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ABSTRACT

It is often advantageous to train models on a subset of the available train exam-
ples, because the examples are of variable quality or because one would like to
train with fewer examples, without sacrificing performance. We present Gradient
Information Optimization (GIO), a scalable, task-agnostic approach to this data se-
lection problem that requires only a small set of (unlabeled) examples representing
a target distribution. GIO begins from a natural, information-theoretic objective
that is intractable in practice. Our contribution is in showing that it can be made
highly scalable through a simple relaxation of the objective and a highly efficient
implementation. In experiments with machine translation, spelling correction, and
image recognition, we show that GIO delivers outstanding results with very small
train sets. These findings are robust to different representation models and hyper-
parameters for GIO itself. GIO is task- and domain-agnostic and can be applied
out-of-the-box to new datasets and domains. We open source a pip-installable
implementation of the algorithm as "pip install grad-info-opt".1

1 INTRODUCTION

In situations in which one has a very large train set available, it is often advantageous to train systems
on a subset of the data. In the simplest case, the train set may be so large as to run up against
resource constraints, and the question arises whether performance goals can be reached with less
effort (e.g. Touvron et al., 2021). It can also be the case that the train examples are known to be
of variable quality, say, because they were harvested from diverse websites (Luccioni and Viviano,
2021), annotated by crowdworkers (Karpinska et al., 2021), or created by a synthetic data generation
process (Edunov et al., 2018). In this case, the goal is to identify a reliable subset of examples.

This is the data selection problem that we address in the current paper. The end goal is to select a
subset of the available train examples that leads to models that are at least as performant as (and
perhaps even better than) those trained on all the examples. To achieve this goal, we propose Gradient
Information Optimization (GIO), a highly scalable, task-agnostic approach to data selection that is
based in information theory. Our method assumes access to a (potentially small) set of examples X
that represent the desired data distribution and a (presumably very large) set of potential train
examples G. Our method derives a set V ⊆ G that has as much information content as possible about
the target distribution X . The method begins from the natural intuition that we want V to minimize the
average KL divergence from X , and the novelty of the approach lies in making this computationally
tractable by relying on properties of the derivative of the KL divergence and implementing the method
extremely efficiently. Crucially, our method works in any continuous representation space, is task-
and domain-agnostic, and requires no labels on examples.

We motivate GIO with a diverse set of experiments. We first explore machine translation using the
WMT14 dataset and Transformer-based models. In this case, G is the WMT14 dataset and X is the
dev set. These experiments show that, using GIO, we can can surpass the performance of a model
trained on the full WMT14 corpus with only a fraction of the example in G, which represents very
large efficiency gains. We then turn to spelling correction. In this case, the set G is generated by a

1pip install grad-info-opt, see Appendix B for details. Also available at:
https://github.com/daeveraert/gradient-information-optimization
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noisy synthetic process and the target distribution X is a set of actual spelling errors. Here, we are
using GIO to home in on realistic train examples. Our results show that we can do this extremely
effectively. Finally, we apply GIO to an image recognition task (FashionMNIST) and show again that
our method can reduce the size of the train sets chosen without large drops in performance, this time
operating with representations of images. In this case, we trust the train set G to represent the space
accurately, and our goal is simply to select a useful subset of G. Thus, in this case X = G. Finally,
we discuss expanding GIO, report on a wide range of robustness experiments and empirical analyses
of how and why the method works in practice, and publish a pip-installable package. 1

2 RELATED WORK

Active learning. Active learning methods (e.g. Sener and Savarese, 2018; Gal et al., 2017; Kirsch
et al., 2019) can be cast as data selection methods in our sense. In active learning, one iteratively
chooses new unlabeled training examples to label, with the goal of efficiently creating a powerful
train set. By contrast, GIO makes no use of labels and is oriented towards the goal of identifying a
subset of existing cases to use for training. Additionally, active learning is most suited to classification
problems, whereas GIO works with any arbitrary task.

Heuristic. GIO is closer to recent methods in which one uses a large language model to generate a
large number of candidate texts and then extracts a subset of them based on a specific criteria. For
example, Brown et al. (2020) develop a heuristic method to filter CommonCrawl based on a trained
classifier’s probability that datapoints are high quality. Similarly, Wenzek et al. (2020) develop a
pipeline to clean CommonCrawl based principally on the perplexity of an LM trained on high quality
text, and Xie et al. (2023) develop a sampling technique based on approximate n-gram counts.

Like GIO, these heuristic methods aim to select a subset of data that is higher quality and more
relevant. However, they are either highly tailored to their particular tasks or they require very large
numbers of examples (to develop classifiers or construct target probabilities). By contrast, GIO is
task- and domain-agnostic, it can be applied plug-and-play to a new task and dataset, and it requires
comparatively few gold examples X to serve as the target distribution.

Similarity Search. Methods using vector or n-gram similarity search can also be used for data
selection at scale (e.g. Johnson et al., 2017; Bernhardsson, 2017; Santhanam et al., 2022). The
technique would index G and X and retrieve the top-k datapoints from G for each point in X . Like
our method, similarity search works in a continuous space. However, similarity search can be prone
to selecting suboptimal points; we review such a case in detail in Section 3.4. Additionally, similarity
search does not have a natural stopping criterion and requires data size to be chosen arbitrarily. Is
10% data enough? 20%? We don’t know a priori. And if the data in G is far away from X , similarity
search will still choose it up to the desired data size. Recently, Yao et al. (2022) use a BM25 retrieval
method for data selection, with strong results. However, BM25 operates on a bag-of-words model,
which can make it challenging when the target set is small, and like any similarity search, requires
data size to be chosen arbitrarily beforehand. Further, this method only applies to text tasks, whereas
GIO applies to any task with continuous representation.

Data Pruning. Data pruning has shown promise for the data selection problem (e.g. Paul et al.,
2021). Different works in data pruning use varied approaches, but generally iteratively identify and
add optimal samples from training data. However, most works in data pruning (e.g. Paul et al., 2021;
Yang et al., 2023; Saseendran et al., 2019) apply only to classification. However, recently Sorscher
et al. (2022) develop a self-pruning method with strong results that can be applied to any task with
continuous representation, like GIO, using clustering-based selection. Unlike GIO and similarity
search however, self-pruning does not consider any desired target distribution X .

Submodular Optimization. Submodular optimization methods have also been proposed for data
selection (Kaushal et al., 2022), where an optimizer optimizes a submodular function between a
general set G and a target set X . Like GIO, submodular optimization takes into account a desired
target distribution X , has a natural stopping criterion that does not require data size to be chosen
arbitrarily. Unlike GIO however, submodular optimization is restricted only to submodular functions,
which have certain assumptions that may not hold true. For example, submodular functions assume
adding each extra datapoint diminishes the return of that datapoint, which is not necessarily the case
when constructing a dataset. For example, if we have already have selected data but have unexplored
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Algorithm 1 Gradient Information Optimization

Quantize X,D,G using K-means and pick the cluster centroids Xc, Dc, Gc as the new points
while Not Stopping Criterion do

Gradient-Descend to find vopt:
v1 ← previous vopt, x̄ or random ▷ We explore different techniques in our experiments
Perform vk+1 ← vk − γ · ∂

∂vk
D̂KL(PXc

∥ PDc∪{vk}) until converged to vopt

Update Dc :
vb ← argminvi∈Gc

||vi − vopt|| ▷ The closest point in Gc to vopt

Dc ← Dc + {vb}
Remove vb from Gc

end while
Explode: Select points from full D and G which belong to the chosen centroids’ (Dc∪Vc) clusters

region where X has a mode, adding data in that region does not exhibit a diminishing return. GIO, on
the other hand, makes no assumptions on the functions it can use.

Overall, previous work in data selection is typically tailored to a specific domain like NLP (e.g.
Wenzek et al., 2020) or image recognition (e.g. Gal et al., 2017), and makes assumptions about the
data available, for example, that the target set X is large enough to construct an LM (e.g. Wenzek
et al., 2020), or that it has labels (e.g. Sener and Savarese, 2018). In addition, many of these methods
use discrete approximations and heuristics (e.g. Xie et al., 2023; Yang et al., 2020). In this work, we
provide a general, theoretically-motivated data selection method that works with large or small X
and can be applied out-of-the-box to any domain (image, text, etc) without needing labels.

3 GRADIENT INFORMATION OPTIMIZATION: METHOD

We formulate data selection as maximizing information content and outline the natural algorithm for
this objective, which is infeasible. We then introduce optimizations which enable the algorithm to
work at scale, and conduct tests to show the algorithm is consistent and robust to different scenarios.

3.1 ABSTRACT FORMULATION OF THE DATA SELECTION PROBLEM

We assume that all examples are represented in continuous space. We have a set of train examples G
and a target ideal state X . We allow also that there may be existing train examples D that we
definitely want to include in our train set, though D can be empty. Our goal is to identify a subset V
of G such that the set D ∪ V contains the most information about X .

In this setting, it is natural to take an information-theoretic approach. Let pX(x) be the distribution
of target X , and let pD∪V (x) be the distribution of selected data D ∪ V . The information content
of D ∪ V about X is the negative KL divergence from pX(x) to pD∪V (x) (Kullback and Liebler,
1951). In this context, the general objective of data selection is as follows:

Choose data V ⊆ G such that
∫
Ω

pX(x) log
pX(x)

pD∪V (x)
dx is minimized (1)

The implication is that a data selection method which gives the minimum KL divergence will also
give the best performance (assuming we are correct that X represents the task to be solved).

3.2 NAIVE APPROACH

A natural approach is to hill-climb on the KL divergence objective (1). Given existing data D and
points v1, . . . ,vk of G, we recompute the distribution pD∪{vi}(x) for each vi, pick the one that
gives the minimum KL divergence, and add it to our selected set D:

D ← D + argmin
vi∈G

∫
Ω

pX(x) log
pX(x)

pD∪{vi}(x)
dx (2)
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Figure 1: Visualization of the Quantization-Explosion Process. From left to right: original data (400
points), representative K-means centroids (50 points) of the original data (Quantization), selected
centroids after data selection, original data represented by the selected centroids (Explosion)

Unfortunately, this algorithm is intractable in practice. We need to construct a new distribution
pD∪{vi}(x) and compute KL divergence for every vi ∈ G, at each step. Therefore, the complexity at
each iteration is O(|G| · C), where C is the cost of computation for the KL divergence. For a dataset
of only 1M and 0.1s per iteration, it would take 70 days to complete the algorithm. The method is
also prone to adding the same point multiple times.

3.3 GRADIENT INFORMATION OPTIMIZATION

GIO addresses the shortcomings of (2) with a combination of mathematical and implementational
optimizations. The method is described in Algorithm 1.

First, instead of calculating divergence for each point, we use the derivative of the KL divergence to
find the optimal point. We rewrite pD∪{vi}(x) = g(x,vi), a function of only x and vi since D is
not changing, and thus the optimization term in each iteration becomes:

argmin
vi∈G

∫
Ω

pX(x) log
pX(x)

g(x,vi)
dx (3)

We can relax the constraint that vi ∈ G to the space of all possible v and solve this integral
minimization for the optimal vopt. Since pX is unchanging and the integral implicitly removes x as a
variable, the integral defines a functional F [g(v)] . Therefore, we partially differentiate with respect
to v and do gradient descent with the partials∇vk

F [g] to solve for vopt. All together, this becomes:

vk+1 ← vk − γ · ∂

∂vk

(∫
Ω

p(x) log
p(x)

g(x,vk)
dx

)
(4)

Once we have vopt, we find the nearest vi ∈ G to add to D, as the closest vi ∈ G is the solution to
(3). We assume G is locally dense for the extrema of the integral in (4); see Appendix A.2 for details.

The complexity at each iteration, for S gradient descent steps, is O(S · C) which does not increase
with G. Therefore, when |G| > S, as is common in practice, the derivative trick is faster than the
naive algorithm. We time both algorithms in Section 3.4 and show the derivative trick is 80% faster.

Second, even at its most efficient, an algorithm that adds point-by-point becomes intractable. There-
fore, we use a quantization-explosion process. First, we cluster the data with K-means (Arthur and
Vassilvitskii, 2007) and pick the centroids µi. We then perform the algorithm using the cluster
centroids µi instead of the original data. Finally, we use our chosen cluster centroids and explode
back to the original data based on cluster membership. Figure 1 provides an overview of the process.

Third, to compute the KL Divergence in high-dimensional spaces, we use the k-Nearest Neighbors
approximation for continuous KL divergence proposed by Wang et al. (2009), and modify it to be an
average across all points to bypass 0 gradient problems (details and proof of modification are in the
Appendix A.1). Let |D| = m, |X| = n and d be the dimensionality:

D̂KL(PX ∥ PD) =
1

m

m∑
k=1

1

n

[
n∑

i=1

d · log νk(i)− d · log ρl(i)

]
+

1

m

m∑
k=1

log
l ·m

k(n− 1)
(5)

Where νk(i) is the distance from point Xi to the kth nearest point in D and ρl(i) is the distance from
point Xi to the lth nearest Xj ̸=i. We use automatic differentiation to compute the derivative.
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Figure 2: The leftmost graph shows X and G, which come from the same distribution. The second
graph shows that GIO recovers nearly all of G (self consistency). The right two graphs compare GIO
with similarity search. Points within the circle formed by X are more ideal than points outside. By
considering the distribution, GIO selects nearly all points inside before terminating (third graph). By
comparison, in order to pick points within the circle, similarity search also picks a range of points
outside the circle, which is suboptimal (fourth graph).

We can stop when the KL divergence increases, reset G and allow the algorithm to pick again, among
a variety of criteria. We explore several in our experiments and list additional criteria in Appendix
B.2. Unlike data selection methods that make data size a hyperparameter (e.g. Yao et al., 2022), GIO
provides a natural stopping criterion (KL divergence). Finally, initializing D from a uniform start
rather than empty leads to same optimal points but a smoother convergence; see Appendix A.3.

Limitations. We derived GIO from the natural information-theoretic objective, however, we can use
any arbitrary statistical distance in the GIO framework. For example, in situations where G is close
to X with the exception of a large gap somewhere, the statistical distance max |pX(x) − pD(x)|
may be better suited. We also use gradient descent to iteratively find vopt, but we know the space is
non-convex. Therefore, replacing gradient descent with a method like particle swarm optimization
(Kennedy and Eberhart, 1995) may lead to better selected data. Finally, in practice it is important to
ensure that X reasonably represents the space a model might be used on. A narrow X could make a
model trained on GIO-selected data perform poorly when confronted with inputs that lie outside X .
Methods like starting from a subset of training data, which we explore, or adding uniform points to
X to encourage generalization, should be explored. We leave these improvements to future work.

3.4 ANALYTIC CHECKS

GIO is self-consistent. We define self-consistency as follows: if both G and X come from the same
distribution, i.e., pG(x) = pX(x), a good data selection method should choose all of G. We show
GIO is self-consistent: let X be 100 points from a normal distribution centered at (3, 4) and let G be
another 100 points from the same distribution (Figure 2, 1st graph). We run GIO on this setup; GIO
selects 96% of G before termination, showing GIO is self-consistent (Figure 2, 2nd graph).

GIO is negative-consistent. We define negative consistency as follows: if G is very far from X , i.e.
d(pX(x), pG(x))≫ 0, a good data selection method should not choose any of G. Most data selection
methods that rely on choosing a desired data size as a stopping criteria (e.g. Yao et al., 2022; Xie
et al., 2023, similarity search) are not negative consistent; they will select data regardless of how close
or far the data may be from X . We show GIO is negative-consistent with the following setup: let X
be the same as above, but this time let G be 100 points centered far away at (300, 400). We run GIO
on this setup; GIO terminates without adding any points from G, showing it is negative-consistent.

Quantization in GIO is consistent with the original space. Quantizing the space with K-means
should not change the distribution of data. We show this with the following setup: let X be 400
points from a normal distribution centered at (3, 4). We quantize X using K-means with K=50, and
compute the KL divergence D̂KL(X ∥ Xquant), which should be near 0 if the distributions are close.
The KL divergence is 0.44, showing the quantization in GIO is consistent with the original space.

The derivative trick is 80% faster. We benchmark the wall-clock time between the naive hill-climb
method and GIO with the derivative trick, with 100 points in X and 2000 points in G spread uniformly,
and run the algorithm for 100 iterations. The regular hill-climb method takes 1369s, whereas the
derivative trick takes 257s, representing an 80% speedup.
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Table 1: Machine translation results. Training data sizes and BLEU scores of models trained on full
data, GIO-selected data, comparative methods and random subsets for various initialization states.
Bold is the best score in each initialization, italic is the best score overall. GIO outperforms a model
trained with the full EN-FR with only 40% of the data and outperforms all comparative methods in
10/12 evaluations. It achieves 99% of the performance in EN-DE with only 60% of the data.

Init. % System

EN-FR EN-DE

Train
Size

Dev
Test

WMT
14

D̂KL Train
Size

Dev
Test

WMT
14

D̂KL

Ours 34.2 41.2 156 22.1 24.3 148
BM25 33.9 41.0 172 22.6 24.9 175

0 Pruning 5.6M 33.3 40.3 152 701K 22.0 24.2 177
Submod. 33.8 40.8 170 22.0 24.5 164
Random 33.1 40.0 194 21.9 24.0 183

Ours 34.8 42.2 166 23.9 27.0 159
BM25 34.6 42.0 179 22.9 26.3 178

25 Pruning 14M 34.1 41.4 174 1.7M 23.0 26.3 171
Submod. 34.4 41.7 181 22.7 25.5 172
Random 34.3 41.4 195 23.0 26.7 182

Ours 34.7 42.3 172 24.2 27.9 164
BM25 34.3 42.1 185 23.7 27.9 178

50 Pruning 21M 34.2 41.9 183 2.5M 23.6 27.1 179
Submod. 34.4 41.7 185 21.9 24.5 176
Random 34.1 41.7 195 24.0 27.3 181

100 Full3 35M - 41.8 188 4M - 28.2 180

GIO selects based on a distribution; similarity search does not. Let X be a circle of 2D points
encapsulating a region of space, and let G be 2000 uniformly distributed points (Figure 2, 3rd and 4th

graphs). The ideal points are the points within the region encapsulated by X and should be chosen
with preference over points outside. Figure 2 shows the points selected by semantic search (4th graph);
in order to get the data inside the circle, it also picks the data outside the circle. Figure 2 also shows
the GIO-selected points (3rd graph); by considering the distribution of all of X rather than the simple
Euclidean location of each X , GIO selects mostly points which are within the circle, as desired.

4 EXPERIMENTS

We perform four sets of experiments to validate GIO. First, we replicate the setup of Vaswani et al.
(2017) on WMT14 and show that using GIO can surpass the performance of the full model with a
fraction of the data. Next, we demonstrate GIO is robust to different choices of embedding models
and quantization. Third, we use a spelling correction task to show that GIO selects the highest quality
data from a pool of mixed-quality synthetic data. Finally, we show GIO reduces the training set size
of FashionMNIST image task without a big drop in performance. We show that GIO achieves the
lowest KL divergence compared to alternatives, and that this correlates with model performance. 2

4.1 MACHINE TRANSLATION EXPERIMENTS

Our first set of experiments seeks to show that GIO can pick data from a general corpus to meet or
exceed the performance of a model trained on the full corpus.

Data and Methods We use Transformer Big from Vaswani et al. (2017), trained for 300k iterations
with the same hyperparameters. We use the same processed WMT14 training data. We report the
BLEU score (Papineni et al., 2002) on the WMT14 test set.

2Details of each experiment are in Appendix C
3From Vaswani et al. (2017)
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Table 2: Training data sizes and BLEU scores of the base version (K=1500 and MPNet) and the
variants of K and embedding model. BLEU scores of the variants vary by only 0.4% on average from
the base, indicating GIO is robust to different quantization and embedding models

System

EN-FR EN-DE

Train
Size

Dev
Test

WMT
14

D̂KL Train
Size

Dev
Test

WMT
14

D̂KL

Base (MPNet, K=1500) 5.6M 34.2 41.2 156 701K 22.1 24.3 148

MiniLM Variant 5.7M 34.0 41.1 - 737K 22.3 24.6 -
K=1000 Variant 5.6M 33.9 41.2 169 701K 22.1 24.3 150
K=3000 Variant 5.7M 34.2 41.3 138 718K 22.3 24.6 133

Average Variance from Base 1.9% 0.5% 0.2% - 3.7% 0.6% 0.8% -

We apply GIO to select a subset of data from the WMT14 train set using the inputs only (as our
method makes no use of labels). G is the training data we can select from. For target state X , we
collect the dev sets for WMT08–WMT13, extract 3K pairs and report BLEU on this held out dev set,
and use the remaining ≈12K pairs as X . For initial state D, we consider starting from an empty set,
a 25% random subset of train data, and a 50% random subset of train data, and we report results for
each setting. We use MPNet-Base-V2 model (Song et al., 2020) to embed the input sentences in a
continuous vector space and use K=1500 for quantization. We compare this embedding model and
quantization amount to other settings in our robustness experiments (Section 4.2). As our stopping
criteria, we stop when the KL divergence increases. We also deduplicate the data pairs before training.

We compare GIO to a random subset of data of the same size. In addition, we compare against several
competitive baselines with different approaches: Yao et al.’s (Yao et al., 2022) recent similarity search
approach of BM25 retrieval, the recent data pruning self-pruning method introduced by Sorscher
et al. (2022), and the submodular information optimization with mutual information as the function
to optimize. To keep the setup equal, we also initialize each of the baselines from a 0%, 25% and
50% random subset and run those algorithms to have the same size as the GIO-selected data. For
submodular optimization and self-pruning, we use the same clustering GIO is run with.

Results We find that GIO outperforms the random baseline at every initialization. A data selection
method should always outperform a randomly-selected subset of the same size. Table 1 shows the
BLEU score on dev and WMT14 test sets4 and demonstrates GIO always outperforms random. BM25,
submodular optimization and data pruning only outperform random sometimes.

GIO outperforms the EN-FR model trained on the full data using only 40% of the data. At initialization
of 25% and 50%, a model trained on GIO-selected data outperforms the full Vaswani et al. (2017)
model trained on all data by +0.4 and +0.6 BLEU, respectively. In addition, a model trained on the
GIO-selected data at 0% initialization achieves 99% of the performance of the full model with only
16% of the data. It outperforms all comparative methods at all initializations. In EN-DE, it gets 99%
of the performance with 60% of the data, and 88% of the performance with only 18% of the data.

GIO outperforms all comparative methods in 10/12 of the evaluations. GIO always matches or
outperforms the comparative methods with initializations of 25% or 50%, by an average of +0.7
BLEU on WMT14 and +0.6 BLEU on Dev Test, and only falls short with 0% initialization in EN-DE.

GIO has the lowest KL divergence in 5/6 tests (Table 1), which correlates with model performance.
The implication of (1) is that a dataset with lower KL divergence between train and target will perform
the best. From Table 1, the average Spearman rank correlation coefficient between KL divergence
and best performance is 0.83 and the median is 1, showing a high degree of correlation between a
dataset that minimizes KL divergence and model performance, and thus confirming the implication.

In summary, GIO leads to the lowest KL divergence between train and target set out of all the methods,
which correlates with model performance and confirms the theory in (1). Notably, a model trained
with GIO-selected data outperforms a model trained on the full data in EN-FR despite using only 40%

4We use Fairseq’s (Ott et al., 2019; FAIR, 2022) scripts
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Table 3: Spelling correction results. Training data size, % high quality data and KL Divergence of
the full data, GIO, BM25, submodular optimization, data pruning and random data. Bold is the best
score overall. GIO selects 73% high quality data which outperforms all other methods.

System Train Size %High Quality D̂KL

Ours 73% 224
BM25 55% 264
Pruning 3.6M 54% 241
Submod. 59% 245
Random 50% 284

Full 14.7M 50% 280

of the total data and came to within 99% of the full model in EN-DE using only 60% of the data. GIO
outperforms the random baseline at all initializations and outperforms all comparative methods in
10/12 evaluations. Overall, these experiments show GIO can achieve and surpass the performance of
a model trained on full data and comparable baselines, by explicitly optimizing for KL Divergence.

4.2 ROBUSTNESS

GIO above relies on two approximations to work: an embedding model, and K-means to quantize
the space into representative samples of the full data. In this section, we show that GIO is robust to
different embedding models and different values of K. The results are summarized in Table 2.

GIO works with different embedding models. GIO should be robust to different text embedding
models. We change the embedding model from MPNet-Base-V2 to MiniLM-L12-v1 (Wang et al.,
2020), which has different architecture, training, and produces embeddings of a different size. We
then rerun the 0% initialization experiments end-to-end with the new embeddings for both EN-DE
and EN-FR. Table 2 shows that using MiniLM in GIO results in roughly similar selected data size
(4.4% difference on average) and virtually identical performance (0.7% difference on average),
demonstrating that GIO is robust to different embedding models.

GIO works with different choices of K. GIO should also be robust to varying amounts of quan-
tization. We decrease the value of K from 1500 to 1000 and increase to 3000 and rerun the 0%
initialization experiments end-to-end for both new values of K, in EN-FR and EN-DE. For K=1000
due to the coarser grain, GIO selects more data, therefore we sample from the selected data the same
amount as K=1500 in order to maintain parity. Table 2 shows that performance is virtually identical
between the different values of K (0.4% difference on average), demonstrating GIO is robust to
different values of K. In general, higher values of K have lower KL Divergence and slightly better
performance, which is expected as the quantization is more fine grained.

4.3 SPELLING CORRECTION EXPERIMENTS

In this section, we set up a problem with a pool of high and low quality synthetic candidate train
examples and show GIO selects mostly high quality data. In addition, we set a new state of the art on
the challenging BEA4660 spelling correction benchmark of Jayanthi et al. (2020); see Appendix C.

Data and Methods We follow the setup of Jayanthi et al. (2020) and collect 15M samples from the 1
Billion Word benchmark corpus and deduplicate. To create high quality data, we use the best noising
technique (prob) from Jayanthi et al. (2020) and noise half the data. For low quality data, we use the
“word” method with high replacement rate (70%) and noise the other half, and mix the two sets.

We apply GIO to select a subset of data from the training set. G is the training data we can select from.
For target state X , Jayanthi et al. (2020) provide 40k real spelling mistakes and corrections from the
BEA grammar correction corpus. For initial state D, we start from an empty set. For the embedding
model, we use MPNet and K=1500 for quantization. As our stopping criteria, we experiment with a
new scheme: first the algorithm runs until the KL divergence increases, then we reset G and allow
the algorithm to pick again from the training data, until the KL divergence decreases. As before, we
compare GIO to a random subset of the same size and pruning, submodular and BM25 methods.

8
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Table 4: Image recognition results. Training data sizes and accuracy of models trained on GIO-
selected data and random subset. Bold is the best score between ours and random. GIO gives the best
performance under the reduction in training data size. Full model is provided for comparison

System Size Train/Valid Accuracy5 D̂KL

Ours 15,000/1,700 92.2% 771
Random 15,000/1,700 91.5% 740

Full 56,300/3,700 94.5% 7396

Results GIO selects high quality data. A good data selection method should select mostly from the
high quality data. Table 3 shows GIO selects 73% high quality data, compared to 59% for submodular
optimization, 55% for BM25 and 54% for pruning. GIO’s KL Divergence is lower than comparative
methods and random, indicating KL divergence is also an indicator of data quality in this setup.

4.4 IMAGE RECOGNITION

For our fourth set of experiments, we seek to show that GIO works well in domains outside of NLP.
We focus on the FashionMNIST (Xiao et al., 2017) image recognition problem and show that we can
use GIO to dramatically reduce train set sizes without big drops in performance.

Data and Methods The FashionMNIST task has 10 classes of 28x28x1 images. There are 60,000
images in the training set, and 10,000 images in the test set. Our task will be to select a subset
no more than 25% of the total data that best approximates the training data. We then finetune the
Resnet50 model (He et al., 2015) for 5 epochs with Adam (Kingma and Ba, 2015) (LR=5e-5) with
the chosen data to do FashionMNIST classification. We split the data into train and validation sets,
and pick the best checkpoint by validation loss. We report the accuracy on the test set.

We apply GIO to select a subset of data from the training set. We use the training set as both G and
also as our target set X . We start D from an empty set. We use the normalized and normed vector
format of the images themselves in the algorithm, and use K=1000 for quantization. As our stopping
criteria, we run the algorithm until we get 250 clusters (250 iterations), which is ~25% of the data.
We also report results on a random sample of 25% of the data as a comparison.

Results GIO outperforms a simple random subset by +0.7%. GIO in this setup is optimized to pick
the images which add the most information about the entire training set. Table 4 shows training on
GIO-selected data only dropped performance by 2.3% from the full model, compared to a drop of
3.0% for a random subset of the same size.

5 CONCLUSION

We presented GIO, a task- and domain-agnostic data selection method that works in any continuous
space with few assumptions. GIO begins with the natural objective of minimizing KL divergence
between a target set and selected set, and uses the gradient of KL divergence and an efficient
implementation to find and select the data points that optimize that objective at scale. GIO selected
high quality data, selected data that outperformed models trained on full data and on recent data
selection techniques, and was able to effectively reduce the training set size under a given resource
constraint without big drops in performance. Current models consume large quantities of data, and
we hope GIO can help improve the performance of models while using less data and fewer resources.
Additionally, with large quantities of synthetic and scraped data of variable quality available, we
hope GIO can help home in on high quality data. For example, GIO can be used to select high quality
synthetic data output by large language models for a particular task, or choose training data for LLMs
that aligns with a certain intent. Improvements and changes to the statistics and optimization in GIO
and applications of GIO to varied domains and tasks are promising directions for future work.

5Results averaged over 2 runs
6See Appendix A.1 for why this is not 0
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A THEORETICAL WORK

A.1 0 GRADIENT PROBLEM AND KL DIVERGENCE MODIFICATION

A.1.1 KL DIVERGENCE ESTIMATOR: RECAP

Wang et al. (2009) propose a KL divergence estimator based on k-nearest neighbors (kNN) of points
drawn from the probability density functions. We recap their derivation to provide necessary context
for the eventual modification: Let X = {X1...Xn} be samples drawn from distribution p and
Y = {Y1...Ym} be samples drawn from distribution q. Then the kNN estimate of p at Xi is:

p̂k(Xi) =
k

n− 1
· 1

c1(d)ρdk(i)
(6)

Where ρk(i) is the distance from Xi to the k-nearest Xj ̸=i, and c1(d) is the volume of the unit ball
in the d-dimensional space. Likewise, the kNN estimate of q at Xi is:

q̂k(Xi) =
k

m
· 1

c1(d)νdk(i)
(7)

Where νk(i) is the distance from Xi to the k-nearest Yi, and c1(d) is the volume of the unit ball in
the d dimensional space. They also propose, by the law of large numbers, that the estimate of KL
divergence D̂KL(p ∥ q) is:

D̂KL(p ∥ q) =
1

n

n∑
i=1

log
p̂k(Xi)

q̂k(Xi)
(8)

Putting (6), (7) and (8) together, we get the Wang et al. (2009) kNN estimator for KL divergence:

D̂KL(p ∥ q) =
1

n

n∑
i=1

log

k
n−1 ·

1
c1(d)ρd

k(i)

k
m ·

1
c1(d)νd

k(i)

=
1

n

n∑
i=1

log
m · νdk(i)

(n− 1) · ρdk(i)

=
1

n

n∑
i=1

[d log νk(i)− d log ρk(i)] + log
m

n− 1

(9)

A.1.2 0 GRADIENT PROBLEM

However, GIO uses the gradient of the estimator to find vopt by computing ∂
∂v D̂KL

(
pX ∥ pD∪{v}

)
,

in other words, finding how the value of the estimator changes with a change in v. We then run into
the 0 Gradient Problem with the following scenario. Suppose v is far from all points in X . Then,
adding v does not change the value of νk(i) (the distance from Xi to the kth nearest point in D) as
the closest points in D to each point in X are the same before and after adding v. Therefore, the
only term that changes in the KL divergence estimator is m, a constant, and when computing the
derivative, the constant goes to 0. Altogether, this means that for points v that are far from X and
their kth nearest neighbors in D, the gradient will be 0 and we cannot do gradient descent. Formally:

Suppose we have X , D and a new point v, and are estimating D̂KL
(
pX ∥ pD∪{v}

)
. In D̂KL, νk(i)

is the distance from Xi to the kth nearest neighbor in D, and ρk(i) is the distance from Xi to the
k-nearest Xj ̸=i. Suppose that ∀x ∈ X,∀y ∈ D, ∥ x− v ∥ > ∥ x− yk ∥ + ϵ for a small ϵ, where
yk is the kth nearest y in D for a k < K ∈ {1...m}. Then, the partial gradient of D̂KL with respect
to v as calculated in GIO is:

∂

∂v
D̂KL

(
pX ∥ pD∪{v}

)
=

d

n

n∑
i=1

∂

∂v
log νk(i) (10)

As no other terms depend on v. Next, let f(v) = log νk(i). We are then fundamentally computing

lim
ϵ→0

f(v + ϵ)− f(v)

ϵ
. However, because ∀x ∈ X,∀y ∈ D, ∥ x− v ∥ > ∥ x− yk ∥ + ϵ, then νk(i)

with v and νk(i) with v + ϵ are the same, and therefore f(v + ϵ) = f(v). But then:

lim
ϵ→0

f(v + ϵ)− f(v)

ϵ
= lim

ϵ→0

0

ϵ
= 0 (11)

And we have the 0 Gradient Problem. Note: division and addition symbols above are taken element-
wise in the vector space.
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A.1.3 KL DIVERGENCE MODIFICATION

We now modify the KL divergence estimator to overcome the 0 gradient problem. In order to ensure
that νk(i) with v and νk(i) with v + ϵ are never the same, we take the average of estimators from
k = 1 to k = m (m is the size of D), i.e. calculate the divergence estimator from X to every point in
D. In fact, Wang et al. (2009) also recommend taking an average across different values of k, as a
method to reduce variance. We formally derive this modification. Let νk(i) be the distance from Xi

to the kth nearest neighbor in D, and ρl(i) be the distance from Xi to the l-nearest Xj ̸=i. The mean
of the estimator in (9) across all values of k ranging from 1 to m is:

D̂KL(p ∥ q) =
1

m

m∑
k=1

(
1

n

n∑
i=1

[d log νk(i)− d log ρl(i)] + log
l ·m

k(n− 1)

)

=
1

m

m∑
k=1

1

n

n∑
i=1

[d log νk(i)− d log ρl(i)] +
1

m

m∑
k=1

log
l ·m

k(n− 1)

(12)

Given this modified estimator, we show that we no longer have the 0 gradient problem. Let us have
the same setup, i.e. ∀x ∈ X,∀y ∈ D, ∥ x− v ∥ > ∥ x− yk ∥ + ϵ, and further suppose this is true
for all k = 1...m. Thus, the derivative is:

∂

∂v
D̂KL

(
pX ∥ pD∪{v}

)
=

1

m+ 1

m+1∑
k=1

d

n

n∑
i=1

∂

∂v
log νk(i) (13)

From before, we have shown that for all k = 1...m, we arrive at a 0 gradient. However, this expression
also has the term ∂

∂v log νm+1(i), which mandatorily describes the distance from Xi to v, as this
value describes the distance from Xi to the furthest point in D ∪ {v}. Therefore, we also have that
∥ Xi − (v+ ϵ) ∥ ̸= ∥ Xi − v ∥ and therefore νm+1(i) with v cannot equal νm+1(i) with v+ ϵ. As

a result, f(v + ϵ) ̸= f(v) and lim
ϵ→0

f(v + ϵ)− f(v)

ϵ
̸= 0, as desired, and we avoid the 0 gradient

problem. This is the estimator that GIO uses in practice.

We note that with the modified estimator, D̂KL (pX ∥ pX) ̸= 0, as the first probability estimator is
not averaged over k but the second probability estimator is. In general, this is not an issue, as we are
concerned with minimizing the KL divergence, but not concerned with the magnitude of the values
themselves.

A.2 LOCAL DENSITY ASSUMPTION

The derivative trick in GIO finds a vopt and then finds the closest vi ∈ G to add to the selected data,
as the closest vi ∈ G is the solution to the original objective (3):

argmin
vi∈G

∫
Ω

pX(x) log
pX(x)

g(x,vi)
dx (14)

This holds true under the assumption of local density of the extrema of that integral, or more
specifically, the minima of that integral. We outline the assumption:

Local Density Assumption: Let vopt represent the global minimum of
∫
Ω

pX(x) log
pX(x)

g(x,vi)
dx.

Then, for the closest vi ∈ G to vopt, vb, to also be the solution to the original (14), we assume

∃vb ∈ G s.t.
∫
Ω

pX(x) log
pX(x)

g(x,vb)
dx ≤

∫
Ω

pX(x) log
pX(x)

g(x,vj)
dx ∀vj ̸=b ∈ G.

(15)

In essence, for the closest vi ∈ G to vopt to also be the best solution, there needs to exist a point
in G close enough to the global minimum such that that point represents the greatest decrease in
divergence if it were added over all other points. In practice, this is almost always true; if G covers
the space of X well and has many points in it, which is true if G is large enough, then this assumption
is likely satisfied. We note that additionally, we assumed vopt to represent the global minimum, but
as we outlined in Section 3 limitations, since we use gradient descent on a non-convex space this
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is not guaranteed to be true. We leave improvements of finding a more global vopt to future work,
as described in Section 3 limitations. Even with gradient descent, it may be possible to attain more
global values by simultaneously gradient-descending different parts of the space and picking the final
vi ∈ G based on lowest KL divergence.

Note that even if the local density assumption is violated, the results are not necessarily catastrophic.
Even if we add a point that is the second or third best (or nth best, up to a limit), we are likely to
continue to attain very close KL divergence values to if we followed the ideal optimization trajectory
defined by (14).

A.3 UNIFORM START

In order to smooth the convergence of the algorithm when starting from an empty set D = {}, we
propose beginning with a uniform random spread of points as a good initialization basis. Intuitively,
the uniform prior is the completely uninformative prior (Jaynes, 1968), and therefore does not change
the values of vopt. We prove this property formally. Let U(x) = A be a uniform distribution with
fixed, x-independent probability A. Then, let us initialize D ∼ U(x), and then the resulting KL
divergence optimization objective is a mixture of the uniform prior and whichever distribution of new
points the algorithm is adding: 1

c1
A+ 1

c2
g(x,v). In the regular version (4), the gradient to find vopt

is:

∂

∂v

∫
Ω

pX(x) log
pX(x)

g(x,v)
dx ≡

∫
Ω

pX(x)
∂

∂v
log g(x,v)dx =

∫
Ω

pX(x)
∂
∂vg(x,v)

g(x,v)
dx (16)

With the uniform start expressed as a mixture, the gradient to find vopt is:

∂

∂v

∫
Ω

pX(x) log
pX(x)

1
c1
A+ 1

c2
g(x,v)

dx ≡
∫
Ω

pX(x)
∂

∂v
log

(
1

c1
A+

1

c2
g(x,v)

)
dx

=

∫
Ω

pX(x)
∂
∂vg(x,v)

B + g(x,v)
dx

(17)

Where we divide by the constant 1
c2

on numerator and denominator and set B = 1
c1
A · c2, another

constant. The only difference between the gradient in (16) and (17) is that the denominator g(x,v)
has a constant added to it. But then, it is possible to create an x- and v-independent bijection from
(16) to (17) via f : g(x,v)→ g(x,v) +B. Since we are optimizing over v and implicitly x defined
by Ω, neither of which appear in the mapping, then the value vopt that optimizes (16) also optimizes
(17), and therefore adding a uniform start does not change the value of vopt, as desired. Intuitively,
the uniform prior adds a constant B to g in the derivative, and adding a constant to a function does
not change the location of the extrema or the shape of that function. We give an example (from
self-consistency experiment):

(a) With uniform start (b) No uniform start

Figure 3: Left: KL divergence over iterations with uniform start, Right: KL divergence over iterations
without uniform start. They follow the same trajectory (except the erratic behavior at the beginning),
but adding a uniform start greatly improves the stability of the algorithm and convergence.
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Figure 4: Sample plots for 2D example (Self-Consistency). Left: KL divergence over iterations,
Right: Chosen data and target data

B ALGORITHM

B.1 USAGE

The code package for GIO is available on github at https://github.com/daeveraert/
gradient-information-optimization. An example use in 2D (the self-consistency test,
in this example):

from GIO import GIOKL
import numpy as np
import jax.numpy as jnp
import matplotlib.pyplot as plt

# Create some data
def getX():

mean = [3,4]
cov = [[0.5,0],[0,0.5]]
np.random.seed(1)
x, y = np.random.multivariate_normal(mean, cov, 100).T
return jnp.array([[x[i],y[i]] for i in range(len(x))])

def getXTest():
mean = [3,4]
cov = [[0.5,0],[0,0.5]]
np.random.seed(5)
x, y = np.random.multivariate_normal(mean, cov, 100).T
return jnp.array([[x[i],y[i]] for i in range(len(x))])

X = getX()
X_test = getXTest()

# Initialize class
gio_kl = GIOKL.GIOKL(uniform_low=0, uniform_high=8, \

uniform_start_size=100, dim=2)

# Perform the Algorithm
W, kl_divs, _ = gio_kl.fit(X_test, X, normalize=False)
W = W[100:] # Remove the uniform start

# Plot results
plt.plot(kl_divs)
plt.title("KL Divergence vs. Iterations")
plt.xlabel("Iterations")
plt.ylabel("KL Divergence")
plt.show()
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plt.clf()
plt.scatter([each[0] for each in W], [each[1] for each in W], \

label="Selected Data")
plt.scatter([each[0] for each in X], [each[1] for each in X], \

label="Target Data")
plt.title("Target Data and Selected Data")
plt.xlabel("Dimension 1")
plt.ylabel("Dimension 2")
plt.legend()
plt.show()

The above code will print the KL divergence at each iteration and produce the plots in Figure 4.

A complex example using the quantization-explosion technique on big data with Spark:

from GIO import GIOKL
import jax.numpy as jnp
import matplotlib.pyplot as plt
import pyspark.sql.functions as F

# Initialize class
gio_kl = GIOKL.GIOKL(uniform_low=-1, uniform_high=1, uniform_start_size

=20, dim=768)

# Read data
train_df, target_df = gio_kl.read_data_from_csv(PATH_TRAIN, PATH_TARGET)

# Quantize data
model_train, model_X, transform_train, transformed_X = \

gio_kl.quantize(train, target, k=1500)

X = jnp.array(model_X.clusterCenters())
train = jnp.array(model_train.clusterCenters())
data = [(i, each.tolist()) for i, each in \

enumerate(model_train.clusterCenters())]
centroids_df = gio_kl.spark.createDataFrame(data=data,\

schema=["id", "centroid"])

# Perform the Algorithm
W, kl_divs, _ = gio_kl.fit(train, X, max_iter=300, k=5, \

stop_criterion="sequential_increase_tolerance",\
v_init="jump",\
lr=0.01)

# Explode back to original data and write resulting data
full_selections_df = gio_kl.explode(W, centroids_df, transform_train)
full_selections_df.select(F.col("_c0"), F.col("_c1")).write \

.option("delimiter", "\t").csv(OUTPUT_PATH)

# Plot results
plt.plot(kl_divs)
plt.title("KL Divergence vs. Iterations")
plt.xlabel("Iterations")
plt.ylabel("KL Divergence")
plt.show()

The main function, GIOKL.fit, takes the following arguments:

• train: training data as a jnp array (jnp is almost identical to numpy) [M, D] shape

• X: target data as a jnp array [N, D] shape

• D: initial data as a jnp array, default None. Use None to initialize from 0 (uniform) or a subset of
training data

• k: kth nearest neighbor to use in the KL divergence estimation, default 5
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• max_iter: maximum iterations for the algorithm. One iteration adds one point (cluster)

• stop_criterion: a string for the stopping criterion, one of the following: 'increase',
'max_resets', 'min_difference', 'sequential_increase_tolerance', 'min_kl', 'data_size'. Default is
'increase'

◦ min_difference: the minimum difference between prior and current KL divergence for
'min_difference'stop criterion only. Default is 0
◦ resets_allowed: whether if KL divergence increases, resetting G to the full train is

allowed (allows the algorithm to pick duplicates). Must be set to true if the stop criterion is
'max_resets'. Default is False
◦ max_resets: the number of resets allowed for the 'max_resets' stop criterion only (a reset

resets G to the full train set and allows the algorithm to pick duplicates). Default is 2
◦ max_data_size: the maximum size of data to be selected for the 'data_size' stop criterion

only, as a percentage (of total data) between 0 and 1. Default is 1
◦ min_kl: the minimum kl divergence for the 'min_kl'stop criterion only. Default is 0
◦ max_sequential_increases: the maximum number of sequential KL divergence

increases for the 'sequential_increase_tolerance' stop criterion only. Default is 3

• random_init_pct: the percent of training data to initialize the algorithm from. Default is 0

• random_restart_prob: probability at any given iteration to extend the gradient descent
iterations by 3x, to find potentially better extrema. Higher values come at the cost of efficiency.
Default is 0

• scale_factor: factor to scale the gradient by, or 'auto'. Default is 'auto', which is recommended

• v_init: how to initialize v in gradients descent, one of the following: 'mean', 'prev_opt', 'jump'.
Default is 'mean'

• grad_desc_iter: the number of iterations to use in gradient descent. Default is 50

• discard_nearest_for_xy: discard nearest in the xy calculation of KL divergence, for use
when X and the train set are the same, comes at the cost of efficiency. Default is False

• normalize: Whether to normalize the uniform start values. Use when the values of X and Train
are normalized, as when using embeddings generated by MPNet or MiniLM, for example. Default
is True

• lr: Learning rate for gradient descent. Default is 0.01

B.2 STOPPING CRITERIA

We discuss several possible stopping criteria implemented in the code package and outline the pros
and cons of each.

• Strict: The strictest stopping criterion (stopping_criterion="increase") is to stop
immediately when the KL divergence increases from the previous value. This stopping criterion
makes the most theoretical sense, as a KL divergence increase indicates the point being added
does not add any information about the target X. This is the criterion we use for our text
experiments. In practice however, it may be wise to allow some tolerance of KL divergence
increase, which we discuss under the Sequential Increase Tolerance item.

• Convergence Tolerance: Closely related to the strictest stopping criterion is to specify a
tolerance of the difference between the prior and current KL divergence and terminate when
the difference falls below this tolerance (stopping_criterion="min_difference").
The tolerance is similar to tolerance arguments for gradient descent algorithms and is designed
to heuristically identify when the algorithm has converged and is no longer decreasing by more
than the specified amount.

• Minimum KL Divergence: The algorithm can terminate when it reaches a pre-determined KL
divergence (stopping_criterion="min_kl"). In practice, however, it may be difficult
to know beforehand what a good value of KL divergence may be, particularly in high dimensions.

• Maximum Data Size: The algorithm can terminate when it reaches a certain data size. This
is a particularly useful stopping criterion when data size/resource constraints are the primary
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reason for data selection (stopping_criterion="max_data_size"). However, as it
does not use intrinsic properties of the data that was selected (e.g. Kl divergence), it is the least
theoretically-motivated stopping criterion. We use this stopping criterion for the FashionMNIST
task in Section 4.4 (see Appendix C.5 for more details)

• Sequential Increase Tolerance: Instead of stopping when the KL divergence increases as in
the strict criterion, we can allow the algorithm a certain amount of sequential increases in KL
divergence before terminated. For example, a value of 3 would tell the algorithm to terminate
after 3 consecutive points added each increased the KL divergence. If the KL divergence
increases, then decreases again, the algorithm can continue. This criterion can allow the
algorithm to attain better minima. Primarily, the space is non-convex, and allowing temporary
increases in KL divergence can enable the algorithm to get over certain "humps" and descend
into more ideal space. However, it could potentially lead to divergence in KL divergence, and
also add many suboptimal points if KL divergence increases happen frequently or the tolerance
is set too high.

GIO restricts points chosen to only be unique points. However, in some cases, allowing the algorithm
to choose duplicate points can be beneficial. Intuitively, this would allow the algorithm to weight
points in certain areas of the space it feels are most important. In practice, we can let the algorithm
run until it reaches the chosen stopping criterion, then reset G and allow the algorithm to pick again.
We use this concept in our spelling correction experiments. In the code package, these options are
given by the arguments resets_allowed (True or False) and max_resets, which specifies
how many resets are allowed until full termination.

B.3 INITIAL V IN GRADIENT DESCENT

We discuss the initial value of v in the gradient descent implemented in the code package and outline
the pros and cons of each.

• Mean: The simplest initialization for v0 is to set it equal to the mean of the target X at each
iteration of GIO (v_init="mean"). This is motivated by the fact that the optimal vopt lies
somewhere in the space of X , and taking the mean will make v0 close to X and is a good
place to start searching. In unimodal symmetric distributions, the mean will essentially be
the optimal point to add. In multimodal distributions, the mean provides a neutral starting
point from gradient descent by which it can choose which mode to strike out for, based on the
gradient. However, particularly in high dimensions, the mean may be far from the optimal point.
Additionally, in scenarios where the modes are far apart and the distribution (and therefore the
mean) is skewed to one section, starting from the skewed mean can miss the other sections of
the space.

• Previous Optimal Point: We can also start v0 = vopt, the previous optimal point found by
gradient descent (v_init="prev_opt"). This is motivated by the fact that adding a new
point is unlikely to alter the distribution much, and therefore the next optimal point is likely close
to the previous optimal point. This is the setting we use in our text tasks. However in multimodal
distributions with modes that are far apart, this may settle for only one or a few modes and not
explore the rest of the space, as we are biasing the gradient descent to already-explored areas of
the space. At the first iteration we can start from the mean.

• Random Jump: Instead of a deterministic starting point, we can set v0 to a random value from
the target X at each point in the iteration. This setting will explore various parts of the space, and
algorithms better suited to non-convex spaces (e.g. particle swarm optimization (Kennedy and
Eberhart, 1995)) also utilize stochastic methods as an instrument to achieve better convergence.
Therefore, this setting can yield more diverse values and potentially better optima, with the risk
of not being able to fully explore a particular area of the space. We use this technique in the
FashionMNIST task, as in that task we know that the 10 classes of images will be multimodally
distributed and the modes relatively delineated from each other, a setup which could cause issues
with the previous two settings.

A combination of the methods, and additional methods, could perform even better and we leave this
exploration to future work.
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Figure 5: Visualization of quantization consistency. Left to right: Original data and kernel density-
estimated PDF, Quantized data and kernel density-estimated PDF. The distributions are very close
between the quantized space and original space.

C EXPERIMENTS

We provide the details of our experiments. All code to replicate experiments is included in the github
repository (https://github.com/daeveraert/gradient-information-optimization), see Appendix B for
details on usage.

C.1 ANALYTIC CHECKS

We provide the sample code files to run the analytic checks in our code package at the path gradient-
information-optimization/experiments/checks/:

• Self-Consistency: self_consistency.py

• Negative-Consistency: negative_consistency.py

• Quantization-Consistency: quantization_consistency.py

None of these code files require arguments, usage is python FILE.py. Figure 5 shows a visual-
ization of the quantization consistency by plotting the estimated probability density functions of the
original and quantized space. Figure 4 shows a visualization of self consistency by plotting the target
and selected data.

C.2 WMT14

This experiment aims to demonstrate using GIO on a well-known dataset with a well-known setup,
and shows GIO can achieve similar and even superior performance with significantly less data. See
Section 4.1 for details on the results of this experiment. We follow Fairseq’s recommendations for
replicating Vaswani et al. (2017) setup.

C.2.1 DATA

We load and preprocess the data using https://github.com/facebookresearch/
fairseq/blob/main/examples/translation/prepare-wmt14en2de.sh for
EN-DE and https://github.com/facebookresearch/fairseq/blob/main/
examples/translation/prepare-wmt14en2fr.sh for EN-FR. These scripts handle
downloading, preprocessing, tokenizing and preparing the train, valid and test data. For our
experiments, we combine the train and valid data from this to use in all of ours, competitive methods
and random setups, and recut new validation sets for each experiment.

For the dev sets as our target X , we collect the dev sets for EN-FR and EN-DE from
WMT08-WMT13 from the provided official dev sets of https://www.statmt.org/wmt14/
translation-task.html and preprocess them using the same techniques and tokenizers given
by the Fairseq processing scripts above. We then shuffle and cut 3k from the resulting combined dev
sets to be used as our Dev Test set, and keep the remaining 12k as our target X .
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C.2.2 GIO

We first generate embeddings for the train and dev sets using MPNet-Base-V2 (Song et al., 2020) on
the input side of the data, using the following code from the code package:
from GIO import generate_text_embeddings
gen_embeds = generate_text_embeddings.GenerateEmbeddings("all-mpnet-base-

v2")
gen_embeds.generate_embeddings(PATH_2_INPUT_SIDE_OF_DATA, OUTPUT_PATH)

We then paste the original "input \t output" with the embeddings file to create a file of the format "input
\t output \t embedding" and use this as our CSV in GIO. We used AWS p3dn.24xlarge machines to
generate the embeddings, which have 8 NVIDIA Tesla V100 GPUs and as a benchmark, takes roughly
4 hours to generate 15M embeddings (therefore approx. 8 hours for EN-FR and approx. 1 hour for
EN-DE). This process is highly parallelizable for speed, and additionally, more lightweight models
like MiniLM (which takes roughly half the time) and even non-neural methods like Sentence2Vec
can be used under speed and resource constraints. Across all initializations, we use the following
parameters:

• K: 1500
• k in D̂KL: 5
• Max iterations: 1000
• Stopping Criterion: increase
• v_init: prev_opt
• Resets Allowed: false
• Iterations in Gradient Descent: 50
• Gradient Descent Learning Rate: 0.01

For 0% initialization, we use a uniform start of 20 points, spread from -1 to 1 with 768 dimensions. For
25% and 50% initialization, we start with a random subsample of 375 and 750 clusters respectively,
out of the 1500. The following is the quantization and main method signatures for 0% initialization:
...
# Initialize class
gio_kl = GIOKL.GIOKL()

# Read data
train, target = gio_kl.read_data_from_csv(PATH_TRAIN, PATH_TARGET)

# Quantize data
model_train, model_X, transform_train, transformed_X = \

gio_kl.quantize(train, target, k=1500)

X = jnp.array(model_X.clusterCenters())
train = jnp.array(model_train.clusterCenters())
data = [(i, each.tolist()) for i, each in \

enumerate(model_train.clusterCenters())]
centroids_df = gio_kl.spark.createDataFrame(data=data,\

schema=["id", "centroid"])

# Perform the Algorithm
W, kl_divs, _ = gio_kl.fit(train, X, max_iter=1000, k=5, \

stop_criterion="increase",\
v_init="prev_opt",\
resets_allowed=False, grad_desc_iter=50,\
lr=0.01)

W = W[20:] # Remove uniform start

# Explode back to original data and write resulting data
full_selections_df = gio_kl.explode(W, transform_train, centroids_df)
full_selections_df.select(F.col("_c0"), F.col("_c1")).write \

.option("delimiter", "\t").csv(OUTPUT_PATH)
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Figure 6: GIO surpasses the KL divergence of the most competitive baseline, BM25, at around 80
iterations and ends significantly lower

For 0% initialization, remove the variable D (both from when it is assigned to a random sample and
from the main fit function call). For 50% initialization, increase 375 to 750.

We performed this algorithm in a Spark environment on a cluster of 30 AWS r4.8xlarge CPU-only
instances. For EN-DE, the algorithm took 40min end-to-end. For EN-FR, the algorithm took 50min
end-to-end. We saved the initial K means quantized data for reuse in the different initialization states
and during experimentation, which saves 10min for DE and 20min for FR on subsequent runs of the
algorithm. In Figure 6, we show the KL divergence graphs over the iterations for EN-FR and EN-DE
at 0% initialization, and include lines indicating the divergence for BM25, Pruning, Submodular
Optimization, Random and Full baselines.

C.2.3 BASELINES

For the random baselines, after running GIO, we take a random sample of the same size as that chosen
by GIO. For BM25, we also select sample of the same size as that chosen by GIO. Yao et al. (2022)
provide a Github implementation of their data selection technique at https://github.com/
yaoxingcheng/TLM (Yao and Zhang, 2021). We use the data_selection.py, for example:

python src/data_selection.py \
--index_name example_bm25_source \
--source_file SOURCE.csv \
--target_file TARGET.csv \
--output_dir ./example_data \
--output_name selected.csv \
--top_k K

The source file is the (input only) data we can select from, G, and the target file is the (input only) X ,
in this case the collected dev sets. Top K is the parameter that tells BM25 how much data to retrieve
for each data point in X . Since BM25 can output a score of 0 and discard data, we cannot calculate
K as K = |G|

|X| , and typically, we need to overestimate K to collect enough data to match the desired
size. We also need to pre and post process our data to conform to their code, which we address and
provide scripts for.

Preproccessing. Their implementation requires a CSV with columns text,id, but data given
to us with the WMT14 scripts is in plain text format with no ID. We provide a script
at gradient-information-optimization/experiments/bm25_scripts/make_
csv.py which transforms a single-column file of inputs into the format needed by the Yao et al.
(2022) code:

python make_csv.py INPUT_FILE TO_OUTPUT_FILE

Postprocessing. Their implementation will output a CSV with the format chosen_data,input
ID,rank. The rank is the value of "K" for which this data was retrieved. For example, if
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this was the 5th most relevant to a data point, then the rank will read 5. As addressed, we
need to overestimate K to collect enough samples. Inevitably, we end up with too many sam-
ples, and need to trim down the data by removing the least relevant retrievals. We provide
a script at gradient-information-optimization/experiments/bm25_scripts/
get_less.py which takes in the file output by their code, an output path, and a value of rank to
filter; we keep the values under the specified rank value, and discard any over. This is a trial-and-error
process, repeatedly trying different values of K until we get the desired data size. Usage is:

python get_less.py INPUT_FILE TO_OUTPUT_FILE K_FILTER_VALUE

Finally, we need to recover the input-output pairs, as the output file only has input-side data.
We provide a script at gradient-information-optimization/experiments/bm25_
scripts/get_pairs.py that retrieves the pairs from input side given the input data and original
data of the format input \t output:

python get_pairs.py ORIGINAL_DATA INPUT_FILE TO_OUTPUT_FILE

For submodular optimization, we use the same cluster centers as GIO, the LazyGreedy optimizer and
facility location mutual information function, and run to have the same data size as the GIO-selected
data. We provide a script at gradient-information-optimization/experiments/
submod/submod.py which takes three inputs and an output argument. The first input should
be a parquet file with one column of array<double> for the data and the second input should
be the same for the target X . The third input should be the threshold data size, determined by
Desired Data Size

Total Data Size ·Cluster Size, and the output should also be a parquet file with a column array<double>.

python submod.py DATA_CLUSTERS X_CLUSTERS THRESHOLD TO_OUTPUT_FOLDER

For self-pruning, we use the same cluster centers as GIO. We adapt their tech-
nique in gradient-information-optimization/experiments/pruning/prune.
py which takes three inputs and one output argument. The first input should be a parquet file
of the cluster centers and the second input should be the transformed dataframe from Spark’s KMeans.
The third input should be the threshold, which is calculated by the formula Desired Data Size

Cluster Size . The output
should be output folder.

python prune.py INPUT_CLUSTERS TRANSFORMED_DF THRESHOLD TO_OUTPUT_FOLDER

C.2.4 TRAINING

We preprocess and train using Fairseq (Ott et al., 2019). We cut 3k pairs from the
data for validation and keep the rest as training data. We use the subword-nmt pack-
age to apply BPE Sennrich et al. (2016); Sennrich (2021) using the codes already com-
puted and provided by the Fairseq scripts to download data (Appendix C.2.1). We then use
fairseq-preprocess to preprocess the data into Fairseq-readable format. We then follow
the Vaswani et al. (2017) setup and train for 300k iterations, saving every 15k iterations. We
use Fairseq’s pre-built transformer_vaswani_wmt_en_fr_big architecure for EN-FR and
transformer_vaswani_wmt_en_fr_big for EN-DE. The pre-built architectures preset es-
sentially all of the model parameters described by Vaswani et al. (2017). We followed the recommen-
dation in https://github.com/facebookresearch/fairseq/issues/346 to set the
LR at 0.0007 for close replication of Vaswani et al. (2017) with the Fairseq framework. We varied
the max_tokens parameter to ensure approximately 25k tokens per batch, as recommended in the
paper (Vaswani et al., 2017).

EN-FR CLI

$(which fairseq-train) DATA_PREPROCESSED \
--arch transformer_vaswani_wmt_en_fr_big \
--share-all-embeddings \
--optimizer adam --lr 0.0007 \
--dropout 0.1 \
--max-tokens 3512 \
--lr-scheduler inverse_sqrt --weight-decay 0.0 \
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--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--fp16 --save-dir SAVE_DIR --save-interval-updates 15000 \
--max-update 300000 --clip-norm 0.0 --warmup-updates 4000 \
--warmup-init-lr 1e-07 --min-lr 1e-09 --adam-betas ’(0.9,0.98)’

EN-DE CLI

$(which fairseq-train) DATA_PREPROCESSED \
--arch transformer_vaswani_wmt_en_de_big \
--share-all-embeddings \
--optimizer adam --lr 0.0007 \
--dropout 0.3 \
--max-tokens 3512 \
--lr-scheduler inverse_sqrt --weight-decay 0.0 \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--fp16 --save-dir SAVE_DIR --save-interval-updates 15000 \
--max-update 300000 --clip-norm 0.0 --warmup-updates 4000 \
--warmup-init-lr 1e-07 --min-lr 1e-09 --adam-betas ’(0.9,0.98)’

We trained on one AWS p3dn.24xlarge, which has 8 NVIDIA Tesla V100 GPUs and takes about 10
hours to train the full 300k iterations.

C.2.5 TESTING

We use the script provided by Fairseq moderators in https://gist.github.com/myleott/
da0ea3ce8ee7582b034b9711698d5c16 (Ott, 2019) for the evaluation process. In order to
generate the predictions on the preprocessed test data from the best model by validation loss, we use
the checkpoint_best.pt model produced by Fairseq and the command:
fairseq-generate TEST_DATA --path MODEL --beam 4 --lenpen 0.6 \

--remove-bpe > outfile

The outfile then gets fed into the script provided by the Fairseq moderators to give the BLEU score.

C.3 ROBUSTNESS

The robustness experiments follow a nearly identical setup to the above WMT14 setup. We outline
the differences:

MiniLM. To use MiniLM to generate the embeddings for GIO, we replace
"all-mpnet-base-v2" with "all-MiniLM-L12-v1" in the GenerateEmbeddings
class instantiation:
from GIO import generate_text_embeddings as gte
gen_embeds = gte.GenerateEmbeddings("all-MiniLM-L12-v1")
gen_embeds.generate_embeddings(PATH_2_INPUT_SIDE_OF_DATA, OUTPUT_PATH)

MiniLM takes roughly half the time than MPNet to generate embeddings. On an AWS p3dn.24xlarge
machine with 8 NVIDIA Tesla V100 GPUs, it takes roughly 30min for EN-DE and roughly 4 hours
for EN-FR. In addition, we alter the instantiation of the GIOKL class to specify dimensions of 384:
...
gio_kl = GIOKL.GIOKL(dim=384)
...

All else stays the same as the WMT14 setup.

K=1000 and K=3000. For the experiments altering the value of K, we reuse all the embeddings
generated with MPNet for the main experiments. The only difference is to the quantize method
signature with the difference values of K:
...
model_train , model_X , transformed_train , transformed_X = \

gio_kl.quantize(train, target , k=1000) # Or k=3000
...
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All else stays the same as the WMT14 setup.

When computing the variance from the base setup for data size, we omit the K=1000 data size since
(as covered in Section 4.2) we need to artificially subsample to keep the selected data size the same
as in the base setup. This is due to the coarser grain of K=1000 selecting more data. Interestingly,
K=3000 and MiniLM selects roughly the same data as the base setup.

C.4 SPELLER

This experiment aims to demonstrate using GIO on a mix of high and low quality data, and aims
to show GIO selects the high quality data. We use the spelling correction domain for this problem,
as the process of noising training data to create training pairs makes it easy to create high and low
quality synthetic data by varying the noise. We determine the % of high quality data selected by each
method, and also train a model and show spelling performance of our method, random subset, BM25,
pruning and submodular optimization and show the results of GIO-selected data are better than that
trained on the full mix of low and high quality data Table 6. We generally follow the recent work of
Jayanthi et al. (2020) for this problem.

C.4.1 DATA

Jayanthi et al. (2020) use the 1 Billion Word Corpus and extract roughly 1M pairs for creating
synthetic data. In order to show our method at scale, we download the full 1 Billion Word Corpus
from https://www.statmt.org/lm-benchmark/ and extract 15M data. We add in the 1M
pairs used by Jayanthi et al. (2020) and deduplicate on label, which results in roughly 14.7M data.
When we have the labels, we need to noise them to create the inputs. Jayanthi et al. (2020) implement
and use 3 different synthetic data noising methods: random, word and prob. They show "prob" is
the best method, followed by "word" and then "random". We use the "prob" method on half the
data to create our high quality input-output pairs, and use the "word" method on the remaining half.
The "word" method takes in a probability that a word will be replaced by a misspelled version of it
contained in a lookup table, if it exists. Jayanthi et al. (2020) use a probability of 20%, but to make
very low quality data, we use a high probability of 70%. They provide a Github implementation
of their methods and data at https://github.com/neuspell/neuspell (Jayanthi, 2021),
which we use to noise the data accordingly. We give an example of the quality difference in Table 5.

Table 5: Right: High Quality "Prob" data. Left: Low Quality "Word" data. High quality data
represents reasonable spelling mistakes, low quality data is barely intelligible. GIO selects 73% from
the high quality data.

High Quality "Prob" Low Quality "Word"
It is still a big poblem though It ls sttel a beig probelma thouigh
It apoeared they were not serousay injured , the
BBC said

It appered thiy whir nt serioulsly ingerd , whe
BBC sayd

Were they aarried on Feb Were thwey marreid ong Feb
More of us are tuning in to tha irwaves than ever More th uus spe tuning inf tome vthe airwaves

thanx ef

The high quality "prob" data is more reflective of real spelling mistakes, and in fact the "prob" method
uses a context matrix to make applicable misspellings in context. The "word" method at 70%, on the
other hand, severely mangles the sentences to the point where we barely make out what they mean,
making for very low quality data to train with. After generating half with prob and half with word, we
recombine and shuffle to create our training data. For our target X set, Jayanthi et al. (2020) provide
40k pairs of real mistakes by humans taken from the BEA grammar correction corpus (Bryant et al.,
2019), which we use as our ideal target X .

C.4.2 GIO

We first generate embeddings for the train and target sets using MPNet-Base-V2 (Song et al., 2020)
on the input side of the data; see Appendix C.2 for an example, we use the same process as in our
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Figure 7: Resetting G enables the algorithm to make further progress reducing KL divergence.

WMT experiments. On an AWS p3dn.24xlarge machine with 8 NVIDIA Tesla V100 GPUs, it takes
about 4 hours to generate the embeddings for the 15M data. As we mention in Section 4.3, we
experiment with a new scheme. Instead of stopping on an increase, we allow the algorithm to reset G
once when the KL divergence increases, and pick again until the divergence increases a second time.
We hope this will allow the algorithm to pick not only high quality data, but emphasize (by picking
duplicates) the points that are also the most relevant for X . We use the following parameters in the
algorithm:

• K: 1500
• k in D̂KL: 5
• Max iterations: 1000
• Stopping Criterion: increase
• v_init: prev_opt
• Resets Allowed: True
• Maximum Resets: 1
• Iterations in Gradient Descent: 50
• Gradient Descent Learning Rate: 0.01

The method is as follows:

...
# Initialize class
gio_kl = GIOKL.GIOKL()

# Read data
train, target = gio_kl.read_data_from_csv(PATH_TRAIN, PATH_TARGET)

# Quantize data
model_train, model_X, transform_train, transformed_X = \

gio_kl.quantize(train, target, k=1500)

X = jnp.array(model_X.clusterCenters())
train = jnp.array(model_train.clusterCenters())
data = [(i, each.tolist()) for i, each in \

enumerate(model_train.clusterCenters())]
centroids_df = gio_kl.spark.createDataFrame(data=data,\

schema=["id", "centroid"])

# Perform the Algorithm
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W, kl_divs, _ = gio_kl.fit(train, X, max_iter=1000, k=5, \
stop_criterion="increase",\
resets_allowed=True, max_resets=1, \
v_init="prev_opt", grad_desc_iter=50,\
lr=0.01)

W = W[20:] # Remove uniform start

# Explode back to original data and write resulting data
full_selections_df = gio_kl.explode(W, transform_train, centroids_df)
full_selections_df.select(F.col("_c0"), F.col("_c1")).write \

.option("delimiter", "\t").csv(OUTPUT_PATH)

We performed this algorithm in the same Spark environment on a cluster of 30 AWS r4.8xlarge
CPU-only instances, which took around 1h15m to complete. In Figure 7, we show the KL divergence
graphs over the iterations and include lines indicating the divergence for BM25, Pruning, Submodular
Optimization, Random and Full baselines. We mark where the algorithm reset G; we can see the KL
divergence further decreases.

C.4.3 BASELINES

For the random baseline, after running GIO, we take a random sample of the same size as that chosen
by GIO. For BM25, submodular optimization and pruning, please see Appendix C.2.3, as we follow
exactly the same process as in our WMT experiments, using the same scripts but on different data.
We also train a model on the full data for comparison.

C.4.4 TRAINING

We preprocess and train using Fairseq (Ott et al., 2019). We cut 3k pairs from the data for validation
and keep the rest as training data. We use the subword-nmt package (Sennrich, 2021) to learn and
apply a 40k BPE from the combined source and target data. We then use fairseq-preprocess
to preprocess the data into Fairseq-readable format. We train with a seq2seq setup proposed by Zhou
et al. (2019) that learns to map input (noised) to output labels (regular, no noise). We use the BART
base architecture (Lewis et al., 2020) as our seq2seq model, since the denoising objective they used
when developing BART is naturally suited to the spelling correction task. We train for 50k iterations
and pick the best model checkpoint by validation loss, saving every 5000 iterations. We use 4096
max tokens per batch, the Adam (Kingma and Ba, 2015) optimizer with LR of 0.0001, and generally
keep the rest of the settings the same as in the BART paper (Lewis et al., 2020). For our method and
all baselines, we train twice and take the average.

Speller CLI

$(which fairseq-train) DATA_PREPROCESSED \
--arch bart_base \
--share-all-embeddings \
--optimizer adam --lr 0.0001 \
--dropout 0.1 \
--max-tokens 4096 \
--lr-scheduler inverse_sqrt \
--fp16 --save-dir SAVE_DIR --save-interval-updates 5000 \
--max-update 50000 --clip-norm 0.0 --warmup-updates 4000 \
--warmup-init-lr 1e-07 --min-lr 1e-09 --adam-betas ’(0.9,0.98)’

We trained on one AWS p3dn.24xlarge, which has 8 NVIDIA Tesla V100 GPUs and takes about 2
hours to train the full 50k iterations.

C.4.5 TESTING

As test data, Jayanthi et al. (2020) provide several sets. We cannot use the BEA 60k they provide
as we used 40k from this as our target X . Instead, Jayanthi et al. (2020) provide an even more
challenging set of 4660 intentionally ambiguous pairs curated from BEA60k (the 4660 pairs have
no overlap with our X), and we use this test set. We tokenize and preprocess this test set with
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Table 6: Spelling correction results. Training data size, accuracy/correction rate/F1 scores, % of high
quality data and KL Divergence of the full data, the GIO-selected data, competitive methods and
random subset. Bold is the best score overall. GIO selects 73% high quality data, outperforms all
other methods and sets a new state-of-the-art on spelling correction.

System Train Size Accuracy Correction Rate F1 %High Quality D̂KL

Ours 95.9 99.6 97.7 73% 224
BM25 95.6 99.3 97.4 55% 264
Pruning 3.6M 95.7 99.6 97.6 54% 241
Submod. 95.7 99.5 97.6 59% 245
Random 95.9 99.4 97.6 50% 284

Full 14.7M 95.7 99.5 97.6 50% 280

the same codes as our training data. For metrics, Jayanthi et al. (2020) report word-level accuracy
and word-level correction rate. Word-level accuracy is the fraction of words that the model gets
correct, and word-level correction rate is the fraction of words that should be corrected that do get
corrected. We also report the F1 score as a balance between these two metrics. In theory it is possible
to arbitrarily correct every single word randomly and get 100% correction rate but 0% accuracy, or
keep every word the same and get near 100% accuracy but 0% correction rate.

An additional complexity arises with our particular use of a seq2seq framework. The models of
Jayanthi et al. (2020) use a classification objective to classify each input word, which means the
output and input sequence will mandatorily have the same number of words. However, this property
is not necessarily guaranteed for a seq2seq setup with subword tokenization, and after inferencing
our models on test data we see a small number (roughly 1%) where the input and output number of
words do not match. For fairness, when evaluating the models we remove the few sequences that
have a misalignment from the evaluation. In order to generate the predictions on the preprocessed
test data from the best model by validation loss, we use the checkpoint_best.pt model produced by
Fairseq and the command:
fairseq-generate TEST_DATA --path MODEL --beam 1 \

--remove-bpe > outfile
grep ^H outfile | cut -f3- > hypotheses
grep ^T outfile | cut -f2- > targets
grep ^S outfile | cut -f2- > sources

We then feed the hypotheses, targets and sources into a script we provide at
gradient-information-optimization/experiments/speller_scripts/
calculate_scores.py which computes the word-level accuracy and correction rate.

Results GIO outperforms random, all comparative methods, and the full model. GIO outperforms
all comparative baselines on accuracy, correction rate and overall F1, and matches random baseline
on accuracy and outperforms on correction rate and overall F1. It outperforms the full model by
+0.2pps for accuracy and +0.1pps for correction rate, despite using only 24% of the data. We set a
new state-of-the-art in correction rate and overall F1 score on BEA4660 over the best model reported
by Jayanthi et al. (2020) (+2.3 pps F1 and +7.1 pps correction rate, Table 2 BERT model inJayanthi
et al. (2020)). See Table 6 for details.

C.5 FASHIONMNIST

This experiment aims to demonstrate using GIO can effectively reduce the training data size under a
resource constraint without big drops in performance. We use the FashionMNIST image recognition
task (Xiao et al., 2017) to demonstrate using GIO outside language tasks. Our goal is to reduce the
train set size to 25% of the total size. Experiment results are available at Section 4.4.

C.5.1 DATA

The FashionMNIST task has 60k 28x28x1 images for training and 10k images for test-
ing. We load the images in CSV format from https://www.kaggle.com/datasets/
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zalando-research/fashionmnist (Pankaj, 2019). In our dataloader, we resize our im-
ages to 224x224 for Resnet50 using skimage’s resize function, normalize each channel, and addi-
tionally normalize the values to fall within 0 and 1. The dataloader code is available in the main
file we publish at gradient-information-optimization/experiments/fashion_
mnist/train.py. We based the dataloader code on code provided at https://www.kaggle.
com/code/pankajj/fashion-mnist-with-pytorch-93-accuracy. We use the vec-
tor format of the images themselves in GIO. G is the training set, but in this case, X is also the
training set. Since our goal is to reduce the training set size, we want to select a subset of G that
contains the most information about the whole set, so the target set is the whole set itself.

C.5.2 GIO

In order to read the images using the code package, we do a simple processing
to make the image CSV into a string representing an array, the script is available
at gradient-information-optimization/experiments/fashion_mnist/csv_
to_image.py; first argument is input, second is output. We also normalize each channel and norm
each image. For the algorithm itself, we stop at 25% data size, and use K=1000. With this problem,
we know that there are 10 classes and the images are likely to be clustered relatively distinctly, by
class. Therefore, for the initial v in gradient descent, we choose the random jump scheme, as we will
therefore be able to cover more of the space. We use the following parameters in the algorithm:

• K: 1000
• k in D̂KL: 5
• Max iterations: 300
• Stopping Criterion: data_size
• Maximum Data Size: 0.25
• v_init: jump
• Iterations in Gradient Descent: 50
• Gradient Descent Learning Rate: 0.01

The method is as follows:

...
# Initialize class
gio_kl = GIOKL.GIOKL()

# Read data
train, target = gio_kl.read_data_from_csv(PATH_TRAIN, PATH_TARGET)

# Quantize data
model_train, model_X, transform_train, transformed_X = \

gio_kl.quantize(train, target, k=1000)

X = jnp.array(model_X.clusterCenters())
train = jnp.array(model_train.clusterCenters())
data = [(i, each.tolist()) for i, each in \

enumerate(model_train.clusterCenters())]
centroids_df = gio_kl.spark.createDataFrame(data=data,\

schema=["id", "centroid"])

# Perform the Algorithm
W, kl_divs, _ = gio_kl.fit(train, X, max_iter=300, k=5, \

stop_criterion="data_size",\
max_data_size=0.25, v_init="jump", \
resets_allowed=False, grad_desc_iter=50,\
lr=0.01)

W = W[20:] # Remove uniform start

# Explode back to original data and write resulting data
full_selections_df = gio_kl.explode(W, transform_train, centroids_df)
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Figure 8: GIO approaches the KL divergence of the full data

full_selections_df.select(F.col("_c0"), F.col("_c1")).write \
.option("delimiter", "\t").csv(OUTPUT_PATH)

We performed this algorithm in the same Spark environment on a cluster of 30 AWS r4.8xlarge
CPU-only instances, which took around 20m to complete. We show the KL divergence over the
iterations. In this case, the minimum KL divergence is not 0, but 739. We explain why the KL
divergence is not 0 in Appendix A.1. The graph of KL divergence is shown in Figure 8.

Baselines. For the random baseline, after running GIO, we take a random sample of the same size
as that chosen by GIO. We also train a model on full data for comparison, but the goal in this setup
is not to match or exceed the full model, but minimize the drop in performance under the resource
constraint.

C.5.3 TRAINING AND TESTING

We finetune a pretrained Resnet50 model with the data. For GIO and random, we cut 1,700
as validation and leave the remaining 15,000 (25%) as our training data. For the full model,
we follow this percentage and cut 3,700 as validation and keep 56,300 as the training data. In
order to get the images back into the correct CSV format for the dataloader from a string-array
format, we provide a script at gradient-information-optimization/experiments/
fashion_mnist/image_to_csv.py; first argument is input, second is output. We edit the
architecture of the Resnet50 model on the input layer to take 1 channel instead of 3, and edit the
output layer to output to 10 classes. We finetune for 5 epochs with Adam and a small learning
rate of 0.00005 so as not to overwrite the existing weights in the pretrained model. We use batch
size 100 and take the best checkpoint by validation loss and report the test score on this. The
code to read and train a model is available at gradient-information-optimization/
experiments/fashion_mnist/train.py. We based this training script on code provided
at https://github.com/kjamithash/Pytorch_DeepLearning_Experiments/
blob/master/FashionMNIST_ResNet_TransferLearning.ipynb (J, 2020). Usage:

python train.py TRAIN_CSV TEST_CSV VALID_CSV

For testing, the above code will output the test accuracy at each epoch. We train on one AWS
p3dn.24xlarge machine, which has 8 NVIDIA Tesla V100 GPUs and takes around 15min to train.
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Figure 9: Left: tSNE of GIO, Right: tSNE of Random. GIO is more separable and dense in each
class, indicating GIO chooses more core data and fewer outliers

Figure 10: Left: Chosen "Bag" images of GIO, Right: Chosen "Bag" images of Random. Rectangular
shaped bags form the core of the full bag class (by visual inspection). The bags chosen by GIO are
consistent and similar, and are all rectangular in shape and similar sizes. Random bags, however, also
include a variety of more uncommon outlier shapes, including a purse and long, thin bag. Under a
data constraint, it is more important to get the core rectangular bag correct, as GIO chooses.

D FURTHER FASHIONMNIST

D.1 GIO KL DIVERGENCE VS. RANDOM KL DIVERGENCE

It is interesting that despite achieving a higher KL divergence than the random baseline, GIO performs
better. We hypothesize that this is due to the fact that GIO is optimizing explicitly for choosing
images that add the most information about the whole, i.e., discarding outlier data and focusing on
"core" data under the size constraint, which leads to higher KL divergence than random but better
performance, as the model will be less confused. For example, in the "bag" category, conceivably a
good portion of the bags look very similar, but there is also a portion that are more strange. Random
would choose both the core portion of bags that looks similar but also include some of the stranger
examples. GIO, on the other hand, will focus almost exclusively on choosing the core portion, as
that is the set that adds the most information, or best represents, the bag category overall. In short,
outliers are less important to know under a size constraint, and the core is more important to get right,
which GIO chooses. We validate this hypothesis in three ways.

2D Embeddings. First, we perform a tSNE dimensionality reduction on the random set and GIO set
in Figure 9. The diagrams show that GIO selects more core, densely clustered data and leads to better
separability between classes. It does not choose much outlier data for each class that is spread around
the space and could confuse the model. Random, on the other hand, is generally less separable and
more sparse, and includes potentially confusing points in each class that are spread around the space
and overlapping with other classes, which could confuse the model. In short, GIO-selected data is
more dense and separable than random and is likely to lead to better classification performance, but
will have higher KL divergence from full data than the random data because of this effect on the
distribution.
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Table 7: Minimum Euclidean distance between the mean of each class and the closest other class
(i.e. closest neighbor). Higher is better, as it indicates the class is further apart from others and
therefore more separable. GIO is higher in 8 out of the 10 classes, indicating GIO-selected data is
more separable than random images.

Class GIO Random
0 922 962
1 1123 1044
2 604 600
3 1123 1044
4 604 600
5 1102 1005
6 723 664
7 1102 1005
8 1269 1361
9 1660 1570

Table 8: Distribution of labels per class. Despite only considering inputs, GIO also recovers the label
distribution of the target X .

Class 0 1 2 3 4 5 6 7 8 9

% of Total 8% 10.1% 10.2% 13.3% 10% 8.5% 10.9% 7.1% 11.2% 10.6%

Visualization. As an additional sanity check, we visually inspect the images chosen by GIO and
random images in Figure 10. We show the bag class as an example. GIO selects more consistent
bags that conform to each other. They are all rectangular and similar in size, and represent the core
set of bag images, as regular rectangular bags form most of the class (as determined by visualizing
samples from the full set). Random images, on the other hand, contain more strange images like
triangular bags and tote bags and are less consistent. Under a data constraint, GIO focuses on the core
rectangular bags that best represent the class and discards outliers, which leads to better performance.

Separability. Finally, we examine the separability between classes as an indicator of whether GIO
selects images that are more core and less spread/confusing. We compute the Euclidean mean for
each class and compute the minimum distance between that mean to the means of all other classes,
for GIO-selected data and random images. Table 7 shows the results, and demonstrates that GIO
classes are further away from each other in 8 out of the 10 classes. This implies GIO selects more
distinct and less confusing points, and likely explains the improved classification performance over
random images.

D.2 LABEL DISTRIBUTION

One of the core assumptions of the method is that we can utilize only the input side of data without
consideration for labels. By reconstructing an approximate X using G with only the input side, we
implicitly reconstruct the label side of X as well, and therefore there is no need to consider the labels
explicitly. We verify this assumption with FashionMNIST, as it has distinct, quantifiable labels unlike
the text generation tasks. Table 8 shows the distribution of labels recovered by GIO, and shows
that we approximately recover an even 10% for each class, which is the distribution of the full X .
Therefore, GIO recovers the distribution of labels in X implicitly, despite not including them in the
algorithm, as desired. This is not to say labels are not important in data selection. We note that for
the algorithm to work well, there should exist a quality relation between input and label. Specifically,
we require that either input and label are good quality, or input and label are bad quality. If a good
quality input maps to a wrong or bad quality label, we may recover bad labels.

34



Published as a conference paper at ICLR 2024

Figure 11: Left: KL divergence and Classification Error Rate over different data sizes. The shape of
the two curves are very similar. Right: KL divergence and Classification Error Rate. High R2 = 0.98
indicates Kl divergence can accurately predict performance.

Table 9: Performance of the model using the different datasizes chosen as the algorithm progresses.

Iterations/Data % Size Train/Valid Accuracy D̂KL

50/5% 3,000/1700 82.7% 793
100/10% 6,000/1700 88.1% 781
150/15% 9,000/1700 90.0% 775
200/20% 12,000/1700 90.6% 772
250/25% 15,000/1,700 92.1% 771

D.3 CORRELATION BETWEEN PERFORMANCE AND KL DIVERGENCE

We know that under the FashionMNIST problem setup for reducing training set size, a data size was
chosen beforehand, which in practice would represent a budget. However, beyond budget concerns,
we endeavored to find out if we could use the KL divergence to predict what a good, convergent
data size would be. Perhaps 25% is more than enough and we could do just as well with less, or
perhaps 25% is too little to get good performance, and we might want to increase our resources before
experimenting. In this setup, we know the KL divergence values at each data size (each iteration),
and we want to see whether the shape of the KL divergence curve could indicate the shape of the
performance curve at the different data sizes. We repeat the same experiment described in Section
4.4, but using 50 iterations (5% data), 100 iterations (10% data), 150 iterations (15% data) and 200
iterations (20% data). To keep the validation set at 1700, if there is not enough data left after selecting
the right train size, we supplement the set with training data points from the general set. We plot the
results of both KL divergence and performance (classification error rate) in Figure 11 and describe
the results in Table 9. In Figure 11, we additionally plot error rate as a function of KL divergence and
compute the coefficient of determination R2. We find that the shape of classification error vs. data
size and KL divergence vs. data size are very similar. Additionally, R2 = 0.98, which indicates a
high degree of correlation between KL divergence with data size and performance. Theoretically, this
implies that we can use the KL divergence to pick an ideal data size if we are under budget constraints:
where the KL divergence curve flattens, we are unlikely to receive much gain in performance from
increasing the data size further and can use that data size with the expectation of decent performance.
We only have a few datapoints to support this hypothesis, however, and we leave exploration of this
property of the algorithm to future work.
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E GUIDANCE FOR CHOOSING X, D, ALGORITHM PARAMETERS

We provide a brief note on choosing X, D and various algorithm parameters.

E.1 X

The target set must be chosen carefully, as this is the distribution the algorithm will match to. If it is
misrepresentative or biased, the chosen train set will be as well. For systems where the model may be
used in production whose values are known (e.g. on a search engine’s queries), it makes sense to pick
X as a representative sample of that production traffic and align model training distribution to that. If
the algorithm is being used to select high quality, aligned, or unbiased data, it makes sense for X to
be a carefully curated set of human-annotated data.

It is equally important to make X as broad as possible within the desired target. If X misses a portion
of the space (e.g. misses long search queries, for example), then the chosen data will also not capture
that area of the space and the resulting model will be prone to poor generalization.

E.2 D

The initialization set is versatile. It can be a set that is known to be high quality, like human-annotated
data, or it can be initialized as a random subset of G. Generally, initializing D as a random subset of
G will give better results when the data size is smaller overall (e.g. our EN-DE WMT experiment),
but matters less when the data size is large (e.g our EN-FR WMT experiment).

E.3 ALGORITHM

We have covered in B many considerations for various aspects of the algorithm, in particular the
stopping criterion. In general, we recommend trying different parameters and observing the intial
convergence of the KL Divergence, as this is cheap to do once the K Means has taken place
(we recommend saving those so it doesn’t need to be recomputed). For some tasks and data
(e.g. WMT) the convergence is smooth and strict criterion is good enough. For other tasks (e.g.
FashionMNIST) the convergence has some ups and downs and it serves to choose another criterion
like max_sequential_increases or simply terminating the algorithm when the KL divergence bottoms
out. If the algorithm diverges, we recommend increasing the uniform start size as well as decreasing
the learning rate if it is set high.

For the v_init parameter, "mean" will reset the algorithm to the mean of X to start gradient descent
every time. We recommend setting a higher learning rate with this parameter, as this enables the
algorithm to reach different points in the space (since it starts from the same point every time). This
value is good for when the target distribution may be tightly clustered together (e.g. WMT). Similarly,
"prev_opt" will start from the previous optimal point and is suitable for tightly clustered distributions
where we expect the new optimal point not to be far from the previous one. We recommend a
medium learning rate for this value. On the other hand, using the "jump" value is more suitable for
exploring the space and adding diversity, particularly for multimodal or spread-out distributions (e.g.
FashionMNIST). We recommend a medium learning rate with this value as well.

As for resets like in the spelling correction experiments, we recommend enabling this when it is
believed that having multiple copies of the same data point is useful for learning. This may be when
we want to weight certain datapoints or regions of the space more (which will let the algorithm choose
on it’s own how best to weight the space).
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