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ABSTRACT

Multi-modal datasets, like those involving images, often miss the detailed descrip-
tions that properly capture the rich information encoded in each item. This makes
answering complex natural language queries a major challenge in this domain.
In particular, unlike the traditional nearest neighbor search, where the tuples and
the query are represented as points in a single metric space, these settings involve
queries and tuples embedded in fundamentally different spaces, making the tra-
ditional query answering methods inapplicable. Existing literature addresses this
challenge for image datasets through vector representations jointly trained on nat-
ural language and images. This technique, however, underperforms for complex
queries due to various reasons. This paper takes a step towards addressing this
challenge by introducing a Generative-based Monte Carlo method that utilizes
foundation models to generate synthetic samples that capture the complexity of
the natural language query and represent it in the same metric space as the multi-
modal data. Following this method, we propose NEEDLE, a database for image
data retrieval. Instead of relying on contrastive learning or metadata-searching
approaches, our system is based on synthetic data generation to capture the com-
plexities of natural language queries. Our system is open-source and ready for
deployment, designed to be easily adopted by researchers and developers. The
comprehensive experiments on various benchmark datasets verify that this sys-
tem significantly outperforms state-of-the-art text-to-image retrieval methods in
the literature. Any foundation model and embedder can be readily integrated into
NEEDLE to improve its performance.

1 INTRODUCTION

Multi-modal datasets, like images, pose new challenges for data management systems. Unlike tra-
ditional databases, where tuple attributes are explicitly specified, these datasets often miss proper
descriptions that capture the rich information encoded in each item. As a result, traditional query-
answering approaches are not directly applicable in these settings. Meanwhile, modern personal
devices like smartphones have made it possible to collect large amounts of multi-modal data, even
from individual users. Due to the wealth of information “hidden” in each multi-modal tuple, the
users may compose complex natural language queries, searching for the tuple(s) they are interested
in. To further motivate this, let us consider the following running example.

EXAMPLE 1. A photo enthusiast has collected a large pool of images over the past several years in her private
data repository. She wants to retrieve a specific photo she has in mind. She describes the picture as [A
banana gazing at its reflection in a mirror].1

Traditional Nearest Neighbor (NN) search algorithms are not directly applicable here since they con-
sider the dataset tuples and the query as points in the same data space. In contrast, in Example 1, (i)
each tuple is an image, and (ii) the query is in the form of an unstructured, complex natural language
statement. Contrastive learning methods are the state-of-the-art approaches for answering natural
language queries on image datasets, that train a vector representation (aka embedding) jointly on
hundreds of millions of ⟨image, text⟩ pairs. Using a jointly trained embedding, one can transform
the query and the dataset images to vector representations in the same space and apply NN-search

1See Figure 11 for more examples.
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to answer the query. This approach works satisfactorily for “simple” and “common” queries, such
as simple object detection tasks. Related work is further discussed in Appendix B.

(a) [a banana] (b) [an unripe banana] (c) [a banana gazing
at its reflection in a
mirror]

Figure 1: The query results for the queries in Example 1 using
NEEDLE vs. CLIP [58].

As a concrete example, continuing
with our running example (Exam-
ple 1), we used CLIP2, the popu-
lar contrastive learning embedding
introduced by OpenAI [58], to an-
swer the natural language query [A
banana] on the benchmark image
dataset LVIS [25]. As reflected in
the top-left cell of Figure 1, the re-
sults are satisfactory, as most of the
returned images include a banana.
However, it fails for a moderately
complex query, [An unripe ba
nana], as none of the returned im-
ages shows an unripe (green) ba-
nana – the top-center cell of Figure 1. It also fails on more complex queries, such as the one in
Example 1, and does not retrieve the target image (the top-right cell of Figure 1). We observed a
similar behavior to this example across a wide range of queries (§ 5).

This motivates us to take a step toward filling this gap by proposing a Monte Carlo randomized
algorithm. In particular, we empower our algorithm with generative AI (GenAI) to generate a set
of synthetic multi-modal tuples that represent the complex natural language query. Subsequently,
leveraging a collection of embedders, we conduct a series of NN searches using the generated tu-
ples and aggregate the results to generate the final query outputs. We use our method to develop
NEEDLE3, our deployment-ready system4 for complex natural query answering on image datasets.

Unlike existing approaches, NEEDLE can handle natural language queries with different levels of
complexity. To demonstrate this, let us consider our running example, Example 1 once again. We
issued the same set of simple, moderate, and complex queries to NEEDLE. The results are provided
in the second row of Figure 1. For the simple object-finding task, the bottom-left cell in Figure 1,
we observed a similar (but slightly better) performance since all returned images satisfied the query,
i.e., they included a banana. It also performed reasonably well for the moderately complex query, as
a large portion of the output images were green bananas – the bottom-center cell in Figure 1. But,
perhaps more interestingly, it could successfully find the image-of-interest described in the complex
query of Example 1 – the bottom-right cell in Figure 1. Interestingly, the target image was returned
as the top-1 search result (the top-left image in the bottom-right cell), demonstrating the ability of
our system to answer these types of queries. We observed a consistent behavior for our system in
experiments across a large number of different queries (§ 5).
Technical contributions: This paper introduces a new approach to using GenAI for complex
natural-language query answering on multi-modal data. We propose NEEDLE, a system for image
data retrieval. In summary, our contributions are as follows:
1. Theoretical Foundation: We introduce a novel Monte Carlo method for answering complex

natural-language queries on multi-modal data. We leverage Foundation models to generate syn-
thetic tuples representing the queries. We then use a collection of embeddings that allows us to
apply traditional k-NN techniques to retrieve related tuples. Our algorithm aggregates the output
generated for each (synthetic tuple, embedding) pair to obtain the final result. (§ 2, Appendix C)

2. System Design: We present NEEDLE, an interactive system built upon our Monte Carlo method.
Developed with production readiness in mind, NEEDLE emphasizes ease of deployment, effi-
ciency, robustness, and user-friendly interaction via a command-line interface (§ 3, Appendix G).

3. Efficiency Optimizations: We propose and integrate several practical optimizations to transform
NEEDLE into a robust and efficient system. To ensure high retrieval accuracy and robustness, we
introduce a dynamic embedder trust mechanism to manage varying embedder reliability and an

2We used ALIGN [28], FLAVA [65], and CoCa [85] as additional baselines in our experiments.
3The name NEEDLE is inspired by the common expression ”finding NEEDLE in the haystack,” reflecting

the challenge of pinpointing relevant information in large multimodal spaces.
4NEEDLE GitHub Repository: https://anonymous.4open.science/r/Needle-FFB4/
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outlier detection method for removing poor-quality guide images (§ 3). To achieve high perfor-
mance and low latency, we design a multi-stage inference pipeline featuring a query complexity
classifier for short-circuiting simple queries and a novel caching mechanism that generates meta-
data from query history, creating a self-improving feedback loop (§ 4).

4. Experimental Evaluation: We conduct comprehensive experiments demonstrating NEEDLE’s
effectiveness across diverse benchmarks (including object detection and complex natural lan-
guage queries) compared to state-of-the-art baselines, supported by ablation studies, and a user
study indicating strong user preference for NEEDLE (§ 5, Appendix H).

2 THEORETICAL FOUNDATION: GENAI-POWERED MONTE-CARLO METHOD

The core challenge in answering a natural language query φ over a multi-modal dataset D is bridging
the semantic gap between the two different data types. While standard nearest-neighbor (NN) search
over vector embeddings is effective when queries and data share a space, existing methods that
create a joint embedding space for text and images often fail on complex queries [55, 30]. Our work
introduces a new approach to solve this problem by leveraging Generative AI to transform the query
itself into the multi-modal data space.
Query Transformation and Randomized Algorithm: Our method reframes the text-to-image
search problem as an image-to-image search problem. The key idea is to use a foundation model
(e.g., DALL·E 3) [86, 62, 59] to generate a set of m synthetic guide tuples5, {ḡ1, · · · , ḡm}, that act
as stochastic representations of the query φ in the image space. Each guide tuple ḡj is considered
an i.i.d. sample from a distribution whose mean is the ideal (but unknown) tuple gφ that perfectly
represents the query. Please refer to Appendix C for details about terms, notations, and preliminary
discussions about our algorithm.

To account for variances in how different models interpret semantic similarity, we use an ensemble
of l distinctly-learned embedders, {E1, · · · , E l}. We estimate the distance δ̄φ,i between the query φ
and any tuple ti in the dataset by averaging the distances δ( ) between the guide tuples and ti across
all embedders:

δ̄φ,i =
1

ml

m∑
j=1

l∑
ℓ=1

δ
(
Eℓ(ḡj), v⃗

ℓ
i

)
(1)

where v⃗ℓi is the vector representation of ti on embedder Eℓ. The following theorem provides a
probabilistic guarantee that our estimated distance δ̄φ,i is close to the optimal distance δφ,i.
Theorem 1 6 For every tuple ti in a multi-modal dataset D, let δφ,i, be the true distance of ti to φ.

Given a positive value γ, Pr
((

δ̄φ,i

δφ,i
≥ (1 + γ)

)
∨
(

δ̄φ,i

δφ,i
≤ (1− γ)

))
≤ e

−ml γ2δφ,i
3 +e

−ml γ2δφ,i
2 .

Following Theorem 1, we use the estimated distances to identify the k-nearest neighbors of φ as
k-NN(φ,D) = k-argmin

ti∈D
δ̄φ,i.

3 SYSTEM DESIGN: THE INITIAL PROTOTYPE

Building upon the theoretical foundations of our method, we designed an initial prototype of NEE-
DLE for image retrieval. The architecture (Figure 2) consists of two main components. The first
is a one-time Preprocessing phase, where the image dataset is indexed into a vector store using
a set of predefined embedders. We use Milvus with an HNSW index for efficient approximate
nearest-neighbor search. The second component is the Inference Pipeline. At query time, the
system generates m synthetic guide images using foundation models, transforms them into vector
representations, performs a k-NN lookup for each, and aggregates the results.

While this direct application of our Monte Carlo method is effective, it introduces two significant
practical challenges: firstly, how to effectively aggregate rankings when embedders exhibit varying
performance across different query topics, and secondly, how to manage anomalous or low-quality
guide images that can degrade retrieval accuracy. To address these challenges, our prototype incor-
porates two key mechanisms. The first is a dynamic Embedder Trust Mechanism to handle varying
reliability. Recognizing that an embedder’s performance is topic-dependent (e.g., one may excel at
identifying animals but not vehicles), this mechanism assigns topic-specific reliability scores to each
embedder. The final ranking is then produced via a weighted aggregation of each embedder’s results
based on these scores, which can be dynamically adjusted using user feedback via the Multiplicative

5For image databases, each tuple is an image.
6The proof is provided in Appendix D.
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Figure 2: NEEDLE Architecture

Weight Update Method (MWUM). The second mechanism is an Anomaly Detection module to
filter poor-quality guide images. This process first uses UMAP[49] to reduce the dimensionality of
the guide image embeddings from all available embedders. Subsequently, it applies the Local Out-
lier Factor (LOF) algorithm to identify outliers based on neighborhood density. A guide image is
flagged as anomalous and removed if its weighted-aggregate outlier score surpasses a set threshold.

The detailed algorithms and equations for these two mechanisms are provided in Appendix E. While
this prototype demonstrates high retrieval accuracy (§ 5.2), it suffers from significant latency due to
on-the-fly image generation. This limitation motivates the need for the efficiency enhancements
detailed in the next section.

4 SYSTEM OPTIMIZATION: ADDRESSING THE EFFICIENCY ISSUE

While the initial prototype demonstrates superior retrieval accuracy, its reliance on on-the-fly image
generation introduces substantial latency. This section details the enhancements implemented to
transform NEEDLE into a highly efficient system without compromising accuracy. Our approach
follows two primary strategies: first, minimizing the frequency of expensive image generation, and
second, making the generation pipeline itself faster when it is unavoidable.

To minimize image generation, we introduce a synergistic system built on two core components.
The first is a Query Complexity Classifier that predicts whether a query is “simple” enough to be
handled accurately by fast, existing contrastive learning based methods. If so, the system short-
circuits the pipeline, bypassing image generation entirely. The second component is an Implicit
Metadata Generation mechanism, which creates a positive feedback loop. For complex queries
that run through the full pipeline, the system uses the query text to tag the high-confidence results.
This continually enriches the dataset’s metadata, making the preliminary text-based search used
by the classifier more powerful over time. As the system processes more queries, it gets better at
identifying simple ones, progressively reducing its reliance on the generation pipeline.

Figure 3: The efficiency-first pipeline.

For complex queries that still require image gen-
eration, we developed an Optimized Generation
Pipeline. This pipeline is heavily optimized for speed
based on insights from our experimental analysis; it
employs fast open-source foundation models like SD-
Turbo for rapid generation, uses a minimal configura-
tion of only one or two low-resolution guide images
since this is sufficient for high accuracy, and utilizes
a small set of highly efficient embedders such as EVA
and RegNet, as robust performance is achievable with
only a few strong models.

4.1 AN OVERVIEW OF THE ENHANCED PIPELINE

In summary, the enhanced NEEDLE processes each query through the multi-stage, efficiency-first
pipeline illustrated in Figure 3. This process begins with the Query Complexity Classifier, which
short-circuits the pipeline for simple queries by immediately returning results from preliminary
methods. If a query is deemed complex, it proceeds to the Optimized NEEDLE Pipeline, which
uses the efficient guide image generation configuration. The process concludes with the Metadata

4
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Tagging module, where high-probability results are tagged with the query text. This enriches the
metadata, improving future classifier performance and completing the self-improvement loop.

This architecture ensures that the computationally expensive generation process is used only when
necessary, while creating a system that learns from user queries to become more efficient over time.
The technical details for the classifier and metadata generation are provided in Appendix F.

4.2 SYSTEM IMPLEMENTATION AND DEPLOYMENT

Building on these efficiency enhancements, we developed NEEDLE as a complete, open-source
database designed for production environments. Our primary goal was to create a practical and user-
friendly system that researchers and developers can easily adopt. Key design principles included a
powerful command-line interface (CLI) for seamless user interaction, a modular microservice ar-
chitecture to easily integrate new embedders and foundation models, and containerized deployment
for robust, cross-platform compatibility. A comprehensive overview of the system’s development
objectives, architecture, technical stack, and installation is provided in Appendix G.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate several key aspects of NEEDLE to demonstrate its capabilities and to
evaluate its performance. We use multiple benchmark datasets and several baselines for this pur-
pose. In the following, we first detail our experiments setup (§ 5.1), followed by a proof-of-concept
analysis (§ 5.2) that demonstrates NEEDLE’s efficacy in text-to-image retrieval across diverse object
detection and complex natural language query benchmarks. Subsequently, we conduct an ablation
study in Section 5.3 to assess the impact of hyperparameter variations on NEEDLE’s performance.
Finally, in Appendix H.5 we provide an end-to-end case study, involving human participants’ quali-
tative feedback on NEEDLE’s responsiveness to arbitrary user-generated queries.

5.1 EXPERIMENTS SETUP

Baselines: We evaluate our method using several prominent vision-language models as baselines,
representing different architectural and training paradigms. These include: well-established con-
trastive learning models such as CLIP [58] and ALIGN [28]; unified models that combine contrastive
and generative objectives like FLAVA [65] and CoCa [85]; an effective decoupled pipeline combin-
ing BLIP for captioning with MiniLM for text embedding [39, 77]; and PlugIR [34], a framework
that uses large language models for retrieval. Each of these models offers a unique perspective on
learning joint image-text representations, and together they provide a comprehensive set of compar-
isons for our work. Detailed descriptions of these models and their specific configurations used in
our experiments are deferred to Appendix H.1.

Datasets: We evaluate NEEDLE using a comprehensive set of datasets, categorized into those focus-
ing on object detection and those involving complex natural language queries. The object detection
benchmarks include Caltech256 [24], MS COCO [42], LVIS [25], and BDD100k [84]. For complex
natural language queries, we utilize COLA [61], Winoground [68], NoCaps [3], and SentiCap [48].
Detailed descriptions of the datasets are provided in Appendix H.2.

Evaluation Metrics: We use distinct evaluation metrics tailored to the characteristics of each
benchmark type. For object detection benchmarks, we measure performance using Mean Recall
at k (R@k), Precision at k (P@k), Mean Average Precision (MAP), and Mean Reciprocal Rank
(MRR). For complex natural language query experiments, we report both MRR and Pairing Accu-
racy (PAcc). Detailed definitions and formulas are provided in Appendix H.3.

Embedders and Hardware Configuration: We use all or a subset of embedders listed in the Ap-
pendix (Table 6) in our experiments. All experiments were conducted on two servers, each equipped
with 32 GB of memory, a 12-core CPU, and two Tesla T4 GPUs, running Ubuntu 22.04 LTS.

Foundation Models and the Monetary Cost: For image generation in our experiments, we
employed several state-of-the-art foundation models, namely DALL-E 3 [54], Imagen 3 [23],
Flux-Schnell [9], and RealvisXL-v3.0-turbo [2]. The total monetary cost incurred for
utilizing these models was $257.53 (USD).
5.2 PROOF OF CONCEPT

Task 1. Object Detection: We begin our experiments by evaluating the performance of NEE-
DLE against the baselines on object detection benchmarks, utilizing the Caltech256, COCO, LVIS,
and BDD datasets. For each object in these benchmarks, we formulate queries to retrieve them.
For NEEDLE, we employed three image generation engines (Flux-Schnell, RealVisV3, and

5
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Table 1: Zero-shot retrieval performance on object detection datasets. For each dataset, we report
R@10, P@10, MAP, and MRR. Each cell shows two numbers (All / Hard).

Caltech256 COCO LVIS BDD

Baseline R@10 P@10 MAP MRR R@10 P@10 MAP MRR R@10 P@10 MAP MRR R@10 P@10 MAP MRR

CLIP 0.926
0.150

0.926
0.150

0.939
0.181

0.952
0.193

0.934
0.400

0.934
0.400

0.952
0.477

0.988
1.000

0.177
0.093

0.167
0.083

0.168
0.078

0.316
0.224

0.660
0.033

0.660
0.033

0.670
0.005

0.714
0.048

ALIGN 0.941
0.375

0.941
0.375

0.947
0.398

0.961
0.541

0.944
0.800

0.944
0.800

0.960
0.895

0.981
1.000

0.215
0.145

0.201
0.130

0.207
0.129

0.379
0.306

0.560
0.000

0.560
0.000

0.573
0.003

0.704
0.014

FLAVA 0.882
0.258

0.882
0.258

0.903
0.306

0.949
0.491

0.924
0.100

0.924
0.100

0.941
0.281

0.963
1.000

0.185
0.109

0.172
0.097

0.180
0.099

0.321
0.241

0.660
0.033

0.660
0.033

0.698
0.036

0.725
0.083

BLIP + MiniLM 0.826
0.317

0.826
0.317

0.838
0.372

0.880
0.408

0.941
0.700

0.941
0.700

0.951
0.698

0.975
1.000

0.180
0.115

0.177
0.111

0.179
0.107

0.332
0.260

0.600
0.167

0.600
0.167

0.610
0.144

0.725
0.333

PlugIR 0.889
0.225

0.889
0.225

0.934
0.391

0.936
0.523

0.927
0.700

0.927
0.700

0.949
0.654

0.983
1.000

0.189
0.107

0.172
0.091

0.173
0.112

0.326
0.276

0.600
0.033

0.600
0.033

0.678
0.074

0.731
0.245

CoCa 0.780
0.075

0.780
0.075

0.818
0.094

0.880
0.118

0.933
0.700

0.933
0.700

0.951
0.642

0.951
1.000

0.192
0.131

0.184
0.116

0.187
0.128

0.354
0.272

0.560
0.033

0.560
0.033

0.583
0.003

0.713
0.102

Needle 0.962
0.667

0.962
0.667

0.966
0.687

0.979
0.776

0.966
0.900

0.966
0.900

0.977
0.981

1.000
1.000

0.330
0.263

0.295
0.225

0.323
0.249

0.511
0.453

0.720
0.167

0.720
0.167

0.711
0.158

0.750
0.333

Table 2: Zero-shot retrieval performance on complex natural
language queries benchmarks.

Cola Winoground SentiCap NoCaps

Baseline PAcc MRR PAcc MRR MRR MRR

CLIP 0.578 0.246 0.519 0.426 0.464 0.573
ALIGN 0.591 0.301 0.554 0.501 0.555 0.704
FLAVA 0.615 0.336 0.574 0.482 0.546 0.658
BLIP + MiniLM 0.449 0.195 0.485 0.330 0.331 0.398
Needle 0.631 0.352 0.593 0.490 0.642 0.745

Table 3: Inference Time Breakdown
for optimized NEEDLE on LVIS

Component Time (seconds)

Image Generation 0.136
Embedder 1 (RegNet) 0.021
Embedder 2 (EVA) 0.030
Retrieval (Embedder 1) 0.003
Retrieval (Embedder 2) 0.002
Ranking Aggregation 0.0001

Total (with overheads) 0.203

ImagenV3-fast) to generate three images per engine, resulting in a total of nine guide images
per query, all at MEDIUM quality. Additionally, we utilized the ensemble of embedders detailed
in Table 6. Following the methodology outlined in Appendix H.1, we considered queries with a
CLIP AP below 0.5 as the “hard set”. Table 1 presents the performance of NEEDLE against the
baselines across R@10, P@10, MAP, and MRR metrics. Notably, NEEDLE demonstrates superior
performance compared to all baselines on both the easy and hard sets. Specifically, for the hard set,
NEEDLE achieves MAP improvements of 73%, 10%, 93%, and 10% over the second-best baseline
on Caltech256, COCO, LVIS, and BDD datasets, respectively. These results underscore the sub-
stantial advantage of using synthetic data for image retrieval over traditional contrastive learning
and image-to-text approaches. Furthermore, Figure 11 provides a visual illustration of the perfor-
mance of NEEDLE (v.s. CLIP) and the synthetic guide images generated for each query.
Task 2. Complex Natural Language Queries: To evaluate the system’s ability to handle challeng-
ing language and visual nuances, we conduct experiments across two distinct retrieval tasks. The
first, a Pairing Task, assesses the capability to correctly match a caption to its corresponding image
when presented with two highly similar images and captions that differ only in subtle details. Evalu-
ated on the Winoground [68] and COLA [61] datasets (see Figure 10), performance is measured by
Pairing Accuracy (PAcc), where random chance is 0.25. The second, a Full-set Retrieval Task, mea-
sures performance when retrieving a specific image from an entire dataset using a single, complex
query. For this task, we report the Mean Reciprocal Rank (MRR) on the Winoground, COLA, Sent-
iCap [48], and NoCaps [3] benchmarks, which all feature challenging captions requiring a nuanced
understanding for successful retrieval from a large pool.

Table 2 presents the Pairing Accuracy and Mean Reciprocal Rank (MRR) metrics for different afore-
mentioned baselines. As illustrated in the table, NEEDLE outperforms the baselines in both PAcc
and MRR. It is important to note that current foundation models still exhibit limitations in generating
images that are fully aligned with an input query. In particular, our investigation reveals that these
models frequently fail to produce images with the correct compositional ordering. We anticipate that
further advancements in foundation models will further enlarge the performance gap between NEE-
DLE and the baselines. It is also noteworthy that BLIP+MiniLM performed significantly worse than
the other baselines. Initially, we anticipated that this baseline would serve as a strong competitor
in handling complex natural language queries, given its design to capture compositional and rela-
tional attributes between objects in images; however, the empirical results did not corroborate these
expectations. In contrast, FLAVA demonstrated exceptionally strong performance in these tests.

5.3 HYPER-PARAMETER ABLATION STUDY

In this section, we examine the impact of each hyper-parameter on NEEDLE’s performance.

6
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0.71

(a) BDD
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0.962 0.967 0.965 0.966

0.955 0.964 0.964 0.964

0.950 0.955 0.957 0.959

0.950

0.952

0.954

0.956

0.958

0.960

0.962

0.964
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Figure 4: Impact of the number of guide images and embedders on NEEDLE’s MAP.
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Figure 5: Foundation Model Performance and Query Complexity Analysis: (a) Object Detection
benchmarks, (b) Complex Natural Language Query benchmarks, (c) Query Complexity Classifier
AP prediction accuracy, (d) Inference speed vs. MAP comparison across baselines and benchmarks.

Impact of Guide Image and Embedder Counts: To assess the sensitivity of NEEDLE’s perfor-
mance to its core hyperparameters, we evaluate the impact of varying the number of guide images
generated per engine (m) and the number of embedders used (ℓ). We conducted experiments on
the BDD, Caltech256, COCO, and LVIS datasets with m ∈ {1, 2, 3} and ℓ ∈ {1, 2, 4, 6}, adding
embedders in descending order of their reliability weights. As illustrated in Figure 4, Mean Aver-
age Precision (MAP) generally improves as both m and ℓ increase, which suggests that achieving
a consensus among multiple embedders enhances retrieval reliability. Notably, even the minimal
configuration (m = 1, ℓ = 1) outperforms most baselines (Table 1), demonstrating the fundamental
strength of our approach. Furthermore, the analysis reveals a pattern of diminishing returns; for
instance, the performance gain from increasing m from 1 to 2 is substantially larger than from 2
to 3. This finding indicates that NEEDLE can achieve high accuracy with a small number of guide
images and embedders, reinforcing the efficiency of its design without requiring extensive image
generation.
Foundation Model Analysis: NEEDLE is designed to be model-agnostic, supporting various open-
source and proprietary foundation models for guide image generation. To analyze this flexibility, we
assess the individual performance of different models and evaluate the benefit of ensembling them.
Our evaluation utilized four models—the proprietary DALL-E3 and IMAGEN3-FAST, and the open-
source FLUX-SCHNELL and REALVISXL. We benchmarked their performance on object detection
tasks (BDD, Caltech256, COCO) using Mean Average Precision (MAP) and on complex natural
language queries (Winoground, COLA) using Accuracy. The latter task was included specifically to
test the models’ ability to handle nuanced prompts where alignment and image quality are critical.

The individual performance of each foundation model is presented in Figure 5. A key observation
is that the open-source models, FLUX-SCHNELL and REALVISXL, substantially outperformed the
proprietary models on complex queries, suggesting a superior capability for prompt alignment and
compositional understanding. Among the models, DALL-E3 generally yielded lower performance,
while REALVISXL proved to be a consistently strong performer across most benchmarks.

Beyond individual model performance, we analyzed the effect of ensembling multiple foundation
models. As shown in Figure 6a, increasing the number of models in the ensemble consistently
improves NEEDLE’s overall performance. This benefit is more pronounced for complex natural
language queries than for object detection. The outcome is likely attributable to the increased prob-
ability of generating an image that accurately captures the nuanced details of a complex prompt,
thereby facilitating correct identification. In contrast, for simpler object detection tasks, the primary
benefit of an ensemble is an increase in recall due to the diverse representations of the target object
across various formats and styles.
Image Quality: Foundation models usually support generating images in different resolutions. In
this ablation study, we investigate the effect of image resolution (size) of guide images on NEE-
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Figure 6: Foundation Models Analysis: (a) Effect of number of Foundation Models on Performance,
(b) Variation of NEEDLE MAP based on size of guide image for different foundation models

DLE’s performance. We define three supported image sizes for each foundation model, SMALL,
MEDIUM and LARGE. The exact amount of pixels is determined based on the foundation model
design. We generate 3 images per query and utilize Flux-Schnell, RealVisXL and DALL-E for
this study (ImagenV3-fast does not support different images sizes as input). Figure 6b illustrates
the MAP performance of various foundation models on the LVIS and COCO benchmarks across
different image quality settings. It is evident that foundation models are typically fine-tuned for
a specific image resolution, which in turn yields the best quality and prompt alignment. In our
experiments, DALL-E demonstrated a consistent improvement in performance with increasing im-
age sizes, whereas Flux-Schnell and RealVisXL exhibited a less pronounced correlation between
performance and image size, particularly between the MEDIUM and LARGE settings.
Outlier Detection Analysis: While foundation models have shown remarkable capabilities in gen-
erating high-quality images, they are not infallible. Generated guide images may occasionally be
semantically off-target or poorly aligned with the input query, which could negatively impact re-
trieval performance. To address this challenge, we implemented an outlier detection mechanism
using the Local Outlier Factor (LOF) algorithm that identifies and filters out guide images that are
semantically distant from the rest of the generated set before they are used for retrieval.

To evaluate the effectiveness of this mechanism, we conducted a comprehensive ablation study com-
paring three configurations: (1) no outlier detection, (2) human-evaluated filtering (where human an-
notators manually identified and removed poor-quality guide images), and (3) our automated LOF-
based outlier detection. We evaluated these configurations on the BDD and LVIS benchmarks using
RealVisXL as the foundation model.

Table 4 presents the results of the outlier detection analysis. The automated LOF-based outlier
detection achieves performance that closely approximates human evaluation, demonstrating its ef-
fectiveness in identifying and filtering problematic guide images. Notably, even without any outlier
detection, the generated images maintain sufficient quality for retrieval tasks, suggesting that current
foundation models are generally reliable for this application. However, the consistent improvements
observed with both human evaluation and automated detection confirm that outlier filtering pro-
vides meaningful performance gains, particularly on challenging benchmarks like LVIS where the
long-tail distribution of categories makes retrieval more sensitive to guide image quality.
Contribution Analysis: Generative Method vs. Embedder Ensemble: To validate our design
and disentangle the sources of NEEDLE’s performance gains, we analyze the distinct contributions
of its two primary components: the generative Monte Carlo framework and the use of an embed-
der ensemble. We conduct a controlled ablation study to isolate these effects. A key aspect of
our analysis is measuring the improvement from the generative framework itself, independent of
embedder choice. To do this, we compare the standard CLIP baseline against NEEDLE when con-

Table 4: Outlier Detection Ablation Study:
MAP performance comparison across different
filtering strategies on BDD and LVIS.

Benchmark No Detection Human Eval. LOF Detection

BDD 0.68 0.70 0.73
LVIS 0.25 0.28 0.30

Table 5: Contribution Analysis: MAP per-
formance comparison isolating the generative
method’s contribution using CLIP-only config.

Benchmark CLIP Base. NEEDLE (CLIP) NEEDLE (EVA) NEEDLE (Full)

LVIS 0.168 0.228 0.274 0.323
Caltech256 0.939 0.951 0.958 0.966
MS COCO 0.952 0.961 0.970 0.977
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strained to use only the CLIP embedder. This comparison is critical because our method’s core
innovation—transforming text-to-image into image-to-image retrieval—unlocks the use of power-
ful image-only embedders (like EVA[20]) that are inaccessible to traditional approaches.

The results of this decomposition, presented in Table 5, reveal a clear hierarchy of performance
improvements. First, by comparing the CLIP baseline to NEEDLE (CLIP only), we isolate the
gain from our generative method. This alone provides a substantial performance improvement,
yielding a 35% relative gain in MAP on the LVIS dataset (from 0.168 to 0.228) and demonstrating
the efficacy of using synthetic guide images. Second, the results show the benefit of unlocking
stronger, image-only embedders, as seen in the performance increase from NEEDLE (CLIP only) to
NEEDLE (EVA only). Finally, the move from a single strong embedder to the full ensemble provides
further incremental gains, validating our ensembling strategy. This analysis clearly establishes that
while the choice of embedder and the ensembling strategy are important contributors, the most
significant performance gain originates from our novel generative framework.
Computational Efficiency Analysis: Assessing the computational efficiency of NEEDLE is essen-
tial for establishing its practical viability, particularly as its overhead stems from on-the-fly guide
image generation and multi-embedder processing. To provide concrete performance metrics, we
conducted a detailed timing analysis of NEEDLE’s fully optimized configuration, which uses SD-
Turbo with the efficient EVA and RegNet embedders. The evaluation was performed on the LVIS
dataset (100k images) using 50 representative queries that require the full generation pipeline.

As shown in Table 3, the optimized pipeline’s total inference time is 0.203s, a figure that is highly
competitive with traditional baselines like CLIP (0.184s) while offering superior retrieval accuracy.
It is important to note that this measurement represents the performance for complex queries that
necessitate image generation. The average system-wide latency is expected to be substantially lower,
as the Query Complexity Classifier and caching mechanism will bypass this pipeline entirely for
simpler or repeated queries. Furthermore, NEEDLE exhibits favorable scalability characteristics; the
primary computational cost, the image generation, is independent of the database size, making it
well-suited for large-scale deployments. The inherently parallelizable nature of both the generation
and embedding stages further enhances its practical applicability.
Query Complexity Classifier Evaluation: This section empirically evaluates the impact of our
Query Complexity Classifier on NEEDLE’s overall efficiency and retrieval performance. We observe
that this module can effectively reduce computational overhead by dynamically routing queries,
without a meaningful compromise in retrieval effectiveness. For these experiments, the classifier
was implemented as a Linear Regression model trained to predict the expected Average Precision
(AP) of a query when processed by preliminary retrieval methods. We derived features from two
efficient baselines, CLIP [58] and ALIGN [28], including their top-K mean cosine similarity scores,
inter-method result overlap, and confidence deviation, as detailed in Appendix F.1. The model was
trained on the combined training splits of the Caltech256 [24] and LVIS [25] benchmarks, using
the actual AP from the preliminary methods as the ground-truth target. Figure 5c validates the
classifier’s effectiveness, showing a strong correlation between its predicted and actual AP scores.

The primary benefit of this classifier is a significant enhancement in NEEDLE’s average inference
speed. To quantify this, we compared the retrieval accuracy (MAP) and speed of NEEDLE —with
and without the classifier—against established baselines across several benchmarks. As illustrated in
Figure 5d, the classifier enables NEEDLE to achieve a much faster average inference time with only
a negligible loss in MAP. This speedup is achieved by accurately identifying “simple” queries and
short-circuiting the computationally intensive guide image generation process. Crucially, NEEDLE’s
efficiency is designed to improve over time. As the implicit metadata generation mechanism (§ F.2)
populates the system with query-based tags, the effectiveness of the preliminary text-search method
increases. This will naturally raise the number of queries classified as simple, further reducing
reliance on on-the-fly image generation and progressively enhancing overall system speed.

6 CONCLUSION
This paper introduces a Generative AI-powered Monte Carlo method for answering complex text
queries on multi-modal data. The technique uses AI to generate synthetic “guide” data that translates
the query, enabling effective nearest-neighbor search. This method was implemented in an open-
source image retrieval system called NEEDLE, which experiments show significantly outperforms
state-of-the-art approaches. Future work aims to extend this technique to other data types, like
audio and video, as the required AI models become available.
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APPENDIX

A DISCUSSIONS AND LIMITATIONS

Reliance on Existing Models: NEEDLE relies on Foundation Models for guide tuple generation
and on embedders for generating vector representations of images, which may have their own ca-
pabilities, limitations, and inherent biases. This reliance presents both strengths and weaknesses in
NEEDLE’s architecture. The strength lies in its ability to improve performance by upgrading the
internal Foundation Models and embedders. On the other hand, though, the limitations of these
models also limit NEEDLE. To mitigate this issue, NEEDLE supports multiple Foundation Models
and embedders, enabling it to draw from a broader range of knowledge and reduce the impact of
individual model limitations.

Preprocessing Efficiency: During the preprocessing phase, we employ a predefined set of embed-
ders to generate vector representations of images. NEEDLE processes the images in parallel while
utilizing the available GPU resources to distribute the workload efficiently. Moreover, NEEDLE
supports multiple operational modes upon installation. For instance, the fast mode utilizes only
two embedders, which offer preprocessing speeds that are comparable to those of state-of-the-art
methods.

Inference Efficiency: NEEDLE’s inference consists of three main sequential operations: (a) gen-
erating guide tuples, (b) k-NN lookup, and (c) ranking aggregation. Theoretically, for retrieving k
results from a dataset of size n with constants m (number of guide images) and ℓ (number of embed-
ders), Step (a) is a constant-time operation. Step (b)’s time complexity depends on the underlying
vector store algorithm, and in the current implementation, we leverage HNSW data structure index
[46], which provides k-NN lookup time complexity of O(k log(n)), while Step (c) uses Fagin’s
instance-optimal TA algorithm for rank aggregation [19].

In practice, however, the bottleneck lies in Step (a), generating guide tuples. NEEDLE’s current
implementation supports both on-device and online image generation models. For optimal perfor-
mance, we recommend using fast on-device generation models to eliminate network latency. More-
over, as demonstrated in our ablation study, NEEDLE maintains high accuracy even with lower-
quality, lower-resolution images. Therefore, employing fast, lower-quality foundation models can
significantly accelerate the overall process. In addition to these, the built-in Query Complexity Clas-
sifier (Appendix F.1) enables NEEDLE to generate images only when the query is deemed complex
for preliminary methods, which drastically reduces the average inference time compared to using
NEEDLE for all queries.

Extensions to Other Modalities: The core idea behind NEEDLE is adaptable to other modalities
beyond images, including audio and video. However, due to the current limitations in publicly
available foundation models, our focus in this paper was on the image data. As foundation models
for these additional modalities continue to improve and become more accessible, we plan to extend
NEEDLE to support them. This will allow NEEDLE to operate across multiple data types, unlocking
further potential for handling complex, multi-modal queries in the near future.

B RELATED WORK

Our paper relates to the following literature:

Multi-modal Data Retrieval: Multi-modal data retrieval (aka cross-modal retrieval), integrating
various data types, has recently attracted significant attention. Early methods focused on shared
representations by mapping modalities into a common latent space using canonical correlation anal-
ysis (CCA) [60, 75] and kernel-based techniques [29]. Recent approaches leverage deep learning
models, including cross-modal encoders [74, 43] and joint embedding networks [7, 63]. Advanced
techniques, such as attention mechanisms [81, 67] and contrastive learning [57], further enhance
retrieval by capturing fine-grained relationships. CLIP [58] and ALIGN [28] are widely adopted
methods for cross-modal retrieval, both of which are based on contrastive learning approaches.
Feedback mechanisms [52, 90] and user preferences [87, 13] improve multi-modal search results.
In addition, there exist practical approaches to enrich the semantic metadata of images using image
tagging [22, 89, 39] and object detection techniques [91]. Research also extends to other modali-
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ties, such as text-video retrieval [40, 47, 69, 51, 50, 44] and text-audio retrieval [79, 12, 31]. For a
detailed survey of cross-modal retrieval methods and future directions, see [37, 76].

To the best of our knowledge, this paper is the first to introduce the idea of utilizing GenAI to
synthetically generate samples that capture natural language complexities and proposes a GenAI-
powered Monte Carlo method for multi-modal data retrieval.

GenAI in Data Management: The intersection of Generative AI (GenAI) and data management has
emerged as a promising area, driving innovations in how data is generated, managed, and utilized.
GenAI models, such as GPT [1] and Stable Diffusion [62], have been employed for synthetic data
generation to augment datasets [66, 64], improve model training [33, 70], and address data scarcity
or imbalance issues [18]. In data cleaning and integration, these models assist with tasks like im-
putation [73], and anomaly detection by generating plausible data patterns [82]. Recent works also
explore the role of GenAI in automating query generation [71, 72, 41] and data summarization [16],
enhancing the efficiency of database systems and analytics platforms.

Natural Language Query Processing: The evolution of natural language to structured query trans-
lation has advanced from rule-based systems to sophisticated large language models (LLMs). Early
methods used template matching and predefined rules [4, 36], which were inflexible and required
frequent manual updates. Machine learning approaches introduced more adaptability by learning
query patterns from annotated datasets [45, 88], though they struggled with complex language con-
structs. Deep learning models, especially transformers like BERT [17] and GPT [11], enabled se-
mantic understanding and laid the foundation for text-to-SQL systems [38]. Modern LLMs, such as
PaLM [14] and GPT-4 [1], generate context-aware queries across multiple domains with minimal
supervision. Retrieval-augmented generation (RAG) further enhances query precision by leverag-
ing external knowledge [35]. Ongoing efforts focus on fine-tuning LLMs to improve accuracy and
efficiency in converting natural language to structured queries [71, 72, 41].

C DETAILED METHODOLOGICAL PRELIMINARIES

Data and Query Model: We consider the dataset D = {t1, t2, . . . , tn} as a set of n multi-modal
tuples with no explicit values on specific attributes or metadata descriptions about them. This model
complies with real-world needs, where personal devices such as cell phones have advanced cameras,
enabling a vast volume of multi-modal data collection and sharing by any user of such devices. The
input query φ is defined as a natural language description that corresponds to a subset of tuples
Dφ ⊆ D, where Dφ = {t′1, · · · , t′k} represents the target subset for retrieval.

Nearest-Neighbor Search: Nearest-neighbor search in traditional settings is a well-studied line
of research where many algorithms and indices, such as Voronoi diagrams [32], tree data struc-
tures [83], and local sensitive hashing [27, 26] have been proposed for efficient exact and approx-
imate query answering. In such settings, the data points are specified as points in a d-dimensional
space, i.e., ti ∈ Rd, where the goal is to find the k nearest neighbors to a query point q ∈ Rd based
on a distance function dist : Rd × Rd → R. That is, k-minti∈Ddist(q, ti).

Such approaches, however, are not directly applicable in our setting because of two main challenges.
(a) Multi-modal tuples such as images are not represented as points in Rd. and (b) The query is in
the form of a (possibly complex) natural language (NL) phrase. Fortunately, vector representations
(aka embeddings) [55, 30] have been proposed to address the first challenge. The state-of-the-art
resolution to the second challenge is by utilizing the embeddings jointly trained on ⟨tuple, text⟩ pairs
– which enables transforming the query and the tuples into the same embedding space and applying
NN-search to answer the query. However, as we observe in § 5, while this idea works well for simple
queries such as object detection, it fails for more complex queries.

Vector Representations: A vector representation E : dom(t) → RdE is a transformation of the
tuples to a high-dimensional vector of numeric values where the semantic similarity of tuples is
proportional to the cosine similarity of their vector representations. Specifically, given a vector
representation (aka embedder) Eℓ, we present Eℓ(ti) as v⃗ℓi = ⟨v1, v2, · · · , vdEℓ

⟩. The distance
between two vector embeddings v⃗ℓi and v⃗ℓj is computed based on their cosine similarity as

δℓi,j = δ(v⃗ℓi , v⃗
ℓ
j) = 1− cos

(
∠(v⃗ℓi , v⃗

ℓ
j)
)

(2)
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Let ∆(ti, tj) be the (unknown) semantic distance of the tuples ti and tj . A vector representation Eo

is optimal if it captures the semantic similarity of tuples, i.e., δoi,j ∼ ∆(ti, tj), ∀ti, tj . Formally,

∆(ti, tj) ≥ ∆(ti, tk) ⇔ δoi,j ≥ δoi,k (3)

In practice, however, vector representations are learned using a universe of available multimodal
data. As a result, instead of guaranteeing Equation 3, the learned embeddings satisfy a (weaker)
guarantee in expectation. That is, the expected distance between the embeddings of two tuples is
proportional to their semantic distance, i.e., E

[
δℓi,j
]
∼ ∆(ti, tj), ∀ti, tj .

Baseline Approach Limitations: A vector representation that is jointly trained on multi-modal and
textual data transforms text and images into the same vector-representation space. Therefore, given
a natural language query, one can compute its embedding and find its nearest neighbor images. This
approach, however, suffers from two major issues:

First, the paired texts used for training are usually simple sentences (e.g., [A photo of a dog]),
unable to fully describe the rich information encoded in an image. Conversely, our goal is to an-
swer complex queries describing a scene with multiple objects and their relationships (e.g., [A dog
sitting by the fireplace, staring at the cat on the couch]). As a result, while
such embeddings may perform reasonably on simple queries, their performance drops significantly
on complex ones.

Second, as explained earlier, learned embeddings only preserve semantic similarities in expectation.
As a result, relying solely on one vector representation for query answering may be misleading and
inaccurate.

D PROOF OF THEOREM 1

Theorem 1 For every tuple ti in a multi-modal dataset D, let δφ,i, be the true distance of ti to φ.
Given a positive value γ,

Pr

((
δ̄φ,i

δφ,i
≥ (1 + γ)

)
∨
(
δ̄φ,i

δφ,i
≤ (1− γ)

))
≤ e

−ml γ2δφ,i
3 + e

−ml γ2δφ,i
2

Proof: Let δφ,i = δ (q⃗(φ), v⃗oi ) be the true distance of ti to φ, ∀ti ∈ D.

Replacing δ̄φ,i with the right-hand side of Equation 1, we get

Pr

(
δ̄φ,i

δφ,i
≥ (1 + γ)

)
= Pr

(
1

ml

∑m
j=1

∑l
ℓ=1 δ

(
Eℓ(ḡj), v⃗

ℓ
i

)
δφ,i

≥ (1 + γ)

)

= Pr

 m∑
j=1

l∑
ℓ=1

δ
(
Eℓ(ḡj), v⃗

ℓ
i

)
≥ (1 + γ)ml δφ,i


Since E

[
δℓi,j
]
= δoi,j , ∀ti, tj and E [Eo(ḡφ)] = Eo(gφ),

E
[
δ
(
Eℓ(ḡj), v⃗

ℓ
i

)]
= δφ,i

As a result,

E

 m∑
j=1

l∑
ℓ=1

δ
(
Eℓ(ḡj), v⃗

ℓ
i

) = ml δφ,i

Next, applying Chernoff bound [53], we get

Pr

(
δ̄φ,i

δφ,i
≥ (1 + γ)

)
≤ e

−ml γ2δφ,i
3

Similarly,
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Pr

(
δ̄φ,i

δφ,i
≤ (1− γ)

)
≤ e

−ml γ2δφ,i
2

Therefore, applying the Union bound [53], we get

Pr

((
δ̄φ,i

δφ,i
≥ (1 + γ)

)
∨
(
δ̄φ,i

δφ,i
≤ (1− γ)

))
≤ e

−ml γ2δφ,i
3 + e

−ml γ2δφ,i
2

E DETAILED MECHANISMS OF THE INITIAL PROTOTYPE

E.1 RANKINGS AGGREGATION AND EMBEDDER TRUST MECHANISM

To address the first challenge, NEEDLE employs a dynamic aggregation strategy that accounts for
the varying reliability of its different embedders. Note that an embedder’s performance is often
not uniform across all tasks; for instance, one embedder might excel at distinguishing dog breeds
but underperform in fruit classification. To handle this domain-specific performance, NEEDLE in-
corporates an embedder trust mechanism. This mechanism monitors each embedder’s performance
across various query topics, continuously adjusting topic-specific reliability scores to ensure the fi-
nal aggregated result is intelligently weighted toward the most suitable embedders for the query at
hand.

Consider a predefined set of topics T , where a natural language query φ belongs to a specific
topic t = t(φ)7. Let G = {ḡ1, · · · , ḡm} be the set of guide images generated for φ, and
E = {E1, · · · , E l} be the set of embedders. For each guide image ḡj , Ri

j = Ri(φ, ḡj) repre-
sents the sorted list of k nearest images in D to ḡj according to embedder E i. Let Ri

j [r] be the r-th
element of Ri

j .

For each topic t ∈ T , a weight wt
i ∈ [0, 1] is assigned to each embedder E i, indicating its reliability

for queries within topic t. These weights are normalized such that
∑l

i=1 w
t
i = 1 for each topic t.

Aggregation: Given the ranked lists from all embedders and the query topic t, the objective is
to aggregate these lists into a single final ranking Rφ using the topic-specific reliability weights
wt

i . Let Ih ∈ D be a tuple returned by at least one embedder, and rank(Ih, R
i
j) be its rank in

list Ri
j . We adopt a monotonically decreasing position-importance function S : [k] → [0, 1] from

literature [15, 5, 21], specifically:

S(i) =

{
1
i i ≤ k

0 otherwise

The aggregated score of Ih is then computed as:

score(Ih) =
∑

i:Ei∈E

wt
i · S(rank(Ih, Ri

j)) (4)

The top-k tuples based on this score are returned as the final query output, Rφ.

Dynamic Reliability-weight Adjustment: To continually refine the embedder weights, NEEDLE
incorporates a feedback mechanism. If, after presenting the top-k results Rφ to the user, a subset
of results T = {I ′1, I ′2, . . . , I ′s} ⊆ Rφ is marked as irrelevant8, this feedback is used to update the
reliability weights.

For the query’s topic t = t(φ), the partial loss of embedder E i is computed as:

∆lossφ(t, i) =
∑

j:ḡj∈G

∑
I′
h∈T

S(rank(I ′h, R
i
j)) (5)

7The topic t of query φ is identified using a topic classification mechanism or is part of the query input.
8We acknowledge that such feedback may not commonly be available after system deployment. However,

crowdsourced feedback on a small set of topic-based benchmarks can be employed to calculate these weights
before deploying a new embedder to our system.
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Only embedders that highly ranked the irrelevant results within topic t are penalized. The topic-
specific weights are then updated multiplicatively using the Multiplicative Weight Update Method
(MWUM) [6]:

wt
i(t+ 1) = wt

i(t) · (1− η ·∆lossφ(t, i))

where η ∈ (0, 1) is the learning rate. Finally, the weights for topic t are normalized to ensure∑l
i=1 w

t
i = 1.

E.2 ANOMALY DETECTION IN QUERY IMAGES

The second challenge in our initial prototype involves ensuring the quality of the generated guide im-
ages. While foundation models are powerful, they can occasionally produce semantically off-target
or poorly aligned images, which could degrade retrieval performance. To mitigate this, NEEDLE
employs an outlier detection mechanism to identify and filter out potentially anomalous guide im-
ages based on their embeddings from multiple embedders. This process combines embeddings from
all available embedders and uses a weighted approach to adjust for each embedder’s reliability.

Given a set of m guide images G = {ḡ1, ḡ2, ..., ḡm} and l embedders E = {E1, E2, ..., E l}, each
image ḡj yields l embeddings: {v⃗1j , v⃗2j , . . . , v⃗lj}, where v⃗ij = E i(ḡj). The goal is to detect anoma-
lous guide images by analyzing these embeddings.

Dimensionality Reduction using UMAP [49]: Given the high-dimensional nature of the embed-
dings, we first apply dimensionality reduction using UMAP (Uniform Manifold Approximation and
Projection) to project them into a lower-dimensional space. For each embedder E i, the embeddings
{v⃗i1, v⃗i2, . . . , v⃗im} are reduced to a dimension d:

v⃗′
i

j = UMAP(v⃗ij) ∈ Rd

where d ≪ dim(v⃗ij).

Outlier Detection using LOF [10]: After dimensionality reduction, the Local Outlier Factor (LOF)
algorithm is applied to identify outliers. LOF assigns an outlier score to each data point based on its
neighborhood density. The LOF score for image ḡj with respect to embedder E i is defined as:

LOFi(ḡj) = LOF(v⃗′
i

j)

Higher scores indicate a greater likelihood of ḡj being an outlier within the context of embeddings
from E i.

Aggregation of Outlier Scores: The final outlier score for a guide image ḡj is computed by aggre-
gating these individual scores, weighted by the reliability of each embedder:

S(ḡj) =

l∑
i=1

wi · LOFi(ḡj)

Anomaly Detection Threshold: An image ḡj is flagged as an anomaly if its outlier score S(ḡj)
exceeds a predefined threshold τ :

S(ḡj) > τ ⇒ ḡj is an anomaly

The threshold τ is a hyperparameter that governs the system’s sensitivity to anomalies. A higher τ
promotes greater diversity in retrieved images, potentially increasing recall but risking lower pre-
cision, while a lower τ enforces stricter adherence to the query, leading to higher precision but
potentially missing some relevant images. Our ablation study in Section 5.3 (Table 4) demonstrates
the effectiveness of this mechanism.

F DETAILED EFFICIENCY MECHANISMS

F.1 QUERY COMPLEXITY CLASSIFIER AND SHORT-CIRCUITING

To avoid image generation for simple queries, we use a Query Complexity Classifier to predict
if a query is “simple” or “complex”. A query is considered simple if existing methods (which we
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term “elementary methods”, M) are expected to return results with a high Average Precision (AP).
Predicting complexity from linguistic features alone is often insufficient, so we use a lightweight,
feature-based approach where features are derived from the elementary retrieval results themselves.
These features form a vector f⃗(φ) ∈ RD and include:

• Mean Top-K Cosine Similarity Scores: For each elementary method Mp, we compute the aver-
age cosine similarity of its top-K retrieved images, Rp,K(φ). A higher score generally suggests a
higher expected AP.

S̄Mp,K(φ) =
1

K

∑
I∈Rp,K(φ)

SMp(I, φ)

• Top-K Inter-Method Overlap Coefficients: To quantify consensus, we compute the Jaccard
index between the top-K results of any pair of distinct methods (Mp,Mq). High overlap is char-
acteristic of simpler queries.

J(Rp,K(φ), Rq,K(φ)) =
|Rp,K(φ) ∩Rq,K(φ)|
|Rp,K(φ) ∪Rq,K(φ)|

• Confidence Deviation: We measure the consistency of similarity scores using the standard devi-
ation of the top-K scores, σMp,K(φ). A lower standard deviation suggests higher confidence.

σMp,K(φ) =

√√√√ 1

K − 1

∑
I∈Rp,K(φ)

(SMp
(I, φ)− S̄Mp,K(φ))2

This feature vector f⃗(φ) is input to a pre-trained, lightweight regression model C : RD → [0, 1]
(e.g., linear regression), which outputs a predicted AP score, APpred(φ). If this score exceeds a
threshold γAP , the query is classified as simple and short-circuited; otherwise, it is classified as
complex and proceeds to the full pipeline.

F.2 IMPLICIT METADATA GENERATION

The implicit metadata generation module creates a positive feedback loop. After the full pipeline
runs for a complex query, this module tags high-confidence image results with the query text. These
new tags enrich our internal knowledge base, boosting the performance of the tag-based retrieval
used by the Query Complexity Classifier.

The core challenge is to tag images with high confidence. We validate that the raw cosine similarity
score from a multi-modal embedder serves as a reliable proxy for retrieval confidence. For a set
of queries Q = {φk}Nk=1, we define the mean cosine similarity (MCS) for a query qk from an
embedder ℓ as:

MCSℓ(φk) =
1

|Rφk
|
∑

I∈Rφk

cos(∠(v⃗ℓI , v⃗
ℓ
φk

)) (6)

We then compute the Pearson correlation coefficient, r, between the MCS values and the corre-
sponding true Average Precision (AP) values across all queries:

r =

∑N
k=1(MCSℓ(φk)− MCS)(AP(φk)− AP)√∑N

k=1(MCSℓ(φk)− MCS)2
∑N

k=1(AP(φk)− AP)2
(7)

Our empirical validation (Figure 7) shows a strong, direct correlation. Based on this, our tagging
strategy is as follows: after a retrieval, we assign the query φ as a tag to any retrieved image I
where the similarity score cos(∠(v⃗ℓI , v⃗

ℓ
φ)) exceeds a fine-tuned confidence threshold τ . This process

continually improves our metadata, leading to more short-circuiting and higher efficiency over time.

G SYSTEM DEVELOPMENT

G.1 DEVELOPMENT OBJECTIVES

As one of our primary objectives, we aim to develop NEEDLE as an open-source, deployment-ready
application that both researchers and developers can easily adopt. Specifically, we considered a
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Figure 7: Correlation between CLIP cosine similarity and Mean Average Precision (MAP) across
various benchmarks. The Pearson correlation coefficient (r) and its associated p-value are displayed
within each subplot.

set of design objectives, outlined in the following; later, in § G.2, we describe how our system
implementation fulfills these objectives.

Database Functionality and CLI Integration: NEEDLE should be easily installable across various
operating systems and offer an intuitive command-line interface (CLI) for efficient user interaction.

Deployment Readiness and Versatility: NEEDLE should be engineered for immediate deployment,
operating out-of-the-box on a wide range of system configurations, including resource-limited per-
sonal computers.

Configurability and Abstract Database Modes: Users should have the freedom to select from
multiple operational modes (fast, balanced, accurate) that balance retrieval accuracy and latency
according to their specific application needs. Additionally, NEEDLE should allow for customization
beyond these predefined modes.

GPU Acceleration and Scalability: Given the computational intensity of image indexing, NEEDLE
should automatically leverage available GPU resources and support workload distribution across
multiple GPUs to ensure scalable performance.

Modular Embedder Architecture: As embedders are central to NEEDLE’s functionality, the ar-
chitecture should facilitate easy integration and upgrading of new embedder models, ensuring the
system remains at the forefront of technological advancements.

Multi-Directory Management: NEEDLE should be capable of managing multiple image directories
concurrently. It should allow users to add, remove, or toggle directories for search while indexing
new directories in the background without interrupting ongoing queries.

Robustness and Consistency Maintenance: NEEDLE should perform consistency checks upon
restart after downtime to synchronize any database changes. It should continuously monitor desig-
nated directories for modifications, ensuring the database index remains aligned with the file system.

Integration with External Image Generators: To facilitate the generation of guide images, NEE-
DLE should provide connection wrappers for leading proprietary and open-source image generation
services (e.g., DALL-E, Google Imagen, Replicate). Furthermore, it should allow users to integrate
any image generator that complies with the specified request schema.

Flexible Output Formats and Enhanced Usability: Recognizing that NEEDLE may serve as
a component within larger pipelines, it should support multiple output formats, including JSON,
YAML, and human-readable text. Additionally, built-in query previews should be provided to im-
prove the overall user experience.

G.2 SYSTEM DETAILS

Having defined our development objectives, we can now delve into the NEEDLE’s implementation
details.
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(a) needlectl Com-
mands Overview and
Adding a Directory

(b) Image Genera-
tor/Image Directory
Configurations

(c) Running queries using
needlectl and NEE-
DLE Results

(d) NEEDLE Query Re-
sults Builtin Preview Page
for [a train] in BDD
dataset [84] – 102 out of
70K images include a train

Figure 8: Screenshots of key interfaces and features of NEEDLE.

Architecture: NEEDLE by nature requires multiple services to work together. It needs a service
for handling Image Generation, a service for handling Directory Integration and Indexing Progress,
and a service for storing calculated embeddings and kNN lookup. In order to handle these multiple
sources of responsibilities, we have designed NEEDLE with a microservice architecture, delegating
correlated responsibilities to their respective services. NEEDLE’s services are:

Backend: This microservice serves as the gateway to the core functionalities of NEEDLE. It encap-
sulates the primary operations of the system, exposing APIs such as /search, /directory, and
/query. Additionally, it manages the initialization of embedders and oversees the image indexing
process.

Database: The backend container needs persistent storage to store directory structures, indexing
progress, and other critical metadata. NEEDLE is agnostic to the choice of the database, but in the
current implementation, we use PostgreSQL9 for this goal.

Vector Store: NEEDLE requires a vector store that supports embedding, indexing, and inner product
searches. This service is used to store the outputs of various embedders and to efficiently execute
k-nearest neighbor (kNN) searches for a given query. In the current implementation, we have used
Milvus10 for this purpose.

Image Generator Hub: This service manages the image generation process by providing wrappers
for renowned services such as DALL-E, Imagen, and Replicate. It also supports custom image gen-
eration models that conform to its defined schema. Moreover, the hub offers fallback mechanisms
and priority settings to maximize robustness and ensure reliable image generation.

Command-Line Interface: NEEDLE requires an intuitive interface to work with the backend ser-
vice and apply the user’s requests. This service is the exposed UI of NEEDLE to the end user.

Since the individual services have their own dependencies and requirements, we containerized all
core services using docker to mitigate dependency conflicts and make deployment easier across
various operating systems. We employ docker compose to orchestrate these containers, estab-
lish a shared network, and configure the individual services. Additionally, to eliminate the need
for direct Docker manipulation, we developed a Command-Line Interface (CLI), needlectl, as
a standalone binary. needlectl installs into the user’s path and provides seamless access to the
NEEDLE core.

Technical Stack and Frameworks: Backend and ImageGeneratorHub services built using
FastAPI framework11. For GPU-intensive tasks, PyTorch12 is leveraged to distribute workloads
across available GPUs, ensuring efficient processing.

Embedder management is streamlined via integrations with Hugging Face and the timm library13,
facilitating the initiation and upgrading of embedding models. The CLI client (needlectl) is de-

9https://www.postgresql.org/
10https://milvus.io/
11https://fastapi.tiangolo.com/
12https://pytorch.org/
13https://github.com/huggingface/pytorch-image-models
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veloped using the Typer14 library to build intuitive command-line applications, while textual15

is utilized to manage terminal user interfaces (TUIs).

Standalone Python libraries are packaged with PyInstaller16, simplifying the distribution and
execution. Installation, upgrading, and uninstallation processes are automated using Bash scripts,
ensuring a smooth user experience. Containerization and orchestration are achieved with Docker17

and Docker Compose, respectively.

For documentation, we employ mdBook18 to create comprehensive and well-structured guides. Fi-
nally, all of the build, development, and versioning processes are automated via CI/CD pipelines
using GitHub Actions19.

Command-Line Interface and APIs: NEEDLE offers a robust CLI that enables seamless inter-
action with its core services. The needlectl is provided as a standalone binary, allowing users
to execute commands directly without requiring additional dependency installations. This design
ensures that non-expert users can easily operate NEEDLE. The CLI commands and options have
been carefully designed to be intuitive and straightforward. The command structure adheres to the
following format:

needlectl [--global options] [component] [action] [--action options]

This structure supports clear and consistent command usage with the following key components
(some illustrative examples are provided in Listing 9):

• service: for managing NEEDLE-related tasks
• directory: for handling image directory operations
• query: for managing active queries
• generator: for interfacing with image-generation functionalities

needlectl service start # Starts the Needle services
needlectl service log # Retrieves service logs
needlectl directory add /path/to/image/dir --show-progress
# Adds an image directory for indexing and monitoring,
# displaying progress bar
needlectl --output json query run "a wolf"

--num-engines 2
--num-images-to-generate 4
--image-quality LOW

# Executes a query using two generators,
# each generating four low-quality images, with JSON output

Figure 9: Illustration of needlectl commands

Installation and Deployment:

NEEDLE is installed using a single one-liner command that executes a Bash script. This script auto-
matically verifies system prerequisites and checks for GPU availability. It detects the current oper-
ating system and downloads the appropriate configuration. During installation, users are prompted
to select a preferred database mode—Fast, Balanced, or Accurate—which optimizes various param-
eters such as the number of embedders, default image resolution for generation, default number of
generators, number of images generated per query, and HNSW[46] index construction parameters
(e.g., M and ef). Finally, the installation script guides users through the initial steps to start and
utilize the NEEDLE service.

14https://typer.tiangolo.com/
15https://textual.textualize.io/
16https://pyinstaller.org/en/stable/
17https://www.docker.com/
18https://rust-lang.github.io/mdBook/
19https://github.com/features/actions

24

https://typer.tiangolo.com/
https://textual.textualize.io/
https://pyinstaller.org/en/stable/
https://www.docker.com/
https://rust-lang.github.io/mdBook/
https://github.com/features/actions


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Embedder Models and Their Weights

Architecture Model Name Weight
eva[20] eva02 large patch14 448 0.8497
regnet[80] regnety 1280 0.8235
dinoV2[56] vit large patch14 reg4 dinov2 0.8235
CLIP[58] vit large patch14 clip 336 0.8146
convnextV2[78] convnextv2 large 0.8184
bevit[8] beitv2 large patch16 224 0.7660

H ADDITIONAL EXPERIMENTS

H.1 DETAILS OF BASELINE MODELS

1. CLIP [58]: Developed by OpenAI20, this model uses a ViT-B/32 image encoder and a
Transformer-based text encoder. It learns a shared embedding space via contrastive learning on
large-scale image–text pairs, and its widespread use and benchmarking make it a standard reference.
We use CLIP as our standard baseline and designate categories where CLIP’s average precision (AP)
is below 0.5 as ”hard categories”—instances where CLIP struggles to produce satisfactory results.
This filtered subset is then used to demonstrate the enhanced capability of alternative baselines in
effectively handling rare or difficult queries.

2. ALIGN [28]: Originally developed by Google, ALIGN (A Large-scale ImaGe and Noisy-
text Embedding) employs a dual-encoder architecture similar to CLIP, using separate en-
coders for images and text trained with a contrastive loss. However, while CLIP (in our
clip-vit-base-patch32 variant) uses a Vision Transformer for image encoding, ALIGN typ-
ically uses a CNN image encoder along with a Transformer for text. Moreover, the original ALIGN
was trained on a much larger, noisier dataset (over 1.8 billion image–text pairs) than CLIP. In our
experiments, we use an open-source version21 that preserves the core architecture but is trained on
different data, achieving even better accuracy on some benchmarks.

3. FLAVA [65]:22 a unified multimodal model developed by Facebook that jointly learns represen-
tations for images and text. Unlike CLIP, which primarily relies on a contrastive approach applied
to image-text pairs, and ALIGN, which emphasizes scaling up representation learning using noisy
text supervision with separate encoders, FLAVA adopts a holistic pre-training strategy. It integrates
both unimodal and multimodal objectives, enabling FLAVA to capture richer semantic interactions
across modalities.

4. BLIP + MiniLM: This pipeline approach first converts images into descriptive captions us-
ing BLIP [39]23—a state-of-the-art image captioning model from Salesforce known for its high-
quality, informative captions. The generated captions are then transformed into embeddings with
MiniLM [77]24, a robust text encoder widely adopted in industrial applications. This decoupled
strategy not only leverages mature text retrieval systems but also enables independent optimization
of the captioning and text-embedding stages. As a result, it has become a strong baseline and is em-
ployed in many commercial products, offering enhanced interpretability and scalability compared to
end-to-end models like CLIP.

5. CoCa [85]: CoCa (Contrastive Captioners) is an image-text foundation model that unifies con-
trastive learning and generative captioning within a single encoder-decoder architecture. Unlike
dual-encoder models that are trained only with a contrastive loss, CoCa’s image encoder is trained

20https://huggingface.co/openai/clip-vit-base-patch32
21https://huggingface.co/kakaobrain/align-base
22https://huggingface.co/facebook/flava-full
23https://huggingface.co/Salesforce/blip-image-captioning-base
24https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

25

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/kakaobrain/align-base
https://huggingface.co/facebook/flava-full
https://huggingface.co/Salesforce/blip-image-captioning-base
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Blue napkin to the right of white plate (b) White napkin to the left of blue plate

Figure 10: Illustration of COLA compositional benchmark queries, using each image description,
where the goal is to identify the correct image

with both a contrastive loss (matching images to text) and a captioning loss (generating descriptive
text). This dual-objective pre-training enables CoCa to excel at a wide range of downstream tasks,
including zero-shot image retrieval, image captioning, and visual question answering, making it a
powerful and versatile baseline.

6. PlugIR [34]: PlugIR (Interactive Text-to-Image Retrieval) is a framework that enhances existing
retrieval models by leveraging the capabilities of a Large Language Model (LLM). Rather than being
a standalone retrieval model, PlugIR uses an LLM as an intelligent query-rewriting module. For a
given input text query, the LLM generates multiple, diverse, and descriptive reformulations of that
query. These expanded queries are then embedded using a base vision-language model (such as
CLIP), and their results are aggregated to form the final ranked list. This ”plug-and-play” approach
allows for significant retrieval improvements by combining the reasoning power of an LLM with the
strong visual-semantic alignment of existing models, all without requiring any re-training.

H.2 DATASET DETAILS

Object Detection Datasets:

1. Caltech256 [24]: Contains 30,607 images spanning 256 object categories. Its diverse object
classes make it a useful benchmark for assessing the robustness of detection and retrieval models.

2. MS COCO [42]: With over 118K images and 80 object categories, MS COCO is widely used for
object detection and segmentation. Its comprehensive annotations and varied scene compositions
provide a challenging testbed.

3. LVIS [25]: offers instance segmentation with a long-tail distribution of over 1,200 categories.
Its focus on rare and fine-grained objects is critical for evaluating retrieval performance on less
frequent classes.

4. BDD100k [84]: This dataset is tailored to urban driving scenarios with detailed annotations,
making it valuable for testing retrieval in real-world, dynamic contexts.

Natural Language Query Datasets:

For evaluating the performance of various baselines on complex natural language queries, we focus
on scenarios where models must differentiate between two highly similar images that exhibit nu-
anced differences. In these settings, the model is expected to identify the correct image by carefully
attending to subtle details in both the visual content and the corresponding query. To rigorously
assess these capabilities, we utilize several compositional benchmarks:
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5. COLA [61]: As a benchmark for compositional text-to-image retrieval, this dataset features
nuanced captions that require the system to distinguish between multiple similar images by cap-
turing subtle semantic and spatial details.

6. Winoground [68]: Designed to evaluate visio-linguistic alignment, Winoground presents pairs
of images and captions that differ only in their compositional structure. This dataset challenges
models to accurately map nuanced language to the corresponding image, serving as a stringent
test of fine-grained retrieval performance.

7. NoCaps [3]: A large-scale benchmark for novel object captioning, featuring images from Open
Images with human-generated captions. It is crucial for evaluating a model’s ability to handle
zero-shot retrieval on images containing objects not commonly found in standard captioning
datasets.

8. SentiCap [48]: Derived from datasets like MS COCO, SentiCap provides images with captions
specifically annotated for positive or negative sentiment. It allows for evaluating retrieval sys-
tems’ ability to understand and retrieve images based on subjective or emotional language cues,
moving beyond purely factual descriptions.

H.3 EVALUATION METRICS

We use different evaluation metrics for object detection and complex natural language queries bench-
marks. In object detection benchmarks, we define each benchmark dataset D as a set of images
D = {t1, t2, . . . , tp}, where each image ti comprises a set of objects ti = {o1, o2, . . . , os}, with oj
representing an individual object within image ti. For each benchmark, we compute the union of
all objects present across all images, denoted as

⋃n
i=1 ti =

⋃n
i=1{o1, o2, . . . , os}, and utilize each

unique object oj within this union as a query q for each retrieval engine. For a given query q, we
retrieve a ranked list of files F = {f1, f2, . . . , fn} (n = 60), representing the retrieved images. We
construct a list of relevance scores R = {r1, r2, . . . , rn}, where ri = 1 if q is present in image fi,
and ri = 0 otherwise. We start list indexing from 1, so by definition R[j] = rj . We assume access
to a function C(.), which gets an object as input and returns the number of images that this object
appears in. We are interested in retrieving at most 10 positive instances. Therefore, we define the
effective number of positives as: ep = min(10, C(q)).

Given R and ep, We assess the performance of the retrieval using the following metrics:

Mean Recall at k (R@k): r@k =
∑k

i=1 R[i]

ep . A higher r@k indicates that a larger proportion of the
relevant images (up to 10) are retrieved in the top k positions, we report mean r@k (R@k) which is
the average of r@k over all objects in the dataset.

Precision at k (P@k): p@k =
∑k

i=1 R[i]

k . A higher p@k reflects that a greater proportion of the
retrieved images are relevant, which is crucial when the user examines only the top results, same as
before, we report the averaged out P@k over all object in the dataset.

Mean Average Precision (MAP): measures the average precision (AP) over all queries.

AP =
1

ep

n∑
i=1

(∑i
j=1 R[j]

i

)
· ri,

where ri = R[i] and the effective number of positives is defined as ep = min(10, C(q)). The
overall mean average precision (MAP) is then the average of AP over all objects in the dataset.
MAP provides a single-figure measure that considers both the precision and recall across the entire
ranked list, rewarding systems that rank relevant images higher.

Mean Reciprocal Rank (MRR): computes the reciprocal rank for each query and then averages
these values over all queries. For a given query q, let kq be the smallest index such that R[kq] = 1,
indicating the rank of the first relevant image. The reciprocal rank for q is defined as:

RR(q) =

{
1
kq
, if ∃ k with R[k] = 1,

0, otherwise.

The Mean Reciprocal Rank (MRR) is the average value over all queries. MRR emphasizes the
importance of retrieving at least one relevant image as early as possible for ranking.
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Figure 11: Illustration of Complex Natural Language Queries extracted from NoCaps [3], Guide
images, and CLIP vs. NEEDLE results.
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Figure 12: Results from the human evaluation case study on the LVIS dataset. Among the queries
with a clear preference, NEEDLE was chosen in approximately 70% of cases, underscoring its prac-
tical effectiveness in retrieving relevant images.

For the complex natural language query experiments, we evaluate our method using both MRR and
Pairing Accuracy. In these experiments, the baseline is given two images, t1 and t2, along with
two captions, c1 and c2, and each caption must be assigned to its corresponding image correctly.
Pairing Accuracy is defined as the number of correct assignments divided by the total number of
queries. Note that the pairing accuracy for a random baseline is 0.25% (chance of choosing the
correct combination over all possible combinations).

H.4 VISUAL EXAMPLES OF COMPLEX QUERIES

Figure 11 provides visual examples of how NEEDLE handles complex natural language queries
compared to CLIP. The examples demonstrate the effectiveness of using synthetic guide images for
retrieval tasks that require understanding of complex scene descriptions and object relationships.

H.5 CASE STUDY

To further validate NEEDLE’s practical applicability, we conducted a case study with human evalua-
tors. We utilized the LVIS dataset as our primary image repository, as it contains over 100k images
spanning various categories, ensuring that any randomized query would likely have related images.
This made LVIS an ideal choice for our case study.
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Each human evaluator was asked to write five queries of their choice, with varying levels of com-
plexity. For each query, we retrieved 20 relevant images from both CLIP and NEEDLE, displaying
the results side by side with randomized orientations for each query. Evaluators were then asked to
select the more relevant results, choosing from four options: ”Left is better,” ”Right is better,” ”Both
are good enough,” and ”Neither is good enough”. Then, we recorded the engine behind that option
as the preferred engine.

A total of 20 human evaluators participated in the study, contributing 100 queries. The queries
ranged from simple ones like ”Celery stew” to more complex descriptions such as ”A person walking
on the sidewalk of a river in Fall at Chicago.”, Figure 12 presents the results of this user study. If
we consider only the queries where one engine is preferred over the other, NEEDLE is chosen as the
better engine in almost 70% of cases.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the spirit of transparency and to reflect modern research practices, we acknowledge the use of
Large Language Models (LLMs) as assistive tools in the preparation of this manuscript and the
development of the associated software.

Throughout the writing process, we utilized LLMs to refine prose, improve clarity, and correct
grammatical errors. The models served as an advanced editing tool to help articulate our ideas
more effectively. It is important to state, however, that all core concepts, methodological designs,
experimental analyses, and conclusions presented in this paper are the original contributions of the
authors.

Similarly, during the development of the NEEDLE, LLMs were employed as a debugging and code-
completion aid. They were particularly useful for identifying issues in code segments, suggesting
solutions to programming errors, and accelerating the implementation of standard software compo-
nents. The core architecture of NEEDLE and its novel algorithms were designed and implemented
entirely by the authors. We believe that acknowledging the role of these powerful tools is an impor-
tant step in maintaining the integrity and transparency of the modern research process.
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