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Abstract001

We introduce BiMediX2, a bilingual (Arabic-002
English) Bio-Medical EXpert Large Multi-003
modal Model that supports text-based and004
image-based medical interactions. It enables005
multi-turn conversation in Arabic and English006
and supports diverse medical imaging modal-007
ities, including radiology, CT, and histology.008
To train BiMediX2, we curate BiMed-V, an009
extensive Arabic-English bilingual healthcare010
dataset consisting of 1.6M samples of diverse011
medical interactions. This dataset supports012
a range of medical Large Language Model013
(LLM) and Large Multimodal Model (LMM)014
tasks, including multi-turn medical conversa-015
tions, report generation, and visual question016
answering (VQA). We also introduce BiMed-017
MBench, the first Arabic-English medical018
LMM evaluation benchmark, verified by medi-019
cal experts. BiMediX2 demonstrates excellent020
performance across multiple medical LLM and021
LMM benchmarks, achieving state-of-the-art022
results compared to other open-sourced models.023
On BiMed-MBench, BiMediX2 outperforms024
existing methods by over 9% in English and025
more than 20% in Arabic evaluations. Addi-026
tionally, it surpasses GPT-4 by approximately027
9% in UPHILL factual accuracy evaluations028
and excels in various medical VQA, report gen-029
eration, and report summarization tasks. Our030
trained models, instruction set, and source code031
will be made publicly available.032

1 Introduction033

Recently, medical Large Language Models (LLMs)034

and medical Large Multimodal Models (LMMs)035

have shown promising results as conversational036

assistants for improving accessibility to quality037

medical advice. However, most medical Vision-038

Language Models (VLMs) referred to interchange-039

ably as medical LMMs in this paper often com-040

promise their text-based understanding (i.e., med-041

ical LLM performance) when integrating multi-042

modal capabilities, making it challenging to in-043

LLaVA-pp LLaVA-MedBiMediX2

Dragonfly-Med MiniGPT-MedBiomedGPT

Figure 1: Performance comparison on BiMed-
MBench. The comparison is conducted across different
tasks and modalities, including CT, MRI, CXR, Histol-
ogy, and Gross, along with their Arabic counterparts
(CT_ar, MRI_ar, CXR_ar, Histology_ar, and Gross_ar).
Each axis represents the performance score for a spe-
cific category, highlighting BiMediX2’s superior per-
formance across diverse tasks and modalities in both
English and Arabic.

teract seamlessly with users (see LLM+VLM 044

column in Tab. 1). This is particularly chal- 045

lenging when users initially ask general medi- 046

cal queries in text format and later follow up 047

with questions related to user-provided medical 048

images introduced mid-conversation to provide 049

additional supporting information. 050

In addition to supporting diverse LLM and LMM 051

tasks, such as multi-turn conversations and report 052

generation, it is also desirable to support various 053

medical image modalities, such as radiology and 054

pathology, in a unified model. However, as shown 055

in Tab. 1, state-of-the-art medical LMMs, such 056

as MiniGPT-Med (Alkhaldi et al., 2024), are ei- 057

ther restricted to a limited set of medical image 058
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Model MTC RS RG Rad Oph Path Micro LLM+VLM Bil (Ar)

Meditron (Chen et al., 2023)
Med42 (Christophe et al., 2024)
OpenBioLLM (Ankit Pal, 2024)
Llama3.1 (Meta, 2024)
BiMediXv1 (Pieri et al., 2024)

Model MTC RS RG Rad Oph Path Micro UM LLM+VLM Bil (Ar)

LLaVA-pp (Rasheed et al., 2024)
MiniGPT-Med (Alkhaldi et al., 2024)
MAIRA-2 (Bannur et al., 2024)
BioMedGPT (Zhang et al., 2024)
LLaVA-Med (Li et al., 2023)
Dragonfly-Med (Chen et al., 2024)
BiMediX2 (ours)

Table 1: Comparison of tasks and modalities addressed by recent medical LLMs and VLMs. Abbreviations:
MTC (Multi-turn conversation), RS (Report Summarization), RG (Report Generation), Rad (Radiology), Oph
(Ophthalmology), Path (Pathology), Micro (Microscopic), UM (Unified Model: Single model checkpoint for all
downstream tasks), LLM+VLM (Unified LLM + VLM), Bil (Ar) (Bilingual Arabic capabilities).

modalities, such as radiology, or require separately059

fine-tuned models for each downstream task (e.g.,060

BiomedGPT (Zhang et al., 2024)), posing signifi-061

cant challenges for real-world deployment.062

Moreover, advancements in medical LLMs and063

LMMs remain predominantly English-centric, leav-064

ing significant gaps for non-English-speaking pop-065

ulations, particularly in languages like Arabic, spo-066

ken by over 400 million people. Unlike most state-067

of-the-art medical LLMs, BiMediX (Pieri et al.,068

2024) (referred to as BiMediXv1 in this paper for069

clarity) supports Arabic-English bilingual interac-070

tions and offers diverse text-based interaction ca-071

pabilities, such as multi-turn conversations, report072

summarization, and question-answering. However,073

it is limited to text modality and lacks medical im-074

age understanding capabilities.075

To address the aforementioned limitations of076

existing medical LMMs, we propose BiMediX2,077

a Bio-Medical EXpert Large Multimodal Model078

that supports diverse medical tasks and modalities079

while also facilitating seamless user interactions080

in both English and Arabic.081

1.1 Contributions082

We introduce BiMediX2 an Arabic-English bilin-083

gual medical LMM that supports broader spectrum084

of text-based and multimodal medical tasks, in-085

cluding Multi-Turn Conversations (MTC), Report086

Summarization (RS), Report Generation (RG), Ra-087

diology (Rad), Ophthalmology (Oph), Pathology088

(Path), Microscopic Analysis (Micro), in a Uni-089

fied Model (UM) with LLM and VLM capabilities090

(LLM+VLM) as shown in Tab. 1. It supports a 091

wide range of imaging modalities, including Chest 092

X-rays, CT scans, MRIs, Histology slides, and 093

Gross pathology images (see Fig. 1). The key 094

contributions of our work can be summarized as: 095

(i) We curated a comprehensive Arabic-English 096

bilingual healthcare specialized instruction set 097

named BiMed-V comprising over 1.6M instruc- 098

tions including text-only and image-text instruc- 099

tions across diverse medical image modalities. 100

(ii) We introduce the first Arabic-English bilin- 101

gual medical LMM evaluation benchmark named 102

BiMed-MBench, consisting of 386 medical queries 103

in English and Arabic across various medical im- 104

age modalities, fully verified by medical experts. 105

(iii) We instruction-tune Llama3.1 LLM with our 106

BiMed-V to obtain the first Arabic-English bilin- 107

gual medical LMM achieving state-of-the-art re- 108

sults among open-sourced models on various VLM 109

evaluation benchmarks across diverse medical im- 110

age modalities while also excelling on medical 111

LLM evaluation benchmarks in both English and 112

Arabic. This is achieved through our multistage 113

training pipeline and carefully curated instruc- 114

tion set, which balances text-only and multimodal 115

medical instructions. 116

(iv) We perform comprehensive evaluation of 117

our model across 12 diverse evaluation bench- 118

marks. In addition to achieving promising re- 119

sults on our bilingual BiMed-MBench, BiMediX2 120

achieves excellent results for visual question an- 121

swering on Path-VQA, SLAKE and Rad-VQA 122

evaluation benchmarks, and report generation task 123
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Vision
Encoder 

Projector

Tokenizer
Language Model

The main focus of the image is the brain, 
specifically the white matter, which 
appears to have diffuse hyperintensity.

Llama 3.1

ما هو التركيز الرئيسي في الصورة؟
What is the main focus of the image?

التركيز الرئيسي في الصورة هو الدماغ، 
وتحديدًا المادة البيضاء، التي تبدو ذات 

.كثافة عالية منتشرة

Base Model

LoR
A

  A
dapter

<image>

Finetune the projector with 467k 
medical image-caption pairs

Stage 1
Medical Concept Alignment

LoRA finetune the model on BiMed-V 
1.6M bilingual multimodal instruction set  

Stage 2: Multimodal Medical
Instruction Alignment

Image + Text

Instructions

Text based

Instructions
BiMediX2

Figure 2: BiMediX2: Overall Architecture Our model is designed for medical image analysis and bilingual
multi-turn conversations. Medical images are processed through a Vision Encoder and aligned with a Projector,
while the text inputs are tokenized using the default tokenizer. The resulting tokens are then passed into the language
model (Meta Llama 3.1) to generate responses in the prompted language. We only train the language model using
LoRA adapters, while the projector is finetuned for medical image-text alignment. BiMediX2 follows a two-stage
training pipeline. Stage-1 aligns medical visual concepts using 467K image-caption pairs. Stage-2 performs
multimodal medical instruction tuning with our proposed BiMed-V 1.6M bilingual instructions comprising both
image-text and text-only medical instructions.

on MIMIC CXR and report summarization on124

MIMIC-III benchmarks. Additionally, BiMediX2125

achieves favorable results on diverse medical126

LLM benchmarks, such Medical MMLU, MedM-127

CQA, MedQA, USMLE, and PubMedQA datasets,128

and it also shows robustness in discerning and129

correcting misinformation in medical context on130

the UPHILL OpenQA Evaluation.131

Fig 1 illustrates the performance of SOTA132

medical LMMs on our BiMed-MBench evalua-133

tion. BiMediX2 achieves SOTA results on BiMed-134

MBench, with over a 9% improvement in English135

evaluations and more than a 20% improvement136

in Arabic evaluations. Furthermore, it excels in137

medical Visual Question Answering, Report Gener-138

ation, and Report Summarization tasks. Similarly,139

BiMediX2 outperforms GPT-4 by more than 8%140

on the USMLE benchmark and by more than 9%141

in UPHILL factual accuracy evaluations.142

2 BiMediX2143

The architecture of BiMediX2 is designed to facili-144

tate seamless integration of medical image analy-145

sis and bilingual multi-turn conversations. At its146

core, (see Fig 2) the model employs a Vision En-147

coder (Radford et al., 2021) to process a diverse148

array of medical imaging modalities, including149

chest X-rays, CT scans, MRIs, histology slides,150

and gross pathology images. This visual data is151

aligned with textual inputs through a dedicated152

Projector, ensuring accurate and contextually rich 153

medical image-text mapping following (Liu et al., 154

2023). As shown in Fig 2 we use the ‘<image>’ 155

token as a place holder to encode the visual fea- 156

tures for multimodal medical instructions. For text 157

based medical data the inputs are processed using 158

a standard tokenizer, transforming them into the 159

language embedding space of Llama 3.1 (Meta, 160

2024). This design enables BiMediX2 to generate 161

precise and context-aware responses in either En- 162

glish or Arabic, depending on the user prompt and 163

supports multimodal interactions while preserving 164

the medical LLM capabilities. 165

Key to BiMediX2’s performance is its modular 166

and efficient training approach. LoRA adapters (Hu 167

et al., 2021) are utilized to fine-tune the language 168

model while maintaining computational efficiency 169

and minimizing resource demands. The projector 170

is simultaneously fine-tuned to optimize image-text 171

alignment in a medical context. Furthermore, the 172

system is supported by a robust data generation 173

framework, where a comprehensive English data 174

corpus is translated into Arabic using GPT-4o. A 175

random subset of this translation is meticulously 176

verified by bilingual medical experts to ensure clini- 177

cal relevance and linguistic accuracy. This pipeline 178

enables BiMediX2 to excel in medical tasks, includ- 179

ing report generation, radiology analysis, pathology 180

insights, and ophthalmological assessments, in a 181

unified, bilingual, and multimodal framework. 182
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Model MMLU MedMCQA MedQA USMLE PubmedQA Average
Cli-KG C-Bio C-Med Med-Gen Pro-Med Ana

BioMedGPT-LM-7B 49.4 43.1 41.4 45.0 51.0 45.2 34.8 33.2 31.7 74.0 44.9
LLaVA-Med 59.6 59.7 50.9 59.0 51.5 51.9 44.5 35.7 36.9 74.0 52.4
Dragonfly-Med 65.6 69.4 56.6 69.0 58.4 57.0 49.9 42.8 46.1 75.4 59.0
Apollo-7B 64.2 73.6 59.5 70.0 70.6 61.5 54.4 50.2 52.3 39.0 59.5
GPT 3.5 69.8 72.2 61.3 70.0 70.2 56.3 50.1 50.8 49.1 71.6 62.1
Meditron 70B 68.3 77.8 63.6 75.0 74.6 56.3 48.4 53.1 55.4 76.2 64.9
BiMediXv1 78.9 86.1 68.2 85.0 80.5 74.1 62.7 62.8 66.8 80.2 74.5
Apollo-72B 82.3 90.3 77.5 85.0 86.0 70.4 66.7 65.3 74.2 78.8 77.6
GPT 4 86.0 95.1 76.9 91.0 93.0 80.0 69.5 78.9 83.8 75.2 82.9
Llama3-Med42-70B 84.2 93.1 79.8 91.0 90.1 80.7 72.5 73.8 84.3 80.6 83.0
OpenBioLLM-70B 92.5 93.8 85.6 93.0 93.4 83.7 74.1 68.9 72.0 78.0 83.5
Llama 3.1 70B 83.4 95.1 79.2 93.0 91.5 80.7 71.7 73.8 92.0 77.6 83.8

BiMediX2 4B 55.1 63.9 47.4 55.0 36.0 52.6 38.1 37.9 47.1 72.2 50.5
BiMediX2 8B 77.7 79.2 68.8 82.0 74.3 65.9 58.0 57.0 68.6 72.4 70.4
BiMediX2 70B 86.8 95.1 79.8 94.0 91.5 82.2 70.5 74.3 92.3 79.0 84.6

Table 2: Clinical LLM Evaluation Benchmark

2.1 BiMed-V: Multimodal, Bilingual Dataset183

The BiMed-V dataset is a comprehensive bilin-184

gual and multimodal instruction set comprising185

of 1.6M samples, developed to enhance medical186

image-text alignment and multimodal understand-187

ing. It incorporates a diverse range of publicly188

available datasets, such as PMC-OA (Lin et al.,189

2023), Rad-VQA (Lau et al., 2018), Path-VQA (He190

et al., 2020) and SLAKE (Liu et al., 2021) comple-191

mented by custom-curated data. We also curated192

163k VQA samples by repurposing the LLaVA-193

Med (Li et al., 2023) 60K-IM dataset, which were194

tailored to align with real-world medical queries.195

Furthermore, over 10k samples from the LLaVA-196

Med pretraining dataset were reformatted into in-197

teractive conversations using the Llama 3.1 70B198

model. A subset of the PMC-OA dataset with short199

question-answer pairs and multiple-choice ques-200

tions were added to enhance the dataset’s diver-201

sity. Training splits of Rad-VQA, Path-VQA and202

SLAKE, which typically feature concise answers,203

were restructured into more detailed responses us-204

ing the same Llama 3.1 70B model, enhancing the205

dataset’s depth and usability for complex tasks.206

A unique feature of BiMed-V is its bilingual207

support, facilitated by a multimodal open-ended208

instruction set comprising 326k samples across var-209

ious medical imaging modalities. This includes210

163k Arabic-language samples generated via a com-211

prehensive translation framework (see Fig. 5). En-212

glish datasets were translated into Arabic using213

GPT-4o, with verification of a random subset by214

bilingual medical experts to ensure clinical rele-215

vance and linguistic precision. This hybrid ap-216

proach balances automation and expert validation,217

significantly reducing reliance on human medi-218

cal domain experts while maintaining data qual- 219

ity (Please refer A.1 for more details on trans- 220

lation framework and expert validation). Addi- 221

tionally, the inclusion of text-based clinical data 222

from BiMediXv1 (Pieri et al., 2024) ensures the 223

dataset retains robust language understanding ca- 224

pabilities while expanding its multimodal medical 225

proficiency. This extensive dataset forms the foun- 226

dation for advanced medical image-text alignment 227

and conversational multimodal applications. For 228

dataset composition, see Section A.7. 229

2.2 Medical Instruction Tuning 230

To enable BiMediX2’s robust capabilities in both 231

bilingual and multimodal medical tasks, we em- 232

ploy a two-stage training process that ensures pre- 233

cise alignment of visual and textual representations 234

while adapting the language model for complex 235

medical instruction tasks (see Fig 2). 236

Stage 1: Medical Concept Alignment: In the first 237

stage, we finetune the Projector alone to align vi- 238

sual embeddings to the language embedding space. 239

The training utilizes a comprehensive dataset of 240

467k image-caption pairs sourced from the LLaVA- 241

Med (Li et al., 2023) pretraining dataset. These 242

pairs span diverse medical imaging modalities and 243

captions that describe clinically relevant features. 244

Stage 2: Multimodal Medical Instruction Align- 245

ment: The second stage finetunes the LoRA(Hu 246

et al., 2021) adapters within the language model, 247

enhancing its ability to process and generate mul- 248

timodal medical instructions. For this, we utilize 249

our BiMed-V 1.6M bilingual multimodal instruc- 250

tion set, which comprises carefully crafted English 251

and Arabic prompts paired with corresponding vi- 252

sual and textual responses. This dataset enables 253
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Model Conversation Description CXR MRI Histology Gross CT Overall

BiomedGPT 15.3 13.3 16.4 13.0 14.1 14.9 15.8 14.8
MAIRA-2 19.1 27.0 45.6 13.7 13.8 15.0 19.1 21.2
LLaVA-pp 34.3 36.6 44.7 33.3 34.7 30.2 31.5 34.9
MiniGPT-Med 37.5 29.6 47.6 32.5 36.3 31.8 29.1 35.4
LLaVA-Med 55.6 43.3 59.5 43.4 54.4 53.9 51.0 52.4
Dragonfly-Med 59.2 34.2 67.0 51.2 53.7 42.6 48.3 52.7
BiMediX2 8B 64.9 54.5 71.7 56.8 62.5 61.4 58.9 62.2

Table 3: BiMed-MBench English Evaluation

Model Conversation Description CXR MRI Histology Gross CT Overall

BiomedGPT 11.1 11.2 11.4 10.8 11.5 11.3 11.1 11.2
MAIRA-2 14.0 12.5 25.6 10.6 12.8 11.6 12.7 14.6
MiniGPT-Med 21.6 12.6 23.7 12.7 32.0 15.8 14.9 20.2
LLaVA-Med 23.9 29.4 31.2 25.3 24.8 23.4 26.4 26.2
LLaVA-pp 29.0 27.8 33.2 25.0 33.0 25.8 25.8 28.7
Dragonfly-Med 32.8 19.9 31.9 25.7 33.0 24.0 31.7 29.5
BiMediX2 8B 54.3 36.2 61.4 44.6 51.5 43.5 50.8 50.5

Table 4: BiMed-MBench Arabic Evaluation

the model to learn nuanced instructions across a254

wide array of medical domains, from radiology to255

pathology, in a bilingual context.256

Through these two stages, BiMediX2 achieves257

seamless integration of bilingual and multimodal258

capabilities, enabling it to deliver accurate and259

context-aware medical insights in both English and260

Arabic, tailored to a variety of clinical scenarios.261

We have used LLaMA 3.1 (8B, 70B) and Phi-3.5262

V (Abdin et al., 2024) as base models to obtain263

BiMediX2 8B, BiMediX2 70B, and BiMediX2 4B264

variants, respectively. For further details on model265

and training configurations, see Section A.6.266

3 Experiments267

In the literature, evaluating medical language268

models predominantly involves multiple-choice269

question-answering tasks, with accuracy as the per-270

formance metric. We employed the EleutherAI271

(Gao et al., 2024) evaluation framework for evalu-272

ating text-only medical tasks following (Pieri et al.,273

2024). For our bilingual and multimodal evalua-274

tions, we utilized several benchmarks and tools.275

We leveraged our BiMed-MBench for assessing276

the correctness, helpfulness, relevance and accu-277

racy of the model in a bilingual medical multimodal278

context. Additionally, we evaluated the model on279

VQA using datasets such as Path-VQA, SLAKE,280

and Rad-VQA. For report generation, we used the281

MIMIC-CXR (Johnson et al., 2019) dataset, and282

for report summarization, we used the MIMIC-III283

(Johnson et al., 2016) dataset. These evaluations 284

were conducted using the MultiMedEval (Royer 285

et al., 2024) toolkit, ensuring a comprehensive as- 286

sessment of the model’s multimodal capabilities. 287

3.1 Medical LLM Benchmarks 288

We assess our models on text-based clinical bench- 289

marks using PubMedQA, MedMCQA, MedQA, 290

USMLE, Medical MMLU, and UPHILL OpenQA. 291

For further details, see Section A.3. 292

3.2 Medical VLM Benchmarks 293

BiMed-MBench: We introduced the first bilingual 294

GPT-4o-based medical LMM benchmark, consist- 295

ing of 386 medical queries spanning various medi- 296

cal imaging modalities. The test dataset includes 297

conversational interactions and detailed descrip- 298

tions for modalities such as chest X-rays (CXR), 299

MRI, histology, gross and CT scans derived from 300

LLaVA-Med (Li et al., 2023). GPT-4o evaluates 301

the correctness of model responses based on the 302

provided image context and caption. The refer- 303

ence prediction, serving as the upper-bound answer 304

for the teacher model, is generated using GPT-4 305

(Achiam et al., 2023). For Arabic evaluations, the 306

ground truth is derived from the upper-bound, trans- 307

lated by GPT-4o, and all test samples are compre- 308

hensively verified by medical experts for quality 309

assurance. GPT-4o evaluates the responses by com- 310

paring the candidate LMM against the upper-bound 311

for English queries and against the Arabic ground 312

truth for Arabic queries. The evaluation assesses 313
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Can you describe this scan?

The scan is a sagittal CT image of the lumbar spine. A sagittal image is a vertical 
slice of the body that shows the left and right sides. In this case, the image focuses 
on the lumbar spine, which is the lower part of the spine, typically consisting of 
five vertebrae (L1 to L5). The CT scan provides detailed information about the 
bones, soft tissues, and any potential abnormalities in the lumbar spine region.

What is the abnormality here ?

The abnormality in this image is the presence of a fracture in the L4 vertebra. 
A fracture is a break or crack in the bone, which can be caused by various 
factors such as trauma, stress, or underlying medical conditions. In this case, 
the fracture is located in the L4 vertebra, which is part of the lumbar spine.

The organ shown in the image is the ovary, which is 
part of the female reproductive system.

What is the organ shown in the image?

هذه صورة بالموجات فوق الصوتية، وهي تقنية تصوير غير جراحية تستخدم 
.موجات صوتية عالية التردد لإنشاء صور مفصلة للهياكل الداخلية للجسم

ما هو نوع هذا الفحص ؟ 

.الشذوذ في هذه الصورة بالأشعة فوق الصوتية هو وجود كيسة مبيضية متعددة الحجرات

ما هو الشذوذ في هذه الصورة بالأشعة فوق الصوتية ؟

Figure 3: Qualitative Examples of BiMediX2 for Medical Image Understanding in a Conversational Context.

0.0 20.0 40.0 60.0

Figure 4: Performance comparison on UPHILL
OpenQA (Kaur et al., 2023), assessing the model’s
ability to address false medical claims at different
presupposition levels.

the helpfulness, relevance, accuracy, and level of314

detail of the responses while maintaining the user315

language. The scoring is conducted on a scale316

of 1 to 10, with higher scores indicating better317

performance. Additionally, GPT-4o provides de-318

tailed explanations of the evaluation to offer deeper319

insights into the models’ performance. Finally,320

we compute and compare the relative scores of321

the two candidates.322

Visual Question Answering (VQA): To evaluate323

a model’s performance in Visual Question Answer-324

ing, three datasets are used: Path-VQA, SLAKE,325

and Rad-VQA. These datasets include a mix of326

open-ended and close-ended questions, designed to327

test the model’s ability to interpret and respond to328

queries based on medical images. The evaluation329

employs accuracy, precision, recall, and F1 score330

to measure the correctness and completeness of331

the model’s answers, which are critical for clinical 332

reliability. Additionally, BLEU ensures the gen- 333

erated answers are naturally phrased and easy to 334

understand for clinical communication. 335

Report Generation: The MIMIC-CXR (Johnson 336

et al., 2019) dataset, which includes de-identified 337

radiology reports associated with chest X-rays, 338

is utilized to assess the model’s performance in 339

generating the findings section of medical reports. 340

For this task, the input consists of one or more 341

radiology images related to a case, followed by 342

a prompt such as, “<image> <image> Please 343

caption this scan with findings and impressions." 344

This setup evaluates the model’s ability to gener- 345

ate accurate and coherent medical reports based 346

on visual inputs. 347

Report Summarization: We conduct an evalua- 348

tion of report summarization using the MIMIC-III 349

(Johnson et al., 2016) dataset. The task involves 350

generating the impressions section of a radiology 351

report based on the findings section. To achieve 352

this, the model is provided with the free-text find- 353

ings along with a task prompt, “Summarize the find- 354

ings". This assessment focuses on the model’s abil- 355

ity to distill comprehensive medical information 356

into a concise and precise summary, which is essen- 357

tial for clear and effective medical communication. 358

In both report generation and summarization 359
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Dataset Metric RadFM LLaVA Med BioMedGPT MiniGPT-Med Phi-3.5 V BiMediX2 4B BiMediX2 8B

Rad-VQA

BLEU-1↑ 0.475 0.033 0.044 0.662 0.377 0.501 0.552
closed Q accuracy↑ 0.577 0.545 0.203 0.829 0.618 0.685 0.725
open Q recall↑ 0.407 0.246 0.199 0.546 0.295 0.292 0.363
recall↑ 0.438 0.372 0.199 0.703 0.475 0.511 0.565
open Q accuracy↑ 0.335 0.140 0.150 0.490 0.200 0.225 0.305
F1 ↑ 0.442 0.069 0.064 0.675 0.391 0.516 0.569

Slake-VQA

BLEU-1↑ 0.746 0.036 0.175 0.337 0.089 0.625 0.778
closed Q accuracy↑ 0.752 0.512 0.248 0.572 0.535 0.744 0.831
open Q recall↑ 0.758 0.429 0.293 0.308 0.377 0.624 0.763
recall↑ 0.695 0.443 0.260 0.396 0.404 0.664 0.786
open Q accuracy↑ 0.725 0.362 0.259 0.278 0.329 0.567 0.729
F1 ↑ 0.714 0.075 0.192 0.349 0.129 0.641 0.787

Path-VQA

BLEU-1↑ 0.257 0.021 0.145 0.296 0.283 0.469 0.587
closed Q accuracy↑ 0.505 0.512 0.260 0.581 0.553 0.708 0.872
open Q recall↑ 0.020 0.116 0.093 0.040 0.063 0.239 0.314
recall↑ 0.221 0.287 0.176 0.311 0.308 0.474 0.593
open Q accuracy↑ 0.005 0.053 0.077 0.019 0.027 0.210 0.282
F1 ↑ 0.232 0.052 0.154 0.299 0.287 0.475 0.595

Average 0.461 0.239 0.177 0.427 0.319 0.509 0.611

Table 5: Medical VQA Benchmark MultiMedEval (Royer et al., 2024)

tasks, relying solely on lexical metrics such as360

BLEU, ROUGE-L, and METEOR is insufficient, as361

these do not guarantee clinical accuracy. Therefore,362

we complement them with clinically-informed met-363

rics such as F1-RadGraph, CheXbert similarity, and364

RadCliQ. These metrics assess the preservation of365

key medical entities, relations, and overall clinical366

correctness, ensuring that the generated or summa-367

rized content aligns not just in phrasing but also in368

diagnostic intent and clinical relevance.369

4 Results370

LLM Medical Evaluation: The performance of371

BiMediX2 and other models on various language-372

based medical benchmarks is presented in Fig 6 and373

Tab 2. Our BiMediX2 70B achieved the highest374

average score of 84.6%, outperforming other mod-375

els such as GPT-4 (82.9%) and Llama-3-Med42-376

70B (83.0%). BiMediX2 70B exhibited superior377

average performance across multiple datasets, in-378

cluding Medical MMLU, MedMCQA, MedQA,379

USMLE, and PubMedQA, demonstrating its strong380

understanding of medical contexts.381

UPHILL OpenQA Evaluation: Fig 4 illus-382

trates the performance comparison on the UPHILL383

OpenQA benchmark. BiMediX2 70B achieved384

the highest overall factual accuracy of 60.6%, and385

the second highest being BiMediX2 8B (56.1%),386

surpassing other models such as GPT-4 (51.5%),387

Meditron 70B (49.6%), and Med42 (53.5%). This388

highlights BiMediX2’s effectiveness in discerning389

and correcting misinformation in medical contexts.390

BiMed-MBench Evaluation: Tables 3 and 4 391

present the evaluation results of BiMediX2 392

and other medical LMMs on the English and 393

Arabic BiMed-MBench benchmark, respectively. 394

BiMediX2 8B demonstrated superior performance 395

in both English (overall score of 62.2%) and Ara- 396

bic (overall score of 50.5%) evaluations, outper- 397

forming other models. Fig 1 compares the per- 398

formance of state-of-the-art medical LMMs on 399

our BiMed-MBench evaluation in a bilingual con- 400

text. This indicates BiMediX2’s strong bilin- 401

gual capabilities and its effectiveness in handling 402

medical conversations and descriptions across 403

different imaging modalities. 404

Medical VQA Benchmark: Tab 5 shows the per- 405

formance of BiMediX2 and other models on the 406

Medical VQA benchmark using the MultiMedEval 407

toolkit. Our BiMediX2 8B achieves the highest av- 408

erage score of 0.611, outperforming other models 409

across datasets such as Rad-VQA, Slake-VQA, and 410

Path-VQA. This demonstrates BiMediX2’s profi- 411

ciency in visual question answering, a critical task 412

in medical diagnostics. 413

Report Summarization: Tab 6 presents the re- 414

port summarization performance on the MIMIC-III 415

dataset. BiMediX2 8B achieved the highest aver- 416

age score of 0.416, surpassing other models like 417

LLaVA-Med (0.398) and Dragonfly-Med (0.110). 418

This average score is derived as a unified metric by 419

re-scaling BLUE-4* and RadCliQ* metrics. This 420

indicates BiMediX2’s effectiveness in generating 421

concise and accurate summaries of medical reports, 422
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Dataset Metric LLaVA Med Dragonfly-Med BiMediX2 4B BiMediX2 8B Med-PaLM M

MIMIC-III

ROUGE-L↑ 0.185 0.072 0.209 0.205 0.320
BLEU-1↑ 0.192 0.062 0.153 0.178 0.154
BLEU-4↑* 0.520 0.000 0.410 0.449 -
F1-RadGraph↑ 0.232 0.000 0.222 0.230 0.347
RadCliQ↑* 0.753 0.247 0.923 0.918 -
CheXbert vector↑ 0.600 0.326 0.633 0.593 -
METEOR↑ 0.303 0.060 0.264 0.339 -

Average 0.398 0.110 0.402 0.416 -

Table 6: Report Summarization MultiMedEval (Royer et al., 2024)

Dataset Metric RadFM LLaVA Med BioMedGPT BiMediX2 4B BiMediX2 8B MAIRA-2 † Med-PaLM M

MIMIC-CXR
Report

Generation

F1-RadGraph↑ 0.042 0.048 0.000 0.083 0.098 0.162 0.267
BLEU-1↑ 0.006 0.163 0.003 0.046 0.155 0.148 0.323
BLEU-4↑* 0.000 0.060 0.000 0.042 0.016 0.104 0.115
ROUGE-L↑ 0.065 0.125 0.012 0.131 0.153 0.164 0.275
RadCliQ↑* 0.655 0.660 0.827 0.865 0.860 0.885 -
CheXbert vector↑ 0.197 0.150 0.153 0.205 0.189 0.333 -
METEOR↑ 0.053 0.137 0.016 0.107 0.174 0.187 -

Average 0.145 0.192 0.145 0.211 0.235 0.283 -

Table 7: Report Generation MultiMedEval (Royer et al., 2024)

a vital task for efficient healthcare communication.423

Report Generation: Tab 7 shows the report gen-424

eration performance on MIMIC-CXR. BiMediX2425

8B achieved an average score of 0.235, outper-426

forming other models like LLaVA-Med (0.192) and427

BioMedGPT (0.145). The average score is derived428

as a unified metric by re-scaling BLUE-4* and429

RadCliQ* metrics. This highlights BiMediX2’s430

capability in generating detailed and accurate med-431

ical reports from radiology images, a crucial task432

for diagnostic purposes. While MAIRA-2 † out-433

performs BiMediX2 on the Report Generation task,434

its performance is substantially lower on our com-435

prehensive BiMed-MBench benchmark using GPT-436

4o (see Tab 3, Tab 4). This discrepancy is likely437

due to MAIRA-2’s specialized fine-tuning for re-438

port generation as indicated in Tab 1, whereas439

BiMediX2 maintains strong generalization across440

diverse multimodal biomedical tasks. For Med-441

PaLM M (562B), we report results directly from442

(Tu et al., 2023), as the model is close-sourced443

and is not publicly available for direct evaluation.444

Additional experiments are shown in Section A.5.445

5 Qualitative Examples446

Medical Image Understanding in a Conversa-447

tional Context: Fig 3 illustrates the capabilities448

of the BiMediX2 framework in analyzing medi-449

cal images and providing detailed, context-aware450

responses in both English and Arabic. The top sec-451

tion highlights BiMediX2 analyzing a sagittal CT452

scan of the lumbar spine, correctly identifying the 453

scan type and diagnosing an L4 vertebral fracture. 454

It explains potential causes like trauma or stress 455

and discusses clinical implications. In the bottom 456

section, BiMediX2 accurately identifies a female 457

reproductive organ, explains the imaging technique, 458

and detects abnormalities, demonstrating bilingual 459

capabilities in English and Arabic. Additional qual- 460

itative examples are provided in Section A.1, while 461

Section A.2 presents its limitations. 462

6 Conclusion 463

BiMediX2 represents a leap forward in bilingual, 464

multimodal medical AI, addressing the global need 465

for accessible and inclusive healthcare solutions 466

in both English and Arabic. By integrating text 467

and visual modalities within a unified architec- 468

ture, it enables seamless multi-turn interactions 469

for diverse medical tasks, including medical image 470

analysis and complex medical conversations. Key 471

contributions include the comprehensive bilingual 472

dataset, BiMed-V, which provides diverse multi- 473

modal medical instructions tailored for both lan- 474

guages, and the introduction of BiMed-MBench, 475

the first bilingual GPT-4o-based medical bench- 476

mark, which showcases the model’s ability to excel 477

in a wide range of expert-verified medical scenar- 478

ios. BiMediX2 paves the way for inclusive, mul- 479

tilingual, and multimodal healthcare applications, 480

significantly enhancing the accessibility and quality 481

of medical assistance worldwide. 482
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7 Limitations483

Despite its overall improvement, BiMediX2, like484

other generative language models, may experience485

issues such as hallucinations, toxicity, and stereo-486

types. These issues stem from both the inherited487

limitations of the base models and the nature of488

the pretraining data. While we have conducted au-489

tomatic and qualitative evaluations with medical490

professionals, we acknowledge that our model’s491

medical diagnoses and recommendations may not492

always be accurate. Extensive human evaluation is493

more reliable but expensive and time-consuming.494

The exploration of alternative solutions remains an495

important focus for ongoing research.496

Currently, our models lack explicit mechanisms497

to curb undesirable behaviors. Future work will498

focus on enhancing alignment and safety strategies499

to reduce risks associated with clinical deployment.500

On a brighter note, we believe that releasing our501

model weights could contribute to investigating and502

mitigating these risks through broader community503

engagement. In addition, our current model does504

not explicitly mitigate biases related to gender, eth-505

nicity, or socioeconomic status in medical contexts.506

We recognize the critical importance of fairness in507

AI-driven healthcare solutions, and acknowledge508

that such biases could perpetuate or exacerbate dis-509

parities in medical decision-making. As part of fu-510

ture work, we plan to conduct targeted bias assess-511

ments and explore debiasing strategies. We also512

believe that open-sourcing our model will facilitate513

further research into bias detection and mitigation.514

Another current limitation is that our model is515

trained exclusively on Modern Standard Arabic516

(MSA). This restricts its applicability in real-world517

clinical settings where dialectal Arabic, such as518

Emirati, Saudi, Egyptian, or Moroccan is more519

commonly used. In future iterations of this work,520

we aim to expand our training corpus to include a521

diverse range of Arabic dialects, thereby enhancing522

the model’s utility and inclusivity across Arabic-523

speaking populations.524

8 Safety and Ethical Implications525

We recognize the significant societal impact of526

BiMediX2 and emphasize the importance of eth-527

ical considerations and transparency. This work528

is intended for research purposes only and is not529

ready for clinical or commercial use. Ensuring the530

model’s accuracy and reliability is crucial, as in-531

correct medical advice could have serious health532

consequences. Robust validation and quality con- 533

trol measures are essential to minimize errors. 534

Ethical considerations include protecting patient 535

privacy and ensuring the confidentiality of medi- 536

cal data. The model must comply with relevant 537

data protection regulations and ethical guidelines. 538

Addressing potential biases in the model’s out- 539

puts is also critical for ensuring fair and equitable 540

healthcare outcomes. 541

Collaboration with patients, medical profession- 542

als, and ethicists is essential for ethical oversight 543

and further research to ensure safety and accuracy 544

in clinical settings. By acknowledging and address- 545

ing these considerations, we can continue to refine 546

BiMediX2 for safe and effective use in healthcare. 547
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A Appendix726

A.1 Additional Qualitative Examples727

Medical Image Understanding in a Conversa-728

tional Context: Fig 8 illustrates the capabilities729

of the BiMediX2 framework in analyzing medi-730

cal images and providing detailed, context-aware731

responses in both English and Arabic. The top sec-732

tion showcases a conversation involving a 3D CT733

scan of the chest. The model identifies the scan734

type and explains that it uses X-ray technology to735

create detailed cross-sectional images, which are736

then reconstructed into 3D images. When asked737

about abnormalities, the model accurately identifies738

multiple rib fractures. It further clarifies that these739

fractures are present on both the left and right sides740

of the chest. And in the bottom section, BiMediX2741

accurately identifies the organ, explains the imag-742

ing technique, and detects abnormalities, providing743

valuable insights that can aid in the diagnosis and744

treatment of conditions related to the female re-745

productive system. This particular example show-746

cases BiMediX2’s capability to converse in both747

English and Arabic simultaneously, depending on748

the input query.749

Medical Image Understanding in a Conversa-750

tional and Bilingual (Arabic) Setting: Fig 10751

illustrates BiMediX2’s ability to understand med-752

ical imagery and converse in Arabic, showcasing753

its bilingual capabilities. In the top section, our754

model accurately identifies the organ and the type755

of scan, providing clear and precise information756

that can assist medical professionals in diagnosing757

and treating liver-related conditions. The middle758

section shows that our model identifies the body759

part and the type of scan. And in the bottom section,760

BiMediX2 accurately identifies the organ, explains761

the imaging technique, and detects abnormalities,762

providing valuable insights that can aid in the di-763

agnosis and treatment of conditions related to the764

female reproductive system. This particular exam-765

ple showcases BiMediX2’s capability to converse766

in both English and Arabic simultaneously.767

Medical Image Understanding of our BiMediX2768

in Multidomain: Fig 11 showcases BiMediX2’s769

versatility and accuracy across various medical770

imaging modalities. In the top section, it identi-771

fies key structures in a scanning electron micro-772

graph of a mosquito head. In subsequent sec-773

tions, it correctly interprets an MRI of a parotid774

tumor, a histology slide of adipose tissue (includ-775

ing stain type), a chest X-ray with pneumotho-776

rax, and a CT scan of the abdomen, pinpointing 777

adrenal abnormalities. These examples demon- 778

strate BiMediX2’s capability to analyze and diag- 779

nose diverse imaging types, making it a valuable 780

tool across medical specialties. 781

A.2 Model Failure Cases 782

We present a common failure case observed in 783

both English and Arabic settings. The example 784

is shown in Fig 7. 785

In the English-language evaluation, a common 786

source of error was the model’s difficulty in dis- 787

tinguishing between visually similar but clinically 788

distinct fracture types. As shown in Fig 7, while the 789

model response is fluent and medically coherent, it 790

contains a key factual error: the misclassification 791

of an avulsion fracture as a burst fracture. Notably, 792

this response was initially accepted by several med- 793

ical professionals due to the similarity in language 794

and presentation. However, a trained radiologist 795

later identified the subtle radiographic distinctions, 796

confirming the ground truth diagnosis as an avul- 797

sion fracture. This highlights the model’s challenge 798

in handling nuanced diagnostic distinctions that re- 799

quire expert-level domain knowledge. 800

In the Arabic benchmark, one of the most fre- 801

quent error modes involved incorrect localization 802

of the affected area as illustrated in Fig 7. The re- 803

sponse demonstrates a localization mismatch where 804

the model incorrectly identifies C2–C3 as the af- 805

fected vertebrae instead of the correct C6–C7 levels. 806

Such errors, especially in high-stakes medical ap- 807

plications, can have serious clinical implications, 808

reinforcing the importance of precise anatomical 809

grounding in medical AI systems. 810

A.3 Clinical LLM Benchmarks 811

PubMedQA (Jin et al., 2019) is a question- 812

answering dataset derived from biomedical re- 813

search papers on PubMed. The task involves an- 814

swering ’yes’, ’no’, or ’maybe’ based on ques- 815

tion sourced from the title of a research paper 816

and a context from the abstract. Our analysis fo- 817

cuses on the PQA-L subset, which includes 500 818

manually annotated QA pairs requiring in-depth 819

biomedical reasoning. 820

MedMCQA (Pal et al., 2022) consists of 4,183 821

multiple-choice questions from Indian AIIMS 822

and NEET PG medical entrance exams, as- 823

sessing professional medical knowledge and 824

language comprehension. 825
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Computed tomography 
angiography showing almost 
normal vascularity of the left 
middle cerebral artery.

 بالتصوير الدموية الأوعية تصوير
 تقريبًا يظهر المحوسب المقطعي

  للشريان الطبيعية الدموية الأوعية
الأيسر الأوسط المخي

  محوسب مقطعي تصوير
 الدموية الأوعية يظهر للأوعية

 يالمخ للشريان الطبيعية شبه
الأيسر الأوسط .

English Data Corpus
GPT-4o

Translate to Arabic 
with medical context

Arabic Translation 
verification by 
medical expert

Arabic Data Corpus

(random sample selection)

Figure 5: Data Translation Framework

MedQA (Jin et al., 2021) features multiple-choice826

questions from medical board exams in the US,827

Mainland China, and Taiwan. Our study focuses on828

the USMLE portion (1,273 test samples), requiring829

multi-step reasoning and evidence retrieval.830

USMLE (Han et al., 2023) is a self-assessment test831

from the United States Medical Licensing Exam-832

ination (Step 1, Step 2, and Step 3). We use the833

MedAlpaca version, which excludes image-based834

questions and contains 325 test samples.835

Medical MMLU (Hendrycks et al., 2020) is a col-836

lection of six datasets covering 1,089 test ques-837

tions across Clinical Knowledge, College Biology,838

College Medicine, Medical Genetics, Professional839

Medicine, and Anatomy.840

UPHILL OpenQA (Kaur et al., 2023) evalu-841

ates LLMs’ accuracy in handling health-related842

queries with varying presuppositions. Our anal-843

ysis focuses on zero-shot models’ ability to re-844

fute false health claims, a critical factor in com-845

bating misinformation. In this context, the ac-846

curacy refers to the model’s effectiveness in ac-847

curately refuting false health-related claims at848

different presupposition levels.849

Fig 6 compares state-of-the-art medical LLMs850

and LMMs on clinical benchmarks. BiMediX2851

70B achieved the highest average score (84.6%),852

surpassing GPT-4 (82.9%) and Llama-3-Med42-853

70B (83.0%), demonstrating its superior per-854

formance across diverse medical tasks. The855

stacked bars illustrate performance across individ-856

ual datasets, highlighting BiMediX2’s strong un-857

derstanding of medical contexts.858

A.4 Data Translation Framework859

To construct a high-quality bilingual dataset, we860

develop a robust data translation framework that861

leverages GPT-4o for translating English medical862

content into Arabic, followed by expert human ver-863

ification to ensure contextual and terminological864

accuracy. This approach supports effective training865

and benchmarking in a bilingual context.866

We first translate our English multimodal instruc-867

tion set to Arabic using GPT-4o. A random subset868

of this translated data is passed to Bilingual medi- 869

cal doctors to verify the quality of the translation. 870

Doctors are asked to report the number of sam- 871

ples requiring minor (e.g rewording, formatting, or 872

stylistic edits) / major (e.g incorrect clinical terms 873

or misinterpretations) revision in the Arabic trans- 874

lation. They are required to look for the overall 875

consistency of the translated text and the accuracy 876

of medical terminologies. 877

For our BiMed-MBench bilingual benchmark 878

doctors were asked to manually correct these in- 879

accuracies in the translated text. On average 22% 880

of the samples required minor corrections and re- 881

formatting, while only 5% of the samples required 882

major corrections in medical terms. 883

The verification process involved 10 medical 884

experts from three different countries, ensuring 885

representation from both native Arabic and En- 886

glish speakers. These experts specialized in var- 887

ious medical domains, including radiology (MD 888

Radiology), endocrinology, neurosurgery, general 889

practice, histopathology (MS Pathology), and gen- 890

eral medicine. To ensure rigorous validation, a 891

multi-reviewer setup was adopted for a randomly 892

selected subset of the benchmark. Each sample was 893

independently reviewed by multiple doctors, which 894

surfaced occasional inconsistencies, particularly in 895

ambiguous or borderline cases. 896

To resolve such discrepancies, we introduced a 897

structured adjudication protocol. Conflicting eval- 898

uations were circulated among the experts, fol- 899

lowed by focused discussion sessions in which 900

reviewers examined each other’s rationale. This 901

collaborative refinement process significantly re- 902

duced inconsistencies and improved the reliability 903

of the benchmark. 904

A.5 Additional Experiments 905

A.5.1 Multi-stage Training Pipeline 906

To assess the impact of each component in our train- 907

ing framework, we evaluate our 8B model at three 908

key stages. This staged evaluation allows us to 909

disentangle the individual contributions of vision- 910

language alignment and multimodal fine-tuning. 911
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Evaluation Baseline Stage-1 Stage-2

BiMed-MBench [3] 34.9 47.6 62.2
Clinical LLM Eval [2] 67.6 67.6 70.4

Table 8: Multi-stage Training Ablation

Model BiMed-MBench (Ara)

BiMediX2-8B ENG 44.61

BiMediX2-8B ENG
+ Translation (Google)

44.92

BiMediX2-8B ENG
+ Translation (Bing)

45.05

BiMediX2-8B ENG
+ Translation (Alibaba)

45.33

BiMediX2-8B BI 50.47

Table 9: Comparison of Translation frameworks

(i) Baseline: VLM trained on non-medical Data.912

(ii) Stage-1: Aligning Medical images to the LLM913

input token space by learning an alignment layer914

and freezing the Language model and the Vision915

encoder using our pre-training dataset of 467k in-916

structions. (iii) Stage-2: LoRA finetuning with our917

BiMed-V1.6M dataset comprising a text and im-918

age+text dataset across medical image modalities.919

Model BiMed-MBench (Ara)

BiMediX2-8B ENG 44.6
BiMediX2-8B ARA 46.3
BiMediX2-8B BI 50.5

Table 10: Bilingual vs Monolingual model training

Here the Baseline model is obtained by pretrain-920

ing the projector on LCS-558K dataset following921

the LLaVA-pp (Rasheed et al., 2024) repository.922

The baseline model lacks understanding of medical923

images which is introduced in our Stage-1 align-924

ment training. Finally we LoRA finetune model to925

obtain our medically instruction tuned model. As926

observed in Tab 8, the text based medical evalua-927

tion scores do not change with Stage 1 training as928

we are only training the projector here and the lan-929

guage model performance is therefore consistent.930

A.5.2 Human Expert Evaluation931

To assess the clinical quality of model outputs,932

we conducted a human expert evaluation using a933

blind review setup. For a randomly selected sub-934

set of questions from the BiMed-MBench bench-935

mark, responses were generated by three models:936

Hyperparameter Stage 1 Stage 2

Number of Epochs 1 1
Train Batch Size (per device) 1 4
Gradient Accumulation Steps 1 4
Learning Rate 1.0×10-3 2.0×10-4

Optimizer Adam Adam
Weight Decay 0 0
Warmup Ratio 0.03 0.03
Learning Rate Scheduler Cosine Cosine
Precision bfloat16 bfloat16
PEFT None LoRA
LoRA Rank - 8
LoRA Alpha - 16
Multi-Modal Projector LR - 2.0×10-5

Table 11: Model training Hyperparameters

Dataset No. of samples

PubMedQA 210169
MedMCQA 182712
MedQA 20691
Single Turn QA 119879
Multi-Turn Conversation 133134
PMC-MCQ 80000
LLaVA-Med-Subset-to-Conv 11616
Rad-VQA 1796
Slake-VQA 9835
PMC-VQA 80000
Path-VQA 19654
LLaVA-Med-to-QA 163463
MedQA (Ara) 11210
PubMedQA (Ara) 115773
MedMCQA (Ara) 97523
Single Turn QA (Ara) 156254
Multi-Turn Conversation (Ara) 64235
LLaVA-Med-to-QA (Ara) 163463
PMC-MCQ (Ara) 50000

Total 1691407

Table 12: BiMed-V-1.6M Dataset Composition

BiMediX2, Dragonfly-Med, and LLaVA-Med. The 937

outputs were anonymized and labeled as Model A, 938

Model B, and Model C, with no identifiers provided 939

to the reviewers. 940

Medical experts were asked to evaluate the re- 941

sponses against the provided ground truth descrip- 942

tions for each question. The evaluation focused 943

on determining which model produced the most 944

accurate, clinically relevant, and clear explanation 945

of the medical image. 946

The results demonstrate a strong preference 947

for BiMediX2, which was selected as the best 948

response in 76.9% of the cases. In comparison, 949
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Dragonfly-Med was preferred in 15.4% of the950

cases, and LLaVA-Med in 7.7%.951

952
Evaluation Protocol for Medical Experts:953
Your task is to evaluate the responses provided by three AI954
models based on a given medical image description (Ground955
Truth). Follow these steps to make your selection:956
1) Read the Ground Truth: Carefully review the provided957
description of the medical image. This serves as the reference958
for an accurate and detailed response.959
2) Assess the Model Responses: Examine the three model-960
generated responses (Model A, Model B, and Model C). Com-961
pare their content with the Ground Truth, focusing on the962
accuracy, completeness, and relevance of the description.963
3) Select the Best Response: Choose the model response that964
best aligns with the Ground Truth in terms of:965
- Clinical Accuracy: Does the response correctly describe the966
key findings in the image?967
- Relevance: Does the response stay focused on the specific968
details highlighted in the Ground Truth?969
- Clarity: Is the explanation well-structured and easy to970
understand971
4) Submit Your Choice: After evaluating the responses, select972
the one that provides the most accurate and comprehensive973
explanation.974

A.5.3 Evaluation of English Model with975

Arabic Translation Pipeline976

To further validate the necessity of bilingual in-977

struction tuning, we employed a cascaded transla-978

tion pipeline for evaluating our English instruction-979

tuned model (BiMediX2-8B ENG) on the BiMed-980

MBench Arabic benchmark using popular trans-981

lation services such as from Google, Alibaba,982

and Bing.983

While this method yielded slight improvements984

over the base English model as shown in Tab 9, it985

consistently fell short compared to our bilingual986

model. These results demonstrate that translation987

pipelines alone are inadequate for generating med-988

ically accurate Arabic responses, highlighting the989

importance of dedicated bilingual training and in-990

struction tuning.991

A.5.4 Comparison of Bilingual vs992

Monolingual Training993

The results in Tab 10 highlight the impact of lan-994

guage setting on model performance for Arabic995

medical evaluation tasks. The bilingual model996

(BiMediX2-8B BI), trained on both English and997

Arabic instruction data, achieves the highest score998

of 50.5, outperforming both the Arabic-only model999

(46.3) and the English-only model (44.6) on the1000

Arabic subset of BiMed-MBench.1001

This demonstrates that bilingual instruction tun-1002

ing provides complementary knowledge transfer,1003

enabling the model to better generalize in Ara-1004

bic. The performance gain over the Arabic-only1005

model further emphasizes the value of incorporat- 1006

ing English medical knowledge during training, 1007

even when the target evaluation is in Arabic. 1008

A.6 Model Configurations 1009

All traning experiments were conducted with 8× 1010

AMD Instinct MI200 GPUs (each with 64 GB of 1011

VRAM). The training process is structured in two 1012

stages: Stage 1 training requires approximately 20 1013

hours, and Stage 2 training requires approximately 1014

32 hours on this setup. The complete set of training 1015

hyperparameters are provided in Tab 11. 1016

We also compare the trade-offs between our 1017

model sizes along with their corresponding per- 1018

formance and medical accuracy in Tab 13. We 1019

compare the Token Throughput measured in (To- 1020

kens/second), Mean Time to First Token (TTFT) 1021

(ms), GPU VRAM consumed and Medical Accu- 1022

racy based on our evaluation benchmarks. These 1023

benchmarks are run using the vLLM benchmark- 1024

ing suite (Kwon et al., 2023) on 4xNVIDIA RTX 1025

A6000 (48GB) GPUs. 1026

A.7 BiMedV-1.6M Dataset 1027

The BiMedV-1.6M dataset comprises 1,691,407 1028

samples across English and Arabic, covering text 1029

and image-text QA tasks, supporting multilingual 1030

and multimodal medical research. The dataset com- 1031

position is presented in Tab 12, Fig 9. 1032
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Model Token Throughput (tok/s) Mean TTFT (ms) GPU VRAM (GB) Medical Accuracy

BiMediX2-4B 263.05 180.5 42 50.5
BiMediX2-8B 187.14 241.9 44 70.4
BiMediX2-70B 67.61 863.6 170 84.6

Table 13: Performance comparison of BiMediX2 variants

BiMediX2 70B

Llama 3.1 70B

OpenBioLLM-70B

Llama3-Med42-70B

GPT 4

BiMediX2 8B

Meditron 70B

GPT 3.5

Dragonfly-Med

LLaVA-Med

BiMediX2 4B

BioMedGPT-LM-7B

Cli-KG

C-Bio

C-Med

Med-Gen

Pro-Med

Ana

MedMCQA

MedQA

USMLE

PubmedQA

44.9

50.5

52.4

59.0

62.1

70.4

64.9

82.9

83.0

83.5

83.8

84.6

Figure 6: State of the art comparison of models in Clinical LLM Benchmarks

Can you describe this scan in detail ?

The sagittal CT scan of the cervical spine shows a fracture at the C7 vertebra. 
The C7 vertebra is the seventh and lowest cervical vertebra, located at the 
base of the neck. The fracture appears to be a burst fracture, which is a type 
of spinal injury where the vertebral body collapses and fragments, causing 
damage to the surrounding structures such as the spinal cord, ligaments, and 
other soft tissues. The image provides a detailed view of the fracture and its 
extent, which can help healthcare professionals assess the severity of the 
injury and plan appropriate treatment.

أي الفقرات متأثرة؟
(Which vertebrae are affected?)

.()ة الثالثوالفقرة العنقية ()الثانية الفقرات المتأثرة في الصورة هي الفقرة العنقية  C2C3

(The affected vertebrae in the image are the second cervical vertebra 

(C2) and the third cervical vertebra (C3).)

Figure 7: Bilingual failure case: Model labels avulsion fracture as burst (English), and misidentifies C2–C3 instead
of C6–C7 (Arabic).
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What kind of scan is this?

This is a 3D computed tomography (CT) scan of the chest. CT scans use 
X-ray technology to create detailed cross-sectional images of the body, 
which can be reconstructed into 3D images for better visualization and 
understanding of the anatomy and any abnormalities present.

What is the abnormality here ?

The abnormality in this image is the presence of multiple rib fractures.

Are there fractures on both sides?

Yes, the image shows multiple rib fractures on both the left and 
right sides of the chest.

This is a color Doppler ultrasound scan. Color Doppler ultrasound is 
a non-invasive imaging technique that uses sound waves to create 
images of blood vessels and tissues. It can help visualize blood flow 
and detect abnormalities in the vessels and surrounding tissues.

Can you tell me what type of scan is this ?

The organ scanned in this image is the left ovary.

Can you name the organ shown here ?

Yes, there appears to be an abnormality in this scan. The image shows a left ovarian cyst with a solid 
component. Ovarian cysts are fluid-filled sacs that can develop in or on the ovary. A solid component 
within the cyst may indicate a more complex or potentially malignant lesion. Further evaluation and tests 
would be needed to determine the exact nature of the cyst and the appropriate course of treatment.

Is there any abnormality in this scan ?

Figure 8: Qualitative Examples of BiMediX2 for Medical Image Understanding in a Conversational Context.
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.نتظُهر الصورة الكبد، وهو عضو كبير وحيوي في جسم الإنسا

ما هو العضو الذي يظهر في الصورة ؟

ما نوع هذا الفحص ؟

.للبطن()مقطعية محوسبةهذه صورة   CT

ر تقنية التصوير المستخدمة في هذه الصورة هي التصوي
بالرنين المغناطيسي 

ما نوع تقنية التصوير المستخدمة في هذه الصورة ؟

ما هو الجزء من الجسم الذي يظهر في الصورة ؟

تظُهر الصورة منطقة الرأس والرقبة، مع التركيز بشكل 
.خاص على منطقة الغدة النخامية

(MRI)

The organ shown in the image is the ovary, which is part of the 
female reproductive system.

What is the organ shown in the image?

هذه صورة بالموجات فوق الصوتية، وهي تقنية تصوير غير جراحية تستخدم 
.موجات صوتية عالية التردد لإنشاء صور مفصلة للهياكل الداخلية للجسم

ما هو نوع هذا الفحص ؟ 

.الشذوذ في هذه الصورة بالأشعة فوق الصوتية هو وجود كيسة مبيضية متعددة الحجرات

ما هو الشذوذ في هذه الصورة بالأشعة فوق الصوتية ؟

Figure 10: Qualitative Examples of our BiMediX2 for Medical Image Understanding in a Conversational and
Bilingual (Arabic) Setting: The top section translates to; User: What is the organ shown in the image? BiMediX2:
The image shows the liver, which is a large and vital organ in the human body. User: What type of scan is this?
BiMediX2: This is a computed tomography (CT) scan of the abdomen. The middle section translates to; User:
What type of imaging technique is used in this image? BiMediX2: The imaging technique used in this image is
magnetic resonance imaging (MRI). User: What part of the body is shown in the image? BiMediX2: The image
shows the head and neck area, with a particular focus on the pituitary gland. And the bottom section translates to;
User: What is the organ shown in the image? BiMediX2: The organ shown in the image is the ovary, which is part
of the female reproductive system. User: What type of scan is this? BiMediX2: This is an ultrasound image, which
is a non-invasive imaging technique that uses high-frequency sound waves to create detailed images of the body’s
internal structures. User: What is the abnormality in this ultrasound image? BiMediX2: The abnormality in this
ultrasound image is the presence of a multilocular ovarian cyst.
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The abnormality in this chest X-ray scan is the presence of a right-
sided pneumothorax. A pneumothorax is a condition where air 
accumulates in the pleural space, which is the area between the lung 
and the chest wall. This can cause the lung to collapse, leading to 
difficulty breathing and chest pain.

What is the abnormality in this scan?

The abnormality in this scan is a left-sided parotid tumor. The 
parotid gland is a salivary gland located near the ear, and a 
tumor in this area could be benign or malignant. Further 
evaluation and tests would be needed to determine the nature of 
the tumor and the appropriate course of treatment.

What is the abnormality in this scan?

The lesion is surrounded by mature adipose tissue, which is a type 
of connective tissue that stores energy in the form of fat.

What type of tissue is surrounding the lesion?

The histologic sections are stained with hematoxylin and eosin (H&E). 
This is a common staining technique used in histology to visualize the 
structure and morphology of tissues. Hematoxylin stains the cell nuclei 
blue, while eosin stains the cytoplasm and extracellular matrix pink.

What type of staining is used in the histologic sections?

The image is a scanning electron micrograph of the head of a 
female Anopheles gambiae mosquito. It shows the antennal 
compound eye and the maxillary palp, which are structures 
related to the mosquito's sensory organs.

What is the image showing?

The three types of appendages on the head of the Anopheles 
gambiae mosquito are antennae, maxillary palps, and proboscis.

What are the three types of appendages on the head?

The image is a computed tomography (CT) scan of the abdomen, 
focusing on the adrenal glands.

What is the organ shown in the image?

The black arrows in the image are pointing to bilateral adrenal 
hyperplasia, which means that both adrenal glands are enlarged.

What do the black arrows indicate?

Figure 11: Qualitative Examples for Medical Image Understanding of our BiMediX2 in Multidomain:
Capability of BiMediX2 to understand and interpret various medical imaging modalities and provide accurate
responses. The examples include describing the anatomy of a mosquito’s head in a scanning electron micrograph,
detecting a left-sided parotid tumor in an MRI scan, recognizing mature adipose tissue in a histology slide,
identifying a right-sided pneumothorax in a chest X-ray, and identifying bilateral adrenal hyperplasia in a CT scan
of the abdomen. These examples highlight BiMediX2’s versatility and effectiveness in medical image analysis and
diagnosis.
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