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Abstract001

Few-shot multi-intent spoken language under-002
standing (SLU) aims to identify users’ multiple003
intents and key slots using a tiny amount of004
annotated data. Recent advances in large lan-005
guage models (LLMs) have utilized instruction006
learning frameworks to model intent-slot in-007
terdependencies, typically requiring abundant008
data for effective training. However, in few-009
shot scenarios, these frameworks face chal-010
lenges such as mismatches between the num-011
ber of generated slots and input lengths, re-012
lational confusion in multi-intent scenarios013
and neglect of task-specific variations in in-014
tent counts across utterances. To overcome015
the challenges, we propose PICD-Instruct, a016
novel generative framework based on Basic017
Instructions (BI), Pairwise Interaction Instruc-018
tions (PII) and Contrastive Distinct Instruc-019
tions (CDI). Specifically, BI directs LLMs to020
generate entities along with associated words,021
thereby mitigating mismatches in quantitative022
correspondences. PII explicitly captures dual-023
task interdependencies by guiding LLMs to024
pair each intent with its related entities. CDI025
enhances understanding of utterances by guid-026
ing LLMs to determine whether two utterances027
share the same intent count. Experimental re-028
sults on public datasets indicate that PICD-029
Instruct achieves state-of-the-art performance.030

1 Introduction031

Spoken Language Understanding (SLU) (Young032

et al., 2013) is a fundamental component of task-033

oriented dialogue systems. Among the various as-034

pects of SLU, multi-intent SLU has gained sig-035

nificant attention due to its practical necessity in036

complex interactive scenarios. This task involves037

two closely linked subtasks: multi-intent detection038

and slot filling. Multi-intent detection focuses on039

identifying the intents embedded within a user ut-040

terance, whereas slot filling extracts key semantic041

information from the utterance. In practical ap-042

plications, however, obtaining sufficient labeled043

data for domain-specific SLU models is often time- 044

intensive and costly. These challenges highlight the 045

critical importance of exploring multi-intent SLU 046

in low-resource settings. 047

Given the bidirectional relationship between in- 048

tents and slots, recent models leverage multi-task 049

joint frameworks to capture these interdependen- 050

cies, achieving strong performance with sufficient 051

training data (Goo et al., 2018; Li et al., 2018; Niu 052

et al., 2019; Liu et al., 2019a; Qin et al., 2020, 053

2021; Song et al., 2022; Chen et al., 2022; Xing 054

and Tsang, 2022a,b; Mei et al., 2023; Song et al., 055

2024). Meanwhile, large language models (LLMs) 056

show promise in the zero-shot SLU task (Pan et al., 057

2023; Zhu et al., 2024) but remain largely de- 058

signed for single-intent scenarios. For instance, 059

Pan et al. (2023) explored prompt-based zero-shot 060

SLU with ChatGPT, but its slot filling lagged far 061

behind fine-tuned models. Similarly, Zhu et al. 062

(2024) proposed a pseudo-labeling framework to 063

enhance task collaboration but faced error propaga- 064

tion issues. To address these limitations, Xing et al. 065

(2024) first introduced instruction learning into gen- 066

erative multi-intent SLU. Their framework lever- 067

ages instruction learning and contrastive learning to 068

model intent-slot relationships through mutual pre- 069

diction of ground-truth labels. By distinguishing 070

task-specific semantics across utterances, this ap- 071

proach enhances SLU reasoning. This raises a key 072

question: Can instruction-guided LLMs achieve su- 073

perior performance in few-shot multi-intent SLU? 074

Beyond traditional SLU challenges, LLMs in- 075

troduce new opportunities by enhancing struc- 076

tured and reliable information extraction (Li et al., 077

2024). SLU plays a crucial role in intelligent agent- 078

driven task completion, where accurate intent detec- 079

tion ensures effective execution of user commands 080

(Caren Han et al., 2022). Unlike open-ended gen- 081

eration, SLU requires structured output to main- 082

tain schema consistency, which is critical for ap- 083

plications in domains such as voice assistants, cus- 084
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Figure 1: An example from MixSNIPS dataset. Traditional LLMs-generated slot labels are in orange, while golden
slot labels and our proposed entity labels are in green. Intent labels are in blue.

tomer service automation, and smart device control085

(Saxon et al., 2021; Irugalbandara, 2024).086

However, we discover three core challenges087

in leveraging LLMs for few-shot multi-intent088

SLU. Firstly, the uncontrollable nature of LLM-089

generated outputs poses significant challenges for090

slot filling, as the number of generated slot often091

fails to correspond with the input length. This issue092

is exacerbated in few-shot settings, where limited093

training data restricts the model’s ability to accu-094

rately map slots to tokens. As shown in Fig. 1,095

the example demonstrates the over-generation and096

mismatch of slot labels. Secondly, existing gener-097

ative frameworks exhibit a strong dependence on098

extensive annotated data and fail to effectively cap-099

ture the semantic dependencies between intents and100

slots. DC-Instruct (Xing et al., 2024) predicts slot101

labels based on the provided utterance and intent102

labels, but it falls short in establishing a one-to-one103

correspondence between each intent and its associ-104

ated slots. This leads to confusion in multi-intent105

scenarios, making it harder for models to learn106

dual-task interdependencies with limited training107

data. Thirdly, unlike single-intent scenarios, the108

number of intents contained in a user’s utterance in109

multi-intent scenarios is often uncertain, making it110

more challenging for models to accurately identify111

all the intents. Therefore, improving the sensitivity112

of LLMs to the variations in intent counts across113

utterances can enhance their understanding of such114

cases. However, current approaches often overlook115

this task-specific feature, potentially hindering the116

models’ ability to effectively comprehend utter-117

ances with multiple intents.118

To overcome these challenges, we propose119

PICD-Instruct, a novel generative model based on120

instruction learning. PICD-Instruct employs three121

types of instructions: Basic Instructions (BI), Pair-122

wise Interaction Instructions (PII) and Contrastive123

Distinct Instructions (CDI). BI shifts from the tra-124

ditional approach of assigning a slot label to each125

word to a formulation based on entity-word pair-126

ings, effectively mitigating mismatches between127

generated slots and input lengths commonly en-128

countered when using LLMs for direct slot gener- 129

ation. Considering that each green entity label in 130

Fig. 1 aligns exactly with its associated words, PII 131

incorporates an auxiliary intent-slot pairing task 132

that explicitly models the bidirectional dependen- 133

cies between intents and slots. By aligning golden 134

intent labels with corresponding entity labels, PII 135

mitigates relational confusions in multi-intent sce- 136

narios. CDI enhances the ability to perceive varia- 137

tions in the number of intents within an utterance 138

by introducing a task that determines whether two 139

utterances contain the same number of intents. By 140

leveraging positive and negative samples alongside 141

the current utterance, CDI trains the model to dis- 142

tinguish between utterances based on intent counts, 143

thereby improving its comprehension capabilities. 144

We conduct experiments on two few-shot 145

datasets, FewShotMixATIS and FewShotMixS- 146

NIPS (Hua et al., 2024). Experimental results show 147

that PICD-Instruct significantly outperforms exist- 148

ing baselines, achieving state-of-the-art (SOTA) 149

performance in the few-shot multi-intent SLU 150

task. Moreover, it demonstrates strong gener- 151

alization capability, transferring from a single- 152

domain dataset (FewShotMixATIS) to a multi- 153

domain dataset (FewShotMixSNIPS). 154

In summary, our contributions are three-fold: 155

(1) We propose PICD-Instruct, a novel genera- 156

tive instruction-learning framework that integrates 157

pairwise interactive instructions and contrastive dis- 158

tinct instructions to overcome challenges in the 159

few-shot multi-intent SLU task. 160

(2) We advance the explicit modeling of bidi- 161

rectional dependencies between intents and slots 162

in low-resource settings, reducing relational confu- 163

sions in multi-intent scenarios through the applica- 164

tion of instruction learning. 165

(3) PICD-Instruct achieves SOTA performance 166

in the few-shot multi-intent SLU task, as evidenced 167

by extensive experiments and analyses. 168

2 Related Work 169

Multi-intent SLU Prevailing models (Kim et al., 170

2017; Gangadharaiah and Narayanaswamy, 2019) 171
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often employ joint modeling to simultaneously172

learn the two tasks in SLU and capture their rela-173

tions. Gangadharaiah and Narayanaswamy (2019)174

jointly model multiple intent detection and slot fill-175

ing via a slot-gate mechanism. To better model the176

two tasks’ interactions, graph neural networks have177

been widely utilized (Qin et al., 2020, 2021; Xing178

and Tsang, 2022a,b; Song et al., 2022). The Co-179

guiding Net (Xing and Tsang, 2022a) pioneers in180

achieving mutual guidance between the two tasks181

through a two-stage framework. DC-Instruct (Xing182

et al., 2024) employs instructions for LLMs to183

predict one subtask’s labels based on the other’s184

golden labels, effectively capturing the relation-185

ships between intents and slots. UGEN (Wu et al.,186

2022) and PromptSLU (Song et al., 2024) performs187

multi-intent SLU based on the paradigm of prompt188

learning.189

The above approaches primarily focus on scenar-190

ios with abundant training data. However, in few-191

shot settings, capturing the correlations between192

the two tasks in SLU becomes more challenging,193

leading to degraded performance for most models194

(Hua et al., 2024). While UGEN and DC-Instruct195

have demonstrated performance in low-resource196

settings, the few-shot training data they utilize does197

not align well with real-world application scenarios198

in terms of sample quantity and distribution. To199

better simulate practical application scenarios, we200

employ FewShotMixATIS and FewShotMixSNIPS,201

two datasets specifically tailored for few-shot sce-202

narios, as the data for model training. Different203

from recent works, we propose a novel generative204

framework incorporating various instructions to en-205

sure the accuracy of LLM outputs. Our approach206

explicitly captures dual-task interdependencies by207

reducing relational confusions and effectively har-208

nesses the variations of intent counts across differ-209

ent utterances, enabling improved performance in210

the few-shot multi-intent SLU task.211

Instruction Learning Recently, the rise of212

LLMs in the natural language processing (NLP)213

field has positioned instruction learning as a com-214

petitive approach across various NLP tasks (Lou215

et al., 2024; Safa et al., 2024). This paradigm effec-216

tively leverages the advanced conversational abili-217

ties of LLMs to perform generative tasks, bridging218

the gap between pre-training and fine-tuning stages.219

In this work, we investigate instruction learn-220

ing for few-shot multi-intent SLU and propose a221

novel model characterized by pairwise interactive222

instructions and contrastive distinct instructions.223

3 Task Definition 224

As shown in the example in Fig. 1, multi-intent 225

SLU aims to detect all possible intents within an ut- 226

terance and identify the slot label corresponding to 227

each word. Therefore, multi-intent detection is con- 228

sidered as a multi-label text classification task and 229

slot filling is regarded as a sequence labeling task. 230

The task can be formulated as follows: given an in- 231

put utterance X = {W1,W2, . . . ,Wn}, where n is 232

the length of the utterance. The objective is to pre- 233

dict the correct intents from the candidate intents 234

I = {i1, i2, . . . , im} and indentify the slot label 235

for each word Wi from the candidate slot types 236

S = {s1, s2, . . . , sk}, where m is the number of 237

intent categories, and k is the number of slot types. 238

4 Methodology 239

In this section, we introduce our proposed PICD- 240

Instruct framework. As depicted in Fig. 2, we for- 241

mulate our instructions in a question-answer (QA) 242

form. The framework includes three types of in- 243

structions, each corresponding to a specific task. 244

This approach mitigates the effects of uncontrol- 245

lable generation by LLMs and more explicitly mod- 246

els the correlations between the two tasks in SLU, 247

reducing relational confusions. In addition, it en- 248

hances the model’s ability to understand utterances 249

with multiple intents. The following subsections 250

provide a detailed explanation of our proposed ba- 251

sic instructions (I1), pairwise interaction instruc- 252

tions (I2) and contrastive distinct instructions (I3). 253

4.1 Basic Instructions 254

The basic instructions (I1) are designed to guide 255

the model in generating the intents, named 256

entities and their corresponding words expressed 257

in the utterance. The key components of the 258

basic instructions are illustrated as follows: 259

             You are an expert in multi-intent 

spoken language understanding. Your task is to 

extract all possible intents and named entities 

from user utterances while strictly following 

guidelines for quality and formatting.

                  First, identify the intents 

in the utterance. The intent options are: 

{Intent Label Set}. Next, identify the named 

entities and list each entity with its 

corresponding words, the entity options are: 

{Entity Label Set}.

[Persona]:

[Instructions]:

260

where the persona specifies the model’s role and 261

the tasks to be performed, while the instructions 262

detail the step-by-step procedures and require- 263
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Figure 2: Overview of our framework. Detailed instructions are shown in Appendix A.

ments. To facilitate result extraction and ensure264

the controllability of model outputs, the response265

format for all tasks is standardized in the JSON266

format. It can be formulated as:267

R = L(SP, I) (1)268

where SP represents the system prompt, I is the269

input, L denotes the LLM and R is the response.270

By converting R into a Python dictionary, we can271

extract the intents and entities. After obtaining all272

entities and their corresponding words, inspired by273

(Wang et al., 2023), we map the words back to their274

original slot labels using the BIO rule, adhering to275

the natural left-to-right order of the utterance. This276

approach allows the LLM to concentrate solely on277

establishing correspondence between entities and278

words, disregarding the requirement that the num-279

ber of final slot labels matches the utterance length.280

This effectively circumvents the difficulty LLMs281

face in learning such quantitative correspondences282

in few-shot scenarios.283

4.2 Pairwise Interaction Instructions284

To explicitly model dual-task dependencies285

and reduce relationship confusion, we propose286

the pairwise interaction instructions (PII). PII287

is designed to pair each intent with its re-288

lated entities based on the provided utterance,289

along with its intent and entity labels. The290

key components of the PII are as follows:291

             You are an expert in multi-intent 

spoken language understanding. You need to 

correspond each intent and its associated named 

entities based on a user utterance and the 

intent(s) and named entities it contains.

                  There is a close relationship 

between each intent and certain named entities. 

You need to pair them separately.

[Persona]:

[Instructions]:

292

As shown in Fig. 2, during training, dual-task 293

dependencies are captured by achieving two kinds 294

of alignments. First, in the input part, both the 295

utterance semantics and the labels for the two 296

subtasks are included, achieving a semantic-label 297

alignment for the tasks. Second, dual-task label 298

alignment is established by pairing intent and 299

entity labels in the generation side. With the 300

straightforward mechanism of separate pairing 301

between each intent and its related entities, the 302

mutual dependencies of the two subtasks can 303

be more easily and directly captured by LLMs 304

with their strong few-shot learning capabilities. 305

In addition, it also subtly reduces relational 306

confusions in multi-intent scenarios. 307

4.3 Contrastive Distinct Instructions 308

Unlike single-intent scenarios, the number of 309

intents contained in an utterance in multi-intent 310

scenarios is often uncertain. Previous works over- 311

look variations in intent counts among utterances, 312

a factor that aids in understanding utterances with 313

multiple intents. Inspired by (Xing et al., 2024), 314

we leverage contrastive relationships centered 315

around intent count differences to enhance the 316
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Statistic FewShotMixATIS FewShotMixSNIPS

# K-shot 2-shot 4-shot 6-shot 8-shot 10-shot 2-shot 4-shot 6-shot 8-shot 10-shot
# Original training instances 34 66 100 137 172 14 27 40 54 70
# PICD-Instruct training instances 1,717 6,501 14,950 27,948 44,290 287 1,053 2,380 4,347 7,315
# Training slot types 47 53 57 61 65 30 44 50 54 58
# Testing slot types 82 70
# Testing instances 828 2199

Table 1: Detail Statistics of FewShotMixATIS and FewShotMixSNIPS.
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Figure 3: Traditional contrastive learning and our pro-
posed CDI based on instruction learning.

comprehension of utterances and further improve317

SLU performance. As shown in Fig. 3 (a),318

traditional contrastive learning aims to optimize319

representations by pulling similar samples closer320

in the latent space while pushing dissimilar321

samples away. To adapt this approach to generative322

models, we propose straightforward yet effective323

instructions to implement contrastive learning in324

the instruction learning paradigm, as shown in325

Fig. 3 (b). We first sample a positive utterance326

P and a negative utterance N in relation to the327

current utterance C. Then we construct instructions328

to ask the LLM whether C and P, or C and N329

have the same amount of intents. The expected330

output is a simple binary response:"true" or "false".331

The key components of the CDI are as follows:332

             You are an expert in multi-intent 

spoken language understanding. You need to 

determine whether two user utterances contain 

the same amount of intents.

                  You will be given two user 

utterances. Each utterance may contain single 

or multiple intents. You need to judge whether 

the two utterances contain the same amount of 

intents.

[Persona]:

[Instructions]:

333

This approach leverages contrastive relationships334

to improve the ability of generative LLMs to335

perceive variations in the number of intents within336

an utterance in multi-intent scenarios.337

4.4 Training and Inference 338

Training First, an I3 is constructed for every two 339

samples. Next, an I1 and an I2 are created for each 340

sample. To facilitate efficient annotation, GPT-4o1 341

is employed to label I2. Details of the prompt 342

settings are provided in Appendix B. The shuffled 343

training data is then utilized to train the model in a 344

text-to-text generation form. The training objective 345

is to minimize the negative log-likelihood for each 346

instruction: L = −
∑N

n=1 log p(yn | y<n, I). N is 347

the length of the golden output sequence y1, ..., yN 348

and I denotes the current input instruction. 349

Inference In the inference stage, only I1 is used 350

to generate predictions for both multiple intent de- 351

tection and slot filling. 352

5 Experiments 353

5.1 Experiment Setup 354

5.1.1 Dataset 355

We compare our method with the baselines on two 356

few-shot multi-intent SLU datasets, FewShotMix- 357

ATIS and FewShotMixSNIPS. They are derived 358

from MixATIS and MixSNIPS datasets (Qin et al., 359

2020) using the dynamic sampling algorithm pro- 360

posed by (Wang et al., 2023). As shown in Table 1, 361

each dataset includes five types of few-shot sam- 362

ples, ranging from 2-shot to 10-shot for training. 363

For testing, we use the test sets of original standard 364

datasets (i.e., MixATIS and MixSNIPS). Notably, 365

the test sets contain more slot types than the train- 366

ing sets, better reflecting models’ generalization 367

ablility to unseen labels. This setup effectively sim- 368

ulates a realistic application scenario for few-shot 369

multi-intent SLU. 370

To ensure a balanced number of the three in- 371

struction types, oversampling is applied to I1 and 372

I2. The final dataset sizes ranging from 2-shot to 373

10-shot are presented in the third row of Table 1. 374

5.1.2 Implementation Details 375

For PICD-Instruct, we use Qwen2.5-7B2 as its 376

backbone model. The model employs AdamW 377

1https://chatgpt.com/
2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

PLM-based Models
BERT 0 57.38 0 4.47 68.37 2.66 12.44 69.54 6.40 25.36 74.23 10.99 36.11 76.66 17.15
RoBERTa 0 48.90 0 0 56.68 0 6.04 65.17 1.33 6.52 68.27 2.17 16.79 70.96 9.18
AGIF(BERT) 0 38.28 0 0.60 32.73 0 10.75 48.13 3.02 15.10 38.79 3.50 29.83 56.91 8.94
GL-GIN(BERT) 1.21 6.49 0 6.52 21.32 1.57 14.49 32.09 2.90 18.84 33.89 3.26 23.67 49.54 5.56
UGEN(T5) 4.47 54.31 1.33 21.98 68.44 6.52 53.50 72.78 15.94 59.30 74.84 19.57 66.67 76.40 22.71
Uni-MIS(RoBERTa) 10.75 29.91 1.93 40.10 46.68 6.16 67.15 62.02 12.56 70.65 62.16 16.43 70.65 68.86 21.14
BERT-SIF 30.31 62.51 5.80 37.56 65.74 7.97 58.09 68.20 13.53 61.47 74.90 21.26 62.56 77.61 23.55

LLM-based Models
gpt-3.5-turbo 30.07 6.85 0.60 - - - - - - - - - - - -
gpt-4o-mini 58.21 8.87 2.05 - - - - - - - - - - - -
ENSI-Qwen2.5 25.60 41.99 4.47 39.98 46.62 6.52 45.41 52.73 7.13 47.58 54.90 9.42 51.09 56.78 9.66
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02

Table 2: Overall results on FewShotMixATIS. I-Acc, S-F1, O-Acc refer to the intent accuracy, slot F1, and overall
accuracy (both intents and slots need to be correct), respectively. PLM denotes pre-trained language model.

Model
FewShotMixSNIPS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

PLM-based Models
BERT 4.46 24.84 0.14 3.91 34.59 0 23.78 38.96 0.73 38.06 49.29 3.00 50.34 57.61 4.91
RoBERTa 0.55 8.87 0 1.36 19.04 0 24.51 33.05 0.50 30.38 33.41 0.68 37.79 37.25 0.68
AGIF(BERT) 1.27 2.74 0 6.23 7.11 0 17.69 9.12 0.09 21.15 10.03 0.05 14.78 12.53 0.68
GL-GIN(BERT) 7.50 0.61 0 14.19 1.48 0 28.06 2.03 0.09 34.20 5.49 0.27 58.21 9.62 0.18
UGEN(T5) 2.64 13.10 0 29.65 33.07 0.23 38.84 40.31 1.96 61.57 46.80 4.37 73.08 58.38 7.78
Uni-MIS(RoBERTa) 33.33 9.39 0.36 45.70 13.24 0.68 49.89 12.53 0.45 67.03 30.43 2.68 68.17 35.81 4.14
BERT-SIF 37.61 26.29 0.64 56.34 38.32 2.18 64.39 43.34 3.23 65.39 50.18 7.14 74.12 61.75 11.10

LLM-based Models
gpt-3.5-turbo 64.48 3.91 0.18 - - - - - - - - - - - -
gpt-4o-mini 86.95 8.29 0.73 - - - - - - - - - - - -
ENSI-Qwen2.5 5.41 6.66 0.18 25.24 15.20 0.77 36.74 22.93 1.36 41.47 28.32 2.05 47.61 29.66 2.50
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 3: Overall results on FewShotMixSNIPS.

(Loshchilov and Hutter, 2017) as the optimizer with378

an initial learning rate of 3e-5, along with a sched-379

uler that applies linear warm-up for learning rate380

adjustment. We adopt low-rank adaptation (LoRA)381

(Hu et al., 2021) to fine-tune the model, with only382

55M/28M trainable parameters for FewShotMix-383

ATIS/FewShotMixSNIPS. We set the LoRA rank to384

128/64 for FewShotMixATIS/FewShotMixSNIPS.385

The batch size is 16 for both datasets. We con-386

duct experiments based on the llamafactory (Zheng387

et al., 2024) framework to improve the efficiency of388

implementation. The Experiments are conducted389

on two NVIDIA A5000 GPUs. In multi-intent390

SLU, accuracy (Acc), F1 score and overall accu-391

racy are used as evaluation metrics for multiple392

intent detection, slot filling and the SLU semantic393

frame parsing. Our source code will be released.394

5.2 Main Results395

We compare our model with BERT (Devlin et al.,396

2018), RoBERTa (Liu et al., 2019b), gpt-3.5-turbo,397

and several top-performing models. Specifically,398

AGIF (Qin et al., 2020) presents an adaptive in-399

teraction network to achieve fine-grained multiple400

intent information integration for token-level slot401

filling. GL-GIN (Qin et al., 2021) introduces a 402

Global-Locally Graph Interaction Network which 403

explores a non-autoregressive model for joint mul- 404

tiple intent detection and slot filling. Wu et al. 405

(2022) proposes a Unified Generative framework 406

(UGEN) based on a prompt-based paradigm and 407

formulates the task as a question-answering prob- 408

lem. BERT-SIF introduces a separate intent-slot 409

interaction framework based on prompt learning to 410

mitigate relational confusions. The results of above 411

baselines are sourced from Hua et al. (2024), who 412

implemented the above models using their official 413

code. To more comprehensively evaluate the effec- 414

tiveness of our model, we include Uni-MIS (Yin 415

et al., 2024a), ENSI-Qwen2.5 (Yin et al., 2024b) 416

and gpt-4o-mini in the performance comparisons. 417

Specifically, Uni-MIS models multi-intent SLU 418

through a three-view intent-slot interaction fusion 419

mechanism to better capture the interaction infor- 420

mation. As an early attempt to apply LLMs to 421

the multi-intent SLU task, ENSI-Qwen2.5 extends 422

Qwen2.5(7B) by introducing the concepts of entity 423

slots and sub-intents to facilitate task completion. 424

For Uni-MIS, results are obtained by executing the 425

official code provided by the authors. For ENSI- 426
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Qwen2.5, since the complete code has not yet been427

released, we reproduce the model’s training pro-428

cess to obtain the reported results. The GPT-4o-429

mini experiment is conducted following the same430

methodology as in Hua et al. (2024). Due to limita-431

tions in prompt length and costs, the gpt-4o-mini432

experiment is conducted exclusively in the 2-shot433

setting. As the source code for DC-Instruct is un-434

available and key experimental parameters are not435

fully reported, we are unable to include it in our436

comparative experiments. Performance compar-437

isons are presented in Tabel 2 and 3, from which438

we have the following observations:439

(1) PICD-Instruct achieves new state-of-the-art440

performance on both datasets. On the FewShot-441

MixATIS dataset, PICD-Instruct surpasses BERT-442

SIF in the 2-shot setting by 39.26%, 2.63%, and443

13.16% on intent accuracy, slot F1 and overall ac-444

curacy, respectively. On the FewShotMixSNIPS445

dataset, it outperforms BERT-SIF in the 2-shot446

setting by 48.84%, 20.21% and 4.86% on intent447

accuracy, slot F1 and overall accuracy. As the448

amount of training data increases, the performance449

of our model and all baselines consistently im-450

proves across both datasets. This improvement451

is attributed to our model’s explicit capture of dual-452

task dependencies via pairwise interaction instruc-453

tions. The straightforward and effective mecha-454

nism significantly reduces training complexity in455

few-shot scenarios. In addition, our designed con-456

trastive distinct instructions enhance the LLM’s ca-457

pability to differentiate variations in intent counts458

across utterances, which further improves its un-459

derstanding in multi-intent scenarios. Furthermore,460

our method of guiding the LLM to generate en-461

tities along with their corresponding words effec-462

tively mitigates the mismatch between the number463

of slots and the utterance length, a challenge that464

LLMs typically face when learning quantitative465

correspondences from a limited amount of anno-466

tated data. An additional point of interest lies in467

the use of GPT-4o to assist in annotating pairwise468

interaction instructions for the sake of efficiency,469

which may introduce a certain level of annotation470

noise. Nevertheless, PICD-Instruct consistently471

and significantly outperforms the baseline models,472

highlighting the robustness of our approach to po-473

tentially noisy annotations.474

(2) Current LLM-based approaches can hardly475

handle few-shot multi-intent SLU. The perfor-476

mance of ChatGPT is consistent with recent find-477

ings (Pan et al., 2023; Qin et al., 2023). While gpt-478

4o-mini outperforms earlier pre-trained language 479

models in the multiple intent detection task, its per- 480

formance in slot filling falls significantly behind 481

most of them. We suspect there are two main rea- 482

sons. First, insufficiently descriptive prompt word- 483

ing may negatively impact ChatGPT’s performance. 484

We believe advanced in-context learning strategies, 485

such as chain-of-thought prompting, could partially 486

enhance ChatGPT’s performance, while this is be- 487

yond the scope of this paper. Second, multi-intent 488

SLU requires task-specific knowledge, which is 489

more effectively acquired through fine-tuning. This 490

finding underscores the need for vertical domain- 491

specific development, particularly for tasks requir- 492

ing high levels of domain-specific expertise. ENSI- 493

Qwen2.5 addresses the mismatch between the slot 494

generation length of LLMs and the actual utterance 495

length, as well as improve alignment between sub- 496

intents and clauses, by introducing the concepts 497

of entity slots and sub-intents. However, it falis 498

to capture the relationships between intents and 499

slots and does not effectively model the varying 500

informational richness across different utterances. 501

As a result, its performance on multi-intent SLU 502

remains limited in few-shot settings. 503

5.3 Ablation Study 504

In this section, we conduct ablation experiments to 505

explore the effect of each component of our PICD- 506

Instruct model. The results are shown in Table. 4. 507

Basic Instructions (BI). Retaining only BI (I1) 508

still yields significant improvements compared to 509

the previous best-performing model, BERT-SIF, 510

especially in slot filling, where it outperforms Chat- 511

GPT. This demonstrates that BI effectively guides 512

the LLM to generate entities along with their corre- 513

sponding words, simplifying the process of slot fill- 514

ing. Besides, well-crafted instructions fully lever- 515

age the few-shot learning capabilities of LLMs, 516

enabling a deeper understanding of the multi-intent 517

SLU task and improving task execution. 518

Pairwise Interaction Instructions (PII). Adding 519

PII (I2) results in obvious improvements across 520

all metrics and in all few-shot settings. It indi- 521

cates that PII effectively and explicitly captures 522

the dual-task correlations, leading to substantial 523

performance enhancements. Moreover, PII helps 524

mitigate relational confusions in multi-intent sce- 525

narios. The results further verify the fact that a 526

direct and effective interaction mechanism in the 527

instruction learning paradigm is highly beneficial 528

for few-shot learning. 529
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI (I2, I3) 67.51 64.43 17.75 68.84 68.07 20.65 71.50 70.65 22.83 78.02 72.75 26.69 77.66 73.54 26.81
w/o PII (I2) 68.24 64.57 17.87 68.96 68.24 20.77 71.62 70.98 22.95 78.26 72.91 26.81 78.14 73.68 27.05
w/o CDI (I3) 68.48 64.86 18.24 69.20 68.71 21.01 71.98 71.46 23.67 78.50 73.13 27.05 79.23 73.84 27.17
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02

FewShotMixSNIPS

w/o PII, CDI (I2, I3) 84.86 45.14 4.50 85.31 48.27 6.18 86.08 51.16 7.64 86.22 54.31 9.23 86.45 56.25 10.56
w/o PII (I2) 85.08 45.48 4.64 85.54 48.62 6.41 86.36 51.48 7.82 86.45 54.58 9.64 86.68 56.64 10.83
w/o CDI (I3) 85.54 46.11 4.96 85.95 49.03 6.82 86.90 51.93 8.05 86.81 54.97 10.14 87.04 57.13 11.28
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 4: Results of ablation experiments.

Contrastive Distinct Instructions (CDI). The aim530

of CDI is to enhance the LLM’s capability to under-531

stand variations in intent counts across utterances.532

The experimental results reveal that including CDI533

contributes to improvements in all metrics, verify-534

ing its necessity. Besides, combining CDI and PII535

further enhances the model’s performance. This536

synergy arises from their individual contributions:537

CDI and PII excel at their respective tasks, and their538

integration establishes a strong interdependence.539

CDI improves the LLM’s initial comprehension540

of an utterance’s intent count, thereby facilitating541

multiple intent detection. PII explicitly captures542

dual-task dependencies, reinforcing the relation-543

ship between tasks and enhancing slot filling per-544

formance. Therefore, removing any one of CDI545

and PII leads to performance decreases on all of546

intent accuracy, slot F1 and overall accuracy.547

5.4 Effects of Model Size548

To further evaluate the impact of model size on549

performance, we experiment with 3B, 7B and 14B550

versions of Qwen2.5 on both datasets. Due to space551

limitation, we only put results in the 2-shot setting552

in Table 5, detailed results for other settings are553

provided in Appendix C. This analysis will help554

determine whether it is necessary to pursue larger555

model sizes and understand the trade-offs involved.556

As shown in Table 5, the experimental results557

indicate that an increase in Qwen model size leads558

to improved performance. However, the perfor-559

mance gains in multiple intent detection and slot560

filling diminish as the model size increases further.561

For FewShotMixATIS dataset, increasing model562

parameters from 3B to 7B results in improvements563

of 12.32% and 7.36% in intent accuracy and slot F1,564

respectively. However, further increasing param-565

eters from 7B to 14B only yields gains of 2.17%566

and 4.9% in intent accuracy and slot F1, respec-567

tively. A similar trend is observed for the Few-568

Model FewShotMixATIS FewShotMixSNIPS

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 73.22 36.00 3.32
Qwen2.5-7B 69.57 65.14 18.96 86.45 46.50 5.50
Qwen2.5-14B 71.74 70.04 23.67 88.45 51.12 8.23

Table 5: Results comparison of different model sizes in
the 2-shot setting.

ShotMixSNIPS dataset, although overall accuracy 569

shows more pronounced improvements when pa- 570

rameters are scaled from 7B to 14B. This suggests 571

that the overall reasoning capability of the LLM 572

improves significantly with increased model size. 573

Consequently, pursuing larger-scale language mod- 574

els may not be essential for achieving substantial 575

performance gains across all metrics in the con- 576

text of multi-intent SLU. Moreover, we conduct 577

experiments to explore the impact of model type 578

on the performance in few-shot multi-intent SLU. 579

Detailed results are provided in Appendix D and 580

Appendix E. 581

6 Conclusion 582

In this paper, we conduct an in-depth investigation 583

of few-shot multi-intent SLU. We propose PICD- 584

Instruct, a framework designed to address the chal- 585

lenges of generative few-shot multi-intent SLU 586

from three key perspectives. Firstly, we propose ba- 587

sic instructions to tackle the mismatch between the 588

number of generated slots and input length. Sec- 589

ondly, we introduce pairwise interaction instruc- 590

tions to explicitly model dual-task dependencies 591

while minimizing relational confusions in multi- 592

intent scenarios. Thirdly, we present contrastive 593

distinct instructions that leverage contrastive re- 594

lations in intent counts to enhance understanding. 595

Experimental results demonstrate that our proposed 596

model achieves SOTA performance on FewShot- 597

MixATIS and FewShotMixSNIPS, thereby high- 598

lighting our model’s robust generalization capabili- 599

ties in a simulated real-world application scenario. 600

8



7 Limitations601

This paper presents a comprehensive analysis of602

generative few-shot multi-intent SLU and intro-603

duces the PICD-Instruct model, which is based on604

the paradigm of instruction learning. In fact, de-605

tailed descriptions of intent and slot labels could606

significantly enhance LLMs’ comprehension of607

multi-intent SLU, as high-quality external knowl-608

edge helps mitigate the hallucination issue in LLMs609

(Wan et al., 2024). In the future, we will explore610

how to integrate external label knowledge into611

LLMs to further improve the performance of few-612

shot multi-intent SLU.613
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Figure 4: Details of BI (I1).
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Figure 5: Details of PII (I2).

A The Detailed Instructions817

This section presents the detailed instructions for818

BI, PII, and CDI, as illustrated in Figs. 4, 5, and 6,819

respectively.820

B The Prompt Used by GPT-4o821

To ensure efficient annotation, we employ GPT-4o822

to label I2, with the corresponding prompt illus-823

trated in Fig. 7. First, we define GPT-4o’s role and824

provide an example annotation. Next, we intro-825

duce a labeling technique designed to improve the826

quality of the annotations. Finally, we specify the827

output format.828
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Figure 6: Details of CDI (I3).

 

Figure 7: The prompt used by GPT-4o.

C The Detailed Experimental Results for 829

Model Size 830

This section presents the detailed experimental re- 831

sults for three parameter sizes across all few-shot 832

settings. As shown in Table 6, performance im- 833

proves with an increase in model size. Consistent 834

with the findings in Section 5.4, performance gains 835

for most metrics diminish as the model size con- 836

tinues to increase. Therefore, it is crucial to con- 837

sider both model size and performance together, 838

especially in scenarios with limited computational 839

resources. 840

D Effects of Model Type 841

To investigate the effectiveness of different model 842

types, we compare the recently released versions 843

of two mainstream LLMs, LLaMA3 and Qwen. 844

As shown in Table 7, the results reveal that Qwen 845

outperforms LLaMA in terms of all metrics in most 846

few-shot settings. A possible explanation for this 847

3https://huggingface.co/meta-llama
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50
Qwen2.5-7B 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02
Qwen2.5-14B 71.74 70.04 23.67 78.38 70.77 24.76 78.86 72.14 25.36 80.92 75.38 30.68 77.17 76.16 29.71

FewShotMixSNIPS

Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23
Qwen2.5-7B 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51
Qwen2.5-14B 88.45 51.12 8.23 86.77 56.65 9.00 88.49 57.50 11.41 91.27 61.58 13.78 90.81 63.02 14.51

Table 6: Results comparison of different model sizes on FewShotMixATIS and FewShotMixSNIPS.

Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI 48.03 54.21 8.06 56.28 59.08 9.84 58.21 59.96 11.72 56.64 60.81 11.35 63.41 64.41 15.22
LLaMA3.2-3B 49.52 55.66 9.30 56.64 59.68 11.23 58.21 61.55 12.08 56.76 62.98 15.10 67.63 68.92 18.96

Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50

FewShotMixSNIPS

w/o PII, CDI 62.26 30.02 0.82 66.58 37.12 2.84 67.76 40.75 3.87 75.22 44.91 5.46 76.81 47.86 6.87
LLaMA3.2-3B 68.62 32.79 2.05 69.40 37.31 3.05 68.49 41.08 4.09 77.67 45.12 6.37 81.95 48.54 7.19

Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23

Table 7: Results comparison of different model types on FewShotMixATIS and FewShotMixSNIPS.

Model FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

LLaMA3.2-3B 1.33 0.97 1.33 0.36 0.24
Qwen2.5-3B 0.24 0.12 0.24 0.24 0.24

FewShotMixSNIPS

LLaMA3.2-3B 2.36 1.23 0.68 0.36 0.59
Qwen2.5-3B 0.09 0.27 0.18 0.09 0.05

Table 8: Error rate of JSON parsing on FewShotMix-
ATIS and FewShotMixSNIPS.

performance gap lies in their foundational capabil-848

ities. While LLaMA is primarily trained on En-849

glish corpora, Qwen excels in both Chinese and850

English, potentially allowing it to learn more di-851

verse language patterns during pre-training, which852

could benefit multi-intent SLU. Another notewor-853

thy observation is the disparity in their JSON output854

format capabilities. As shown in Table 8, Qwen855

exhibits superior JSON output capabilities com-856

pared to LLaMA, likely due to its tailored post-857

training process for generating structured outputs858

as ducumented in the official source4. Specifically,859

LLMs frequently generate content such as "Cut-860

ting Knowledge Date: December 2023 Today Date:861

...", where the ellipsis represents the original in-862

put, often resulting in errors during JSON parsing.863

Despite inferior performances of LLaMA, it still864

outperforms the strong baseline model BERT-SIF,865

which demonstrates the effectiveness of our pro-866

posed instructions in few-shot multi-intent SLU.867

4https://huggingface.co/Qwen/Qwen2.5-3B-Instruct

Notably, removing PII and CDI for LLaMA results 868

in significant performance declines across all met- 869

rics. In summary, this analysis underscores the 870

critical importance of model selection, particularly 871

with respect to capabilities relevant to the task at 872

hand. 873

E Case Study of Model Type 874

This section presents two case studies to further 875

examine the effectiveness of different model types. 876

A detailed illustration is provided in Fig. 8. 877

In case 1, both Qwen and LLaMA successfully 878

detect all intents; however, LLaMA fails to predict 879

the slot for "last". This indicates that while LLaMA 880

performs well in intent detection, it struggles with 881

modeling fine-grained semantic details, particularly 882

in interpreting the semantically implied word "last". 883

The word "last" is highly functional and context- 884

dependent. However, LLaMA may not have effec- 885

tively learned or modeled its role within specific 886

contexts. This suggests that LLaMA’s generaliza- 887

tion ability may be somewhat limited, particularly 888

in predicting abstract functional slots associated 889

with non-entity words. 890

In case 2, LLaMA cannot identify "SearchCre- 891

ativeWork" intent and outputs a wrong intent 892

"SearchScreeningEvent", while Qwen can give 893

the correct prediction. LLaMA’s incorrect intent 894

prediction directly results in misclassifying "su- 895

pernatural: the unseen powers of animals" as a 896

"movie_name". Moreover, LLaMA incorrectly 897
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Case 1

Utterance: whatꞌs the weather 
forecast for croatia on July 
25th and also play the last 
sound track by soko from 
around 1975

Predictions of Qwen2.5-3B

Intents: [GetWeather,PlayMusic]
Entities: {country:[[croatia]],timeRange:[[July,  
25th]],sort:[[last]],music_item:[[sound, 
track]],artist:[[soko]],year:[[1975]]}

Predictions of LLaMA3.2-3B

Intents: [GetWeather,PlayMusic]
Entities: {country:[[croatia]],timeRange:
[[July, 25th]],music_item:[[sound, 
track]],artist:[[soko]],year:[[1975]]}

Case 2

Utterance: will it be chillier 
at 06:05:48 in wagener 
réunion and also I  want to 
watch supernatural: the 
unseen powers of animals

Predictions of Qwen2.5-3B

Intents: [GetWeather,SearchCreativeWork]
Entities: {condition_temperature:[[chillier]],
timeRange:[[06:05:48]],city:[[wagener]],
country:[[réunion]],object_name:[[supernatural:
,the,unseen,powers,of,animals]]}

Predictions of LLaMA3.2-3B

Intents: [GetWeather,SearchScreeningEvent]
Entities: {condition_temperature:[[chillier]],
timeRange:[[06:05:48]],city:[[wagener,réunion]
],movie_name:[[supernatural:,the,unseen,powers
,of,animals]]}

Figure 8: Illustrative case studies comparing Qwen2.5-3B and LLaMA3.2-3B predictions.

identifies "réunion" as a city. It suggests that898

LLaMA exhibits a shallow understanding of the899

phrase "I want to watch" in the utterance, tending to900

associate it with movie screening events rather than901

with abstract content search. In contrast, Qwen ac-902

curately interprets "supernatural: the unseen pow-903

ers of animals" as the title of a work, correctly904

associating it with the content rather than screening-905

related information, demonstrating a stronger con-906

textual understanding. Furthermore, Qwen demon-907

strates more accurate entity classification, particu-908

larly with respect to geographical locations.909
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