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Abstract

Large language models (LLMs) have become proficient at sophisticated code-
generation tasks, yet remain ineffective at reliably detecting or avoiding code
vulnerabilities. Does this deficiency stem from insufficient learning about code
vulnerabilities, or is it merely a result of ineffective prompting? Using representa-
tion engineering techniques, we investigate whether LLMs internally encode the
concepts necessary to identify code vulnerabilities. We find that current LLMs
encode precise internal representations that distinguish vulnerable from secure
code—achieving greater accuracy than standard prompting approaches. Leveraging
these vulnerability-sensitive representations, we develop an inference-time steering
technique that subtly modulates the model’s token-generation probabilities through
a mixture of corrections (MoC). Our method effectively guides LLMs to produce
less vulnerable code without compromising functionality, demonstrating a practical
approach to controlled vulnerability management in generated code. Notably, MoC
enhances the security ratio of Qwen2.5-Coder-7B by 8.9%, while simultaneously
improving functionality on HumanEval pass@1 by 2.1%.

1 Introduction

Large language models (LLMs) have rapidly become useful tools for developers, demonstrating
remarkable proficiency across a wide array of code generation tasks [} 2]. Current LLMs excel at
understanding complex programming concepts [3]], generating syntactically correct and functionally
relevant code [4] 5], and even providing explanations, optimizations, and debugging assistance [6].

Despite these advances, even state-of-the-art models exhibit significant limitations with identifying
vulnerable code. Our empirical analysis on different sizes of CodeLlama [[7] and Qwen2.5-
Coder [4] reveals that traditional prompting techniques, including few-shot exemplars and detailed
Common Weakness Enumeration (CWE) descriptions, result in accuracy comparable to random
guessing (50%). Surprisingly, increasing the model parameter count fails to reliably improve detection
accuracy, suggesting a persistent gaps between increased coding capabilities and the closely related
task of identifying and generating secure code.

This motivates the question: do code-generating LLMs inherently lack the knowledge to differentiate
between vulnerable and secure code, or is this knowledge simply not accessible via prompting ? Using
linear probing [8} 9], we find that LLMs do indeed possess latent representations that distinguish
secure from vulnerable code far more effectively than standard prompts. Thus, despite these models’
apparent lack of proficiency at the task of identifying vulnerable code, it is possible to access models’
precise learned knowledge about vulnerabilities to accurately perform identification during inference,
without the need for more expensive methods involving fine-tuning [10].

Building on this insight, we next investigate whether these latent representations can be leveraged
during code generation. Specifically, we explore how to compute correction vectors—derived directly
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Figure 1: Left: The state-of-the-art code generation models cannot achieve high accuracy by purely

prompting, while using probing can improve the accuracy. Right: Security and functional improve-

ments by adding the mixture of corrections.

from clusters, linear probes, or through auxiliary neural networks—that encode vulnerability distinc-
tions. These vectors, computed separately for individual CWEs, create a mixture of precise linear
corrections.

We integrate these guiding vectors into the model’s token generation process, applying conditional
corrections with a temporal decay to subtly adjust next-token probabilities based on vulnerability,
as assessed from the linear probes. This method enables granular, controlled steering of generation
away from vulnerable code while avoiding interference with generation unlikely to yield vulnerable
code, and thus without sacrificing functionality. Importantly, we show that it is also possible to apply
this process adversarially to deliberately increase the likelihood of generating vulnerable code; this
may be useful when training future models not to generate vulnerable code.

Our evaluation shows that this conditional steering not only significantly improves the security ratio
(8.9% on Qwen2.5-Coder), but also frequently enhances the functional correctness of the resulting
code (2.1% on HumanEval) (Figure T). Moreover, we observe that the guiding vectors often transfer
across models: vectores derived from one model can improve security in code generated by another
model, such as the Qwen-2.5 variants. This transferability yields a computationally efficient way to
harden models that are not well trained specifically on code data.

2 Related Work

LLM-assisted Vulnerability Detection Vulnerability detection is a crucial task in the field of
computer security. Its primary objective is to identify potential software security threats, thus reducing
the risk of cyber-attacks. LLMs have been explored for vulnerability detection in source code using
two main paradigms: fine-tuning and prompt engineering [[11]. Fine-tuning approaches typically
introduce a binary classification head on top of the LLM and jointly optimize all model parameters
using labeled vulnerable and secure code examples [12]. This setup has been applied across various
Transformer architectures, including encoder-only [[13}[14], encoder-decoder [[15], and decoder-only
models [16]. Some methods [17] also use Graph Neural Network backbone to extra features, and
concatenate with LLM extracted features. Prompting-based methods [[18] instead query powerful,
often proprietary LLMs like GPT-4 using crafted natural language prompts. While these techniques
have shown promising results on synthetic datasets [19], their performance on real-world vulnerability
detection tasks is mixed. More recent work has explored structured prompting strategies, such as
variations of Chain-of-Thought (CoT) prompting [20], and task-specific prompting frameworks
targeting vulnerabilities like Use-Before-Initialization [21]] and smart contract bugs [22]. Despite
these advances, empirical studies have shown that both fine-tuning and prompting-based methods
still struggle with vulnerability detection tasks [11]].

In this work, we propose a new direction: instead of relying on extra finetuning or prompting strategies,
we focus on representation engineering of trained LLMs to improve their internal understanding of
secure and vulnerable code; we aim to enhance the latent representations used by the model to reason
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about code, enabling more robust vulnerability detection without introducing costly retraining or
additional inference-time prompt engineering.

LLMe-assisted Secure Code Generation Recent advancements in large language models (LLMs)
have demonstrated significant potential in automating code generation tasks. However, the security
of the code produced by these models remains a pressing concern, prompting a surge of research into
security-aware techniques. Various approaches have been proposed to enhance the security of code
generated by LLMs, focusing on both training-time and inference-time interventions.

Techniques such as SafeCoder [23]] and ProSec [24] use security-centric fine-tuning to improve
security, utility, and alignment. APILOT [25] addresses the challenge of outdated or insecure API
usage by implementing a mechanism that navigates LLMs to generate secure, version-aware code,
thereby reducing potential security threats associated with deprecated APIs. INDICT [26] presents a
multi-agent framework that employs internal dialogues between safety-driven and helpfulness-driven
critics to iteratively refine code generation, enhancing both the security and functionality of the output.
CodeFavor [27] proposes a code preference model trained on synthetic evolution data, including
code commits and critiques, to predict whether a code snippet adheres to secure coding practices.
While it does not directly generate code, it provides a mechanism to evaluate and prefer secure code
snippets. SVEN [28] is closest to our work; it introduces a method that guides LLMs to generate
secure or insecure code by learning a continuous prompt, without modifying the model’s weights.
This approach allows for controlled code generation based on specified security properties. In contrast
to SVEN, we compute a mixture of correction vectors, which are applied conditionally, leading to
better control of the code generation. We compare in more detail with SVEN in section 4]

Steering & Controlling LLM Generation Controllable generation refers to the ability to steer
the outputs of large language models (LLMs) toward desired properties, such as stylistic attributes,
factuality, safety, or personalization. A growing body of work has focused on developing techniques
for controlling LLMs both at the input and internal representation levels [29]]. A prominent strategy
for understanding and influencing LLM behavior is probing, which involves training lightweight
classifiers on the model’s internal activations to extract human-interpretable features [§8]. Probing has
been widely used to reveal latent knowledge in language models and, more recently, to guide and steer
generation behavior by identifying representation subspaces associated with specific attributes. Recent
advances in representation engineering go beyond passive probing, proposing direct interventions in
the model’s latent space. These techniques identify semantically meaningful directions in activation
space and apply steering vectors to modify model behavior without full retraining [30, 9. Such
approaches have been used for tasks like factuality correction, sentiment control, and personalized
generation [31}132]. Despite this progress, only a few studies [28 [33]] have explored the application of
controllable generation techniques to code generation, where correctness, determinism, and alignment
with developer intent are critical. In this paper, we propose a novel framework that applies probing
and representation interventions to code generation models. Our method performs conditional
interventions in the activation space, guided by the outputs of probes trained to detect semantic
properties or vulnerabilities in the code.

3 A Mixture of Linear Corrections

Figure 2] gives an overview of our approach. We first train a set of linear probes for code vulnerability
detection, as described in [subsection 3.T| which we then use alongside one of four methods to obtain
a set of linear corrections, as described in Finally, we use a mixture of the corrections,
one for each vulnerability class, to generate secure code, as described in[subsection 3.3]

3.1 Vulnerable Code Detection Using Linear Probing

We are given a decoder model used for code generation, denoted G, with transfomer blocks Ly, . . . L,,.
We denote the d-dimensional activations of the hidden state at the last token position of a block L; as
si. A probe is a diagnostic tool that analyzes the information represented s;, for a particular block .
Given a dataset D of paired (secure, vulnerable) code samples {(z,z7)} and a vulnerability type 7,
we will write D; to refer to the subset of D consisting only of vulnerability type j.
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Figure 2: Mixture of corrections (MoC). There are four ways to obtain corrections for each vulnera-
bility j. During inference, MoC applies correction As?e{g ™rt} if the hidden states are at risk of

generating j'” type of vulnerable code, and

From the dataset, we use cross entropy loss to train a set of linear probes co(-), - - - ¢x(+) against a
binary label v which denotes whether the features s were produced by a vulnerable (™) or secure

() sample (Equation 1).
L. = CE(c(s),v) = CE(Ws + b,v) (1)

We perform this training on all blocks in the model, and identify the block L* with the smallest loss
to take as the final probe for each vulnerability.

Our empirical investigation reveals that the activations within an LLM exhibit remarkable efficacy
for vulnerability detection and the detection accuracy is good compared to previous finetuned or
GNN-based detectors. This finding is also a proof that hidden states within LLMs encode richer
information than the terminal outputs, as shown in [34} [35], Notably, training these probes only
requires minimal data with lightweight parameters.

3.2 Controlling Vulnerability Generation with a Mixture of Corrections (MoC)

The efficacy of vulnerability detection through representational probing demonstrates that the latent
activations within transformer attention mechanisms encode substantive information pertaining to
code security vulnerabilities. This observation suggests that these representations can be leveraged to
guide code generation—-either to make code more secure, or to deliberately produce vulnerabilities.
We propose a framework called Mixture of Corrections (MoC) for accomplishing this, which computes
a set (mixture) of correction vectors As; for each vulnerability class, which are subsequently
combined with hidden states when generating code during inference.

We present four methods for computing correction vectors, both static, wherein As; is a function
only of the vulnerability type j, as well as dynamic, where it is also conditioned on the decoder’s
current hidden states. MoC is illustrated in|[Figure 2} and detailed in alg. [I}

3.2.1 Static Correction Vectors

Difference of group mean. The most direct and efficient way of measuring the correction is by
computing the arithmetic differential between the centroid vectors of the respective class data samples,

as shown in [Equation
1 1
s} | |s; |
D; il b,

In|Equation 2} | - | denotes the cardinality of the set of 5 vulnerability.

Normal vector of the decision boundary. The linear probe established in the preceding sec-
tion effectively partitions the feature space into two disjoint subspaces via a linear hyperplane
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that constitutes the decision boundary. Thus, another way of computing the requisite correction
is to traverse orthogonally from the vulnerable class subspace to the non-vulnerable class sub-
space—specifically, the normal vector to the decision boundary hyperplane. The decision boundary
is (W1, — Wp,.)x + by — by = 0, and the normal vector is characterized in

AS? = Wl# — W07; (3)
In|[Equation 3| W € R?*4, and Wy, . and W . is the first and second row of .

Reduced normal vector. Direct utilization of LLM hidden states can exhibit susceptibility to
overfitting phenomena and manifest training instability in probe training. Our assumption is that
within the high-dimensional feature space, these features encode not only vulnerability-related
information but also other types of information that can be considered as noise in code generation
contexts. To mitigate these adverse effects, we use dimensionality reduction techniques, specifically
principal component analysis (PCA), to derive a more robust correction vector [9]. Let 5;. to denote

the compressed version of s;, and we train a linear probe ¢;(x) = W'z +0b' on the compressed vectors,
then project the correction back to the original high-dimensional space, i.e. As} = PCAInverse(c;),

where W’ € R2%? | ' is the reduced dimension.

3.2.2 Dynamic Correction Vectors

To condition the correction vectors additionally on the dynamic state of the model, for each vulnera-
bility type we train a neural network N (-) that directly predicts the correction vector As’. To train
this network—given that the vulnerability dataset usually contains not only the paired data, but also
the detailed line changes of the vulnerable lines of code—we add multiple aspects of supervision.
Let p; denote the G’s output probability corresponding to s; at the hidden space, and let y* denote
the secure code labels in token space. Note that the p;, s; and y™ here are per-token supervision, and
should be denoted as p; m, Pj.m+1," " , Pj,m+n, Where m is the index for the start of the vulnerable
code token, and m + n is the index for the end of the vulnerable code token. We use the p; for
simplicity.

The training involves three loss terms, including mean square error, L,,s. = MSE(sj_, sj’) Cross

entropy loss L.. = CE(p; , y;r) and KL-divergence, Lk = KL(pj_,pj'). The final loss form is a
combination of these supervisions, £ = 51 Lse + B2Lce + B3L k1. The network then gives the
correction, as As} = N (s;).

3.3 Inference with corrections

After obtaining the mixture of corrections {As;}, one for each vulnerability class, we apply the
corrections during inference time, by adding the linear combination of corrections to the hidden states
when generating every token. However, unlike the works [36},137] that directly add the vectors, i.e.,
f = f+ As, we find it sub-optimal and add the following tricks.

Decay. During inference, as the generation becomes longer, the correction accumulates, which results
in too much correction and the output generations can be less meaningful. To avoid such a large
change in hidden states, we use a decay factor to gradually reduce the impact of the newly added
correction during inference.

As = a(t) - As, €))

where ¢ is the number of tokens newly generated during inference, e.g. when generating the first
token, ¢ = 0, and when generating the k" token, t = k — 1. a(-) is a negative exponential function.

Conditional correction. When generating secure code, there’s no need to modify the hidden states
and add the correction vectors. The corrections are only applied when the hidden states are at risk of
generating vulnerable codes. Thus, we apply a conditional correction, as in the we first use
the previously obtained linear probes to detect if the current hidden states are at risk of generating
vulnerable codes of vulnerable type j, and then apply the corresponding correction As; only if the
hidden states are vulnerable. If the current hidden states shows multiple different vulnerabilities, then
the corrections are added as a linear combination as shown in

Asj, if argmax(c;(s)) =0
s+ = .
0, otherwise

(&)
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Algorithm 1: Mixture of Corrections

Input: (1) A code generation LLM G, and its it" transformer blocks L;; (2) A dataset of paired
vulnerable and secure data D = {D; }.

Qutput: A secure code generation x

// Training stage

foreach j € {0,...,k} do

Train the linear probe c; according to|subsection 3.ll

(;E{g,n,r,t}

J

Obtain the correction vector As

[subsubsection 3.2.2]

according to |subsubsecti0n 32.1|&

nd

/ Inference stage

~Ne

foreach token =, ; do
s=L*(x14); // Get the hidden states
foreach j € {0,...,k} do
if (argmaz(c;(s)) = 0) then
‘ s:=s+aft)- ASE"’ ; // add correction if vulnerable
end
end
return x

We present the overall MoC algorithm in alg. [l MoC first trains the light-weight linear probes,
and then obtains corrections for each type of vulnerability. During inference, MoC applies these
corrections if the hidden states are at risk of generating vulnerable code, as measured by the linear
probes.

4 Experiments

In this section, we first present the evaluation of the trained probe’s efficacy in identifying vulnerable
code, then we investigate whether the mixture of corrections improves, or adversarially, decreases
security, in code generation, and the transferability of the corrections across models.

4.1 Vulnerable Code Detection

Dataset. Following SVEN [28]], which contributes a high-quality pairwise code dataset of 9 different
CWEs, we use this dataset as our training and evaluation set. In each vulnerability class, we random
sample a train set and a subset. Due to the imbalance of the dataset across different types of
vulnerabilities, we keep the evaluation set the same size, and the train set might be of different sizes.
Notably, the vulnerable and secure data are balanced in our settings.

Evaluation Metric. Accuracy Acc, (%) and Accs (%) is the accuracy of the vulnerable code and
secure code respectively. For training, Acc (%) and F1 (range from O to 1) are the accuracy and
F1-score on the evaluation set.

Linear Probe Details. For each vulnerability, the probe is trained on around 50 to 150 data points
due to the imbalance of different types of vulnerabilities. The training epoch is from 50 to 200, with
a batch size of 64, learning rate 5e — 4, SGD optimizer with a momentum and weight decay.

Training Details. One of the proposed correction methods requires training of another network,
and the network structure is a three-layer multi-layer perception (MLP), with GeLU activation,
layer normalization, and dropout layer. The learning rate is 1e — 3, with an Adam optimizer. To
construct the training pair f;” and f; , we also use the ‘line changes’ information in each pair of the
vulnerable-secure data for detailed supervision. We save the hidden states tensors before training so
that training is done on single GPU even for 14B models.

RQ1: Can LLMs detect vulnerable code by direct prompting? As evidenced in by
directly prompting the code generation LLMs, the accuracy is suboptimal. Notably, the prompt
includes both few-shot examples sampled from the same dataset (two positive examples and two
negative examples), and a description of the specific vulnerability (e.g. CWE-022). We list per-
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vulnerability experimental results in We can draw the following conclusions: (1) In
general, the current code-related LLMs, including Qwen2.5-Coder series and CodeLlama series, and
closed-source model Claude lack the ability to detect code vulnerabilities by prompting. Possible
reasons are that the vulnerabilities are less focused on and that these models are not specifically
trained on vulnerability code data. (2) There is no clear relation between the model size and their
vulnerable detection capacity, though the 32B or 34B models show a small performance improvement
compared to smaller models. (3) QC-7B, 14B and 32B, CL-34B models tend to predict the code
secure. For the QC-7B, 14B, and CL series, the accuracy is no better than a random guess.

Table 1: Accuracy of vulnerable code detec-
tion by direct prompting the LLM. Invalid

means the output of the LLM doesn’t follow /I CWE description
the format or the output does not include CWE-022, commonly called "Path Traversal,"
any answers. QC is in short for Qwen2.5- is a vulnerability when an application fails to
Coder, and CL for Code Llama. appropriately limit . . .
/I Few-shot examples
Acc, Accg Invalid For example, ’codel ...’ is vulnerable, while
QC-3B 51 51 0 ’coldeZ .t;l.’ ishq;)t ’Vulgeiable’. "codeS 1’ is
QC-7B 23 74 3 E}l nerable, while code4 ...’ is not vulnera-
QC-14B 25 55 27 e _—
QC-32B 30 81 0 Is the subsequent code susceptible to the spec-
CL-7B 64 10 29 ified vulnerability?
CL-13B 44 43 14 // Test code
CL-34B 21 59 27 code ...
Claude 63 43 0 Answer the question with simply yes or no.

Table 2: Performance on code vulnerability detection.
QC-3B QC-7B QC-14B

Method

Acc F1 Acc F1 Ace F1
Prompting 51 056 49 053 40 037
Linear Probe W/O Few-shot 66 065 68 066 75 0.79
Linear Probe 69 063 79 076 82 0.85
Linear Probe PCA 72 068 76 074 78 0.80
MLP Probe 72 066 77 075 80 0.80

RQ2: Can hidden states within LL.Ms help detect vulnerable code? In[Table 2| ‘Prompting’
means no probe training, and just prompting by few-shot and descriptions as in RQ1. ‘Linear Probe
W/O Few-shot’ refers to, when getting hidden states f from L; in G, the input only includes the code
without few-shot examples. The other probes’ input all includes few-shot examples. ‘Linear Probe’
and ‘Linear Probe PCA’ contains a linear layer with a weight matrix W and bias b, the difference is
without PCA W € R2*?_ where d = 3168 in this cases, with PCA, W’ € R2*?" and d’ is a number
between 50 to 100. ‘MLP probe’ contains 2 or 3 multi-layer perceptron layers, each layer includes a
linear layer, a ReLU activation function, a layer norm, and a dropout layer.

From [Table 2| we can draw the following conclusion. (1) Overall, probing methods can detect
vulnerable code, showing that hidden states within LLMs actually contain vulnerability-related
information. (2) Using few-shot examples in the text prompt improves the vulnerability detection,
showing that the prompting techniques help with the hidden states probing. (3) MLP probes, even
with more parameters, don’t show a clear improvement compared to linear probes. This may be due
to the simplicity of the task: it is a classification task and linear probes are enough to distinguish the
secure and vulnerable classes. (4) The performance shows a relation with the LLM scale, as the LLM
becomes larger, the performance of the probe gets higher.
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Table 3: Performance on code generation. SRy, (1)(%) and SR, (])(%) denote the security ratio
when applying hardening and weakening. HE denotes HumanEval pass@1.

QC-3B QC-7B QC-14B
SR, SR, HE SR, SR, HE SR, SR, HE
Base Model 83.8 838 702 768 768 799 87.8 87.8 789
SVEN - - - 650 540 753 697 654 750

Group Mean Diff  84.7 788 739 84.0 755 814 885 871 80.2
Normal Vector 833 810 745 843 804 820 875 872 789
Normal Vector PCA 85.0 824 733 829 789 820 883 825 783
Dynamic NN-based 84.9 82.1 70.8 857 759 812 88.0 87.1 820

4.2 Secure Code Generation

Evaluation. We evaluate the code security using GitHub CodeQL [38]], which is an open-source
code security analyzer that can detect different vulnerabilities based on the custom queries. We report
the security rate SR (%). SR;, means hardening the security (the higher the better), while SR,, means
weakening the security (the lower the better). The generated code is considered secure only if it
doesn’t contains any main CWEs based on CodeQL. Note that we test the proposed methods on the
SVEN test set, which is different from the evaluation set in For code functionality, we
test the pass@1 on HumanEval.

RQ3: Can the mixture of corrections help in secure code generation? In ‘Base Model’
means applying no corrections. ‘SVEN’ [28] is a method that trains prefix soft embeddings and
concatenates the embeddings to the LLM during inference. However, on the 3B model, the training
loss doesn’t decrease, so we choose not to report the results. Then the four correction methods refer
to Asjg ,As, AsT, As§ respectively. In the security hardening cases, the conditional generation is
utilized, while in the security weakening cases, since the aim is to modify the secure hidden states
to insecure ones, and thus it is not conditional, we add the sum of the negative corrections to it, i.e.

As =YY" a(t)s;.

j=1
We can draw the conclusion that: (1) Generally, applying MoC can improve not only the security
but also the functionality of the code. (2) On Qwen-2.5-Coder-7B, the dynamic NN-based method
outperforms others. (3) There are some cases when the weakening cases do not actually bring out
more vulnerable codes. One possible guess is that, since we use the sum of all the correction vectors,
they may suffer a bit by canceling out on some critical directions. (4) In most cases, the functionality
of the LLMs is not affected and even shows some improvements.

RQ4: Probes at which attention blocks are the best? We train the probe on different attention
blocks, and test their effect on the code generation. As in the last attention block shows the
best performance.

Ablation Study. We conduct two versions for PCA corrections. One version is to first obtain both
the decision boundary and compute the normal vector to the decision boundary in the compressed
space, and then project the normal vector back to the high-dimensional space, as follows:

As = PCAInverse(W . — Wy ) = (W;, — Wy )V + M, (6)

where V' are the principal components and M are the mean of the vectors. Another is to first project
the weighting matrix back and then calculate the normal vector, as follows:

As’; = PCAInverse(W')1 . — PCAInverse(W')o. = (W'V)1. — (W'V)o,. + My . — My, (7)

note that W # W’V We tried both, as in|Table 4] the first PCA version fails to generate reasonable
outputs, while the second PCA implementation can bring improvements, suggesting that the hidden
states space within LLMs is elaborate.
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Table 4: Ablation study on how to obtain PCA Table 5: Ablation study on conditional correc-

correction. tion and decay.
SR;, SR, HE SR;, HE
Base Model 76.8 76.8 799 Base Model 76.8 799
As? in[Equation 6 6.3 4.6  19.8 Normal Vector W/O Condition 81.7 77.0
As? in[Equation /| 82.9 789  82.0 Normal Vector W/O Decay 85.8 69.6
Normal Vector 84.3 82.0

Ablation in[Table 3]is conducted on QC-7B model. (1) Adding conditions improves both the secure
ratio and the functionality. (2) Though adding decay results in an improvement on secure ratio, it
affects the functionality significantly.

RQ5: Can the corrections learned for one model transfer to another? We try to apply the
corrections learned from one model and apply them on another model. As in the corrections
are trained on Qwen2.5-Coder model and implemented on the Qwen2.5-Instruct model, where they
share the same hidden dimension and the same model structure. We find that it shows some level
of transferability in 3B and 7B models, but not on larger model. However, the functionality of the
model based on transferred corrections are harmed on larger models.

Vulnerability Abilities vs Layer Index

Table 6: Transferability across models. We e~ Secure Ratio (%)
use QI in short for Qwen?2.5-Instruct and QC 9~ Detection Accuracy ()
for Qwen2.5-Coder. HE is short for Hu-
manEval. The corrections are Normal Vector
obtained from QC models.

Corrections SR;, SR,, HE

@
»

<)
[

@
=3

~
@

~
El

Vulnerability Abilities

QI-7B 76.8 768 69.6 .

QL7B  QC-7B 771 763 658

QI-3B 753 753 540 7

QL3B  QC-3B 780 712 547 NE | |
QI-14B 63.6 636 745 s a5 2 4

Layer Index

Ql-14B  QC-14B 582 535 727

Figure 3: Ablations on ‘" attention blocks.

RQ6: Why can the MoC gain the improvement on functionality for free? As in we
observe a consistent improvement on the functionality score except for the 14B model. A possible
reason for this is that the more buggy codes have a higher possibility of also being vulnerable code
[39], and there are overlaps between bug-prone code and vulnerabilities [40].

5 Conclusion

Our investigation reveals that code generation LLMs encode vulnerability-discriminative information
in their hidden representations, accessible through lightweight linear probes. We leveraged this insight
to develop a Mixture of Linear Corrections (MoC) framework that conditionally applies guiding
vectors during inference to enhance code security. Experimental results show our method effectively
improves both security ratios and functional correctness across multiple model sizes and demonstrates
transferability between models. This work provides a computationally efficient approach to secure
code generation without requiring costly retraining or extensive prompt engineering, opening new
avenues for representation-based security interventions in generative Al.

Limitations. Currently we use every probe in every token generation, which consumes more time
than the base model. Further work can implement all probes in parallel to accelerate. Moreover, the
MoC can only address known code vulnerabilities, further research can focus on using hidden states
to explore undiscovered vulnerabiliies.
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0 A Appendix

431 A.1 Detailed experimental results on direct prompting for vulnerability detection.

432 Here we show the detailed experimental results for each CWEs for each model. The results are from the [Table 7]
433 to[Table 13| we find that:

434 1. Difference CWE types shows every different trends, for example, the CWE-125, CWE-190, CWE-416,
435 CWE-476, CWE-787 contains mostly codes in language ¢, and Qwen-25-Coder series tend to think
436 they are safe, as in and [Table 10} And the CodeLlama series tend to regard the
437 CWE-416, CWE-476 and CWE-787 as safe, as in[Table 12]and [Table 13]

438 2. Overall, QwenCoder series are more recently developed and shows better abilities than CodeLlama
439 series. And overall, the QC series show a better instruction following ability than CL series, as the
440 Invalid rates are lower.

Table 7: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

QwenCoder-3B
Vul-type Acc, Accs Invalid, Invalid,

22 49 49 0 0
78 51 43 1 0
79 35 58 0 0
89 47 61 0 1
125 52 45 1 0
190 67 53 0 3
416 45 62 0 0
476 59 44 1 1
787 50 42 0 0
Ave 51 51 0 1

Table 8: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

QwenCoder-7B
Vul-type Acc, Accs Invalid, Invalid,

22 43 53 0 0
78 66 72 0 0
79 44 42 5 5
89 1 69 0 1
125 12 77 13 9
190 8 100 0 0
416 2 96 0 0
476 13 84 4 3
787 15 73 3 2
Ave 23 74 3 2

441 A.2 Detailed experimental results on probing for vulnerability detection.

442 Here we shows more results about detailed per-CWE results on detection when training a linear probe on the last
443  attention block. We can draw the conclusion:

I

444 1. Overall, the non-PCA probe in[Table T4]shows better results than PCA reduced probes in
445 Possible reasons are that the PCA reduced too much information that may be essential for vulnerability
446 detection.
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Table 9: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

QwenCoder-14B
Vul-type Acc, Accs Invalid, Invalid,

22 2 31 69 69
78 25 62 12 20
79 28 72 14 14
89 13 8 78 91
125 31 64 13 14
190 36 47 19 11
416 27 71 16 15
476 32 74 3 1
787 35 63 23 6
Ave 25 55 27 27

Table 10: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

QwenCoder-32B
Vul-type Acc, Accs Invalid, Invalid,

22 43 45 0 0
78 69 71 0 0
79 56 44 2 2
89 99 68 0 1
125 2 100 0 0
190 0 100 0 0
416 0 100 0 0
476 0 99 0 1
787 2 100 0 0
Ave 30 81 0 0
447 2. Overall, the CWE-022, CWE-078, CWE-079, and CWE-089 are mostly based on python language.
448 And these shows a higher accuracy than other CWEs, especially on QC-14B and 7B models.
449 3. The CWE-125 and CWE-476 are kind of hard to detect, especially, as the model gets larger, the
450 accuracy on these two CWE-types are not getting higher, which indicates that their vulnerable features

451 are harder to extract.

452 A.3 Boarder Impact

453 Our work on code vulnerability detection and correction has significant societal implications. Positively, it
454 enhances code security, potentially reducing data breaches and cyberattacks that impact millions of users annually.
455  Secure code generation tools democratize cybersecurity expertise, benefiting resource-constrained organizations
456 and critical infrastructure. Negatively, adversarial applications of our techniques could be used to deliberately
457 introduce subtle vulnerabilities or automate exploitation of existing weaknesses. Additionally, over-reliance on
458 automated security tools may create false confidence and reduce human oversight. We encourage responsible
459 deployment with human-in-the-loop verification and recommend against using these methods in high-risk
460 applications without thorough testing.
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Table 11: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

CodelLlama-7B

Vul-type Acc, Accs Invalid, Invalid,
22 63 0 41 37
78 49 8 48 48
79 44 9 49 51
89 0 0 100 100
125 89 11 2 2
190 86 19 3 3

416 89 9 4 2
476 59 32 12 12
787 100 2 0 0
Ave 64 10 29 28

Table 12: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

CodeLlama-13B

Vul-type Acc, Accs Invalid, Invalid,
22 86 14 4 4
78 63 29 10 10
79 47 42 16 21
89 65 13 26 21
125 20 18 63 62
190 83 19 0 0

416 5 96 2 0
476 8 72 2 3
787 20 89 0 1
Ave 44 43 14 13

Table 13: Accuracy of vulnerable code detection by direct prompting the LLM. Invalid, and Invalid,
mean the output of the LLM doesn’t follow the format or the output does not include any answers.

CodelLlama-34B

Vul-type Acc, Accs Invalid, Invalid,
22 61 49 8 6
78 55 37 17 15
79 7 2 90 90
89 53 60 2 3
125 1 54 49 46
190 0 89 19 17

416 2 85 15 15
476 0 81 21 22
787 10 75 23 19
Ave 21 59 27 26
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Table 14: Performance on code vulnerability detection.
QC-3B QC-7B QC-14B
Vul-type Acc Fl  Acc FlI  Acc Fl

22 08 08 09 08 07 073
78 07 067 09 091 09 091
79 07 067 09 08 09 0.89
89 08 075 08 075 1 1

125 07 073 07 067 06 0.67
190 07 057 06 067 08 038
416 08 075 07 057 08 038
476 06 06 06 067 06 0.67
787 07 057 07 067 07 073

Ave 072 068 076 074 0.78 0.8

Table 15: Performance on code vulnerability detection. PCA is applied to the hidden states.
QC-3B QC-7B QC-14B
Vul-type Acc Fl1  Acc F1 Acc Fl

22 06 033 08 075 08 038
78 07 057 09 08 09 091
79 06 05 09 091 1 1

89 08 075 09 0.89 1 1

125 06 067 06 033 06 0.67
190 07 057 08 083 09 0.8
416 08 075 07 077 08 038
476 08 08 07 067 06 0.71
787 06 071 08 08 08 0.3

Ave 069 0.63 079 0.76 0.82 0.85
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: Yes, as in the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: As in the section Conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: As in the Probe details, training details.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: The dataset in a public dataset, while the code will be public later.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: As in the experiments section.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: In the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: In experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss this in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer:
Justification: It can be used adversarially.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: Yes
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification: Does not use crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: does not involve crowdsourcing nor research with human subjects.

Guidelines:
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737 * The answer NA means that the paper does not involve crowdsourcing nor research with human
738 subjects.

739 * Depending on the country in which research is conducted, IRB approval (or equivalent) may be
740 required for any human subjects research. If you obtained IRB approval, you should clearly state
741 this in the paper.

742 * We recognize that the procedures for this may vary significantly between institutions and
743 locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
744 their institution.

745 * For initial submissions, do not include any information that would break anonymity (if applica-
746 ble), such as the institution conducting the review.

747 16. Declaration of LLM usage

748 Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
749 component of the core methods in this research? Note that if the LLM is used only for writing,
750 editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
751 originality of the research, declaration is not required.

752 Answer: [Yes]

753 Justification: We use LLMs for writing, and for prompting to get the results as stated in experiments.
754 Guidelines:

755 * The answer NA means that the core method development in this research does not involve LLMs
756 as any important, original, or non-standard components.

757 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
758 should or should not be described.
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