameters were initialized from a normal distribution with µ = 0 and σ = 1, except for the PReLU
activation function slopes and the multiplication masks which were initialized equal to 1. Gradients
were clipped to have at most an L2–norm equal to 40. Finally, the model parameters were tuned
using stochastic gradient descent, a batch size equal to 32 and the Adam optimizer (Kingma & Ba,
2014).
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Table 2: Teacher forced pre–hoc temporal attention module results at the QA task on the test split.
Accuracy errors are reported. Lower values are better. EntNet is the Entity Network. MemNN SS is
the strongly supervised End–to–End Memory Network.

Task Name EntNet MemNN SS Pre–hoc module
1 QA with single supporting fact 0,7% 0,0% 0,00%
2 QA with two supporting facts 56,4% 0,0% 0,00%
3 QA with three supporting facts 69,7% 0,0% 0,00%
4 Two argument relations 1,4% 0,0% 0,00%
5 Three argument relations 4,6% 2,0% 0,88%
6 Yes/No questions 30,0% 0,0% 0,00%
7 Counting 22,3% 15,0% 9,08%
8 Lists/Sets 19,2% 9,0% 6,45%
9 Simple negation 31,5% 0,0% 0,00%

10 Indefinite knowledge 15,6% 2,0% 2,83%
11 Basic coreference 8,0% 0,0% 0,00%
12 Conjunction 0,8% 0,0% 0,00%
13 Compound coreference 9,0% 0,0% 0,00%
14 Time manipulation 62,9% 1,0% 0,00%
15 Basic deduction 57,8% 0,0% 0,00%
16 Basic induction 53,2% 0,0% 0,00%
17 Positional reasoning 46,4% 35,0% 39,45%
18 Reasoning about size 8,8% 5,0% 7,13%
19 Path finding 90,4% 64,0% 55,86%
20 Motivations 2,6% 0,0% 0,00%

Mean error 29,6% 6,7% 6,1%
Failed (> 5%) 15 5 5

D ADDITIONAL EXPERIMENTS

D.1 PRE–HOC TEMPORAL ATTENTION MODULE: TEACHER FORCED

During the teacher forcing experiments the prediction of inter–temporal attention, observed in equa-
tion 5, is not performed by the model. Instead, the inter–temporal attention is forced to be the ground
truth supporting facts given by the dataset, as seen in the next equation.

inter–attentiont =

{
1 if factt ∈ supporting–facts
0 if factt 6∈ supporting–facts

(22)

Even though the model doesn’t learn to predict the inter–temporal attention –since the ground truth
values are forced–, this experiment is helpful to get an approximation of the upper bound perfor-
mance in the QA task if the module learns to perfectly predict the supporting facts of a record.

The results of this experiment can be seen in table 2.

A significant performance difference is observed between weakly supervised methods, such as
the Entity Network, and the strongly supervised End–to–End Memory Network, or MemNN SS,
(Sukhbaatar et al., 2015) or the teacher forced pre–hoc module. Substantial increases in perfor-
mance are observed in tasks 2, 3, 14, 15 and 16. On the other hand, there are some tasks, such as
number 18, where learning to perfectly predict the inter–temporal attention doesn’t seem to help in
terms of performance.

Task number 18 tests the model’s spatial reasoning ability. Essentially, its records depict a rela-
tionship of size between entities, e.g., “the chocolate fits inside the box”, and then asks questions
regarding these relationships, e.g., “do you have the box fit in the chocolate?”. It makes sense that
the aggregation of the temporal attention module doesn’t significantly help the model’s performance
on this task, since it’s not a task whose temporal dimension is relevant for solving it.
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Finally, when comparing the pre–hoc module with the strongly supervised End–to–End Memory
Network, an our module has an average performance of 0,6% higher. However, there are still 5
tasks that none of the strong models are capable of solving, specifically tasks 7, 8, 17, 18 and 19.
A reasonable hypothesis to explain the unsatisfactory performance of the model in these tasks is
that they need types of reasoning that the model does not have. For instance, just as task 18 is about
spatial reasoning, task 17 requires strong spatial awareness skills to be solved. It’s a future challenge
to incorporate model inductive biases in order to acquire these reasoning abilities.

After analyzing the results, it’s clear that if the pre–hoc module is able to correctly identify the
relevant facts of a story, it’ll be able to solve reasoning tasks that weakly supervised counterparts are
not capable of.
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