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Abstract

Large language models (LLMs) have become proficient at sophisticated code-1

generation tasks, yet remain ineffective at reliably detecting or avoiding code2

vulnerabilities. Does this deficiency stem from insufficient learning about code3

vulnerabilities, or is it merely a result of ineffective prompting? Using representa-4

tion engineering techniques, we investigate whether LLMs internally encode the5

concepts necessary to identify code vulnerabilities. We find that current LLMs6

encode precise internal representations that distinguish vulnerable from secure7

code–achieving greater accuracy than standard prompting approaches. Leveraging8

these vulnerability-sensitive representations, we develop an inference-time steering9

technique that subtly modulates the model’s token-generation probabilities through10

a mixture of corrections (MoC). Our method effectively guides LLMs to produce11

less vulnerable code without compromising functionality, demonstrating a practical12

approach to controlled vulnerability management in generated code. Notably, MoC13

enhances the security ratio of Qwen2.5-Coder-7B by 8.9%, while simultaneously14

improving functionality on HumanEval pass@1 by 2.1%.15

1 Introduction16

Large language models (LLMs) have rapidly become useful tools for developers, demonstrating17

remarkable proficiency across a wide array of code generation tasks [1, 2]. Current LLMs excel at18

understanding complex programming concepts [3], generating syntactically correct and functionally19

relevant code [4, 5], and even providing explanations, optimizations, and debugging assistance [6].20

Despite these advances, even state-of-the-art models exhibit significant limitations with identifying21

vulnerable code. Our empirical analysis (Figure 1) on different sizes of CodeLlama [7] and Qwen2.5-22

Coder [4] reveals that traditional prompting techniques, including few-shot exemplars and detailed23

Common Weakness Enumeration (CWE) descriptions, result in accuracy comparable to random24

guessing (50%). Surprisingly, increasing the model parameter count fails to reliably improve detection25

accuracy, suggesting a persistent gaps between increased coding capabilities and the closely related26

task of identifying and generating secure code.27

This motivates the question: do code-generating LLMs inherently lack the knowledge to differentiate28

between vulnerable and secure code, or is this knowledge simply not accessible via prompting? Using29

linear probing [8, 9], we find that LLMs do indeed possess latent representations that distinguish30

secure from vulnerable code far more effectively than standard prompts. Thus, despite these models’31

apparent lack of proficiency at the task of identifying vulnerable code, it is possible to access models’32

precise learned knowledge about vulnerabilities to accurately perform identification during inference,33

without the need for more expensive methods involving fine-tuning [10].34

Building on this insight, we next investigate whether these latent representations can be leveraged35

during code generation. Specifically, we explore how to compute correction vectors–derived directly36
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Figure 1: Left: The state-of-the-art code generation models cannot achieve high accuracy by purely
prompting, while using probing can improve the accuracy. Right: Security and functional improve-
ments by adding the mixture of corrections.

from clusters, linear probes, or through auxiliary neural networks–that encode vulnerability distinc-37

tions. These vectors, computed separately for individual CWEs, create a mixture of precise linear38

corrections.39

We integrate these guiding vectors into the model’s token generation process, applying conditional40

corrections with a temporal decay to subtly adjust next-token probabilities based on vulnerability,41

as assessed from the linear probes. This method enables granular, controlled steering of generation42

away from vulnerable code while avoiding interference with generation unlikely to yield vulnerable43

code, and thus without sacrificing functionality. Importantly, we show that it is also possible to apply44

this process adversarially to deliberately increase the likelihood of generating vulnerable code; this45

may be useful when training future models not to generate vulnerable code.46

Our evaluation shows that this conditional steering not only significantly improves the security ratio47

(8.9% on Qwen2.5-Coder), but also frequently enhances the functional correctness of the resulting48

code (2.1% on HumanEval) (Figure 1). Moreover, we observe that the guiding vectors often transfer49

across models: vectores derived from one model can improve security in code generated by another50

model, such as the Qwen-2.5 variants. This transferability yields a computationally efficient way to51

harden models that are not well trained specifically on code data.52

2 Related Work53

LLM-assisted Vulnerability Detection Vulnerability detection is a crucial task in the field of54

computer security. Its primary objective is to identify potential software security threats, thus reducing55

the risk of cyber-attacks. LLMs have been explored for vulnerability detection in source code using56

two main paradigms: fine-tuning and prompt engineering [11]. Fine-tuning approaches typically57

introduce a binary classification head on top of the LLM and jointly optimize all model parameters58

using labeled vulnerable and secure code examples [12]. This setup has been applied across various59

Transformer architectures, including encoder-only [13, 14], encoder-decoder [15], and decoder-only60

models [16]. Some methods [17] also use Graph Neural Network backbone to extra features, and61

concatenate with LLM extracted features. Prompting-based methods [18] instead query powerful,62

often proprietary LLMs like GPT-4 using crafted natural language prompts. While these techniques63

have shown promising results on synthetic datasets [19], their performance on real-world vulnerability64

detection tasks is mixed. More recent work has explored structured prompting strategies, such as65

variations of Chain-of-Thought (CoT) prompting [20], and task-specific prompting frameworks66

targeting vulnerabilities like Use-Before-Initialization [21] and smart contract bugs [22]. Despite67

these advances, empirical studies have shown that both fine-tuning and prompting-based methods68

still struggle with vulnerability detection tasks [11].69

In this work, we propose a new direction: instead of relying on extra finetuning or prompting strategies,70

we focus on representation engineering of trained LLMs to improve their internal understanding of71

secure and vulnerable code; we aim to enhance the latent representations used by the model to reason72
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about code, enabling more robust vulnerability detection without introducing costly retraining or73

additional inference-time prompt engineering.74

LLM-assisted Secure Code Generation Recent advancements in large language models (LLMs)75

have demonstrated significant potential in automating code generation tasks. However, the security76

of the code produced by these models remains a pressing concern, prompting a surge of research into77

security-aware techniques. Various approaches have been proposed to enhance the security of code78

generated by LLMs, focusing on both training-time and inference-time interventions.79

Techniques such as SafeCoder [23] and ProSec [24] use security-centric fine-tuning to improve80

security, utility, and alignment. APILOT [25] addresses the challenge of outdated or insecure API81

usage by implementing a mechanism that navigates LLMs to generate secure, version-aware code,82

thereby reducing potential security threats associated with deprecated APIs. INDICT [26] presents a83

multi-agent framework that employs internal dialogues between safety-driven and helpfulness-driven84

critics to iteratively refine code generation, enhancing both the security and functionality of the output.85

CodeFavor [27] proposes a code preference model trained on synthetic evolution data, including86

code commits and critiques, to predict whether a code snippet adheres to secure coding practices.87

While it does not directly generate code, it provides a mechanism to evaluate and prefer secure code88

snippets. SVEN [28] is closest to our work; it introduces a method that guides LLMs to generate89

secure or insecure code by learning a continuous prompt, without modifying the model’s weights.90

This approach allows for controlled code generation based on specified security properties. In contrast91

to SVEN, we compute a mixture of correction vectors, which are applied conditionally, leading to92

better control of the code generation. We compare in more detail with SVEN in section 4.93

Steering & Controlling LLM Generation Controllable generation refers to the ability to steer94

the outputs of large language models (LLMs) toward desired properties, such as stylistic attributes,95

factuality, safety, or personalization. A growing body of work has focused on developing techniques96

for controlling LLMs both at the input and internal representation levels [29]. A prominent strategy97

for understanding and influencing LLM behavior is probing, which involves training lightweight98

classifiers on the model’s internal activations to extract human-interpretable features [8]. Probing has99

been widely used to reveal latent knowledge in language models and, more recently, to guide and steer100

generation behavior by identifying representation subspaces associated with specific attributes. Recent101

advances in representation engineering go beyond passive probing, proposing direct interventions in102

the model’s latent space. These techniques identify semantically meaningful directions in activation103

space and apply steering vectors to modify model behavior without full retraining [30, 9]. Such104

approaches have been used for tasks like factuality correction, sentiment control, and personalized105

generation [31, 32]. Despite this progress, only a few studies [28, 33] have explored the application of106

controllable generation techniques to code generation, where correctness, determinism, and alignment107

with developer intent are critical. In this paper, we propose a novel framework that applies probing108

and representation interventions to code generation models. Our method performs conditional109

interventions in the activation space, guided by the outputs of probes trained to detect semantic110

properties or vulnerabilities in the code.111

3 A Mixture of Linear Corrections112

Figure 2 gives an overview of our approach. We first train a set of linear probes for code vulnerability113

detection, as described in subsection 3.1, which we then use alongside one of four methods to obtain114

a set of linear corrections, as described in subsection 3.2. Finally, we use a mixture of the corrections,115

one for each vulnerability class, to generate secure code, as described in subsection 3.3.116

3.1 Vulnerable Code Detection Using Linear Probing117

We are given a decoder model used for code generation, denoted G, with transfomer blocks L0, . . . Ln.118

We denote the d-dimensional activations of the hidden state at the last token position of a block Li as119

si. A probe is a diagnostic tool that analyzes the information represented si, for a particular block i.120

Given a dataset D of paired (secure, vulnerable) code samples {(x+, x−)} and a vulnerability type j,121

we will write Dj to refer to the subset of D consisting only of vulnerability type j.122
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Figure 2: Mixture of corrections (MoC). There are four ways to obtain corrections for each vulnera-
bility j. During inference, MoC applies correction ∆s

c∈{g,n,r,t}
j if the hidden states are at risk of

generating jth type of vulnerable code, and won’t make correction if secure.

From the dataset, we use cross entropy loss to train a set of linear probes c0(·), · · · ck(·) against a123

binary label v which denotes whether the features s were produced by a vulnerable (x−) or secure124

(x+) sample (Equation 1).125

Lc = CE(c(s), v) = CE(Ws+ b, v) (1)
We perform this training on all blocks in the model, and identify the block L∗ with the smallest loss126

to take as the final probe for each vulnerability.127

Our empirical investigation reveals that the activations within an LLM exhibit remarkable efficacy128

for vulnerability detection and the detection accuracy is good compared to previous finetuned or129

GNN-based detectors. This finding is also a proof that hidden states within LLMs encode richer130

information than the terminal outputs, as shown in [34, 35], Notably, training these probes only131

requires minimal data with lightweight parameters.132

3.2 Controlling Vulnerability Generation with a Mixture of Corrections (MoC)133

The efficacy of vulnerability detection through representational probing demonstrates that the latent134

activations within transformer attention mechanisms encode substantive information pertaining to135

code security vulnerabilities. This observation suggests that these representations can be leveraged to136

guide code generation—-either to make code more secure, or to deliberately produce vulnerabilities.137

We propose a framework called Mixture of Corrections (MoC) for accomplishing this, which computes138

a set (mixture) of correction vectors ∆sj for each vulnerability class, which are subsequently139

combined with hidden states when generating code during inference.140

We present four methods for computing correction vectors, both static, wherein ∆sj is a function141

only of the vulnerability type j, as well as dynamic, where it is also conditioned on the decoder’s142

current hidden states. MoC is illustrated in Figure 2, and detailed in alg. 1.143

3.2.1 Static Correction Vectors144

Difference of group mean. The most direct and efficient way of measuring the correction is by145

computing the arithmetic differential between the centroid vectors of the respective class data samples,146

as shown in Equation 2.147

∆sgj =
1

|s+j |
∑
Dj

s+j − 1

|s−j |
∑
Dj

s−j (2)

In Equation 2, | · | denotes the cardinality of the set of jth vulnerability.148

Normal vector of the decision boundary. The linear probe established in the preceding sec-149

tion effectively partitions the feature space into two disjoint subspaces via a linear hyperplane150
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that constitutes the decision boundary. Thus, another way of computing the requisite correction151

is to traverse orthogonally from the vulnerable class subspace to the non-vulnerable class sub-152

space—specifically, the normal vector to the decision boundary hyperplane. The decision boundary153

is (W1,: −W0,:)x+ b1 − b0 = 0, and the normal vector is characterized in Equation 3.154

∆snj = W1,: −W0,: (3)

In Equation 3, W ∈ R2×d, and W0,: and W1,: is the first and second row of W .155

Reduced normal vector. Direct utilization of LLM hidden states can exhibit susceptibility to156

overfitting phenomena and manifest training instability in probe training. Our assumption is that157

within the high-dimensional feature space, these features encode not only vulnerability-related158

information but also other types of information that can be considered as noise in code generation159

contexts. To mitigate these adverse effects, we use dimensionality reduction techniques, specifically160

principal component analysis (PCA), to derive a more robust correction vector [9]. Let s′j to denote161

the compressed version of sj , and we train a linear probe c′j(x) = W ′x+b′ on the compressed vectors,162

then project the correction back to the original high-dimensional space, i.e. ∆srj = PCAInverse(c′j),163

where W ′ ∈ R2×d′
, d′ is the reduced dimension.164

3.2.2 Dynamic Correction Vectors165

To condition the correction vectors additionally on the dynamic state of the model, for each vulnera-166

bility type we train a neural network N(·) that directly predicts the correction vector ∆st. To train167

this network—given that the vulnerability dataset usually contains not only the paired data, but also168

the detailed line changes of the vulnerable lines of code—we add multiple aspects of supervision.169

Let pj denote the G’s output probability corresponding to sj at the hidden space, and let y+ denote170

the secure code labels in token space. Note that the pj , sj and y+ here are per-token supervision, and171

should be denoted as pj,m, pj,m+1, · · · , pj,m+n, where m is the index for the start of the vulnerable172

code token, and m + n is the index for the end of the vulnerable code token. We use the pj for173

simplicity.174

The training involves three loss terms, including mean square error, Lmse = MSE(s−j , s
+
j ), cross175

entropy loss Lce = CE(p−j , y
+
j ), and KL-divergence, LKL = KL(p−j , p

+
j ). The final loss form is a176

combination of these supervisions, L = β1Lmse + β2Lce + β3LKL. The network then gives the177

correction, as ∆stj = N(sj).178

3.3 Inference with corrections179

After obtaining the mixture of corrections {∆sj}, one for each vulnerability class, we apply the180

corrections during inference time, by adding the linear combination of corrections to the hidden states181

when generating every token. However, unlike the works [36, 37] that directly add the vectors, i.e.,182

f = f +∆s, we find it sub-optimal and add the following tricks.183

Decay. During inference, as the generation becomes longer, the correction accumulates, which results184

in too much correction and the output generations can be less meaningful. To avoid such a large185

change in hidden states, we use a decay factor to gradually reduce the impact of the newly added186

correction during inference.187

∆s := α(t) ·∆s, (4)
where t is the number of tokens newly generated during inference, e.g. when generating the first188

token, t = 0, and when generating the kth token, t = k − 1. α(·) is a negative exponential function.189

Conditional correction. When generating secure code, there’s no need to modify the hidden states190

and add the correction vectors. The corrections are only applied when the hidden states are at risk of191

generating vulnerable codes. Thus, we apply a conditional correction, as in the Figure 2, we first use192

the previously obtained linear probes to detect if the current hidden states are at risk of generating193

vulnerable codes of vulnerable type j, and then apply the corresponding correction ∆sj only if the194

hidden states are vulnerable. If the current hidden states shows multiple different vulnerabilities, then195

the corrections are added as a linear combination as shown in Equation 5.196

s+ =

{
∆sj , if argmax(cj(s)) = 0

0, otherwise
(5)
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Algorithm 1: Mixture of Corrections

Input: (1) A code generation LLM G, and its ith transformer blocks Li; (2) A dataset of paired
vulnerable and secure data D = {Dj}.

Output: A secure code generation x
// Training stage

1 foreach j ∈ {0, . . . , k} do
2 Train the linear probe cj according to subsection 3.1.
3 Obtain the correction vector ∆s

c∈{g,n,r,t}
j according to subsubsection 3.2.1 &

subsubsection 3.2.2
4 end
// Inference stage

5 foreach token xt+1 do
6 s = L∗(x1:t) ; // Get the hidden states
7 foreach j ∈ {0, . . . , k} do
8 if (argmax(cj(s)) = 0) then
9 s := s+ α(t) ·∆smj ; // add correction if vulnerable

10 end
11 end
12 return x

We present the overall MoC algorithm in alg. 1. MoC first trains the light-weight linear probes,197

and then obtains corrections for each type of vulnerability. During inference, MoC applies these198

corrections if the hidden states are at risk of generating vulnerable code, as measured by the linear199

probes.200

4 Experiments201

In this section, we first present the evaluation of the trained probe’s efficacy in identifying vulnerable202

code, then we investigate whether the mixture of corrections improves, or adversarially, decreases203

security, in code generation, and the transferability of the corrections across models.204

4.1 Vulnerable Code Detection205

Dataset. Following SVEN [28], which contributes a high-quality pairwise code dataset of 9 different206

CWEs, we use this dataset as our training and evaluation set. In each vulnerability class, we random207

sample a train set and a subset. Due to the imbalance of the dataset across different types of208

vulnerabilities, we keep the evaluation set the same size, and the train set might be of different sizes.209

Notably, the vulnerable and secure data are balanced in our settings.210

Evaluation Metric. Accuracy Accv (%) and Accs (%) is the accuracy of the vulnerable code and211

secure code respectively. For training, Acc (%) and F1 (range from 0 to 1) are the accuracy and212

F1-score on the evaluation set.213

Linear Probe Details. For each vulnerability, the probe is trained on around 50 to 150 data points214

due to the imbalance of different types of vulnerabilities. The training epoch is from 50 to 200, with215

a batch size of 64, learning rate 5e− 4, SGD optimizer with a momentum and weight decay.216

Training Details. One of the proposed correction methods requires training of another network,217

and the network structure is a three-layer multi-layer perception (MLP), with GeLU activation,218

layer normalization, and dropout layer. The learning rate is 1e − 3, with an Adam optimizer. To219

construct the training pair f+
i and f−

i , we also use the ‘line changes’ information in each pair of the220

vulnerable-secure data for detailed supervision. We save the hidden states tensors before training so221

that training is done on single GPU even for 14B models.222

RQ1: Can LLMs detect vulnerable code by direct prompting? As evidenced in Figure 1, by223

directly prompting the code generation LLMs, the accuracy is suboptimal. Notably, the prompt224

includes both few-shot examples sampled from the same dataset (two positive examples and two225

negative examples), and a description of the specific vulnerability (e.g. CWE-022). We list per-226
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vulnerability experimental results in subsection A.1. We can draw the following conclusions: (1) In227

general, the current code-related LLMs, including Qwen2.5-Coder series and CodeLlama series, and228

closed-source model Claude lack the ability to detect code vulnerabilities by prompting. Possible229

reasons are that the vulnerabilities are less focused on and that these models are not specifically230

trained on vulnerability code data. (2) There is no clear relation between the model size and their231

vulnerable detection capacity, though the 32B or 34B models show a small performance improvement232

compared to smaller models. (3) QC-7B, 14B and 32B, CL-34B models tend to predict the code233

secure. For the QC-7B, 14B, and CL series, the accuracy is no better than a random guess.

Table 1: Accuracy of vulnerable code detec-
tion by direct prompting the LLM. Invalid
means the output of the LLM doesn’t follow
the format or the output does not include
any answers. QC is in short for Qwen2.5-
Coder, and CL for Code Llama.

Accv Accs Invalid

QC-3B 51 51 0
QC-7B 23 74 3
QC-14B 25 55 27
QC-32B 30 81 0

CL-7B 64 10 29
CL-13B 44 43 14
CL-34B 21 59 27

Claude 63 43 0

Prompts

// CWE description
CWE-022, commonly called "Path Traversal,"
is a vulnerability when an application fails to
appropriately limit . . .
// Few-shot examples
For example, ’code1 . . . ’ is vulnerable, while
’code2 . . . ’ is not vulnerable. ’code3 . . . ’ is
vulnerable, while ’code4 . . . ’ is not vulnera-
ble.
// Prompt
Is the subsequent code susceptible to the spec-
ified vulnerability?
// Test code
code . . .
Answer the question with simply yes or no.

234

Table 2: Performance on code vulnerability detection.

Method QC-3B QC-7B QC-14B
Acc F1 Acc F1 Acc F1

Prompting 51 0.56 49 0.53 40 0.37
Linear Probe W/O Few-shot 66 0.65 68 0.66 75 0.79
Linear Probe 69 0.63 79 0.76 82 0.85
Linear Probe PCA 72 0.68 76 0.74 78 0.80
MLP Probe 72 0.66 77 0.75 80 0.80

RQ2: Can hidden states within LLMs help detect vulnerable code? In Table 2, ‘Prompting’235

means no probe training, and just prompting by few-shot and descriptions as in RQ1. ‘Linear Probe236

W/O Few-shot’ refers to, when getting hidden states f from Li in G, the input only includes the code237

without few-shot examples. The other probes’ input all includes few-shot examples. ‘Linear Probe’238

and ‘Linear Probe PCA’ contains a linear layer with a weight matrix W and bias b, the difference is239

without PCA W ∈ R2×d, where d = 3168 in this cases, with PCA, W ′ ∈ R2×d′
and d′ is a number240

between 50 to 100. ‘MLP probe’ contains 2 or 3 multi-layer perceptron layers, each layer includes a241

linear layer, a ReLU activation function, a layer norm, and a dropout layer.242

From Table 2, we can draw the following conclusion. (1) Overall, probing methods can detect243

vulnerable code, showing that hidden states within LLMs actually contain vulnerability-related244

information. (2) Using few-shot examples in the text prompt improves the vulnerability detection,245

showing that the prompting techniques help with the hidden states probing. (3) MLP probes, even246

with more parameters, don’t show a clear improvement compared to linear probes. This may be due247

to the simplicity of the task: it is a classification task and linear probes are enough to distinguish the248

secure and vulnerable classes. (4) The performance shows a relation with the LLM scale, as the LLM249

becomes larger, the performance of the probe gets higher.250
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Table 3: Performance on code generation. SRh (↑)(%) and SRw (↓)(%) denote the security ratio
when applying hardening and weakening. HE denotes HumanEval pass@1.

QC-3B QC-7B QC-14B

SRh SRw HE SRh SRw HE SRh SRw HE

Base Model 83.8 83.8 70.2 76.8 76.8 79.9 87.8 87.8 78.9
SVEN - - - 65.0 54.0 75.3 69.7 65.4 75.0

Group Mean Diff 84.7 78.8 73.9 84.0 75.5 81.4 88.5 87.1 80.2
Normal Vector 83.3 81.0 74.5 84.3 80.4 82.0 87.5 87.2 78.9

Normal Vector PCA 85.0 82.4 73.3 82.9 78.9 82.0 88.3 82.5 78.3
Dynamic NN-based 84.9 82.1 70.8 85.7 75.9 81.2 88.0 87.1 82.0

4.2 Secure Code Generation251

Evaluation. We evaluate the code security using GitHub CodeQL [38], which is an open-source252

code security analyzer that can detect different vulnerabilities based on the custom queries. We report253

the security rate SR (%). SRh means hardening the security (the higher the better), while SRw means254

weakening the security (the lower the better). The generated code is considered secure only if it255

doesn’t contains any main CWEs based on CodeQL. Note that we test the proposed methods on the256

SVEN test set, which is different from the evaluation set in subsection 4.1. For code functionality, we257

test the pass@1 on HumanEval.258

RQ3: Can the mixture of corrections help in secure code generation? In Table 3, ‘Base Model’259

means applying no corrections. ‘SVEN’ [28] is a method that trains prefix soft embeddings and260

concatenates the embeddings to the LLM during inference. However, on the 3B model, the training261

loss doesn’t decrease, so we choose not to report the results. Then the four correction methods refer262

to ∆sgj ,∆snj ,∆srj ,∆stj respectively. In the security hardening cases, the conditional generation is263

utilized, while in the security weakening cases, since the aim is to modify the secure hidden states264

to insecure ones, and thus it is not conditional, we add the sum of the negative corrections to it, i.e.265

∆s =
∑k

j=1 −α(t)sj .266

We can draw the conclusion that: (1) Generally, applying MoC can improve not only the security267

but also the functionality of the code. (2) On Qwen-2.5-Coder-7B, the dynamic NN-based method268

outperforms others. (3) There are some cases when the weakening cases do not actually bring out269

more vulnerable codes. One possible guess is that, since we use the sum of all the correction vectors,270

they may suffer a bit by canceling out on some critical directions. (4) In most cases, the functionality271

of the LLMs is not affected and even shows some improvements.272

RQ4: Probes at which attention blocks are the best? We train the probe on different attention273

blocks, and test their effect on the code generation. As in Figure 3, the last attention block shows the274

best performance.275

Ablation Study. We conduct two versions for PCA corrections. One version is to first obtain both276

the decision boundary and compute the normal vector to the decision boundary in the compressed277

space, and then project the normal vector back to the high-dimensional space, as follows:278

∆srj = PCAInverse(W ′
1,: −W ′

0,:) = (W ′
1,: −W ′

0,:)V +M, (6)

where V are the principal components and M are the mean of the vectors. Another is to first project279

the weighting matrix back and then calculate the normal vector, as follows:280

∆srj = PCAInverse(W ′)1,: − PCAInverse(W ′)0,: = (W ′V )1,: − (W ′V )0,: +M1,: −M0,:, (7)

note that W ̸= W ′V . We tried both, as in Table 4, the first PCA version fails to generate reasonable281

outputs, while the second PCA implementation can bring improvements, suggesting that the hidden282

states space within LLMs is elaborate.283
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Table 4: Ablation study on how to obtain PCA
correction.

SRh SRw HE

Base Model 76.8 76.8 79.9
∆srj in Equation 6 6.3 4.6 19.8
∆srj in Equation 7 82.9 78.9 82.0

Table 5: Ablation study on conditional correc-
tion and decay.

SRh HE

Base Model 76.8 79.9
Normal Vector W/O Condition 81.7 77.0

Normal Vector W/O Decay 85.8 69.6
Normal Vector 84.3 82.0

284

Ablation in Table 5 is conducted on QC-7B model. (1) Adding conditions improves both the secure285

ratio and the functionality. (2) Though adding decay results in an improvement on secure ratio, it286

affects the functionality significantly.287

RQ5: Can the corrections learned for one model transfer to another? We try to apply the288

corrections learned from one model and apply them on another model. As in Table 6, the corrections289

are trained on Qwen2.5-Coder model and implemented on the Qwen2.5-Instruct model, where they290

share the same hidden dimension and the same model structure. We find that it shows some level291

of transferability in 3B and 7B models, but not on larger model. However, the functionality of the292

model based on transferred corrections are harmed on larger models.293

Table 6: Transferability across models. We
use QI in short for Qwen2.5-Instruct and QC
for Qwen2.5-Coder. HE is short for Hu-
manEval. The corrections are Normal Vector
obtained from QC models.

Corrections SRh SRw HE

QI-7B 76.8 76.8 69.6
QI-7B QC-7B 77.1 76.3 65.8
QI-3B 75.3 75.3 54.0
QI-3B QC-3B 78.0 71.2 54.7
QI-14B 63.6 63.6 74.5
QI-14B QC-14B 58.2 53.5 72.7

Figure 3: Ablations on ith attention blocks.

294

RQ6: Why can the MoC gain the improvement on functionality for free? As in Table 3, we295

observe a consistent improvement on the functionality score except for the 14B model. A possible296

reason for this is that the more buggy codes have a higher possibility of also being vulnerable code297

[39], and there are overlaps between bug-prone code and vulnerabilities [40].298

5 Conclusion299

Our investigation reveals that code generation LLMs encode vulnerability-discriminative information300

in their hidden representations, accessible through lightweight linear probes. We leveraged this insight301

to develop a Mixture of Linear Corrections (MoC) framework that conditionally applies guiding302

vectors during inference to enhance code security. Experimental results show our method effectively303

improves both security ratios and functional correctness across multiple model sizes and demonstrates304

transferability between models. This work provides a computationally efficient approach to secure305

code generation without requiring costly retraining or extensive prompt engineering, opening new306

avenues for representation-based security interventions in generative AI.307

Limitations. Currently we use every probe in every token generation, which consumes more time308

than the base model. Further work can implement all probes in parallel to accelerate. Moreover, the309

MoC can only address known code vulnerabilities, further research can focus on using hidden states310

to explore undiscovered vulnerabiliies.311
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A Appendix430

A.1 Detailed experimental results on direct prompting for vulnerability detection.431

Here we show the detailed experimental results for each CWEs for each model. The results are from the Table 7432

to Table 13, we find that:433

1. Difference CWE types shows every different trends, for example, the CWE-125, CWE-190, CWE-416,434

CWE-476, CWE-787 contains mostly codes in language c, and Qwen-25-Coder series tend to think435

they are safe, as in Table 8, Table 9 and Table 10. And the CodeLlama series tend to regard the436

CWE-416, CWE-476 and CWE-787 as safe, as in Table 12 and Table 13.437

2. Overall, QwenCoder series are more recently developed and shows better abilities than CodeLlama438

series. And overall, the QC series show a better instruction following ability than CL series, as the439

Invalid rates are lower.440

Table 7: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
QwenCoder-3B

Vul-type Accv Accs Invalidv Invalids

22 49 49 0 0
78 51 43 1 0
79 35 58 0 0
89 47 61 0 1
125 52 45 1 0
190 67 53 0 3
416 45 62 0 0
476 59 44 1 1
787 50 42 0 0

Ave 51 51 0 1

Table 8: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
QwenCoder-7B

Vul-type Accv Accs Invalidv Invalids

22 43 53 0 0
78 66 72 0 0
79 44 42 5 5
89 1 69 0 1
125 12 77 13 9
190 8 100 0 0
416 2 96 0 0
476 13 84 4 3
787 15 73 3 2

Ave 23 74 3 2

A.2 Detailed experimental results on probing for vulnerability detection.441

Here we shows more results about detailed per-CWE results on detection when training a linear probe on the last442

attention block. We can draw the conclusion:443

1. Overall, the non-PCA probe in Table 14 shows better results than PCA reduced probes in Table 15.444

Possible reasons are that the PCA reduced too much information that may be essential for vulnerability445

detection.446
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Table 9: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
QwenCoder-14B

Vul-type Accv Accs Invalidv Invalids

22 2 31 69 69
78 25 62 12 20
79 28 72 14 14
89 13 8 78 91
125 31 64 13 14
190 36 47 19 11
416 27 71 16 15
476 32 74 3 1
787 35 63 23 6

Ave 25 55 27 27

Table 10: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
QwenCoder-32B

Vul-type Accv Accs Invalidv Invalids

22 43 45 0 0
78 69 71 0 0
79 56 44 2 2
89 99 68 0 1
125 2 100 0 0
190 0 100 0 0
416 0 100 0 0
476 0 99 0 1
787 2 100 0 0

Ave 30 81 0 0

2. Overall, the CWE-022, CWE-078, CWE-079, and CWE-089 are mostly based on python language.447

And these shows a higher accuracy than other CWEs, especially on QC-14B and 7B models.448

3. The CWE-125 and CWE-476 are kind of hard to detect, especially, as the model gets larger, the449

accuracy on these two CWE-types are not getting higher, which indicates that their vulnerable features450

are harder to extract.451

A.3 Boarder Impact452

Our work on code vulnerability detection and correction has significant societal implications. Positively, it453

enhances code security, potentially reducing data breaches and cyberattacks that impact millions of users annually.454

Secure code generation tools democratize cybersecurity expertise, benefiting resource-constrained organizations455

and critical infrastructure. Negatively, adversarial applications of our techniques could be used to deliberately456

introduce subtle vulnerabilities or automate exploitation of existing weaknesses. Additionally, over-reliance on457

automated security tools may create false confidence and reduce human oversight. We encourage responsible458

deployment with human-in-the-loop verification and recommend against using these methods in high-risk459

applications without thorough testing.460
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Table 11: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
CodeLlama-7B

Vul-type Accv Accs Invalidv Invalids

22 63 0 41 37
78 49 8 48 48
79 44 9 49 51
89 0 0 100 100
125 89 11 2 2
190 86 19 3 3
416 89 9 4 2
476 59 32 12 12
787 100 2 0 0

Ave 64 10 29 28

Table 12: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
CodeLlama-13B

Vul-type Accv Accs Invalidv Invalids

22 86 14 4 4
78 63 29 10 10
79 47 42 16 21
89 65 13 26 21
125 20 18 63 62
190 83 19 0 0
416 5 96 2 0
476 8 72 2 3
787 20 89 0 1

Ave 44 43 14 13

Table 13: Accuracy of vulnerable code detection by direct prompting the LLM. Invalidv and Invalids

mean the output of the LLM doesn’t follow the format or the output does not include any answers.
CodeLlama-34B

Vul-type Accv Accs Invalidv Invalids

22 61 49 8 6
78 55 37 17 15
79 7 2 90 90
89 53 60 2 3
125 1 54 49 46
190 0 89 19 17
416 2 85 15 15
476 0 81 21 22
787 10 75 23 19

Ave 21 59 27 26
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Table 14: Performance on code vulnerability detection.
QC-3B QC-7B QC-14B

Vul-type Acc F1 Acc F1 Acc F1

22 0.8 0.83 0.9 0.89 0.7 0.73
78 0.7 0.67 0.9 0.91 0.9 0.91
79 0.7 0.67 0.9 0.89 0.9 0.89
89 0.8 0.75 0.8 0.75 1 1
125 0.7 0.73 0.7 0.67 0.6 0.67
190 0.7 0.57 0.6 0.67 0.8 0.8
416 0.8 0.75 0.7 0.57 0.8 0.8
476 0.6 0.6 0.6 0.67 0.6 0.67
787 0.7 0.57 0.7 0.67 0.7 0.73

Ave 0.72 0.68 0.76 0.74 0.78 0.8

Table 15: Performance on code vulnerability detection. PCA is applied to the hidden states.
QC-3B QC-7B QC-14B

Vul-type Acc F1 Acc F1 Acc F1

22 0.6 0.33 0.8 0.75 0.8 0.8
78 0.7 0.57 0.9 0.89 0.9 0.91
79 0.6 0.5 0.9 0.91 1 1
89 0.8 0.75 0.9 0.89 1 1
125 0.6 0.67 0.6 0.33 0.6 0.67
190 0.7 0.57 0.8 0.83 0.9 0.89
416 0.8 0.75 0.7 0.77 0.8 0.8
476 0.8 0.83 0.7 0.67 0.6 0.71
787 0.6 0.71 0.8 0.8 0.8 0.83

Ave 0.69 0.63 0.79 0.76 0.82 0.85
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NeurIPS Paper Checklist461

1. Claims462

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s463

contributions and scope?464

Answer: [Yes]465

Justification: Yes, as in the abstract and introduction.466

Guidelines:467

• The answer NA means that the abstract and introduction do not include the claims made in the468

paper.469

• The abstract and/or introduction should clearly state the claims made, including the contributions470

made in the paper and important assumptions and limitations. A No or NA answer to this471

question will not be perceived well by the reviewers.472

• The claims made should match theoretical and experimental results, and reflect how much the473

results can be expected to generalize to other settings.474

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not475

attained by the paper.476

2. Limitations477

Question: Does the paper discuss the limitations of the work performed by the authors?478

Answer: [Yes]479

Justification: As in the section Conclusion.480

Guidelines:481

• The answer NA means that the paper has no limitation while the answer No means that the paper482

has limitations, but those are not discussed in the paper.483

• The authors are encouraged to create a separate "Limitations" section in their paper.484

• The paper should point out any strong assumptions and how robust the results are to violations of485

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,486

asymptotic approximations only holding locally). The authors should reflect on how these487

assumptions might be violated in practice and what the implications would be.488

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested489

on a few datasets or with a few runs. In general, empirical results often depend on implicit490

assumptions, which should be articulated.491

• The authors should reflect on the factors that influence the performance of the approach. For492

example, a facial recognition algorithm may perform poorly when image resolution is low or493

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide494

closed captions for online lectures because it fails to handle technical jargon.495

• The authors should discuss the computational efficiency of the proposed algorithms and how496

they scale with dataset size.497

• If applicable, the authors should discuss possible limitations of their approach to address problems498

of privacy and fairness.499

• While the authors might fear that complete honesty about limitations might be used by reviewers500

as grounds for rejection, a worse outcome might be that reviewers discover limitations that501

aren’t acknowledged in the paper. The authors should use their best judgment and recognize502

that individual actions in favor of transparency play an important role in developing norms that503

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize504

honesty concerning limitations.505

3. Theory assumptions and proofs506

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete507

(and correct) proof?508

Answer: [NA]509

Justification: The paper does not include theoretical results.510

Guidelines:511

• The answer NA means that the paper does not include theoretical results.512

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.513

• All assumptions should be clearly stated or referenced in the statement of any theorems.514
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in515

the supplemental material, the authors are encouraged to provide a short proof sketch to provide516

intuition.517

• Inversely, any informal proof provided in the core of the paper should be complemented by518

formal proofs provided in appendix or supplemental material.519

• Theorems and Lemmas that the proof relies upon should be properly referenced.520

4. Experimental result reproducibility521

Question: Does the paper fully disclose all the information needed to reproduce the main experimental522

results of the paper to the extent that it affects the main claims and/or conclusions of the paper523

(regardless of whether the code and data are provided or not)?524

Answer: [Yes]525

Justification: As in the Probe details, training details.526

Guidelines:527

• The answer NA means that the paper does not include experiments.528

• If the paper includes experiments, a No answer to this question will not be perceived well by the529

reviewers: Making the paper reproducible is important, regardless of whether the code and data530

are provided or not.531

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make532

their results reproducible or verifiable.533

• Depending on the contribution, reproducibility can be accomplished in various ways. For534

example, if the contribution is a novel architecture, describing the architecture fully might suffice,535

or if the contribution is a specific model and empirical evaluation, it may be necessary to either536

make it possible for others to replicate the model with the same dataset, or provide access to537

the model. In general. releasing code and data is often one good way to accomplish this, but538

reproducibility can also be provided via detailed instructions for how to replicate the results,539

access to a hosted model (e.g., in the case of a large language model), releasing of a model540

checkpoint, or other means that are appropriate to the research performed.541

• While NeurIPS does not require releasing code, the conference does require all submissions542

to provide some reasonable avenue for reproducibility, which may depend on the nature of the543

contribution. For example544

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to545

reproduce that algorithm.546

(b) If the contribution is primarily a new model architecture, the paper should describe the547

architecture clearly and fully.548

(c) If the contribution is a new model (e.g., a large language model), then there should either be549

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,550

with an open-source dataset or instructions for how to construct the dataset).551

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are552

welcome to describe the particular way they provide for reproducibility. In the case of553

closed-source models, it may be that access to the model is limited in some way (e.g.,554

to registered users), but it should be possible for other researchers to have some path to555

reproducing or verifying the results.556

5. Open access to data and code557

Question: Does the paper provide open access to the data and code, with sufficient instructions to558

faithfully reproduce the main experimental results, as described in supplemental material?559

Answer: [Yes]560

Justification: The dataset in a public dataset, while the code will be public later.561

Guidelines:562

• The answer NA means that paper does not include experiments requiring code.563

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/564

guides/CodeSubmissionPolicy) for more details.565

• While we encourage the release of code and data, we understand that this might not be possible,566

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless567

this is central to the contribution (e.g., for a new open-source benchmark).568

• The instructions should contain the exact command and environment needed to run to reproduce569

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/570

guides/CodeSubmissionPolicy) for more details.571
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• The authors should provide instructions on data access and preparation, including how to access572

the raw data, preprocessed data, intermediate data, and generated data, etc.573

• The authors should provide scripts to reproduce all experimental results for the new proposed574

method and baselines. If only a subset of experiments are reproducible, they should state which575

ones are omitted from the script and why.576

• At submission time, to preserve anonymity, the authors should release anonymized versions (if577

applicable).578

• Providing as much information as possible in supplemental material (appended to the paper) is579

recommended, but including URLs to data and code is permitted.580

6. Experimental setting/details581

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,582

how they were chosen, type of optimizer, etc.) necessary to understand the results?583

Answer: [Yes]584

Justification: As in the experiments section.585

Guidelines:586

• The answer NA means that the paper does not include experiments.587

• The experimental setting should be presented in the core of the paper to a level of detail that is588

necessary to appreciate the results and make sense of them.589

• The full details can be provided either with the code, in appendix, or as supplemental material.590

7. Experiment statistical significance591

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-592

tion about the statistical significance of the experiments?593

Answer: [Yes]594

Justification: In the experiment section.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The authors should answer "Yes" if the results are accompanied by error bars, confidence598

intervals, or statistical significance tests, at least for the experiments that support the main claims599

of the paper.600

• The factors of variability that the error bars are capturing should be clearly stated (for example,601

train/test split, initialization, random drawing of some parameter, or overall run with given602

experimental conditions).603

• The method for calculating the error bars should be explained (closed form formula, call to a604

library function, bootstrap, etc.)605

• The assumptions made should be given (e.g., Normally distributed errors).606

• It should be clear whether the error bar is the standard deviation or the standard error of the607

mean.608

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report609

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is610

not verified.611

• For asymmetric distributions, the authors should be careful not to show in tables or figures612

symmetric error bars that would yield results that are out of range (e.g. negative error rates).613

• If error bars are reported in tables or plots, The authors should explain in the text how they were614

calculated and reference the corresponding figures or tables in the text.615

8. Experiments compute resources616

Question: For each experiment, does the paper provide sufficient information on the computer617

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?618

Answer: [Yes]619

Justification: In experiment section.620

Guidelines:621

• The answer NA means that the paper does not include experiments.622

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud623

provider, including relevant memory and storage.624

• The paper should provide the amount of compute required for each of the individual experimental625

runs as well as estimate the total compute.626
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• The paper should disclose whether the full research project required more compute than the627

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into628

the paper).629

9. Code of ethics630

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code631

of Ethics https://neurips.cc/public/EthicsGuidelines?632

Answer: [Yes]633

Justification: Yes.634

Guidelines:635

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.636

• If the authors answer No, they should explain the special circumstances that require a deviation637

from the Code of Ethics.638

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due639

to laws or regulations in their jurisdiction).640

10. Broader impacts641

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts642

of the work performed?643

Answer: [Yes]644

Justification: We discuss this in the appendix.645

Guidelines:646

• The answer NA means that there is no societal impact of the work performed.647

• If the authors answer NA or No, they should explain why their work has no societal impact or648

why the paper does not address societal impact.649

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,650

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-651

ment of technologies that could make decisions that unfairly impact specific groups), privacy652

considerations, and security considerations.653

• The conference expects that many papers will be foundational research and not tied to particular654

applications, let alone deployments. However, if there is a direct path to any negative applications,655

the authors should point it out. For example, it is legitimate to point out that an improvement in656

the quality of generative models could be used to generate deepfakes for disinformation. On the657

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks658

could enable people to train models that generate Deepfakes faster.659

• The authors should consider possible harms that could arise when the technology is being used660

as intended and functioning correctly, harms that could arise when the technology is being used661

as intended but gives incorrect results, and harms following from (intentional or unintentional)662

misuse of the technology.663

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies664

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-665

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the666

efficiency and accessibility of ML).667

11. Safeguards668

Question: Does the paper describe safeguards that have been put in place for responsible release of669

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or670

scraped datasets)?671

Answer: [No]672

Justification: It can be used adversarially.673

Guidelines:674

• The answer NA means that the paper poses no such risks.675

• Released models that have a high risk for misuse or dual-use should be released with necessary676

safeguards to allow for controlled use of the model, for example by requiring that users adhere to677

usage guidelines or restrictions to access the model or implementing safety filters.678

• Datasets that have been scraped from the Internet could pose safety risks. The authors should679

describe how they avoided releasing unsafe images.680

• We recognize that providing effective safeguards is challenging, and many papers do not require681

this, but we encourage authors to take this into account and make a best faith effort.682
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12. Licenses for existing assets683

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,684

properly credited and are the license and terms of use explicitly mentioned and properly respected?685

Answer: [Yes]686

Justification: Yes687

Guidelines:688

• The answer NA means that the paper does not use existing assets.689

• The authors should cite the original paper that produced the code package or dataset.690

• The authors should state which version of the asset is used and, if possible, include a URL.691

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.692

• For scraped data from a particular source (e.g., website), the copyright and terms of service of693

that source should be provided.694

• If assets are released, the license, copyright information, and terms of use in the package should695

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for696

some datasets. Their licensing guide can help determine the license of a dataset.697

• For existing datasets that are re-packaged, both the original license and the license of the derived698

asset (if it has changed) should be provided.699

• If this information is not available online, the authors are encouraged to reach out to the asset’s700

creators.701

13. New assets702

Question: Are new assets introduced in the paper well documented and is the documentation provided703

alongside the assets?704

Answer: [NA]705

Justification: Does not release new assets.706

Guidelines:707

• The answer NA means that the paper does not release new assets.708

• Researchers should communicate the details of the dataset/code/model as part of their sub-709

missions via structured templates. This includes details about training, license, limitations,710

etc.711

• The paper should discuss whether and how consent was obtained from people whose asset is712

used.713

• At submission time, remember to anonymize your assets (if applicable). You can either create an714

anonymized URL or include an anonymized zip file.715

14. Crowdsourcing and research with human subjects716

Question: For crowdsourcing experiments and research with human subjects, does the paper include717

the full text of instructions given to participants and screenshots, if applicable, as well as details about718

compensation (if any)?719

Answer: [NA]720

Justification: Does not use crowdsourcing.721

Guidelines:722

• The answer NA means that the paper does not involve crowdsourcing nor research with human723

subjects.724

• Including this information in the supplemental material is fine, but if the main contribution of the725

paper involves human subjects, then as much detail as possible should be included in the main726

paper.727

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other728

labor should be paid at least the minimum wage in the country of the data collector.729

15. Institutional review board (IRB) approvals or equivalent for research with human subjects730

Question: Does the paper describe potential risks incurred by study participants, whether such731

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an732

equivalent approval/review based on the requirements of your country or institution) were obtained?733

Answer: [NA]734

Justification: does not involve crowdsourcing nor research with human subjects.735

Guidelines:736
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• The answer NA means that the paper does not involve crowdsourcing nor research with human737

subjects.738

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be739

required for any human subjects research. If you obtained IRB approval, you should clearly state740

this in the paper.741

• We recognize that the procedures for this may vary significantly between institutions and742

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for743

their institution.744

• For initial submissions, do not include any information that would break anonymity (if applica-745

ble), such as the institution conducting the review.746

16. Declaration of LLM usage747

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard748

component of the core methods in this research? Note that if the LLM is used only for writing,749

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or750

originality of the research, declaration is not required.751

Answer: [Yes]752

Justification: We use LLMs for writing, and for prompting to get the results as stated in experiments.753

Guidelines:754

• The answer NA means that the core method development in this research does not involve LLMs755

as any important, original, or non-standard components.756

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what757

should or should not be described.758
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