
Tiny Time Mixers (TTMs): Fast Pre-trained Models
for Enhanced Zero/Few-shot Forecasting of

Multivariate Time Series

Vijay Ekambaram
IBM Research

Bangalore, India
vijaye12@in.ibm.com

Arindam Jati
IBM Research

Bangalore, India
arindam.jati@ibm.com

Pankaj Dayama
IBM Research

Bangalore, India
pankajdayama@in.ibm.com

Sumanta Mukherjee
IBM Research

Bangalore, India
sumanm03@in.ibm.com

Nam H. Nguyen
IBM Research

Yorktown Heights, NY, USA
nnguyen@us.ibm.com

Wesley M. Gifford
IBM Research

Yorktown Heights, NY, USA
wmgifford@us.ibm.com

Chandra Reddy
IBM Research

Yorktown Heights, NY, USA
creddy@us.ibm.com

Jayant Kalagnanam
IBM Research

Yorktown Heights, NY, USA
jayant@us.ibm.com

Abstract

Large pre-trained models excel in zero/few-shot learning for language and vision
tasks but face challenges in multivariate time series (TS) forecasting due to diverse
data characteristics. Consequently, recent research efforts have focused on develop-
ing pre-trained TS forecasting models. These models, whether built from scratch
or adapted from large language models (LLMs), excel in zero/few-shot forecast-
ing tasks. However, they are limited by slow performance, high computational
demands, and neglect of cross-channel and exogenous correlations. To address this,
we introduce Tiny Time Mixers (TTM), a compact model (starting from 1M pa-
rameters) with effective transfer learning capabilities, trained exclusively on public
TS datasets. TTM, based on the light-weight TSMixer architecture, incorporates
innovations like adaptive patching, diverse resolution sampling, and resolution
prefix tuning to handle pre-training on varied dataset resolutions with minimal
model capacity. Additionally, it employs multi-level modeling to capture channel
correlations and infuse exogenous signals during fine-tuning. TTM outperforms
existing popular benchmarks in zero/few-shot forecasting by (4-40%), while reduc-
ing computational requirements significantly. Moreover, TTMs are lightweight and
can be executed even on CPU-only machines, enhancing usability and fostering
wider adoption in resource-constrained environments. The model weights for
reproducibility and research use are available here, while enterprise-use weights
under the Apache license can be accessed as follows: the initial TTMQvariant here,
and the latest variants (TTMB, TTME, TTMA) weights are available here. The
source code for the TTM model along with the usage scripts are available here.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://huggingface.co/ibm/ttm-research-r2/
https://huggingface.co/ibm-granite/granite-timeseries-ttm-r1
https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2
https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer

1 Introduction

Multivariate time-series (TS) forecasting entails predicting future values for multiple interrelated
time series based on their historical values. The channels1 being forecast are called target variables,
while those influencing the forecasts are termed exogenous variables. This field has seen significant
advancements through the application of statistical and machine learning (ML) methods across
various domains such as weather, traffic, retail, and energy.

Related Work: Recent advances in multivariate forecasting have been marked by the advent of
Transformer-based [31] approaches, exemplified by models like PatchTST [22], Autoformer [38], and
FEDFormer [45]. These models have demonstrated notable improvements over traditional statistical
and ML methods. Furthermore, architectures based on MLP-Mixer [30], such as TSMixer [6] and
TimeMixer [33], have emerged as efficient Transformer alternatives, boasting 2-3X reduced compute
requirements with no accuracy compromise compared to their Transformer counterparts.

100 101 102 103

10−2

10−1

100

101

102

103

TTMB (ours)
(1M, 10−2s)

Lag-Llama 40% ↓
(2.4M, 37s)

Moment 3% ↓
(348M, 1.4s)

TimesFM 15% ↓
(200M, 0.4s)

MoiraiL 4% ↓
(311M, 10s)

ChronosT 32% ↓
(8M, 2500s)

ChronosB 17% ↓
(201M, 2300s)

GPT4TS 15% ↓
(86M, 0.25s)

MoiraiS 6% ↓
(14M, 1.4s)

Model Size (M)

C
P
U
In
fe
re
n
ce

T
im

e
(s
)

Figure 1: Size, time, and accuracy overview of
TTMB vs. open-sourced pre-trained TS bench-
marks2. We plot each model based on its model
size and per batch CPU inference time. The X%
mentioned for each baseline indicates that the base-
line’s forecast is X% less accurate compared to
TTM’s forecast. Full details in Tables [1–5].

Recently, there has been substantial interest in the
research community to build general pre-trained or
foundation models (FMs) for TS forecasting that can
successfully transfer the learning to unseen target
TS dataset, similar to the successes in NLP and vi-
sion tasks. However, pre-training in the TS domain
is particularly challenging due to the limited pub-
lic availability of the datasets and the diverse nature
across applications. Early in 2024, this interest cul-
minated in the release of several “large” and “mas-
sive” TS pre-trained models for forecasting, gener-
ating considerable excitement in the research com-
munity. Among these releases were Moment[10]3,
TimesFM [3]3, Chronos[2]3, Moirai[35]3, and Lag-
llama[26]3 that successfully established strong bench-
marks in zero-shot forecasting. In addition, there has
been a trend towards leveraging pre-trained large lan-
guage models (LLMs) for TS forecasting, treating the
forecasting task as a form of cross-domain transfer
learning. These universal cross-transfer approaches,
exemplified by recent works such as LLMTime [11],

Time-LLM [15], and GPT4TS [46], exhibit promising outcomes in zero/few-shot forecasting scenar-
ios. However, most of these “large” TS pre-trained models demand extremely high computational
resources, given their scale ranges from several hundred million to billions of parameters. Given the
recent surge in popularity of “small” language models[1][29][39] that address practical resource and
cost constraints in real-world industrial settings, this work considers the following question: Can

“tiny” pre-trained models succeed in the TS domain too? If so, can they outperform the zero/few-shot
forecasting results of “large” TS pre-trained models demanding significant computational resources
and runtime? Surprisingly, as we demonstrate in this work, the answer is yes.

Toward this, we propose Multi-level Tiny Time Mixers (TTM), a significantly smaller pre-trained
model (starting from 1 million (M) parameters) for effective zero/few-shot multivariate forecasting.
In particular, TTM supports channel correlations and exogenous signals, which are critical and
practical business requirements in the context of multivariate forecasting, features lacking in many
existing TS pretrained models. TTM is based on the light-weight TSMixer architecture that uses
MLPMixer blocks interleaved with simple gated attention as alternatives to the quadratic time-
consuming self-attention blocks in Transformers, which makes TTM pre-training and fine-tuning
extremely fast. TTM is pre-trained using multiple public datasets (∼1 billion (B) samples) from
the Monash and LibCity data repositories. Note that the datasets exhibit considerable diversity in
characteristics, such as different domains, temporal resolutions4 (ranging from seconds to days),

1“Channel” refers to an individual dimension in multivariate data (i.e., multivariate or multichannel).
3Work done concurrently with this research.
3Time-LLM and LLMTime are excluded here as we couldn’t run them on CPUs, but their accuracy is

compared later in experiments.
4Resolution refers to the sampling rate of the input time series (e.g., hourly, 10 minutes, 15 minutes, etc.)

2

lengths, and numbers of channels. Pre-training on such heterogeneous datasets using extremely
small models requires specialized architectural advancements. Hence, TTM proposes the following
enhancements to the TSMixer architecture for resource-constrained pre-training/fine-tuning: (i)
adaptive patching (AP) across layers, considering the varied suitability of patch lengths for different
datasets, (ii) diverse resolution sampling (DRS) to augment the data for increasing coverage across
different resolutions, (iii) resolution prefix tuning (RPT) to explicitly embed resolution information
in the first patch, facilitating resolution-conditioned modeling while training on diverse datasets.
Moreover, our approach leverages multi-level modeling, where TTMs are first pre-trained in a
channel-independent way, and then fine-tuned with channel mixing to incorporate correlations across
targets and exogenous channels in the target domain.

Outline of TTM’s key capabilities: (1) Amidst the prevalence of “large” pre-trained models
demanding significant compute and training time, our work is the first to demonstrate the power of
transfer learning using “tiny” TS pre-trained models for zero/few-shot forecasting. (2) Pre-training
tiny models on heterogeneous multi-resolution datasets with extremely limited model capacity is
challenging. Towards this, we propose various architectural and training enhancements, such
as AP, DRS, and RPT for robust and resource-constrained pre-training/fine-tuning workflows (as
defined above). (3) TTM employs a multi-level modeling strategy to explicitly model channel
correlations, and incorporate exogenous signals – a crucial capability lacking in most of the existing
pre-trained models. (4) Through extensive evaluation of zero/few-shot forecasting on 11 datasets,
we establish that TTM models, with sizes as small as 1M parameters, consistently outperform the
forecasts of “large” TS pretrained models while offering significant computational benefits. Figure 1
highlights that TTM outperforms popular benchmarks in all three primary dimensions: size, runtime,
and accuracy. (5) Given their compact size, zero-shot inference and fine-tuning of TTM models
can be easily executed with just one GPU or in CPU-only environments. This greatly enhances the
practical adoption and extended reach of our pre-trained models with ease of use.

Univariate Input
time series

Instance Normalization
[1 x sl]

[1 x sl]
Patching

[1 x n x pl]

TTM Backbone
(channel-independent)

Instance Normalization

[c x sl]

[c x n x pl]

[1 x n x hf]
Forecast Linear head Forecast Linear head

[c x fl]
Optional Exogenous Mixer

[c x n x hf]

[c’ x fl]
Reverse Instance Normalization

Reverse Instance
Normalization

Multi-resolution Pretraining data
 Source Data: ~1B samples

Hourly 15 min30 min …

Target data

[c x sl]

[1 x n x hf] [c x n x hf]

Slim TTM Decoder
(channel independent/mixing)

[c’ x fl]

Pretrain Workflow
1M learnable parameters

TTM Backbone (Freeze)
(channel-independent)

Patching

[1 x fl]

[1 x fl]

Finetune Workflow
0.3M learnable parameters

Slim TTM Decoder
(channel-independent)

[TTMB-96]

TT
M

 H
ea

d TTM
 H

ead

[TTMB-96]

(a) TTM Components and Workflows

transfer

Multivariate Input
time series Embedding

Layer

[c x n x pl]

TSMixer Block
(n*4, hf//4)

Patch Partition

Patch Merge

TSMixer Block
(n*2, hf//2)

Patch Partition

Patch Merge

Patch Partition

Patch Merge

[c x n x hf]

[c x n x hf]

[c x n x hf]

x 2

x 2

x 2

Resolution-Token
1h, 15min, 10min,

OOV, etc.

Embedding Layer
[1]

[hf]
Expand

Concat
[c x n x hf]

Re
so

lu
tio

n
Pr

ef
ix

 T
un

in
g

 (R
PT

)

Resolution
Prefix Embedding

TSMixer
block

Inter-patch
mixer

n = n+1

One TTM
Block Intra-patch

mixer

Inter-channel
mixer

(optional)

(w
ith G

ating A
ttentions)

(b) TTM backbone having 3 levels (i.e., L = 3)
and 2 TTM blocks in each level (i.e., M = 2)

[c x 1 x hf]

[!	#	$% # !"
]

Level = 1

Level = 2

Level = 3
[!	#	% #	'(]

[!	#)% # !"
$]

TSMixer Block
(n, hf)

(c) Exogenous mixer
for l = 1 i.e., ∆ = 3. The green
control/exogenous channels
denote that forecasts coming

out of the TTM head
are replaced by their
known true values for
the forecast horizon.

t t+1t-1

Stride:1
Target, *+%

Control, +&
Exog., +'

Final forecasts for
targets, ,y%	and ,y(

.Y ∈ ℝ)*×(

Target, *+(

transfer

transfer

TSMixer Block with
Channel-mixing enabled

Linear Head

Figure 2: TTM overview (a) Refer to Sections 2 and 3, (b) Refer to Section 3.1, (c) Refer to Section 3.2

2 TTM Components

Let X ∈ Rc×sl be a multivariate time series of length sl and number of channels c. The forecasting
task can be formally defined as predicting the future values Y ∈ Rc′×fl given the history/context X .
Here, fl denotes the forecast length/horizon, and c′ denotes number of forecast channels, where c′ ≤ c.
The predictions from the model are denoted by Ŷ ∈ Rc′×fl. In a general multivariate forecasting
task, each channel falls into one of the following categories: (a) Target variables (mandatory):
channels for which forecasts are required, (b) Exogenous variables (optional): channels influencing
the targets, with known or estimated values throughout the forecast horizon.

2.1 Multi-level Modeling: TTM follows a multi-level architecture consisting of four key compo-
nents (see Figure 2(a)): (1) The TTM backbone is assembled using building blocks derived from
the efficient TSMixer architecture [6]. TSMixer is based on MLP blocks interleaved with gated

3

attention, that enable the mixing of features within patches, across patches and channels, surpassing
existing Transformer-based TS approaches with minimal computational requirements. Since TSMixer
was not designed to handle multi-resolution data with limited capacity, we introduce various novel
enhancements to it as explained later. (2) TTM decoder follows the same backbone architecture
but is considerably smaller in size, approximately 10-20% of the size of the backbone, (3) Forecast
head consists of a linear head designed to produce the forecast output, and (4) Optional Exogenous
mixer serves to fuse exogenous data into the forecasting process. The TTM decoder and forecast
head together constitute the TTM head, whose weights get updated during the fine-tuning process.
This multi-level model refactoring is required to dynamically change the working behavior of various
components based on the workflow type, as explained in Section 3. In addition to the above primary
components, there is also a preprocessing component as explained next.

2.2 Preprocessing: As shown in Figure 2(a) with colorless blocks, the historical time series X
is first normalized per instance to have zero mean and unit standard deviation for each channel, to
tackle any possible distribution shifts [22, 6]. This process is reversed at the end before computing
the loss. The normalized data X is subsequently patched, Xp ∈ Rc×n×pl, into n non-overlapping
windows, each of length pl, and then passed to the TTM backbone. Patching, as introduced in [22],
has proven to be highly valuable for forecasting. Its effectiveness lies in preserving local semantic
information, accommodating longer history, and reducing computation.

3 TTM Methodology

3.1 Pre-training Workflow: TTM operates in two stages: pre-training and fine-tuning (Fig-
ure 2(a)). In the pre-training stage, we train the model on a large collection of diverse public datasets.
Since the primary focus of TTM is forecasting, pre-training is modeled with a direct forecasting
objective. TTM is first pre-trained in a univariate fashion with independent channels on all the
existing datasets. Due to varied channel counts in pre-training datasets, modeling multivariate corre-
lations is challenging here; it is addressed later during the fine-tuning stage. Multivariate pre-training
datasets are initially transformed into independent univariate TS (X1, · · · ,XN) ∈ Rc(=1)×sl. These
are pre-processed (Section 2.2), and subsequently fed into the TTM backbone for multi-resolution
pre-training. The output of the backbone XL

h ∈ R(c=1)×n×hf is passed through the decoder and
forecast head to produce the forecast Ŷ ∈ R(c=1)×fl which is then reverse-normalized to return to
the original scale. We pre-train the TTM with mean squared error (MSE) loss calculated over the
forecast horizon: L = ||Y − Ŷ ||22. Thus for a given input context length sl and forecast length fl, we
get a pre-trained model capturing the common temporal forecasting dynamics and seasonal patterns
as observed in the overall pre-training data.

3.1.1 Multi-Resolution Pre-training via TTM Backbone: In TTM, our goal is to create models
that are extremely small yet capable of generalizing well across a wide range of diverse datasets with
varying resolutions. This is a significant challenge because the models can easily under-fit due to
their small size. To tackle these challenges of resource-constrained pre-training, we introduce the
following enhancements to the TSMixer backbone.

Adaptive patching (AP): The TTM backbone is crafted with an adaptive patching architecture where
different layers of the backbone operate at varying patch lengths and numbers of patches. Since each
dataset in the pre-training corpora may perform optimally at a specific patch length, this approach
greatly aids in generalization when the pretraining datasets with different resolutions are introduced.
Moreover, it helps in scenarios when the availability of the pre-training data is limited as adaptive
patching quickly generalizes the model across different granularities. As shown in Figure 2(b), the
patched data Xp ∈ Rc×n×pl is passed through a embedding layer to project it to the patch hidden
dimension, Xh ∈ Rc×n×hf . If the resolution prefix tuning module is activated (as explained later),
the resolution prefix is concatenated with Xh. For notational simplicity, we denote the concatenated
tensor with Xh as well. The TTM backbone consists of L levels, each comprising M TTM blocks
with identical patch configurations. The first block in the first level receives Xh. The first TTM
block in the i-th level, i = 2, . . . , L, receives the processed data X

(i−1)
h ∈ Rc×n×hf from the

previous block. Each TTM block is further comprised of a patch partition block, a vanilla TSMixer
block, and a patch merging block. The patch partition block at level i increases the number of

4

patches by a factor of Ki and reduces the patch dimension size by the same factor by reshaping
X

(i−1)
h ∈ Rc×n×hf to Xi

h ∈ Rc×(n·Ki)×(hf/Ki), where Ki = 2(L−i). Figure 2(b) shows the TTM
backbone for L = 3 and M = 2. Note that, we set hf = m · 2L−1 for some integer m. Then,
TSMixer is applied to the adapted data Xi

h. Finally, the output from TSMixer is again reshaped
to its original shape (i.e., Rc×n×hf) in the patch merging block. In subsequent layers, for each
increment in level i, the number of patches is halved and the patch dimension doubled. This enables
better generalization for small models as we pre-train across multiple datasets. The idea of adaptive
patching is popular and very successful in the vision domain (e.g., Swin Transformers [20]) and we
successfully apply it to the TS domain to resolve multi-resolution issues in modelling diverse TS
datasets. Note that adaptive patching is enabled only in the backbone and not in the decoder, which is
designed to be very lightweight.

Augmentation via diverse resolution sampling (DRS): A significant challenge in TS pre-training
datasets is the scarcity of public datasets with diverse resolutions. Generally, high-resolution datasets
will account for a larger fraction of the samples given their finer sampling resolution. Without
adjustment to the training strategy, this can lead to a model that is biased toward the finer resolution
data. To overcome this, different strategies are applied to high-resolution datasets to balance the
volume of samples at lower resolutions and lead to more uniform coverage. Strategies used include:
1) averaging k samples in sequential, non-overlapping windows to produce a lower resolution dataset;
and 2) conventional decimation where only every kth sample is retained. In both cases, the integer
k is chosen to achieve the desired resolution from the resolution of the base dataset. For example,
from a 4-second resolution dataset, we derive multiple datasets at minutely (k = 15) and hourly
resolutions (k = 900). Note that the original high-resolution dataset remains within the pool of
pre-training datasets. This methodology increases the number of datasets for each resolution which
greatly improves the model performance.

Resolution prefix tuning (RPT): This technique explicitly learns and incorporates a new patch
embedding as a learnable prefix into the input data based on the input resolution (see Figure 2(b) and
Table 8). Similar to the concept of prefix tuning [16], this approach provides an explicit signal to
the model about the resolution for resolution-conditioned modeling. First, we map every resolution
to a unique integer, which is then passed through an embedding layer to project it to the hidden
dimension, hf . Subsequently, we expand the embedding across all channels to have a representation
of shape c× 1× hf . This resolution-based learnable embedding is particularly beneficial in quickly
modeling huge volumes of diverse resolution datasets with limited modelling capacity, as the model
can easily decouple the data from different resolutions for resolution-conditioned modeling. In
addition, RPT also helps in scenarios when the context length (sl) is short. In these scenarios,
automatically detecting the resolution becomes a challenge for the model. Hence, by explicitly fusing
the resolution information as a prefix, we can enhance the model’s ability to learn effectively across
resolutions without increasing its size.

3.2 Fine-tuning Workflow: In the fine-tuning workflow, we work with data from the target
domain that has no overlap with the pre-training datasets. We have three options here: (a) In
zero-shot forecasting, we directly use the pre-trained model to evaluate on the test part of the target
data; (b) In few-shot forecasting, we utilize only a tiny portion (5-10%) of the train part of the target
data to quickly update the pre-trained weights of the TTM head, and subsequently evaluate it on the
test part; (c) In full-shot forecasting, we fine-tune the pre-trained weights of the TTM head on the
entire train part of the target data, and then evaluate on the test part.

The backbone is frozen during fine-tuning, and still operates in a channel-independent univariate
fashion. However, the slim decoder in the TTM Head can be fine-tuned utilizing channel mixing
or channel independence for multivariate or univariate target data, respectively. If pure multivariate
modeling is needed, then the channel-mixer block in all the TSMixer components (see Figure 2(b)) in
the decoder is enabled to explicitly capture the cross-channel correlations. The forecast head and
reverse normalization perform similar operations as in the pre-training stage. The fine-tuning also
optimizes the forecasting objective with MSE loss. This thoughtful multi-level design choice ensures
that our backbone excels in channel-independent pre-training, enabling effective temporal correlation
modeling across diverse datasets. Simultaneously, the decoder handles target-data-specific tasks like
channel-correlation modeling and fine-tuning. In addition, if the target data has exogenous variables,
then an exogenous mixer block is applied to the actual forecasts as explained next.

5

Exogenous Mixer Block: As described in Section 2, the future values of the exogenous channels
are known in advance. Let the forecast from the forecast head be Ŷ ∈ Rc×fl. Let the channels
x0, · · · ,xc′ denote the target variables and xc′+1, · · · ,xc denote all exogenous variables with their
future values known. First, we replace the forecast values for the exogenous channels with the
true future values (Y) and transpose it: Ŷe = [ŷ0, · · · , ŷc′ ,yc′+1, · · · ,yc] ∈ Rfl×c. Next, to learn
inter-channel lagged correlations, we patch Ŷe into a series of overlapped windows (i.e., patching
with stride= 1) to create a new tensor: Ŷe,p ∈ Rfl×∆×c, where ∆ = 2 · l + 1 with l being the
context length to incorporate on either side of a time point5. Subsequently, we pass Ŷe,p through a
vanilla TSMixer block with channel mixing enabled. Thus, the lagged dependency of the forecasts
for the target channels on the exogenous channels is seamlessly learned. Finally, we attach a linear
head to produce the forecasts for the target channels which is then reshaped as Ŷ ∈ Rc′×fl. Thus,
TTM easily handles exogenous infusion which is a practical requirement in any industrial forecasting
problem. Figure 2(c) depicts this procedure.

4 Experiments and Results

4.1 Datasets & Metrics : Pre-training employs a subset of ∼1B samples from Monash [9] and
Libcity [32] data collection. We specifically exclude a few datasets (like yearly, monthly) as they do
not possess sufficient length for the long-term forecasting task. Moreover, we remove all the datasets
that we utilize for evaluation (i.e., Weather, Electricity, and Traffic). For zero/few-shot evaluation we
consider seven public datasets (D1): ETTH1, ETTH2, ETTM1, ETTM2, Weather, Electricity, and
Traffic as popularly used in most prior state-of-the-art (SOTA) works [44, 22]. Since these datasets
do not contain any exogenous variables nor exhibit cross-channel correlation benefits, we incorporate
four other datasets (D2) for separately validating the efficacy of the decoder channel mixing and
exogenous mixer module: bike sharing (BS) [7], carbon capture plant (CC) [13], and 2 more datasets,
Application (APP) and Service (SER), from Business and IT observability domain [27, 24]. For full
details, refer to the Appendix C. We use mean squared error (MSE) as the standard error metric. In
addition, we use the following relative improvement metrics: (i) forecast improvement percentage
(f-imp(%)) which refers to the MSE (%) improvement of TTM over the considered baseline, averaged
across all datasets, and (ii) size improvement metric (s-imp(X)) is calculated as the ratio of the baseline
model size to the TTM model size (i.e., total parameters).

4.2 SOTA Benchmarks: We benchmark6 TTM with 24 of the latest open-sourced SOTA
forecasting models categorized as follows: (a) TS pre-trained models: Lag-Llama [26],
TimesFM [3], Moirai [35], Chronos [2] and Moment [10]. (b) LLM-based TS pre-trained models:
GPT4TS [46], LLMTime [11], Time-LLM [15], UniTime [18] (c) Self-supervised pre-trained
models: SimMTM [5],Ti-MAE [17], TST [42], LaST [34], TF-C [43], CoST [36] and Ts2Vec [40]
(d) Other architectures: PatchTST [22], TSMixer [6], TimeMixer [33], iTransformer [19], DLin-
ear [41] and TimesNet [37], FEDFormer [45] and Autoformer [38].

4.3 TTM Model Details: We pre-train three primary variants of TTM as follows: (i) TTM-Base
(TTMB): 1M parameter model trained with context length, sl = 512 and patch length, pl = 64,
(ii) TTM-Enhanced (TTME): 4M parameter model trained with sl = 1024 and pl = 128, (iii)
TTM-Advanced (TTMA): 5M parameter model trained with sl = 1536 and pl = 128. These TTMs
are pre-trained using the 1B pre-training dataset, which takes only 24-30 hours with 6 A100 GPUs, a
notably faster time compared to existing counterparts which often take days to weeks. Additionally,
for secondary studies, we utilize Quick TTM (TTMQ), a variant trained on a smaller subset of the
Monash dataset (∼250 million samples), requiring only 4-6 hours for pre-training.

Although, a TTM model needs to be pre-trained for a specific forecast length (FL), we provide two
forecast length adaption (FLA) techniques (explained in Section 4.7) that enable a pre-trained TTM
to work across different FLs. Users can either build a direct pre-trained model (from one of the above
variants) targeting a specific FL, or use the FLA techniques to adapt an existing TTM model to their

5This needs padding Ŷe with zeros of length l on both sides.
6For all tables, we highlight the best and second best models with bold and underline, respectively. We

denote TTM’s improvement and degradation w.r.t. a baseline with ↑ and ↓ respectively.

6

application setting. Primary results are reported using the direct approach, and a detailed ablation
study is provided to compare the effectiveness of various FLA techniques. In the direct approach,
model parameter size varies across FLs and we report the average parameter size in the result tables.
TTM fine-tuning and inferencing are highly efficient and fast, requiring only 1 GPU or even CPU
execution. All model hyperparameters are chosen based on validation performance, and final test
results are reported. Refer to Appendix D for detailed model specifications and hyper-parameters.

Data TTMB TTME TTMA MoiraiS MoiraiB MoiraiL TimesFM
ETTH1 0.394 0.404 0.4 0.4 0.434 0.51 0.479
ETTH2 0.345 0.335 0.333 0.341 0.346 0.354 0.403
ETTM1 0.386 0.38 0.362 0.448 0.382 0.39 0.429
ETTM2 0.281 0.271 0.252 0.3 0.272 0.276 0.334
Weather 0.237 0.238 0.231 0.242 0.238 0.26 -

Electricity 0.205 0.194 0.192 0.233 0.188 0.188 -
Size 1M 4M 5M 14M 91M 311M 200M
TTMB f-imp(%) s-imp(X) 6% ↑ 14X ↑ 1% ↓ 91X ↑ 4% ↑ 311X ↑ 15% ↑ 200X ↑
TTME f-imp(%) s-imp(X) 7% ↑ 4X ↑ 1% ↑ 23X ↑ 6% ↑ 78X ↑ 16% ↑ 50X ↑
TTMA f-imp(%) s-imp(X) 10% ↑ 3X ↑ 4% ↑ 18X ↑ 9% ↑ 62X ↑ 19% ↑ 40X ↑

Table 1: Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp)
of TTM over Moirai (ICML’24) and TimesFM (ICML’24). MSE averaged across FL ∈
{96, 192, 336, 720}. Electricity and Weather results for TimesFM are not reported as its
used by TimesFM for pretraining. Similarly, Traffic was used in pre-training for both Moirai and
TimesFM. Full table in Appendix F.2

Data TTMB TTME TTMA ChronosT ChronosS ChronosB ChronosL Lag-llama
ETTH1 0.204 0.227 0.214 0.311 0.302 0.252 0.266 0.334
ETTH2 0.131 0.151 0.162 0.177 0.16 0.164 0.155 0.168
ETTM1 0.206 0.239 0.19 0.839 0.486 0.49 0.538 0.842
ETTM2 0.124 0.128 0.117 0.206 0.174 0.19 0.187 0.308
Weather 0.039 0.032 0.043 0.043 0.046 0.03 0.033 0.126

Electricity 0.335 0.351 0.349 0.423 0.377 0.344 0.339 0.393
Traffic 0.246 0.24 0.244 0.291 0.3 0.28 0.269 0.243
Size 1M 4M 5M 8M 46M 201M 709M 3M
TTMB f-imp(%) s-imp(X) 32% ↑ 8X ↑ 26% ↑ 46X ↑ 17% ↑ 201X ↑ 18% ↑ 709X ↑ 40% ↑ 3X ↑
TTME f-imp(%) s-imp(X) 30% ↑ 2X ↑ 24% ↑ 12X ↑ 15% ↑ 50X ↑ 16% ↑ 177X ↑ 37% ↑ 1X ↓
TTMA f-imp(%) s-imp(X) 28% ↑ 2X ↑ 22% ↑ 9X ↑ 12% ↑ 40X ↑ 13% ↑ 142X ↑ 37% ↑ 2X ↓

Table 2: Zero-shot forecast-improvement (f-imp) and model size-improvement (s-imp) of
TTM over Chronos and Lag-llama over the last test-window. Since Chronos and Lag-llama
recommend/report results with shorter forecast lengths, we use FL ∈ {24, 48, 60, 96, 192}.
Mean MSE across FLs is reported. Full table in the Appendix F.2

Model
GPU
TIME
(ms)

Params
(M)

MEM
(GB)

CPU
TIME

(s)
TTMB 4.7 0.8 0.06 0.01

ChronosB
(2024)

1395
(298X)

201
(251X)

16
(267X)

2340
(239KX)

ChronosL
(2024)

1393
(298X)

709
(886X)

41
(683X)

2352
(240KX)

ChronosS
(2024)

1386
(296X)

46
(58X)

6
(100X)

2349
(240KX)

ChronosT
(2024)

1389
(297X)

8
(10X)

2
(33X)

2504
(256KX)

GPT4TS
(NeurIPS ’23)

13.9
(3X)

87
(109X)

1.34
(36X)

0.3
(26X)

Lag-Llama
(2024)

1619
(346X)

2.4
(3X)

0.2
(3X)

37.5
(3830X)

MoiraiS
(ICML ’24)

205
(44X)

14
(18X)

0.1
(2X)

1.4
(141X)

MoiraiL
(ICML ’24)

693
(148X)

311
(389X)

2
(33X)

10.5
(1070X)

MoiraiB
(ICML ’24)

335
(72X)

91
(114X)

1
(17X)

4.1
(421X)

Moment-L
(ICML ’24)

88
(19X)

348
(435X)

8
(133X)

1.4
(144X)

TimesFM
(ICML ’24)

24
(5X)

200
(250X)

2
(33X)

0.4
(46X)

Table 3: Computational improvement
of TTM w.r.t. existing TS pre-trained mod-
els. Inference time per-batch in GPU and
CPU, total parameters (Params), and max-
imum GPU memory usage (MEM) are
reported. nX indicates the scaling factor
for TTM’s improvement. Set-up details
are in the Appendix D.3

4.4 TTM’s Zero-shot Performance and Inference Cost: Recently, popular pre-trained models
like TimesFM, Moirai, Chornos, Lag-llama, and LLMTime have gained traction for their zero-shot
(ZS) forecasting capabilities. Among these, Chornos, Lag-llama, and LLMTime suffer from lengthy
ZS inference time, posing practical challenges for testing across all sliding windows of the test set.
To address this, LLMTime suggests using the last test window for benchmarking, a practice we also
adopt for comparing with this set of SOTA models. On the other hand, TimesFM and Moirai exhibit
comparatively faster ZS inference speeds, enabling testing across all sliding windows of the test
set. Table 1 presents a comparison of TTM performance with Moirai and TimesFM. Despite having
significantly fewer parameters, the variants of TTM consistently outperform most benchmark variants.
Notably, TTMA, which is 3-62X smaller than all Moirai variants and 40X smaller than TimesFM,
outperforms the Moirai variants by 4-10% and TimesFM by 19%. Even TTMB, with just 1M
parameters, outperforms most benchmarks by a considerable margin, highlighting the effectiveness
of TTM. Moreover, as depicted in Appendix F.4, TTM zero-shot results consistently outperform the
full-shot results of popular architectures in short context length settings. Likewise, Table 2 presents
a comparison of TTM performance with Chronos and Lag-llama on the last test-window set. As
indicated, TTMB which is 8-709X smaller than Chronos, outperforms it by 17-32%. Likewise TTMB,
which is 2-3X smaller than Lag-llama, outperforms it by 40%. In addition, TTM also outperforms
the massive LLMTime and UniTime by over 25% as reported in Appendix F.3. Table 3 presents the
inference time per batch and maximum GPU memory requirement of different TS pre-trained models.
Notably, TTM exhibits the lowest inference time and memory usage among them.

4.5 TTM’s Few-shot and Full-shot Head Probing Performance: In operational deployments,
users typically leverage a small set of target data for fine-tuning to enhance the model performance.
In this regard, TTM provides a highly efficient quick fine-tuning process, enabling users to enhance
forecasting accuracy swiftly by training only the model head. GPT4TS and Time-LLM are two
state-of-the-art pre-trained models that present results for few-shot training. As demonstrated in

7

Table 4, TTMB surpasses GPT4TS by 15% and Time-LLM by 10% in the few-shot 5% setting, where
only 5% of the train data is used for fine-tuning. In addition, we also report the Few-shot 5% results
of several popular SOTA architectures in Table 4, where TTM demonstrates superior performance.
This underscores the significance of TTM’s pre-trained weights, which substantially contribute to its
effectiveness in data-constrained scenarios. Likewise, TTM also excels in few-shot cross-transfer
learning tasks outperforming popular SOTAs (including SimMTM [5]) as shown in the Appendix F.6.

Alternatively, if the train split of the complete target dataset is available, head probing using the entire
dataset becomes feasible. This involves fine-tuning the model head using all available data while
keeping the backbone weights unchanged. Recently, the Moment [10] model has achieved the SOTA
results in head probing as compared to GPT4TS and Time-LLM. However, as indicated in Table 5,
TTM further outperforms the results reported by Moment by 3-4%. In addition, TTM head probing
results are very competitive as compared to the full end-to-end training of popular architectures as
depicted in Appendix F.7. Hence, TTM, with its significantly reduced model size and the absence of
compute-intensive components like self-attention, enables quick fine-tuning of models compared to
the cumbersome process required by the massive Transformer models. Note that Moment is excluded
from the comparison of zero/few-shot forecasting results because it does not report them.

Pre-trained models fine-tuned on 5% data Other popular architectures trained on 5% data

Data TTMB
(Ours)

TTME
(Ours)

TTMA
(Ours)

GPT4TS
(NeurIPS ’23)

Time-LLM
(ICLR ’24)

PatchTST
(ICLR ’23)

TSMixer
(KDD ’23)

TimeMixer
(ICLR ’24)

iTransformer
(ICLR ’24)

TimesNet
(ICLR ’23)

Dlinear
(AAAI ’23)

ETTH1 0.383 0.385 0.386 0.682 0.627 0.695 0.635 1.088 0.756 0.926 0.75
ETTH2 0.324 0.318 0.314 0.401 0.382 0.439 0.385 0.508 0.437 0.464 0.828
ETTM1 0.376 0.378 0.361 0.472 0.425 0.526 0.479 0.578 0.568 0.717 0.401
ETTM2 0.272 0.268 0.253 0.308 0.274 0.314 0.297 0.34 0.309 0.344 0.399
Weather 0.234 0.24 0.229 0.263 0.261 0.27 0.268 0.317 0.297 0.298 0.264

Electricity 0.183 0.207 0.18 0.178 0.177 0.176 0.197 0.239 0.202 0.402 0.177
Traffic 0.433 0.437 0.49 0.434 0.423 0.418 0.435 0.503 0.452 0.867 0.451
Size 1M 4M 5M 84M 7B

TTMB f-imp(%) s-imp(X) 15% ↑ 84X ↑ 10% ↑ 7KX ↑ 17% ↑ 15% ↑ 31% ↑ 22% ↑ 40% ↑ 23% ↑
TTME f-imp(%) s-imp(X) 13% ↑ 21X ↑ 8% ↑ 1.7KX ↑ 15% ↑ 13% ↑ 30% ↑ 20% ↑ 40% ↑ 21% ↑
TTMA f-imp(%) s-imp(X) 15% ↑ 17X ↑ 11% ↑ 1.4KX ↑ 17% ↑ 15% ↑ 32% ↑ 22% ↑ 41% ↑ 23% ↑

Table 4: Few-shot 5%. MSE averaged across FL ∈ {96, 192, 336, 720}, models are trained with 5% train data (Appendix F.5).

Data TTMB
(Ours)

TTME
(Ours)

TTMA
(Ours)

Moment
(ICML ’24)

GPT4TS
(NeurIPS ’23)

Time-LLM
(ICLR ’24)

ETTH1 0.398 0.406 0.402 0.42 0.426 0.466
ETTH2 0.33 0.338 0.327 0.346 0.346 0.342
ETTM1 0.355 0.35 0.338 0.349 0.354 0.41
ETTM2 0.257 0.252 0.264 0.266 0.275 0.273
Weather 0.234 0.239 0.233 0.234 0.244 -

Electricity 0.164 0.161 0.16 0.174 0.172 -
Traffic 0.399 0.398 0.385 0.42 0.419 -
Size 1M 4M 5M 348M 84M 7B
TTMB f-imp(%) s-imp(X) 3% ↑ 348X ↑ 4% ↑ 84X ↑ 9% ↑ 7000X ↑
TTME f-imp(%) s-imp(X) 3% ↑ 87X ↑ 4% ↑ 21X ↑ 9% ↑ 1750X ↑
TTMA f-imp(%) s-imp(X) 4% ↑ 70X ↑ 6% ↑ 17X ↑ 10% ↑ 1400X ↑

Table 5: Full-shot head probing: Finetuning the pre-trained model
heads on full data with backbone weights frozen. MSE averaged across
FL 96, 720 as reported in [10]. Time-LLM results for large datasets are
not reported in [10] due to computational challenges (AppendixF.7).

Models BS CC APP SER f-imp%
TTMQ 0.635 0.261 0.073 0.143 18%

PatchTST 0.735 0.267 0.060 0.119 15%
TSMixer-CC 0.651 0.284 0.053 0.136 15%
TSMixer-CM 0.716 0.303 0.069 0.118 20%

TSMixer 0.664 0.267 0.066 0.134 17%
GPT4TS 0.645 0.254 0.075 0.135 18%

TTMQ-CM 0.582 0.250 0.042 0.114

Table 6: Effect of decoder mixing and exog. fu-
sion. MSE results are reported using (sl, fl) with
values of (512, 96) for BS dataset and (96, 24) for
other D2 datasets. f-imp% of TTMQ-CM w.r.t. others
are provided.

4.6 TTM’s Effectiveness in Cross-channel and Exogenous Modeling: Since the datasets (D1)
used in previous experiments do not have exogenous variables, we evaluate the effectiveness of TTM
on 4 other datasets (D2, as explained in Section 4.1) to quantify its benefits. Since these datasets
are already very small, we used their full data for fine-tuning. Table 6 shows the performance of the
pre-trained TTMQ model fine-tuned on the target data with exogenous mixer module and decoder
channel-mixing enabled (TTM-CM). We compare TTM-CM with plain TTM finetuning and other
primary SOTAs (PatchTST, TSMixer variants, and GPT4TS) trained from scratch. Specifically, we
compare with TSMixer with channel-mixing enabled (TSMixer-CM) and TSMixer with cross-channel
reconciliation head (TSMixer-CC) [6] as they are the latest SOTAs in channel-correlation modelling.
From Table 6, we can see that TTM-CM outperforms all the competitive models with a significant
margin (15-44%), thus, demonstrating the power of TTM in capturing inter-channel correlations.

4.7 Ablation Studies: The impacts of various techniques used in TTM are analyzed here.
Pre-training data (Quality Vs Quantity): Figure 3 demonstrates the vital role of both pretraining

8

data and diverse resolution sampling (DRS). Initially, the zero-shot results were unsatisfactory when
pre-training TTM with the smaller Monash dataset (i.e., PT(M)). To improve performance, we
introduced the DRS technique on the Monash data to increase diversity and coverage (250M PT
samples). This significantly improved the results by 37%. In addition, extending the dataset size from
250M to 1B further improved the results by 6%. These experiments highlight that while the quantity
of pre-training data is significant, the quality of the data, especially in terms of resolution diversity
and coverage, is even more crucial for improving the model performance.

Effect of Resolution Prefix Tuning (RPT) and Adaptive Patching(AP): RPT enhances forecast
performance, especially with large and diverse pretraining (PT) data. Adding a learnable resolution
prefix token allows models to easily decouple weights across different resolutions, leading to a 3%
improvement in 1B PT data setup (Table 7). RPT is also beneficial for very short context length
scenarios, improving performance by 8% (Appendix F.9). On the other hand, AP generally improves
the forecasting performance across all set-ups, but the impact is consistently high in less PT data
settings (3% boost). Further details are in Appendix F.8.

RI PT(M) PT(M) +
DRS

PT(F)+DRS

0.511

0.322 0.303

1B
samples250M samples

37% IMP
6% IMP

M
SE

Figure 3: Impact of pre-training data
(PT) and diverse resolution sampling
(DRS) technique. PT(M): pretraining with
only Monash data. PT(F): full pretraining
data used. Average MSE of zero-shot re-
sults across FL 96, 192 reported.

0.
29

7

0.
33

3

0.
36

2

0.
41

2

0.
28

2

0.
32

5

0.
35

9

0.
41

2

0.
28

2

0.
32

0.
56

1

0.
59

3

96 192 336 720

TTM_N2_from_720 TTM_N2_Direct TTM_N2_from_96

FL

M
SE

TTMB RECURSIVE FROM FL 96
TTMB DIRECT

TTMB PRUNING FROM FL 720

Figure 4: FL adaptation: impact of
adapting TTMB (FL 720) and TTMB (FL
96) to all other FLs. MSE averaged
across all D1 datasets is reported for FL ∈
{96, 192, 336, 720}. Best viewed in
color.

Less PT Data
(250M)

More PT Data
(1B)

Data w/o AP w/ AP w/o RPT w/ RPT
ETTH1 0.369 0.365 0.366 0.364
ETTH2 0.283 0.285 0.285 0.277
ETTM1 0.446 0.413 0.341 0.322
ETTM2 0.191 0.187 0.18 0.171
Weather 0.159 0.154 0.153 0.158

Electricity 0.179 0.169 0.178 0.166
Traffic 0.521 0.518 0.528 0.514

IMP (%) 3% 3%

Table 7: Impact of AP and RPT: Impacts
of adaptive patching (AP) in less pre-training
(PT) data setting (i.e., TTMQ), and resolution
prefix tuning (RPT) in more pre-training (PT)
data setting (i.e., TTMB). Zero-shot results on
FL 96 reported. [‘w/’: with, ‘w/o’: ‘without’.]

 Weather (S-1)
 Weather (S-2)
 Weather (S-3)
 Traffic (S-1)
 Traffic (S-2)
 Traffic (S-3)
 Electricity (S-1)
 Electricity (S-2)
 Electricity (S-3)

(a)

sea
son yr

mnth

ho
lida

y

wee
kd

ay

work
ing

da
y

wea
the

rsi
t

tem
p

ate
mp

hu
m

wind
spe

ed

cnt
low

high

(b)

Figure 5: (a) TTM embedding projections across
3 datasets and 3 segments within datasets. (b)
Cross-channel attention based explanation.

Forecast Length Adaptations (FLA): Given a FL,
we can either pre-train a Direct TTM tailored for the
specific FL or adapt existing TTMs trained on differ-
ent FLs. Two possible adaptations are: (i) Pruning:
Take TTM trained on FL′ where FL′ >FL, and prune
it to the required FL (e.g., TTM (FL = 720) pruned
to other reduced FL ∈ {96, 192, 336}). (ii) Recur-
sive: Take TTM trained on FL′, where FL′ <FL and
do recursive prediction (of length FL′) till we reach
the required FL (e.g., Extend TTM (FL = 96) re-
cursively to greater FL ∈ {192, 336, 720}). Figure 4
compares these techniques. For shorter adaptation
(96 to 192), recursive predictions yield the best perfor-
mance and match the direct forecast results. However,
for wider adaptations (336-96 or 720-96), the prun-
ing approach gives more stable and closer results to
the direct forecasts. Hence, using these approaches,
TTM models can be easily adapted to various FLs
based on user requirements.

4.8 TTM Model Insights & Explainability: Fig-
ure 5 illustrates the TTM embeddings from various
datasets (weather, traffic, and electricity) using PCA

projection, each represented by a different color. From each dataset, three distant, non-overlapping,
fixed-length time segments (S-1, S-2, S-3) are selected, each depicted with a unique marker shape.
The visualization uses the first and second principal components of the TTM embeddings. The
inset image focuses on the weather dataset alone, revealing a deeper structure learned by the TTM
architecture. The cyclic orbits in the embeddings reflect the seasonal patterns in the data. Both

9

hourly datasets (traffic and electricity) form concentric orbits due to similar seasonal patterns, while
the weather data, with its distinct seasonal pattern, shows cyclic orbits in a different sub-dimension.
In addition, the cross-channel attention from the fine-tuned model’s channel mixing layers reveals
feature importance across channels. As shown in Figure 5, the model focuses on channels like weath-
ersit, season, holiday, and temperature to predict bike-rental counts. These attention model weights
correlate with the general data characteristics where bike rental demands are heavily influenced by
weather and holidays, providing explanation for the fine-tuned model predictions. More details are in
Appendix G.

4.9 Discussion on TTM Design choices: In this section, we intuitively explain the important
design choices of TTM that greatly enhance its forecasting accuracy and transfer learning capabilities
despite its extremely small model capacity:

• All existing pre-trained models use a very high volume of pretraining data (for example,
TimesFM used 300B and Moirai used 27B time-points), hence they naturally require
massive model sizes. However, as shown in Figure.3, we observe that “limited” pretraining
data with “high resolution diversity” greatly helps in time-series model generalization, as
opposed to simply increasing the pretraining data size. This is an important observation and
finding that resolution diversity in pretraining data is very crucial for time-series FMs. Based
on these findings, we proceed with a well-reduced dataset (1B samples) with high resolution
diversity which naturally reduces our model size compared to counterparts needing to pre-
train with several hundred billion time-series. We introduce a high diversity in our data via
Diverse Resolution Sampling technique (DRS) which our counterparts fail to do.

• Secondly, we opted for TSMixer-based models instead of transformer-based models, which
further reduced the model size drastically. The TSMixer architecture has successfully estab-
lished in the past that interleaving simple gated attentions with mixing components across
patches, channels, and features greatly enhances forecasting accuracies with very limited
model capacity, as the quadratic time-complexity of self-attentions can be entirely avoided.
Following TSMixer, several other mixer architectures [33] [24] have been published, re-
iterating the power of these simple architectures. Thus, avoiding complex transformer
architectures further reduced our model size significantly.

• In addition, we further increased the modeling power of TSMixer without drastically
increasing its size by introducing several innovative components, such as adaptive patching,
diverse resolution sampling, and resolution prefix tuning. These enhancements are crucial
for effectively handling large pre-training across datasets with varying resolutions, all while
keeping the model capacity very minimal.

• Finally, framing the pre-training objective as a direct forecasting task demonstrates improved
zero-shot performance as compared to the traditional masking-based pre-training approaches.
We hypothesize that this method enables the model to effectively learn complex non-
linear mappings between the fixed context and forecast windows during pre-training that
generalizes well to unseen datasets.

5 Conclusions and Future Work

We propose TTM, an extremely lightweight pre-trained model for multivariate time-series forecasting.
Unlike existing large models, TTM is significantly smaller and faster, with efficient pre-training and
fine-tuning workflows. Results show that TTM is highly effective in pre-training on heterogeneous
datasets despite its limited model capacity. It achieves state-of-the-art results in zero/few-shot
forecasting, offering significant computational efficiency while capturing cross-channel relationships
and exogenous variables – critical features lacking in popular methods. Additionally, TTM supports
both CPU and GPU deployments, greatly enhancing its adoption and ease of use. Moving forward,
we plan to generalize our approach to support other downstream tasks beyond forecasting.

References

[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-

10

port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[2] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

[3] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting. International Conference on Machine Learning (ICML), 2023.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[5] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. In Advances in
Neural Information Processing Systems, 2023.

[6] Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23,
page 459–469, New York, NY, USA, 2023.

[7] Hadi Fanaee-T. Bike Sharing Dataset. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5W894.

[8] Azul Garza and Max Mergenthaler-Canseco. Timegpt-1, 2023.

[9] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo
Montero-Manso. Monash time series forecasting archive. In Neural Information Processing
Systems Track on Datasets and Benchmarks, 2021.

[10] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. International Conference on Machine
Learning (ICML), 2024.

[11] Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language
models are zero-shot time series forecasters. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[12] R.J. Hyndman and G. Athanasopoulos, editors. Forecasting: principles and practice. OTexts:
Melbourne, Australia, 2021. OTexts.com/fpp3.

[13] Kevin Maik Jablonka, Charithea Charalambous, Eva Sanchez Fernandez, Georg Wiechers,
Juliana Monteiro, Peter Moser, Berend Smit, and Susana Garcia. Machine learning for industrial
processes: Forecasting amine emissions from a carbon capture plant. Science Advances,
9(1):eadc9576, 2023.

[14] Arindam Jati, Vijay Ekambaram, Shaonli Pal, Brian Quanz, Wesley M. Gifford, Pavithra
Harsha, Stuart Siegel, Sumanta Mukherjee, and Chandra Narayanaswami. Hierarchical proxy
modeling for improved hpo in time series forecasting. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’23, page 891–900, New York,
NY, USA, 2023.

[15] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series
forecasting by reprogramming large language models. In The Twelfth International Conference
on Learning Representations, 2024.

[16] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597,
Online, August 2021.

11

OTexts.com/fpp3

[17] Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised
masked time series autoencoders. arXiv preprint arXiv:2301.08871, 2023.

[18] Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
Unitime: A language-empowered unified model for cross-domain time series forecasting. In
Proceedings of the ACM Web Conference 2024, 2024.

[19] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting, 2024.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[21] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy com-
petition: Results, findings, and conclusions. International Journal of Forecasting, 2022.
https://doi.org/10.1016/j.ijforecast.2021.11.013.

[22] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In ICLR, 2023.

[23] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference
on Learning Representations, 2020.

[24] Santosh Palaskar, Vijay Ekambaram, Arindam Jati, Neelamadhav Gantayat, Avirup Saha,
Seema Nagar, Nam H Nguyen, Pankaj Dayama, Renuka Sindhgatta, Prateeti Mohapatra, et al.
Automixer for improved multivariate time-series forecasting on business and it observability
data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
22962–22968, 2024.

[25] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[26] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
et al. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278, 2023.

[27] BizITOps Dataset Repository. https://github.com/BizITObs/
BizITObservabilityData/tree/main/Complete/Time%20Series/
RobotShop, 2023.

[28] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting,
36(3):1181–1191, 2020.

[29] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are
also few-shot learners. arXiv preprint arXiv:2009.07118, 2020.

[30] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-
mixer: An all-mlp architecture for vision. Advances in Neural Information Processing Systems,
34:24261–24272, 2021.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, volume 30, 2017.

[32] Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao. Libcity: An open
library for traffic prediction. In Proceedings of the 29th International Conference on Advances
in Geographic Information Systems, SIGSPATIAL ’21, page 145–148, New York, NY, USA,
2021.

12

https://doi.org/10.1016/j.ijforecast.2021.11.013
https://github.com/BizITObs/BizITObservabilityData/tree/main/Complete/Time%20Series/RobotShop
https://github.com/BizITObs/BizITObservabilityData/tree/main/Complete/Time%20Series/RobotShop
https://github.com/BizITObs/BizITObservabilityData/tree/main/Complete/Time%20Series/RobotShop

[33] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024.

[34] Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou.
Learning latent seasonal-trend representations for time series forecasting. Advances in Neural
Information Processing Systems, 35:38775–38787, 2022.

[35] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. International Conference on
Machine Learning (ICML), 2024.

[36] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Con-
trastive learning of disentangled seasonal-trend representations for time series forecasting. In
International Conference on Learning Representations, 2022.

[37] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2022.

[38] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with Auto-Correlation for long-term series forecasting. In Advances in Neural
Information Processing Systems, 2021.

[39] Zhengqing Yuan, Zhaoxu Li, and Lichao Sun. Tinygpt-v: Efficient multimodal large language
model via small backbones. arXiv preprint arXiv:2312.16862, 2023.

[40] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 8980–8987, 2022.

[41] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

[42] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivariate time series representation learning.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 2114–2124, 2021.

[43] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
contrastive pre-training for time series via time-frequency consistency. Advances in Neural
Information Processing Systems, 35:3988–4003, 2022.

[44] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
The Thirty-Fifth AAAI Conference on Artificial Intelligence, volume 35, pages 11106–11115,
2021.

[45] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In Proc. 39th
International Conference on Machine Learning, 2022.

[46] Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One Fits All: Power general
time series analysis by pretrained lm. In NeurIPS, 2023.

13

Appendix

A TSMixer Background

We employed TSMixer [6] as a building block for the proposed TTM model due to its state-of-the-art
performance, faster execution, and significantly lower memory usage. However, as explained in the
main paper, vanilla TSMixer cannot be trained on multiple diverse datasets. Therefore, it necessitated
the incorporation of the proposed novel components. In this section, we provide a high-level overview
of the TSMixer model for a simpler and quicker understanding by the readers.

TSMixer is a lightweight alternative to transformer-based time series models, with no compromise on
forecast accuracy. TSMixer adopts some well-established pre-processing steps from the literature,
such as normalization and patching. Additionally, it offers the flexibility of enabling or disabling
channel mixing. Channel mixing has been found to be beneficial in handling multivariate datasets
with cross-channel correlations. For the main learning process, TSMixer employs a series of MLP-
Mixer [30] blocks that perform inter-patch, intra-patch, and inter-channel mixing operations. A
mixing operation in TSMixer ensures learning correlations across a specific dimension. For example,
inter-channel mixing enables it to learn cross-channel correlations. In the experiments, we employed
three different flavors of the TSMixer model: TSMixer vanilla (referred as TSMixer throughout the
text), TSMixer with cross-channel mixing enabled (TSMixer-CM), and TSMixer with cross-channel
reconciliation head (TSMixer-CC). We request the readers to refer to [6] for further details about
these variants.

B Literature Survey

B.1 Multivariate Time Series Forecasting: Statistical approaches for time series forecasting,
such as SARIMAX and Exponential Smoothing, generally generate forecasts independently for each
time series [12]. These methods are essentially univariate and do not build a single model by learning
from multiple time series. On the other hand, more advanced models, built upon machine/deep
learning techniques, including LightGBM-based models [21, 14], N-BEATS [23], and DeepAR [28],
have the capability to learn from multiple time series. However, these models still follow univariate
approaches, thus ignoring any potential cross-channel correlations.

Advanced multivariate forecasting models mostly involve deep neural networks, specifically the
transformer [31] architecture. A series of transformer-based model have been proposed in the last
few years including Informer [44], Autoformer [38], and FEDFormer [45]. Although these models
outperformed all the prior arts, the DLinear [41] model showed that an embarrassingly simple
linear model can beat these models by following a few empirically established steps like time series
decomposition, normalization, and channel-independent modeling.

PatchTST [22] showed that transformers can be effective for forecasting if the input time series
is patched or segregated in multiple windows, and subsequently, modeled by a transformer. The
patching operation helps preserve local semantic information, accommodates a longer history, and
reduces computation time. The PatchTST model outperformed all prior transformer-based models
and the DLinear model.

Although PatchTST reinstated faith in transformers for time series modeling, transformer-based
models are generally resource-intensive, with slow execution and a high memory footprint. The
recently proposed TSMixer model [6] addresses these challenges effectively. TSMixer, built on the
MLPMixer architecture [30], stands out for its exceptional speed and lightweight design. It has
attained state-of-the-art (SOTA) performance on benchmark datasets, demonstrating a 2-3X reduction
in both execution time and memory usage.

Recently, several new Transformer- and Mixer-based architectures have been proposed. The iTrans-
former model [19] applies attention and MLP modules to the inverted dimension. Instead of operating
on the temporal tokens, these operations are applied to the variate tokens, resulting in “variate-
unmixed representations”. This approach is claimed to enhance generalization across different
channels and improve the use of arbitrary context lengths. The TimeMixer model [33] leverages
the observation that time series exhibit unique patterns at different sampling scales. By utilizing

14

different MLPMixer blocks, it aims to capture both microscopic and macroscopic information to
produce more accurate forecasts. Similarly, the recent TimesNet model [37] disentangles the complex
multi-periodicity in a time series into intra-period and inter-period variations. It then learns time
series representations using an Inception block, enhancing the model’s ability to capture intricate
patterns in the data.

B.2 Pre-trained Models for Time Series: One major drawback of all the above models is that
they need to be trained in-domain. Hence, none of these models can be transferred to out-of-domain
data with zero or minimal training. This approach has been found to be extremely beneficial in the
natural language processing (NLP) domain with the invention of BERT [4] and GPT [25] models.

However, this is an extremely challenging task in the time series domain because of the unavailability
of a publicly accessible large pre-training corpora. There are multiple independent time series datasets,
but, unlike in NLP, these datasets differ significantly in important characteristics such as the domain
of the data (e.g., retail, sensor data, traffic, etc.), the number of channels, temporal resolution, and
length. This makes it hard to train a single model on all the datasets together.

Hence, a few prior works have focused on experimenting with same-dataset self-supervised learning
for time series [17, 34, 36, 40]. These methods learn a time series representation from the train split
of a dataset, build a forecaster on top of the learned representation on the same data, and then evaluate
it on the test split of the same dataset. Although these approaches have demonstrated promising
results, they do not provide evidence of the transfer capability of the model between datasets.

Subsequently, models such as SimMTM [5] and TF-C [43] have demonstrated the transfer capabilities
of their models between pairs of datasets. These pairs are carefully chosen so that the source (the
dataset where the model is pre-trained) and target (the dataset where the model is fine-tuned and
tested) datasets share some matching properties. For instance, SimMTM showcased its few-shot
capability by selecting ETTH2 as the source data and ETTH1 as the target data. Both ETTH1 and
ETTH2 are collected from Electricity Transformers at two stations, denoting data from a similar
domain. TF-C demonstrated the transferability of the model across four different (source, target)
pairs, such as (ECG, EMG) and (FD-A, FD-B), where domain-similarity exists in both the source
and target datasets.

To overcome this limitation, the time series research community is increasingly focused on developing
General Pre-Trained (GPT) or Foundation Models (FM) for time-series forecasting, capable of
effectively transferring knowledge to new target TS datasets. This growing interest led to the
release of several “large” and “massive” pre-trained time-series models for forecasting in early
2024, generating significant excitement among researchers. Notable releases include Moment [10],
TimesFM [3], Chronos [2], Moirai [35], and Lag-llama [26], all of which set strong benchmarks in
zero-shot forecasting. The Moment [10] model pre-trains a Transformer encoder model in a univariate
way on a collected set of diverse “Time Series Pile”. Moment is pre-trained with mask reconstruction
objective, and it can be fine-tuned on a downstream forecasting task. The TimesFM [3] pre-trains a
decoder-style attention model (with causal self-attention) in univariate fashion on a large collection
of real world and synthetic datasets. The Chronos [2] model tokenizes the input time series, and
feed the tokens into a large langugae model (specifically the T5 model). Chronos is pre-trained in a
univariate fashion. During inference, Chronos auto-regressively samples tokens and map them to the
numerical values via dequantization. Chronos is trained on a large corpora of time series including
synthetic data for better generalization. The Moirai [35] model pre-trains a Transformer encoder on
a massive collection of “LOTSA” dataset (27B time points). Moirai masks the forecast horizon of
each target channel and performs mask reconstruction. The flattening operation of all channels in a
multivariate time series enables Moirai to pre-train on “any-variate” settings. The Lag-Llama [26]
model pre-trains a decoder-only Transformer model that utilizs the time series lags as covariates.
Lag-Llama is pre-trained on a large collection of diverse time series datasets in a univariate fashion.
All the above models are open-sourced and used in our experiments for comparison. However,
closed-source models such as TimeGPT [8] are not included due to their inaccessibility.

B.3 Pre-trained LLMs for Time Series: Parallel to the above trend of general pre-trained TS
models, there has been a notable increase in the adoption of pre-trained large language models (LLMs)
for time series tasks. These models are approached as cross-domain transfer learning problems. The
LLMTime model [11] feeds the time series values as text representations and demonstrates promising

15

Source Dataset Resolution

Monash

kaggle_web_traffic_dataset_without_missing_values daily
nn5_daily_dataset_without_missing_values daily
solar_10_minutes_dataset + Downsample 10 mins, 30 mins, hourly

australian_electricity_demand_dataset + Downsample 30 mins, hourly, daily
solar_4_seconds_dataset + Downsample 4 seconds, 10 mins, 15 mins, 30 mins, hourly
wind_4_seconds_dataset + Downsample 4 seconds, 10 mins, 15 mins, 30 mins, hourly

us_births_dataset daily
saugeenday_dataset daily

sunspot_dataset_without_missing_values daily
australian_weather_dataset daily

kdd_cup_2018_dataset_without_missing_values hourly
bitcoin_dataset_without_missing_values daily

wind_farms_minutely_dataset_without_missing_values + Downsample minutely, 10 mins, 15 mins, 30 mins, hourly
london_smart_meters_dataset_without_missing_values + Downsample 30 mins, hourly, daily

LibCity

PEMS03 + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly
PEMS04 + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly
PEMS07 + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly
PEMS08 + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly

PEMS_BAY + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly
LOS_LOOP + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly

LOOP_SEATTLE + Downsample 5 mins, 10 mins, 15 mins, 30 mins, hourly
SZ_TAXI + Downsample 15 mins, 30 mins

Q-TRAFFIC + Downsample 15 mins, 30 mins, hourly

Table 8: List of pre-training datasets. A dataset with “+ Downsample” denotes that the proposed Diversity
Resolution Sampling (DRS) has been applied on that dataset to generate new diverse datasets at frequencies
lower than the original frequency of the data. Please note that, these pre-training datasets have no overlap with
the evaluation datasets. Specifically, the australian_electricity_demand_dataset and australian_weather_dataset
used in pre-training are completely different (w.r.t location, measured variables, type, resolution, length, etc.)
from the standard Electricity (ECL) and Weather dataset used in the evaluation. Please note that, the last three
datasets in the Libcity section have been excluded from the pre-training process for the model releases intended
for enterprise-use.

performance in a zero-shot setting. The GPT4TS model [46] adopts a pre-trained LLM like GPT and
fine-tunes only the input embedding layer, normalization layers, and output layer. Specifically, it does
not alter the self-attention weights and feed-forward layers. The Time-LLM [15] model proposed a
reprogramming framework, where they reuse existing LLMs for forecasting while keeping the LLM
backbone intact. The overall approach to building a pre-trained model for time series from LLMs
is promising, but it does not model cross-channel correlations observed in many multivariate time
series datasets. Moreover, these LLMs are very large and exhibit slow execution and a large memory
footprint.

C Datasets

C.1 List of Pre-training Datasets: Pre-training employs a subset of ∼1B samples from
Monash [9] and Libcity [32, 35] data collection, where Monash results in ∼250M samples and LibCity
accounts for the rest. In this estimate, one sample denotes a pair of training windows: X ∈ R1×sl and
Y ∈ R1×fl. We employ a subset of the datasets available in the Monash forecasting data repository [9]
available at https://forecastingdata.org/. Since our primary focus in this study is long
term forecasting with forecast length ranging from 96 to 720, it is not possible to use yearly, monthly,
quarterly, or weekly datasets due to their short lengths. Hence, we skip a few datasets of short lengths.
The Monash datasets used are available under a Creative Commons Attribution 4.0 International
license. For LibCity, we employ all datasets released by the Moirai authors [35], available at
https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main (ex-
cept the Rotterdam dataset which was not available during our experimentation). The LibCity
datasets at the above link were released under an Apache 2.0 license. The final list of all pre-training
datasets is shown in Table 8. Please note that, the last three datasets in the Libcity section have been
excluded from the pre-training process for the model releases intended for enterprise-use.

C.1.1 Temporal cross-validation: Temporal cross-validation is used to chronologically split
all the time series into train and validation parts. During pre-training, moving windowing
technique is used to create (X,Y) pairs of lengths sl and fl respectively. Please note that,
these pre-training datasets have no overlap with the evaluation datasets. Specifically, the aus-

16

https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2
https://forecastingdata.org/
https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main
https://huggingface.co/ibm-granite/granite-timeseries-ttm-r2

Set Dataset Resolution Length Total
#Channels

#Target
variables

#Exog.
variables Source

D1

ETTH1 1 hour 17420

7 7

Not Applicable

[38]ETTH2 1 hour 17420
ETTM1 15 minutes 69680
ETTM2 15 minutes 69680
Weather 10 minutes 52696 21 21 [38]

ECL 1 hour 26304 321 321 [38]
Traffic 1 hour 17544 862 862 [38]

D2

BS 1 hour 17379 14 3 11 [7]
CC 2 minutes 5409 8 2 5 [13]

APP 10 seconds 8834 39 4 35 [27]
SER 10 seconds 8835 107 72 35 [27]

Table 9: Details of the evaluation datasets.

tralian_electricity_demand_dataset and australian_weather_dataset used in pre-training are com-
pletely different (w.r.t location, measured variables, type, resolution, length, etc.) from the standard
Electricity (ECL) and Weather dataset used in the evaluation.

C.2 List of Evaluation Datasets: Table 9 illustrates various characteristics of the eleven evalua-
tion datasets. Below, we present the details.

Set D1: For zero/few/full-shot evaluation, we utilize seven multivariate time series datasets that have
consistently been employed in the literature. Below, we offer a brief overview of these datasets.

1. ETT datasets: The four ETT datasets [44] (ETTH1, ETTH2, ETTM1, ETTM2) contain
multivariate time series data collected from electrical transformers at two stations. ETTH1
and ETTH2 are collected at an hourly interval, while ETTM1 and ETTM2 are collected
every 15 minutes. All four datasets have 7 channels.

2. Weather: The weather dataset consists of 21 channels, which serve as weather indicators. It
is collected at 10-minute intervals at the Max Planck Institute of Biogeochemistry weather
station.

3. Electricity (ECL): The Electricity dataset, also known as the ECL dataset, comprises the
hourly electricity consumption data of 321 clients.

4. Traffic: This dataset records the hourly rates of road occupancy on the San Francisco
Freeways using 862 sensors.

We used the datasets provided in the repository of the Autoformer paper [38]7. For all the D1 datasets,
we execute the same train/validation/test splitting as was performed in the literature [44, 38, 22, 6].

Set D2: To assess the effectiveness of the proposed TTM model in extracting information from
exogenous channels, we conduct evaluations on four additional datasets that are known to contain
exogenous or control variables.

1. Bike Sharing (BS): The Bike Sharing dataset [7] documents the hourly rental counts of
bikes from the Capital Bikeshare system in Washington D.C., USA, spanning the years 2011
to 2012. Rental counts are typically associated with environmental and seasonal conditions.
Consequently, this 14-channel dataset encompasses various weather-related features. Our
goal was to forecast all three rental counts: “casual”, “registered”, and “cnt” (total count).
As the remaining 11 features are consistently available at all future time points, they are
treated as exogenous variables in our experiment.

2. Carbon Capture Plant (CC): The Carbon Capture Plant data [13] records the emission
profiles of “2-amino-2-methyl-1-propanol” (AMP) and “piperazine” (Pz) collected at every
2 minutes interval. We utilize the 8-channel dataset made available in the official repos-
itory [13]. Among the remaining 6 channels, the following 5 serve as control variables:

7Available at https://github.com/thuml/Autoformer

17

https://github.com/thuml/Autoformer

[“TI-19”,“FI-19”, “TI-3”, “FI-11”, “TI-1213”]. The remaining 1 variable is treated as
a conditional variable (as it is neither a target variable nor available during the forecast
period to consider it as exogenous). For additional details, please refer to the supplementary
materials of [13].

3. Service (SER): This dataset pertains to the cloud-based “Stan’s Robot Shop” application,
managed by Instana. It simulates a user’s e-commerce experience, encompassing site access
to shipping, utilizing a load generator. Intermittent fault injection introduces diverse IT
events. The dataset provides business KPIs for services (e.g., payment, catalog) and IT
events tracked by Instana. Sampling occurs every 10 seconds due to high traffic and event
frequency. For our experiments, all business KPIs are treated as target variables and IT
events are treated as exogenous variables and the goal of our forecasting is to predict the
business KPIs given the IT events.

4. Application (APP): This dataset is similar to the SER data, but it captures KPIs for the
entire application instead of capturing at the service level. Even in this case, all business
KPIs are treated as target variables and IT events are treated as exogenous variables and the
goal of our forecasting is to predict the business KPIs given the IT events.

D TTM Model Hyper-parameters and Baselines

D.1 Pretraining: Pre-training is performed in a distributed fashion with 50 CPUs and 6 NVIDIA
A100 GPUs. Standard model configurations are as follows: patch length pl = 64 (when sl is 512),
128 (when sl is 1024 or 1536) and 8 (when sl is 96); stride s = pl (i.e., non-overlapping patches),
number of patches n = sl/pl, number of levels in backbone L = 3, number of TTM blocks per level
M = 2, number of decoder layers = 2, batch size b = 4500, number of epochs ep = 20, and dropout
do = 0.4. PatchTSMixer-specific hyperparameters include feature scaler fs = 3, hidden feature size
hf = fs ∗ pl, expansion feature size ef = hf ∗ 2. Please note that hf and n will change across TTM
blocks based on the adaptive patching strategy. Resolution prefix tuning is enabled by default on all
variants other than TTMQ. Decoder channel-mixing and exogenous mixer blocks are disabled during
pre-training and enabled during fine-tuning based on the dataset requirement.

D.2 Fine-tuning: Most model parameters remain the same from pretraining except the following
parameters. Head dropout is changed during finetuning based on the target dataset used (0.7 for
smaller ETT datasets and 0.2 for other datasets). Likewise, the batch size is set to 8 for Traffic, 32 for
Electricity, and 64 for all other datasets. Moreover, decoder channel-mixing and exogenous mixer
block are enabled for datasets that need cross-channel modelling (i.e. D2 datasets). Unlike pre-
training, fine-tuning is executed in just 1 A100 GPU as it is a fast process. All these hyper-parameters
are selected based on the validation performance, and the final test results are reported in the paper.

D.3 Computational Benefits of TTM over existing models - Setup details: Table 3 compares
the computational benefits of TTM over existing TS-pretrained models and reports the following
metrics: (i) GPU Inference Time per batch (in milliseconds (ms)), (ii) CPU Inference Time per
batch (in seconds (s)), (iii) Max GPU Memory used during inference (in GB), (iv) Params: Total
parameters of the models (in Millions). Experiments are conducted using sl = 512, fl = 96, and
batch size = 32 in one A100 80GB GPU, 16 cores with 256GB memory. GPU is not enabled while
capturing the CPU time. Since many pre-trained models process data in a purely univariate fashion,
while TTM processes data in a multi-variate fashion, we set the number of channels c to 1 for this
experiment so that, the number of samples per batch remains the same across all models for a fair
comparison. In addition, we used a small batch size of 32 for this experiment, as many pre-trained
models (like ChronosL) were encountering out-of-memory (OOM) errors with high batch sizes. For
this experiment, we set the number of probabilistic samples to 1 (i.e., num_samples = 1) for
probabilistic algorithms (such as Chronos or Lag-Llama) to compute their fastest possible runtime.
Note, that for forecast accuracy comparison, we set the number of samples to 100 for Lag-Llama and
20 for Chronos as suggested in their open-source code examples. All the baselines algorithms were
evaluated using their open-sourced inference APIs as detailed in Section D.4. Please note that the
computational benefits of TTM will further amplify if we use higher batch sizes or high number of
channels as our models are extremely small and can process multiple channels at the same time using
the channel-independence approach [22].

18

Category Baseline Used in Table Results
Generated From

Link to the
used implementation

(a) TS pre-trained
SOTA models

Moirai [35] Zero-shot in Table 1 and 13 Table 6 and 22 of [35] N/A
Moirai [35] Runtime in Table 3 Official implementation uni2ts

TimesFM [3] Zero-shot in Table 1 and 13,
Runtime in Table 3 Official implementation timesfm

Chronos [2] Zero-shot in Table 2 and 15,
Runtime in Table 3 Official implementation chronos-forecasting

Lag-Llama [26] Zero-shot in Table 2 and 15,
Runtime in Table 3 Official implementation lag-llama

Moment [10] Full-shot Head-probing
in Table 5 and 17 Table 2 of [10] N/A

Moment [10] Runtime in Table 3 Official Implementation moment

(b) LLM-based TS
pre-trained models

GPT4TS [46] Few-shot 5% in Table 4 and 16 Table 12 of [46] N/A

GPT4TS [46] Runtime in Table 3,
Exog. expt. in Table 6 Official Implementation One-Fits-All

GPT4TS [46] Full-shot Head-probing
in Table 5 and 17 Table 2 of [10] N/A

LLMTime [11] Zero-shot in Table 20 Results available in
the LLMTime Repository llmtime

Time-LLM [15] Full-shot Head-probing
in Table 5 and 17 Table 2 of [10] N/A

UniTime [18] Zero-shot in Table 21 Table 5 of [18] N/A

(b) Self-
supervised
pre-trained
models

SimMTM [5]

Table 22 Directly reported
from SimMTM paper [5] N/A

Ti-MAE [17]
TST [42]
LaST [34]
TF-C [43]
CoST [36]
TS2Vec [40]

(d) Other SOTA
Architectures

PatchTST [22]

Few-shot 5%in Table 4 and 16

Taken from [46] N/A
TSMixer [6] Official Implementation PatchTSMixer
TimeMixer [33] Official Implementation Time-Series-Library
iTransformer [19] Official Implementation Time-Series-Library
TimesNet [37] Taken from [46] N/A
Dinear [41] Taken from [46] N/A
FEDFormer [45]

Full-shot end2end Table 17 Taken from [10] N/AAutoformer [38]
Informer [44]

Table 10: Implementation details for the baseline algorithms.

D.4 Baseline Implementation Details: We report the implementation details for all the baselines
in Table 10.

E Sample Zero-shot Visualizations

Figure. 6 visualizes the zero-shot forecasts of TTM across different datasets illustrating the power of
TTM to capture complex trends and seasonal patterns.

F Full Results Tables

Here, we present the complete versions of various tables in the main paper. These full versions
essentially include the test results for multiple forecast lengths (fl) across all datasets. Occasionally,
these results are averaged across forecast lengths to conserve space in the main paper.

F.1 Full table for all TTM variants: Table 11 and Table 12 captures the fine-grained results of
all TTM variants (i.e. TTMQ, TTMB, TTMEand TTMA) on the D1 data benchmark set.

F.2 Full table for zero-shot experiment: Table 13 show the sliding window zero-shot results
for all forecast lengths across all D1 datasets, and compares TTM variants with Moirai variants and
TimesFM. Table 15 depicts the last-window zero-shot results for all forecast lengths across all of D1
datasets, and compares TTM with Chronos and Lag-Llama.

19

https://github.com/SalesforceAIResearch/uni2ts
https://github.com/google-research/timesfm
https://github.com/amazon-science/chronos-forecasting
https://github.com/time-series-foundation-models/lag-llama
https://github.com/moment-timeseries-foundation-model/moment
https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All
https://github.com/ngruver/llmtime
https://huggingface.co/docs/transformers/en/model_doc/patchtsmixer
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library

FL TTMQ TTMB TTME TTMA

E
T

T
H

1 96 0.365 0.364 0.363 0.359
192 0.393 0.386 0.393 0.389
336 0.415 0.404 0.406 0.405
720 0.538 0.424 0.452 0.448

E
T

T
H

2 96 0.285 0.277 0.271 0.264
192 0.341 0.334 0.324 0.321
336 0.383 0.362 0.357 0.351
720 0.441 0.408 0.388 0.395

E
T

T
M

1 96 0.413 0.322 0.327 0.318
192 0.476 0.376 0.377 0.354
336 0.553 0.407 0.395 0.376
720 0.737 0.439 0.419 0.398

E
T

T
M

2 96 0.187 0.171 0.178 0.169
192 0.261 0.238 0.238 0.223
336 0.323 0.304 0.29 0.276
720 0.436 0.41 0.379 0.342

W
ea

th
er 96 0.154 0.158 0.166 0.159

192 0.203 0.206 0.214 0.203
336 0.256 0.256 0.254 0.247
720 0.329 0.328 0.319 0.314

E
le

ct
ri

ci
ty 96 0.169 0.166 0.157 0.152

192 0.196 0.191 0.174 0.179
336 0.209 0.207 0.195 0.193
720 0.264 0.255 0.25 0.243

Tr
af

fic

96 0.518 0.514 0.476 0.462
192 0.548 0.544 0.5 0.491
336 0.55 0.575 0.51 0.509
720 0.605 0.622 0.571 0.547

Model Size 1M 1M 4M 5M

Table 11: Zero-shot results of all TTM variants on D1 data benchmark across all sliding test windows
(standard test protocol).

F.3 Other zero-shot comparisons: LLMTime [11] reported the test performance only on the last
windows of the test datasets (instead of sliding windows) for horizons 96 and 192 due to computational
reasons. We recreate the same experimental setup for TTM, and depict the comparative results in
Table 20. We observe 26-36% improvement across all three variants of TTM with tremendous (70,000
to 14,000) reduction in model sizes. Another zero-shot comparison with the UniTime [18] model is
shown in Table 21. In this comparison, TTM outperforms UniTime by 29-31%.

F.4 TTM Zero-shot vs. SOTA Full-shot (short context setting): In Table 14 we compare the
zero-shot results of TTM variants with full-shot end-2-end training of popular TS architectures like
iTransformer, PatchTST etc.. The full-shot SOTA algorithms were trained in short-context length
setting (sl = 96) on the train split of each target dataset, and these results are obtained from the
Moirai paper [35] where the authors draw similar comparison. TTM was tested in zero-shot setting
without any training on the target datasets. We also provide the zero-shot results of Moirai variants
and TimesFM from Table 1 for reference purpose. We can see that the zero-shot performance of all
variants of TTM outperforms the full-shot performance of SOTA models, even though the latter are
trained on the target datasets. This underscores the strength of the pre-trained TTM model.

F.5 Full table for 5% few-shot experiment: Table 16 shows the 5% few-shot results for all
forecast lengths across all D1 datasets.

F.6 TTM vs. Cross-transfer models: Table 22 draws a comparative analysis of TTMQ with
SimMTM, Ti-MAE, TST, LaST, TF-C, CoST, and TS2Vec models in different few-shot settings
(10% to 100% availability of training data) on ETTH1 dataset. The baseline models are trained
on ETTH2 data, and tested on ETTH1 data, thus demonstrating their transferability across datasets
having similar characteristics. The baseline numbers are taken from [5]. TTMQ outperform all of
them (including the recent SOTA SimMTM) by a significant margin. This highlights the usefulness
of the pre-trained TTM weights and their ability to adapt to a target domain with few-shot fine-tuning.

20

FL TTMQ TTMB TTME TTMA

E
T

T
H

1 96 0.366 0.364 0.363 0.359
192 0.391 0.387 0.393 0.394
336 0.421 0.399 0.398 0.406
720 - - - -

E
T

T
H

2 96 0.282 0.277 0.271 0.267
192 0.338 0.334 0.325 0.321
336 0.383 0.361 0.357 0.354
720 - - - -

E
T

T
M

1 96 0.359 0.313 0.326 0.317
192 0.402 0.357 0.371 0.355
336 0.424 0.395 0.396 0.374
720 0.575 0.437 0.418 0.397

E
T

T
M

2 96 0.174 0.171 0.178 0.17
192 0.24 0.23 0.237 0.222
336 0.299 0.293 0.284 0.274
720 0.407 0.393 0.373 0.345

W
ea

th
er 96 0.152 0.154 0.162 0.155

192 0.198 0.203 0.215 0.201
336 0.25 0.252 0.262 0.244
720 0.326 0.327 0.319 0.316

E
le

ct
ri

ci
ty 96 0.142 0.146 0.15 0.141

192 0.162 0.164 0.171 0.16
336 0.184 0.185 0.202 0.179
720 0.228 0.236 0.303 0.24

Tr
af

fic

96 0.401 0.411 0.411 0.469
192 0.425 0.42 0.44 0.488
336 0.437 0.468 0.46 0.512
720 - - - -

Model Size 1M 1M 4M 5M

Table 12: Few-shot 5% results of all TTM variants on D1 data benchmark across all sliding test windows
(standard test protocol).

F.7 Full table for full-shot head-probing experiment: Head Probing (HP) involves finetuning
the pre-trained model heads on full data with backbone weights frozen. Table 17 compares the
full-shot head-probing results of TTM with Moment, Time-LLM and GPT4TS. Table 18 and Table 19
compares the TTM Head probing results with the Full-shot End-To-End Training results of popular
time-series architectures. It is important to note that end-to-end training updates the backbone weights,
whereas head probing does not. TTM head probing results are either superior or highly competitive
with other popular state-of-the-art methods that are trained end-to-end on the target data.

F.8 Full table: Impact of Adaptive Patching (AP): Table 23 shows the full table for studying
the impact of adaptive patching across different amounts of pre-trained data settings. In both the
settings, AP helps TTM to produce more accurate forecasts. However, the impact of AP is greater in
the setting with a lesser amount of pre-training data, where there is more need to model at multiple
granularities to compensate for the data size.

F.9 Full table: Impact of Resolution Prefix Tuning (RPT): Table 24 presents a comprehensive
analysis of the impact of RPT on TTM. RPT generally enhances forecast performance, particularly
when the pretraining (PT) data is abundant and diverse. In this scenario, incorporating a learnable
resolution prefix token significantly benefits the models by allowing them to decouple the weights
across resolutions effectively. Conversely, in setups with limited PT data where diversity challenges
are minimal, RPT has a reduced impact. Additionally, we can see that RPT helps in scenarios when
the context length is short. Table 25 shows the impact of RPT in shorter context length setting
(sl = 96). We report the zero-shot results for fl = 24 in the table. In these scenarios, automatically
detecting the resolution becomes a challenge for the model. Hence, by explicitly fusing the resolution
information as a prefix, we can enhance the model’s ability to learn effectively across resolutions.

21

FL TTMB TTME TTMA MoiraiS MoiraiB MoiraiL TimesFM

E
T

T
H

1 96 0.364 0.363 0.359 0.375 0.384 0.38 0.421
192 0.386 0.393 0.389 0.399 0.425 0.44 0.472
336 0.404 0.406 0.405 0.412 0.456 0.514 0.51
720 0.424 0.452 0.448 0.413 0.47 0.705 0.514

E
T

T
H

2 96 0.277 0.271 0.264 0.281 0.277 0.287 0.326
192 0.334 0.324 0.321 0.34 0.34 0.347 0.4
336 0.362 0.357 0.351 0.362 0.371 0.377 0.434
720 0.408 0.388 0.395 0.38 0.394 0.404 0.451

E
T

T
M

1 96 0.322 0.327 0.318 0.404 0.335 0.353 0.357
192 0.376 0.377 0.354 0.435 0.366 0.376 0.411
336 0.407 0.395 0.376 0.462 0.391 0.399 0.441
720 0.439 0.419 0.398 0.49 0.434 0.432 0.507

E
T

T
M

2 96 0.171 0.178 0.169 0.205 0.195 0.189 0.205
192 0.238 0.238 0.223 0.261 0.247 0.247 0.293
336 0.304 0.29 0.276 0.319 0.291 0.295 0.366
720 0.41 0.379 0.342 0.415 0.355 0.372 0.472

W
ea

th
er 96 0.158 0.166 0.159 0.173 0.167 0.177 -

192 0.206 0.214 0.203 0.216 0.209 0.219 -
336 0.256 0.254 0.247 0.26 0.256 0.277 -
720 0.328 0.319 0.314 0.32 0.321 0.365 -

E
le

ct
ri

ci
ty 96 0.166 0.157 0.152 0.205 0.158 0.152 -

192 0.191 0.174 0.179 0.22 0.174 0.171 -
336 0.207 0.195 0.193 0.236 0.191 0.192 -
720 0.255 0.25 0.243 0.27 0.229 0.236 -

Table 13: Zero-shot results of TTM over Moirai (ICML’24) and TimesFM (ICML’24). Electricity and
Weather results for TimesFM are not reported as they were used by TimesFM for pretraining. Similarly,
Traffic data was used in both Moirai and TimesFM pre-training, hence, skipped in this comparison.

Zero-shot from Pre-Trained Models Full-shot End2End Training with short context length setting
Data TTMB TTME TTMA MoiraiS MoiraiB MoiraiL TimesFM iTransformer TimesNet PatchTST Crossformer TiDE Dlinear SCINet FEDFormer

ETTH1 0.394 0.404 0.4 0.4 0.434 0.51 0.479 0.454 0.458 0.469 0.529 0.541 0.456 0.747 0.44
ETTH2 0.345 0.335 0.333 0.341 0.346 0.354 0.403 0.383 0.414 0.387 0.942 0.611 0.559 0.954 0.437
ETTM1 0.386 0.38 0.362 0.448 0.382 0.39 0.429 0.407 0.4 0.387 0.513 0.419 0.403 0.486 0.448
ETTM2 0.281 0.271 0.252 0.3 0.272 0.276 0.334 0.288 0.291 0.281 0.757 0.358 0.35 0.571 0.305
Weather 0.237 0.238 0.231 0.242 0.238 0.26 - 0.258 0.259 0.259 0.259 0.271 0.265 0.292 0.309

Electricity 0.205 0.194 0.192 0.233 0.188 0.188 - 0.178 0.193 0.216 0.244 0.252 0.212 0.268 0.214
TTMB f-imp(%) 6% ↑ 1% ↓ 4% ↑ 15% ↑ 4% ↑ 7% ↑ 7% ↑ 34% ↑ 22% ↑ 15% ↑ 37% ↑ 13% ↑
TTME f-imp(%) 7% ↑ 1% ↑ 6% ↑ 16% ↑ 6% ↑ 8% ↑ 8% ↑ 34% ↑ 23% ↑ 16% ↑ 39% ↑ 15% ↑
TTMA f-imp(%) 10% ↑ 4% ↑ 9% ↑ 19% ↑ 9% ↑ 11% ↑ 11% ↑ 36% ↑ 26% ↑ 19% ↑ 40% ↑ 17% ↑

Table 14: Zero-shot Forecast-Improvement (f-imp) of TTM over Moirai (ICML’24), TimesFM (ICML’24) and other popular
architectures (full shot trained with context length 96). MSE averaged across Fls: {96, 192, 336, 720}. Electricity and Weather results
for TimesFM are not reported as they were used by TimesFM for pretraining. Similarly, Traffic data was used in both Moirai and
TimesFM pre-training. Full-shot and Moirai results reported from [35], TimesFM results were generated from their released code.

G Model Insights and Explanation

G.1 Dataset preparation for TTM embedding analysis: To understand the representation
obtained from TTM encoder, we have carried out a controlled analysis, using 3 datasets with varying
observation frequency, viz., (1) weather (10 min), (2) electricity (1 hour), and (3) traffic (1 hour). We
have selected three temporally distinct non-overlapping windows of length 1024 from each dataset
(Figure 7). The selection criteria of these segments are distinct mean and standard deviation measures.
From each of these segment, 512 context length windows are extracted in a rolling window fashion.
Embedding vector from the encoder is collected at backbone output. Each of these representation
tensors are flattened, and Principal Component Analysis (PCA) is carried out on the whole dataset.
The project on the first two principle components is used to obtain the figure 5.

G.2 Channel Attention Map: The channel mixing block in the decoder of TTM consists of a
gated attention block that produces an attention weight for each feature across channels. We have
considered the mean attention weight across features and data samples to derive the feature contribu-
tion. We have used the model finetuned on the Bikesharing dataset for this purpose. Bikesharing data

22

FL TTMB TTME TTMA ChronosT ChronosS ChronosB ChronosL Lag-llama

E
T

T
H

1

24 0.195 0.243 0.217 0.207 0.217 0.163 0.161 0.372
48 0.193 0.244 0.226 0.33 0.277 0.228 0.226 0.376
60 0.209 0.212 0.2 0.295 0.331 0.303 0.311 0.321
96 0.194 0.209 0.207 0.424 0.383 0.272 0.298 0.299

192 0.231 0.227 0.221 0.299 0.303 0.295 0.335 0.303

E
T

T
H

2

24 0.12 0.149 0.158 0.135 0.12 0.086 0.065 0.216
48 0.151 0.18 0.197 0.186 0.207 0.194 0.139 0.187
60 0.166 0.175 0.193 0.217 0.187 0.195 0.2 0.182
96 0.111 0.13 0.155 0.197 0.156 0.22 0.207 0.135

192 0.105 0.123 0.107 0.151 0.131 0.125 0.162 0.122

E
T

T
M

1

24 0.141 0.247 0.187 0.285 0.196 0.284 0.247 0.207
48 0.161 0.241 0.182 0.704 0.343 0.207 0.311 0.881
60 0.153 0.205 0.166 0.959 0.545 0.536 0.818 0.958
96 0.172 0.209 0.184 0.854 0.589 0.508 0.538 1.006

192 0.402 0.294 0.232 1.394 0.757 0.914 0.774 1.16

E
T

T
M

2

24 0.04 0.063 0.068 0.04 0.041 0.054 0.075 0.325
48 0.144 0.16 0.152 0.379 0.253 0.236 0.198 0.337
60 0.125 0.143 0.119 0.274 0.233 0.222 0.222 0.294
96 0.137 0.108 0.101 0.147 0.12 0.171 0.192 0.314

192 0.175 0.165 0.146 0.191 0.223 0.265 0.246 0.268

W
ea

th
er

24 0.015 0.015 0.016 0.008 0.011 0.009 0.01 0.084
48 0.018 0.017 0.026 0.024 0.017 0.016 0.022 0.105
60 0.024 0.03 0.054 0.036 0.04 0.029 0.028 0.141
96 0.034 0.025 0.053 0.042 0.068 0.05 0.049 0.057

192 0.103 0.072 0.065 0.105 0.095 0.047 0.055 0.243

E
le

ct
ri

ci
ty 24 0.409 0.421 0.433 0.463 0.429 0.42 0.409 0.384

48 0.28 0.308 0.304 0.338 0.313 0.289 0.278 0.351
60 0.26 0.287 0.279 0.346 0.301 0.279 0.273 0.363
96 0.231 0.243 0.238 0.352 0.294 0.231 0.227 0.317

192 0.495 0.495 0.491 0.616 0.548 0.503 0.507 0.551

Tr
af

fic

24 0.231 0.232 0.239 0.324 0.3 0.288 0.301 0.237
48 0.193 0.183 0.187 0.244 0.232 0.213 0.226 0.192
60 0.211 0.191 0.196 0.258 0.328 0.332 0.326 0.198
96 0.21 0.199 0.215 0.256 0.219 0.217 0.196 0.213

192 0.387 0.393 0.382 0.373 0.419 0.351 0.297 0.374

Table 15: Zero-shot results of TTM over Chronos (2024) and Lag-llama (2024) over the last test-window.
Since Chronos and Lag-llama recommend/report results with shorter forecast lengths, we use different
FLs ∈ {24, 48, 60, 96, 192} in this experiment.

includes exogenous variables, viz. temperature, humidity, wind speed, etc. We analyzed the mean
attention of the model across these exogenous variables for the forecast of rental bike count (Figure 5).
As we observe, these attention weights highly correlate with the general data characteristics of
his data, wherein - bike rentals are highly influenced by weather and holiday signals. Thus, TTM
fine-tuning process is quick as well as explainable.

H Limitations and Future Work

TTM is currently focused solely on forecasting tasks, similar to other forecast pretraining models like
Moirai [35], Chronos [2], and TimesFM [3]. However, recent models such as Moment and GPT4TS
are taking initial steps to expand their capabilities across multiple downstream tasks, including
classification, regression, and anomaly detection. Inspired by these advancements, we plan to extend
TTM’s functionality to encompass a broader range of downstream tasks.

Another limitation of TTM is the need to train different models for different context length settings.
Due to its non-transformer-based architecture, TTM is sensitive to context lengths. Consequently, in
this paper, we introduce three variants of TTM, each optimized for different context length settings.
Looking ahead, we aim to enhance TTM’s backbone to automatically adapt to dynamically varying
context lengths.

In addition, existing pre-trained models like lag-llama, Moirai support probabilistic forecasting while
TTM currently supports only point forecasting. We plan to extend TTM with distribution heads to
facilitate probabilistic forecasts in future work.

23

Data Pre-trained Models Other popular architectures
FL TTMB TTME TTMA GPT4TS Time-LLM PatchTST TSMixer TimeMixer iTransformer TimesNet Dlinear

E
T

T
H

1 96 0.364 0.363 0.359 0.543 0.483 0.557 0.554 0.899 0.674 0.892 0.547
192 0.387 0.393 0.394 0.748 0.629 0.711 0.673 0.942 0.757 0.94 0.72
336 0.399 0.398 0.406 0.754 0.768 0.816 0.678 1.423 0.838 0.945 0.984
720 - - - - - - - - - - -

E
T

T
H

2 96 0.277 0.271 0.267 0.376 0.336 0.401 0.348 0.356 0.382 0.409 0.442
192 0.334 0.325 0.321 0.418 0.406 0.452 0.419 0.549 0.445 0.483 0.617
336 0.361 0.357 0.354 0.408 0.405 0.464 0.389 0.619 0.483 0.499 1.424
720 - - - - - - - - - - -

E
T

T
M

1 96 0.313 0.326 0.317 0.386 0.316 0.399 0.361 0.515 0.437 0.606 0.332
192 0.357 0.371 0.355 0.44 0.45 0.441 0.411 0.535 0.49 0.681 0.358
336 0.395 0.396 0.374 0.485 0.45 0.499 0.467 0.621 0.563 0.786 0.402
720 0.437 0.418 0.397 0.577 0.483 0.767 0.677 0.64 0.78 0.796 0.511

E
T

T
M

2 96 0.171 0.178 0.17 0.199 0.174 0.206 0.2 0.231 0.217 0.22 0.236
192 0.23 0.237 0.222 0.256 0.215 0.264 0.265 0.313 0.266 0.311 0.306
336 0.293 0.284 0.274 0.318 0.273 0.334 0.314 0.356 0.322 0.338 0.38
720 0.393 0.373 0.345 0.46 0.433 0.454 0.41 0.46 0.43 0.509 0.674

W
ea

th
er 96 0.154 0.162 0.155 0.175 0.172 0.171 0.188 0.187 0.211 0.207 0.184

192 0.203 0.215 0.201 0.227 0.224 0.23 0.234 0.324 0.269 0.272 0.228
336 0.252 0.262 0.244 0.286 0.282 0.294 0.287 0.307 0.316 0.313 0.279
720 0.327 0.319 0.316 0.366 0.366 0.384 0.365 0.451 0.393 0.4 0.364

E
le

ct
ri

ci
ty 96 0.146 0.15 0.141 0.143 0.147 0.145 0.147 0.155 0.157 0.315 0.15

192 0.164 0.171 0.16 0.159 0.158 0.163 0.172 0.219 0.181 0.318 0.163
336 0.185 0.202 0.179 0.179 0.178 0.175 0.19 0.273 0.219 0.34 0.175
720 0.236 0.303 0.24 0.233 0.224 0.219 0.28 0.309 0.249 0.635 0.219

Tr
af

fic

96 0.411 0.411 0.469 0.419 0.414 0.404 0.408 0.463 0.43 0.854 0.427
192 0.42 0.44 0.488 0.434 0.419 0.412 0.421 0.548 0.445 0.894 0.447
336 0.468 0.46 0.512 0.449 0.437 0.439 0.477 0.498 0.481 0.853 0.478
720 - - - - - - - - - - -

Table 16: TTM Few-shot 5% MSE reported across all the standard FLs considered. TTM, Pre-trained
baselines and other model architectures are trained with 5% train data.

Data Head Probing of Pre-Trained Models Full-shot end-2-end Training with 512 context length
FL TTMB TTME TTMA Moment GPT4TS Time-LLM TimeMixer PatchTST TimesNet TSMixer FEDFormer Autoformer Informer

ETTH1 96 0.36 0.362 0.363 0.387 0.376 0.408 0.361 0.37 0.384 0.368 0.376 0.449 0.865
720 0.436 0.449 0.442 0.454 0.477 0.523 0.445 0.447 0.521 0.444 0.506 0.514 1.181

ETTH2 96 0.269 0.273 0.262 0.288 0.285 0.285 0.271 0.274 0.34 0.276 0.346 0.358 3.755
720 0.39 0.402 0.392 0.403 0.406 0.399 0.342 0.379 0.462 0.395 0.463 0.515 3.647

ETTM1 96 0.291 0.293 0.283 0.293 0.292 0.384 0.291 0.29 0.338 0.291 0.379 0.505 0.672
720 0.419 0.408 0.393 0.405 0.417 0.437 0.415 0.416 0.478 0.416 0.543 0.671 1.166

ETTM2 96 0.164 0.158 0.158 0.17 0.173 0.181 0.164 0.165 0.187 0.164 0.203 0.255 0.365
720 0.35 0.347 0.369 0.363 0.378 0.366 0.359 0.362 0.408 0.358 0.421 0.433 3.379

Weather 96 0.146 0.154 0.149 0.154 0.162 - 0.147 0.149 0.172 0.146 0.217 0.266 0.3
720 0.323 0.324 0.318 0.315 0.326 - 0.31 0.314 0.365 0.316 0.403 0.419 1.059

Electricity 96 0.129 0.129 0.128 0.138 0.139 - 0.129 0.129 0.168 0.129 0.193 0.201 0.274
720 0.2 0.193 0.191 0.211 0.206 - 0.194 0.197 0.22 0.186 0.246 0.254 0.373

Traffic 96 0.368 0.372 0.352 0.391 0.388 - 0.36 0.36 0.593 0.356 0.587 0.613 0.719
720 0.431 0.425 0.419 0.45 0.45 - 0.43 0.432 0.64 0.424 0.626 0.66 0.864

Table 17: Head Probing (HP) involves finetuning the pre-trained model heads on full data with backbone
weights frozen. Head probing results of TTM are compared with the Head probing results of other Pre-
trained models and also with the Full-shot end-to-end training of popular TS architectures. TTM’s Head
probing results consistently outperform other HP benchmarks and also very competitive as compared to
the full end-to-end training of popular TS architectures. MSE across FLs (96,720) are reported from [10].
Time-LLM results for large datasets are not reported in [10] due to computational issues. It is important to
note that end-to-end training updates the backbone weights, whereas head probing does not.

24

Data TTM Head Probing Full-shot end-2-end Training with 512 context length
FL TTMQ TTMB TTME TTMA TimeMixer TSMixer PatchTST TimesNet CrossFormer Dlinear FEDFormer Autoformer Informer

E
T

T
H

1 96 0.373 0.36 0.362 0.363 0.361 0.368 0.37 0.384 0.418 0.375 0.376 0.449 0.865
720 0.424 0.436 0.449 0.442 0.445 0.444 0.447 0.521 0.733 0.472 0.506 0.514 1.181
192 0.398 0.392 0.394 0.392 0.409 0.399 0.413 0.436 0.539 0.405 0.42 0.5 1.008
336 0.397 0.401 0.403 0.413 0.43 0.421 0.422 0.638 0.709 0.439 0.459 0.521 1.107

E
T

T
H

2 96 0.283 0.269 0.273 0.262 0.271 0.276 0.274 0.34 0.425 0.289 0.346 0.358 3.755
720 0.417 0.39 0.402 0.392 0.342 0.395 0.379 0.462 0.775 0.605 0.463 0.515 3.647
192 0.328 0.336 0.325 0.324 0.317 0.33 0.314 0.231 0.473 0.383 0.429 0.456 5.602
336 0.361 0.359 0.356 0.351 0.332 0.357 0.329 0.452 0.581 0.448 0.496 0.482 4.721

E
T

T
M

1 96 0.286 0.291 0.293 0.283 0.291 0.291 0.293 0.338 0.361 0.299 0.379 0.505 0.672
720 0.417 0.419 0.408 0.393 0.415 0.416 0.416 0.478 0.703 0.425 0.543 0.671 1.166
192 0.333 0.325 0.335 0.332 0.327 0.333 0.333 0.374 0.387 0.335 0.426 0.553 0.795
336 0.364 0.363 0.364 0.353 0.36 0.365 0.369 0.41 0.605 0.369 0.445 0.621 1.212

E
T

T
M

2 96 0.165 0.164 0.158 0.158 0.164 0.164 0.166 0.187 0.275 0.167 0.203 0.255 0.365
720 0.358 0.35 0.347 0.369 0.359 0.358 0.362 0.408 1.208 0.397 0.421 0.433 3.379
192 0.22 0.219 0.215 0.213 0.223 0.219 0.223 0.249 0.345 0.224 0.269 0.281 0.533
336 0.269 0.277 0.26 0.269 0.279 0.273 0.274 0.321 0.657 0.281 0.325 0.339 1.363

W
ea

th
er 96 0.144 0.146 0.154 0.149 0.147 0.146 0.149 0.172 0.232 0.176 0.217 0.266 0.3

720 0.317 0.323 0.324 0.318 0.31 0.316 0.314 0.365 0.526 0.323 0.403 0.419 1.059
192 0.19 0.19 0.207 0.192 0.189 0.191 0.194 0.219 0.371 0.22 0.276 0.307 0.598
336 0.247 0.242 0.25 0.24 0.241 0.243 0.306 0.246 0.495 0.265 0.339 0.359 0.578

E
le

ct
ri

ci
ty 96 0.13 0.129 0.129 0.128 0.129 0.129 0.129 0.168 0.15 0.14 0.193 0.201 0.274

720 0.202 0.2 0.193 0.191 0.194 0.186 0.197 0.22 0.251 0.203 0.246 0.254 0.373
192 0.149 0.149 0.148 0.144 0.14 0.146 0.147 0.184 0.161 0.153 0.201 0.222 0.296
336 0.164 0.163 0.161 0.162 0.161 0.158 0.163 0.198 0.182 0.169 0.214 0.213 0.3

Tr
af

fic

96 0.367 0.368 0.372 0.352 0.36 0.356 0.36 0.593 0.514 0.41 0.587 0.613 0.719
720 0.432 0.431 0.425 0.419 0.43 0.424 0.432 0.64 0.573 0.466 0.626 0.66 0.864
192 0.387 0.403 0.365 0.359 0.375 0.377 0.379 0.617 0.549 0.423 0.604 0.616 0.696
336 0.414 0.395 0.379 0.375 0.385 0.385 0.392 0.629 0.53 0.436 0.621 0.622 0.777

Table 18: Full view: TTM Head probing Vs Full-shot End-To-End Training of popular time-series
architectures reported for all FLs. Head Probing (HP) involves finetuning the pre-trained model heads on
full data with backbone weights frozen. TTM head probing results are either superior or highly competitive
with other popular state-of-the-art methods that are trained end-to-end on the target data. It is important to
note that end-to-end training updates the backbone weights, whereas head probing does not.

Data TTM Head Probing Full-shot end-2-end Training with 512 context length
Data TTMQ TTMB TTME TTMA TimeMixer TSMixer PatchTST TimesNet CrossFormer Dlinear FEDFormer Autoformer Informer

ETTH1 0.398 0.397 0.402 0.402 0.411 0.408 0.413 0.495 0.6 0.423 0.44 0.496 1.04
ETTH2 0.347 0.338 0.339 0.332 0.316 0.34 0.324 0.371 0.564 0.431 0.434 0.453 4.431
ETTM1 0.35 0.35 0.35 0.34 0.348 0.351 0.353 0.4 0.514 0.357 0.448 0.588 0.961
ETTM2 0.253 0.252 0.245 0.252 0.256 0.254 0.256 0.291 0.621 0.267 0.304 0.327 1.41
Weather 0.224 0.225 0.234 0.225 0.222 0.224 0.241 0.25 0.406 0.246 0.309 0.338 0.634

Electricity 0.161 0.16 0.158 0.156 0.156 0.155 0.159 0.192 0.186 0.166 0.214 0.222 0.311
Traffic 0.4 0.399 0.385 0.376 0.388 0.386 0.391 0.62 0.542 0.434 0.609 0.628 0.764

Table 19: Average view: TTM Head probing Vs Full-shot End-To-End Training of popular time-series
architectures averaged across FLs 96,192,336,720. Head Probing (HP) involves finetuning the pre-trained
model heads on full data with backbone weights frozen. TTM head probing results are either superior or
highly competitive with other popular state-of-the-art methods that are trained end-to-end on the target
data. It is important to note that end-to-end training updates the backbone weights, whereas head probing
does not.

25

W
e

ath
er

ET
TH

1
ET

TH
2

ET
TM

1
ET

TM
2

EC
L

SIN
/C

O
S

Figure 6: Sample TTM Zero-shot Forecasts across datasets

26

FL TTMB TTME TTMA LLMTime

ETTM2 96 0.137 0.108 0.101 0.167
192 0.175 0.165 0.146 0.198

Weather 96 0.034 0.025 0.053 0.107
192 0.103 0.072 0.065 0.062

Electricity 96 0.231 0.243 0.238 0.609
192 0.495 0.495 0.491 0.96

Traffic 96 0.21 0.199 0.215 0.34
192 0.387 0.393 0.382 0.526

Model Size 1M 4M 5M 70B
TTMB f-imp(%) s-imp(X) 26% ↑ 70000X ↑
TTME f-imp(%) s-imp(X) 36% ↑ 17500X ↑
TTMA f-imp(%) s-imp(X) 36% ↑ 14000X ↑

Table 20: LLM-Time Vs TTM: Zeroshot MSE reported on last test window set. Results reported in
LLMTime [11] are used for this comparison.

FL TTMB TTME TTMA Unitime

E
T

T
H

2 96 0.277 0.271 0.264 0.306
192 0.334 0.324 0.321 0.389
336 0.362 0.357 0.351 0.424
720 0.408 0.388 0.395 0.434

W
ea

th
er 96 0.158 0.166 0.159 0.21

192 0.206 0.214 0.203 0.264
336 0.256 0.254 0.247 0.326
720 0.328 0.319 0.314 0.402

E
le

ct
ri

ci
ty 96 0.166 0.157 0.152 0.409

192 0.191 0.174 0.179 0.41
336 0.207 0.195 0.193 0.439
720 0.255 0.25 0.243 0.487

TTMB f-imp(%) 29%
TTME f-imp(%) 30%
TTMA f-imp(%) 31%

Table 21: TTM vs UniTime MSE Improvement (f-imp) in zero-shot setting using full sliding-window test
set. Results reported in UniTime [18] are used for this comparison.

10% 25% 50% 75% 100% IMP
TTMQ 0.422 0.421 0.413 0.402 0.398 -

SimMTM 0.591 0.535 0.491 0.466 0.415 17%
Ti-MAE 0.660 0.594 0.55 0.475 0.466 24%

TST 0.783 0.641 0.525 0.516 0.469 28%
LaST 0.645 0.610 0.540 0.479 0.443 23%
TF-C 0.799 0.736 0.731 0.697 0.635 43%
CoST 0.784 0.624 0.540 0.494 0.428 26%

TS2Vec 0.655 0.632 0.599 0.577 0.517 31%

Table 22: Cross transfer learning MSE improvement (IMP) for self-supervised pre-training
methods in various few-shot settings (10%,25%,50%,75%,100%).

Less PT Data
(250M samples)

More PT Data
(1Bsamples)

Data w/o AP w/ AP w/o AP w/ AP
ETTH1 0.369 0.365 0.367 0.364
ETTH2 0.283 0.285 0.275 0.277
ETTM1 0.446 0.413 0.326 0.322
ETTM2 0.191 0.187 0.172 0.171
Weather 0.159 0.154 0.161 0.158

Electricity 0.179 0.169 0.174 0.166
Traffic 0.521 0.518 0.522 0.514

f-imp(%) 3% 1.5%

Table 23: Impact of Adaptive Patching(AP) in less pre-training
(PT) and more pre-training (PT) data setting. Zero-shot results on
FL 96 reported. AP generally improves the forecasting accuracy
across both setups, but the impact is more when PT data is less as
AP enables modelling at different resolutions in different layers
of the model. [‘w/’: with, ‘w/o’: ‘without’.]

Less PT Data
(250M samples)

More PT Data
(1B samples)

Data w/o RPT w/ RPT w/o RPT w/ RPT
ETTH1 0.365 0.36 0.366 0.364
ETTH2 0.285 0.28 0.285 0.277
ETTM1 0.413 0.384 0.341 0.322
ETTM2 0.187 0.194 0.18 0.171
Weather 0.154 0.16 0.153 0.158

Electricity 0.169 0.175 0.178 0.166
Traffic 0.518 0.518 0.528 0.514

f-imp(%) 0% 3%

Table 24: Impact of Resolution Prefix Tuning (RPT) in less pre-
training (PT) and more pre-training (PT) data setting. Zero-shot
results on FL 96 reported. RPT generally enhances the forecast
performance especially when the volume and diversity in the
pretraining (PT) data are high. In this setting, adding a learnable
resolution prefix token greatly helps, as it enables the models
to easily decouple the weights across resolutions. However, in
less PT setup where the challenges in diversity modelling are not
observed, RPT does not have much impact. [‘w/’: with, ‘w/o’:
‘without’.]

27

TTMQ SL = 96: FL = 24
w/o RPT w/ RPT

ETTH1 0.373 0.358
ETTH2 0.180 0.179
ETTM1 0.559 0.387
ETTM2 0.127 0.108
Weather 0.103 0.103

Electricity 0.208 0.201
Traffic 0.754 0.740

IMP (%) 8%

Table 25: Impact of RPT in less context setting (SL = 96).
Zero-shot results on FL 24 reported. RPT helps in scenarios
when the context length (sl) is short. In these scenarios, auto-
matically detecting the resolution becomes a challenge for the
model. Hence, by explicitly fusing the resolution information as
a prefix, we can enhance the model’s ability to learn effectively
across resolutions. [‘w/’: with, ‘w/o’: ‘without’.]

400

425

450

475

500

W
ea

th
er

S-1 S-2 S-3

2000

3000

4000

5000

El
ec

tri
cit

y

0 200 400 600 800 1000
0.000

0.025

0.050

0.075

0.100

Tr
af

fic

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 7: Data segments for TTM embedding analysis.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. The main claims made in the abstract and introduction (Section 3)
accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix Section H explains the limitations of this work and future directions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [NA]
Justification: Not applicable, as this work is grounded more on large-scale experimentation
and empirical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information on the full experimental setup, model hyper-
parameters and dataset details. We also provide information on how each result of every
baseline is reported. Refer to Section D, C.2, C.1, D.4 for more details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

30

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. The source code and model weight links for reproducibility are shared in
the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The relevant details are provided in Section D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The proposed approach and many of the associated baseline papers do not
report error bars as our experiments fall under Foundation Models, which are computation-
ally very expensive to pre-train for multiple seeds. However, TTM is compared with other
state-of-the-art models across multiple settings (4 different forecast lengths and 3 different
variants), wherein, TTM outperforms the baselines consistently in all these experiments, to
give substantial evidence for our claims.

Guidelines:

• The answer NA means that the paper does not include experiments.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental section has all the relevant details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the details and we conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not Applicable, as our work does not directly relate to the societal impacts in
the ecosystem.

32

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable to our work, as no such misuse has been reported.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we followed the licensing and terms of use very carefully while architect-
ing our design. All assets used in this work will be credited properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

33

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, all source code files and associated scripts are well documented and will
further be improved before open-source release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable to our work because no human participants were involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable to our work because no human participants were involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	TTM Components
	Multi-level Modeling
	Preprocessing

	TTM Methodology
	Pre-training Workflow
	Multi-Resolution Pre-training via TTM Backbone

	Fine-tuning Workflow

	Experiments and Results
	Datasets & Metrics
	SOTA Benchmarks
	TTM Model Details
	TTM's Zero-shot Performance and Inference Cost
	TTM's Few-shot and Full-shot Head Probing Performance
	TTM's Effectiveness in Cross-channel and Exogenous Modeling
	Ablation Studies
	TTM Model Insights & Explainability
	Discussion on TTM Design choices

	Conclusions and Future Work
	TSMixer Background
	Literature Survey
	Multivariate Time Series Forecasting
	Pre-trained Models for Time Series
	Pre-trained LLMs for Time Series

	Datasets
	List of Pre-training Datasets
	Temporal cross-validation

	List of Evaluation Datasets

	TTM Model Hyper-parameters and Baselines
	Pretraining
	Fine-tuning
	Computational Benefits of TTM over existing models - Setup details
	Baseline Implementation Details

	Sample Zero-shot Visualizations
	Full Results Tables
	Full table for all TTM variants
	Full table for zero-shot experiment
	Other zero-shot comparisons
	TTM Zero-shot vs. SOTA Full-shot (short context setting)
	Full table for 5% few-shot experiment
	TTM vs. Cross-transfer models
	Full table for full-shot head-probing experiment
	Full table: Impact of Adaptive Patching (AP)
	Full table: Impact of Resolution Prefix Tuning (RPT)

	Model Insights and Explanation
	Dataset preparation for TTM embedding analysis
	Channel Attention Map

	Limitations and Future Work

