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ABSTRACT

Unsupervised domain adaptation (UDA) methods effectively bridge domain gaps
but become struggled when the source and target domains belong to entirely dis-
tinct modalities. To address this limitation, we propose a novel setting called
Heterogeneous-Modal Unsupervised Domain Adaptation (HMUDA), which en-
ables knowledge transfer between completely different modalities by leveraging
a bridge domain containing unlabeled samples from both modalities. To learn
under the HMUDA setting, we propose Latent Space Bridging (LSB), a specialized
framework designed for the semantic segmentation task. Specifically, LSB utilizes
a dual-branch architecture, incorporating a feature consistency loss to align repre-
sentations across modalities and a domain alignment loss to reduce discrepancies
between class centroids across domains. Extensive experiments conducted on six
benchmark datasets demonstrate that LSB achieves state-of-the-art performance.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) methods (Yang et al., 2020; Gu et al., 2022; Zhao et al.,
2022) are powerful in transferring knowledge from a labeled source domain to an unlabeled target
domain, particularly when the two domains exhibit significant distributional differences. While
traditional UDA methods (Long et al., 2015; Li et al., 2019; Luo et al., 2019; Saltori et al., 2022; Xiao
et al., 2022) have achieved notable success in scenarios where the source and target domains share
the same modality (e.g., the image modality), multi-modal UDA (a.k.a. cross-modal UDA) (Jaritz
et al., 2020; Peng et al., 2021; Wu et al., 2023; Zhang et al., 2022) has been recently proposed to
address a more complex task of transferring knowledge from the source domain to the target one with
multiple modalities (e.g., image and 3D point cloud). However, a significant challenge arises when
the source and target domains belong to entirely distinct modalities, such as transferring knowledge
from 2D images to 3D point clouds.

Consider the semantic segmentation task (Guo et al., 2018; Strudel et al., 2021; Li et al., 2022a) in
real-world applications. In autonomous driving (Cheng et al., 2021; Tang et al., 2020; Yan et al.,
2022; Zhuang et al., 2021), accurately segmenting objects in 3D point clouds captured by LiDAR
sensors is essential for safe navigation. However, acquiring labeled 3D point cloud data is expensive
and time-consuming (Liu et al., 2021). Conversely, large-scale 2D segmentation datasets (Cordts
et al., 2016; Zhou et al., 2017; Caesar et al., 2018; Neuhold et al., 2017) are far more abundant,
and annotating 2D image data is significantly easier and more cost-effective (Kirillov et al., 2023).
This disparity motivates the need to transfer knowledge from labeled 2D images to improve the
segmentation performance on unlabeled 3D point clouds.

Despite its importance, several challenges exist in this heterogeneous transfer (Day and Khoshgoftaar,
2017). First, the inherent differences in data structure and representation between modalities make
it difficult to transfer knowledge directly (Jaritz et al., 2020; 2022; Peng et al., 2021). For example,
2D images are dense and grid-structured, while 3D point clouds are sparse and irregular. Second,
the absence of labeled data in the target domain exacerbates the difficulty of learning effective
representations. Existing UDA methods, which assume the same modality/modalities for both source
and target domains, are ill-suited to address these challenges.

To address those issues, we formally propose a new setting called Heterogeneous-Modal Unsupervised
Domain Adaptation (HMUDA), where the source domain data (e.g., 2D images) and unlabeled target
domain data (e.g., 3D point clouds) belong to different modalities. As unlabeled data can be easily
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obtained (Xiao et al., 2024), HMUDA assumes the existence of a bridge domain containing unlabeled
samples with both source and target modalities. The HMUDA setting is visually depicted in Figure 1,
and Table 1 provides a comparative analysis, highlighting its differences from existing domain
adaptation (DA) paradigms, including UDA, multi-modal UDA (MM-UDA), and heterogeneous
domain adaptation (HDA) (Fang et al., 2022; Wang and Mahadevan, 2011). Then, we propose Latent
Space Bridging (LSB), a novel HMUDA framework specifically designed for semantic segmentation
tasks. Specifically, the proposed LSB method employs a dual-branch architecture, comprising a
source network and a target network tailored for the source and target modalities, respectively. Those
networks are trained to perform pointwise segmentation using the source data with ground truth labels
and the bridge data with pseudo labels. To enhance the feature alignment, we propose a feature
consistency loss to encourage similar feature representations for samples with both modalities in the
bridge domain and a domain alignment loss to minimize discrepancies between class centroids in
the source and target domains. Experimental results across various benchmark datasets demonstrate
that the proposed LSB method effectively transfers knowledge from the source domain to the target
domain, outperforming both the source-only method and existing UDA methods by a significant
margin.

Our contributions are summarized as follows.

• We introduce a new DA setting, heterogeneous-modal unsupervised domain adaptation, to
facilitate knowledge transfer between heterogeneous modalities.

• We propose the Latent Space Bridging method, a tailored solution for the semantic segmen-
tation task under the HMUDA setting.

• Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed
LSB method, showcasing its ability to outperform existing methods.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) (Zhuang et al., 2020) aims to transfer knowledge from a
labeled source domain to an unlabeled target domain, addressing the challenge of the domain shift.
Traditional UDA methods (Long et al., 2015; Sun and Saenko, 2016; Tzeng et al., 2014; Ganin et al.,
2016) have achieved significant success in various applications by aligning the feature distributions
between the source and target domains. For instance, discrepancy-based methods such as DAN (Long
et al., 2015) and CORAL (Sun and Saenko, 2016) minimize the statistical distance between source
and target feature distributions. Meanwhile, adversarial-based methods like DANN (Ganin et al.,
2016) and ADDA (Tzeng et al., 2017) employ adversarial training to learn domain-invariant features,
leveraging a domain classifier to ensure that extracted features cannot be distinguished as originating
from either the source or target domain.

In semantic segmentation, UDA methods have been extended to tackle the pixel-level alignment
challenge. Many of these methods also employ adversarial training for aligning the two domains.
For instance, CyCADA (Hoffman et al., 2018) uses cycle-consistent adversarial networks to adapt
both the pixel and feature levels. AdaptSegNet (Tsai et al., 2018) incorporates adversarial training at
the output space to align the segmentation maps. Recently, CLAN (Luo et al., 2019) and CoSMix
(Saltori et al., 2022) further refine the adversarial approach by focusing on class-level alignment
and contextual consistency. However, adversarial training can be unstable and a high computational
burden for segmentation tasks (Mo et al., 2022). Different from them, the proposed LSB method uses
discrepancy-based feature alignment, which directly minimizes the difference between source and
target feature distributions.

2.2 MULTI-MODAL DOMAIN ADAPTATION

Multi-modal domain adaptation (Jaritz et al., 2020; Peng et al., 2021; Zhang et al., 2022; Wu et al.,
2024) involves transferring knowledge across domains with multiple modalities, such as images and
text, or images and 3D point clouds. This approach leverages the complementary information from
different modalities to enhance the adaptation performance. For example, Jaritz et al. introduce
xMUDA (Jaritz et al., 2020), a cross-modal learning method that combines RGB images and LiDAR
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point clouds for improving 3D semantic segmentation accuracy. DsCML (Peng et al., 2021) employs
adversarial learning at the output level to model domain-invariant representations. SSE-xMUDA
(Zhang et al., 2022) presents a self-supervised exclusive learning mechanism that exploits the unique
information of different modalities to complement each other. Dual-Cross (Li et al., 2022b) designs a
multi-modal stylized transfer module to alleviate the domain shift problem. These existing methods
assume that both the source and target domains contain multi-modal data, and typically, adaptation
only occurs between the same type of modal data. In contrast, our approach introduces a novel setting
where both the source and target domains contain only one type of modality. To bridge the modal
gap, we introduce an unlabeled bridge domain that possesses both source and target modalities.

2.3 HETEROGENEOUS DOMAIN ADAPTATION

Heterogeneous domain adaptation (HDA) addresses the adaptation between domains with different
feature spaces or data types, presenting unique challenges due to inherent differences in feature
representations. HDA methods can be divided into two categories: symmetric transformations (Duan
et al., 2012; Zhang et al., 2017; Samat et al., 2017; Wang and Mahadevan, 2011; Tsai et al., 2016)
and asymmetric transformations (Feuz and Cook, 2015; Zhou et al., 2014b; Nam and Kim, 2015;
Zhou et al., 2014a). Symmetric transformation methods, like HFA (Duan et al., 2012) and JGSA
(Zhang et al., 2017), involve projecting both source and target domains into a common latent space
for alignment. This approach facilitates a balanced representation by leveraging complementary
information from both domains. In contrast, asymmetric transformation methods (Feuz and Cook,
2015) focus on transforming one domain to align with the other. Although effective, most HDA
methods require partial target domain labels for guiding the adaptation process (Feuz and Cook,
2015; Duan et al., 2012), especially when aligning feature spaces (Xiao and Guo, 2014). Moreover,
the majority of HDA methods are not end-to-end, which necessitates separate stages for feature
extraction and alignment (Wang and Mahadevan, 2011; Wang and Breckon, 2022). In contrast, our
approach is both end-to-end and label-free in the target domain, simultaneously training networks for
both modalities.

Figure 1: The illustration of HMUDA
setting.

Table 1: The comparison between HMUDA and other
DA settings. The M1 and M2 represent different
modalities, ‘E-to-E’ indicates whether the correspond-
ing setting uses the end-to-end training strategy, and
‘Ex-Label’ indicates whether the corresponding setting
uses extra labeled target data.

Source Target E-to-E Ex-Label
M1M2M1M2

UDA ✓ ✗ ✓ ✗ ✓ ✗
MM-UDA ✓ ✓ ✓ ✓ ✓ ✗
HDA ✓ ✗ ✗ ✓ ✗ ✓
HMUDA ✓ ✗ ✗ ✓ ✓ ✗

3 PROBLEM FORMULATION FOR HMUDA

In this section, we introduce the HMUDA setting. Under the HMUDA setting, there exists a labeled
source domain S = {(xs,ys)}, where each sample consists of an input xs ∈ M1 and pointwise
segmentation labels ys ∈ RC×N for xs. Here,M1 denotes the source modality of the input (e.g.,
the 2D image), N is the number of labeled points in the input for semantic segmentation, and C is the
number of classes in the semantic segmentation task. Moreover, there exists a unlabeled target domain
T = {xt}, where xt belongs to a different modalityM2 (e.g., the 3D point cloud). Additionally,
we assume the existence of an unlabeled bridge domain B = {(xbs,xbt)}, where xbs ∈ M1 and
xbt ∈M2 are from the two modalities and correspond to the same input. Note that the bridge domain
could differ from the source and target domains. Under the HMUDA setting, we aim to transfer the
knowledge in S to help the learning of T with the help of the bridge domain B. In the following, we
give the definition for HMUDA.

Definition 1. (HMUDA) Heterogeneous Modality Unsupervised Domain Adaptation (HMUDA)
transfers knowledge from a labeled source domain S to an unlabeled target domain T across different
modalities. This transfer is facilitated by an unlabeled bridge domain B, which provides paired
samples from both source and target modalities. The objective of HMUDA is to leverage the labeled
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EMA

compute

compute and
compute

Figure 2: An illustration of the proposed LSB framework. S , T , and B denote the source, target, and
bridge domains, respectively. xs, xbs and xbt represent samples from each corresponding domain.
Lines within different colors denote the data flow for computing different losses.
data from S and the paired data in B to improve the learning and performance on the target domain
T .

As shown in Table 1, HMUDA differs from existing DA settings. Specifically, unsupervised domain
adaptation (UDA) addresses the domain gap between source and target domains within the same
modality. Multi-modal UDA (MM-UDA) assumes the existence of different modalities for both
source and target domains. Heterogeneous domain adaptation (HDA) transfers knowledge from
the source domain to the target domain with homogeneous or heterogeneous modalities but usually
requires extra labeled target data. Moreover, HDA manually extracts features from the original data
without learning the feature extractors and hence it does not support end-to-end training. Compared
with UDA and MM-UDA, HMUDA considers a more complex scenario involving heterogeneous
source and target modalities. Different from HDA, HMUDA supports the end-to-end training without
requiring additional labeled target data, making it more streamlined and practical than HDA.

4 METHODOLOGY

In this section, we present the proposed LSB method for HMUDA. We first introduce the entire
architecture of the proposed LSB method in the architecture section. Then, we introduce the losses in
LSB to learn to bridge the source and target model by the bridge domain and align class centroids
across domains. Next, we give the entire objective function and the algorithm for the LSB method.
Finally, we provide a theoretical analysis of the error bound under the HMUDA setting.

4.1 ARCHITECTURE

As depicted in Figure 2, the proposed LSB method employs a dual-branch architecture to predict
pointwise segmentation labels. The architecture in the LSB method consists of two distinct segmen-
tation networks: (i) a source network {h, f} tailored for the source modalityM1 with a feature
extractor h(·) : M1 → Rdh×N and a classifier f(·) : Rdh×N → RC×N , where dh is the feature
dimension of h. (ii) a target network {ϕ, g} designed for the target modalityM2 with a feature
extractor ϕ(·) : M2 → Rdϕ×N and a classifier g(·) : Rdϕ×N → RC×N , where dϕ is the feature
dimension of ϕ.

During training, the source domain and bridge domain data associated with modalityM1 are input
into the source network, while the target and bridge domain data belonging to modalityM2 are input
into the target network. Both the source and target networks can predict the pointwise segmentation
labels independently. For example, given a target input xt, the target model generates the probability
distribution of N points over C classes as g(ϕ(xt)). Further implementation details are provided in
the experimental setting section.

4.2 BRIDGING SOURCE AND TARGET NETWORKS

To train the source network, a natural solution is to minimize the cross-entropy loss between the
prediction of input xs (i.e., f(h(xs))) and its corresponding labels ys. This segmentation loss,
denoted by Ls

seg, is formally defined as

Ls
seg(x

s,ys) = − 1

N

N∑
i=1

(ys
:,i)

⊤ log(f(h(xs))), (1)
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where ys
:,i represents the i-th column of ys corresponding to the one-hot label for the i-th segment

point.

Similarly, one can train the target network using the segmentation loss based on the target input xt and
its corresponding labels. However, since labels for the target domain samples are unavailable, directly
training the target network becomes infeasible. To address this issue, we use the bridge domain
instead to train the target network. Specifically, we introduce a teacher source model, comprising f̂

and ĥ, which are updated from f and h using the exponential moving average (EMA) (Tarvainen and
Valpola, 2017) at each iteration as

θf̂ ← αθf̂ + (1− α)θf , θĥ ← αθĥ + (1− α)θh, (2)

where θf , θh, θf̂ and θĥ denotes the parameters of f , h, f̂ , ĥ, respectively. α is a hyperparameter
that is dynamically adjusted during training as

α = min

(
1− 1

t+ 1
, α

)
, (3)

where t denotes the number of training iterations completed so far. The pseudo-label ŷb for the
sample pair (xbs,xbt) in the bridge domain B is generated by the teacher source network as

ŷb = one-hot
(
argmax f̂(ĥ(xbs))

)
, (4)

where one-hot(·) denotes the transformation that converts the prediction into the one-hot vector. Then,
we propose the loss Lb

seg to train the target network on the bridge domain B as

Lb
seg(x

bs,xbt) = − 1

N

N∑
i=1

(ŷb
:,i)

⊤ log(g(ϕ(xbt))), (5)

where ŷb
:,i denotes the i-th column of ŷb corresponding to the one-hot pseudo label for the i-th

segment point.

For an input sample pair (xbs,xbt), the source and target networks should extract similar features
since they share the same labels. To encourage the consistent features between the source and target
networks, we introduce learnable projections ph : Rdh×N → Rd×N and pϕ : Rdϕ×N → Rd×N ,
which map the source and target feature into a d-dimensional shared feature space, respectively. To
minimize the discrepancy between the projected features of the source and target networks, we define
the feature consistency loss Lb

con as

Lb
con(x

bs,xbt) =
1

N

N∑
i=1

(
λw||w||22 + ||ph(h(xbs))−pϕ(ϕ(xbt))||22

)
(6)

where ∥ · ∥2 denotes the ℓ2 norm of a vector and λw > 0 is a hyper-parameter controlling the strength
of the regularization term ||w||22, which is applied to parameters in ph and pϕ.

4.3 CROSS-MODAL DOMAIN ALIGNMENT

Directly training the models using the source and bridge domain often leads to overfitting(Tzeng
et al., 2014), resulting in diminished performance on the target domain. To alleviate this problem,
inspired by the discrepancy-based UDA methods (Long et al., 2015; Zhu et al., 2021), we learn the
representation that minimizes the distance between the source and target domains. To begin with, we
obtain the pseudo label ŷt for each xt ∈ T by the target network. For class c, we define the class
centroid features ms

c ∈ Rd for the source domain and mt
c ∈ Rd for the target domain as

ms
c =

 ∑
(xs,ys)∈S

ys
c1

−1 ∑
(xs,ys)∈S

ph(h(x
s))(ys

c)
⊤ (7)

mt
c =

(∑
xt∈T

ŷt
c1

)−1 ∑
xt∈T

pϕ(ϕ(x
t))(ŷt

c)
⊤, (8)
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where ys
c and ŷt

c denote the c-th row element of ys and ŷt, respectively, and 1 denotes an N
dimension vector where all elements equal to one. We expect the source and target models to share
similar centroid features for each class. To this end, we minimize the discrepancy between the
centroids using the alignment loss Lali as

Lali(S, T ) =
1

C

C∑
c=1

1− cos
(
ms

c,m
t
c

)
, (9)

where cos(·) denotes the cosine similarity function.

4.4 OBJECTIVE FUNCTION AND ALGORITHM

We jointly learn the source and target networks by minimizing the final objective L(S,B, T ), which
combines Ls

seg, Lb
seg, Lcon and Lali together, i.e.,

L(S,B, T ) =
∑

(xs,ys)∈S

(
Ls

seg(x
s,ys)

)
+ λaLali(S, T )

+
∑

(xbs,xbt)∈B

(
Lb

seg(x
bs,xbt) + λcLb

con(x
bs,xbt)

)
, (10)

where λc > 0 and λa > 0 are hyperparameters to balance different losses. The overall algorithm for
the LSB method is provided in the Appendix.

4.5 THEORETICAL ANALYSIS

In this section, we analyze the error bound of HMUDA. Let Es({h, f}) = E(x,y)∼Ds
[f(h(x)) ̸=

y] and Et({ϕ, g}) = E(x,y)∼Dt
[g(ϕ(x)) ̸= y] denote the expected error in the source domain

with data distribution Ds and target domain with data distribution Dt, respectively. For bridge
domain distribution Db, let Ebs({h, f}) = E(xbs,xbt,y)∼Db

[f(h(xbs)) ̸= y] and Ebt({ϕ, g}) =

E(xbs,xbt,y)∼Db
[g(ϕ(xbt)) ̸= y] be the errors corresponding to the source and target modalities

within the bridge domain. We denote the hypothesis space for the source network {h, f} and target
network {ϕ, g} asHs andHt, respectively. The optimized source and target networks are defined as
follows.
Definition 2. The ideal joint hypothesis for source and target modality is the hypothesis that minimizes
the combined errors:

{h∗, f∗} = argmin
{h,f}∈Hs

Es({h, f}) + Ebs({h, f}); (11)

{ϕ∗, g∗} = argmin
{ϕ,g}∈Ht

Ebt({ϕ, g}) + Et({ϕ, g}). (12)

The combined error for source and target modality under the ideal hypothesis are denoted as:

λs = Es({h∗, f∗}) + Ebs({h∗, f∗});
λt = Ebt({ϕ∗, g∗}) + Et({ϕ∗, g∗}). (13)

Moreover, similar to (Zhuang et al., 2024), we assume the error gap between modalities
of the same domain is bounded by their feature gap as

∣∣Ebt({ϕ, g}) − Ebs({h, f})∣∣ ≤
LE(xbs,xbt)∼Db

(
d(h(xbs), ϕ(xbt))

)
, where L is a constant and d is the distance function (e.g.,

the ℓ1 distance). We are now ready to give a bound on the expected error of the target domain in the
following theorem.1

Theorem 1. For every {ϕ, g} ∈ Ht, the target domain error is bounded as:

Et({ϕ, g}) ≤ Es({h, f}) + LE(xbs,xbt)∼Db

(
d(h(xbs), ϕ(xbt))

)
+

1

2
dHs∆Hs(Ds,Db) +

1

2
dHt∆Ht(Db,Dt),

+ (λs + λt) (14)

1The proof can be found in the Appendix.
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Table 2: Testing mIoU results on HMUDA tasks. The best performance is in bold.
USA→ Sing. Day→ Night Virt. → A2D2 USA→ Sing. Day→ Night Virt. → Sem. Sem. → A2D2 A2D2→ Sem.

Bridge Domain B Sem. A2D2 Virt.

2D
→

3D
Oracle 77.69 73.71 71.50 77.69 73.71 82.75 71.50 82.75
xMUDA 65.12 75.11 61.03 65.12 75.11 57.97 44.95 65.07

Source-Only 51.04 57.32 19.00 49.21 55.96 36.44 43.75 43.28
PL 52.08 59.33 16.84 55.39 61.95 46.49 39.66 38.25
CDSPP 17.61 21.81 9.74 17.61 21.81 12.44 11.27 11.00
LSB 56.41 62.25 33.37 57.13 63.15 45.43 46.34 47.22

3D
→

2D

Oracle 76.28 62.63 85.67 76.28 62.63 87.19 85.67 87.19
xMUDA 65.88 63.63 62.07 65.88 63.63 52.98 63.54 60.51

Source-Only 43.80 17.69 42.56 38.99 25.02 42.22 31.48 20.06
PL 43.89 26.55 43.37 34.97 22.67 38.75 14.45 34.27
CDSPP 22.18 17.75 20.53 22.18 17.75 15.87 17.58 13.11
LSB 45.35 33.81 47.92 39.83 38.36 38.03 32.49 39.89

where dHs∆Hs
, dHt∆Ht

are the H∆H-distance (Ben-David et al., 2010) between domains in the
source and target modality, respectively.

Theorem 1 shows that the target domain error is upper-bounded by the summation of five terms:
(i) the source domain error Es({h, f}); (ii) the modality discrepancy in the bridge domain; (iii) the
ideal combined errors, which are a constant; (iv) the domain discrepancy between the source and
bridge domains; (v) The domain discrepancy between bridge and target domains. In LSB, term (i) is
optimized by using the segmentation loss defined in Eq. (1). Notably, term (ii) directly aligns with
Eq. (6), which minimizes the feature gap between modalities. Moreover, Eq. (5) assesses term (iv),
and Eq. (9) measures both terms (iv) and (v). Hence, the design of the LSB method aligns with the
generalization bound in Theorem 1, which gives theoretical support for the proposed LSB method.

5 EXPERIMENTS

In this section, we empirically evaluate the proposed LSB method under the HMUDA setting.

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on several publicly available multimodal datasets, including (i)
nuScenes-lidarseg (Caesar et al., 2020), which is divided into different scene layouts (i.e., USA and
Singapore (Sing.)) and lighting conditions (i.e., Day and Night). (ii) A2D2 (Geyer et al., 2020), which
consists of data collected from Audi, featuring diverse driving scenarios with multi-sensor data. (iii)
SemanticKITTI (Sem.) (Behley et al., 2019), a large-scale dataset providing dense pointwise semantic
annotations for LiDAR scans, capturing urban environments in various driving conditions. (iv)
VirtualKITTI (Virt.) (Gaidon et al., 2016), a synthetic dataset generated from realistic 3D simulations
with precise ground truth annotations. To evaluate the proposed method under HMUDA, we construct
six transfer tasks under the HMUDA setting, including: (i) USA→Sing. for changes in scene layout.
(ii) Day→Night for changes in light conditions. (iii) Virt→A2D2 and (iv) Virt→Sem. for synthetic to
real data. (v) Sem.→A2D2 and (vi) A2D2→Sem. for different camera setups. For the (i-iv) tasks,
we use Sem. and A2D2 as the bridge domain, while for the (v) and (vi) tasks, Virt. is used instead.
In all datasets, the LiDAR and RGB cameras are synchronized and calibrated. Following (Jaritz
et al., 2022), we only use the front camera’s images in all datasets for consistency. To evaluate the
generality of HMUDA, we also perform experiments on the reverse transfer task, from 3D point
clouds to 2D images. Further dataset details are provided in the Appendix.

Implementation Details. By following (Jaritz et al., 2022), for the 2D network, we use a U-
Net (Ronneberger et al., 2015) with a ResNet34 (He et al., 2016) encoder pre-trained on ImageNet
(Deng et al., 2009). For the 3D network, we use the SparseConvNet(Graham et al., 2018) and
U-Net(Ronneberger et al., 2015) architectures with a voxel size of 5cm. Furthermore, we use a linear
layer for projections pϕ and ph, respectively. Training is conducted using the Adam optimizer with
a batch size of 16, an initial learning rate of 0.001, β1 = 0.9, and β2 = 0.999. All the parameters
are trained for 50,000 steps, with a learning rate scheduler following (Jaritz et al., 2020). The
hyper-paramters α is initially set to 0.999. The parameters λw, λc, and λa are set to 0.01, 4.0, and
0.1, respectively. We use the mean Intersection over Union (mIoU) to evaluate the performance. All
experiments are conducted on an NVIDIA V100 (32GB) GPU.
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Table 3: Effect of losses Ls
seg, Lt

seg, Lb
con, and Lali in terms of mIoU for 2D-to-3D HMUDA tasks.

The best performance is in bold.
Ls
seg Lb

seg Lb
con Lali B USA→ Sing. Day→ Night Virt. → A2D2 B Sem. → A2D2

✓ ✓ ✗ ✗

Sem.

53.62 61.86 22.72

Virt.

42.47
✓ ✓ ✓ ✗ 52.68 61.12 28.24 45.27
✓ ✓ ✗ ✓ 54.34 60.86 27.96 46.37
✓ ✓ ✓ ✓ 56.41 62.25 33.37 46.34

Ls
seg Lb

seg Lb
con Lali B USA→ Sing. Day→ Night Virt. → Sem. B A2D2→ Sem.

✓ ✓ ✗ ✗

A2D2

49.35 60.64 35.74

Virt.

42.29
✓ ✓ ✓ ✗ 50.50 62.72 36.53 42.46
✓ ✓ ✗ ✓ 54.49 62.87 38.55 46.95
✓ ✓ ✓ ✓ 57.13 63.15 45.43 47.22

Baselines. We compare the proposed LSB method against the following representative baselines.
(i) Oracle, which trains the target network (g, ϕ) using segmentation loss directly on the labeled
target domain {(xt,yt)}. Each input xt is paired with its ground-truth label yt. This serves as an
upper bound for HMUDA. (ii) xMUDA (Jaritz et al., 2022), a multimodal UDA method that jointly
learns from paired 2D-3D data in both the source and target domains by enforcing cross-modal
consistency through mutual mimicking. Such paired supervision provides stronger guidance than
unimodal settings but requires costly annotations. We therefore regard xMUDA as a soft upper-bound
baseline for HMUDA. (iii) Source-Only, where the source network is trained solely on the source
domain S, and pseudo-labels generated on the bridge domain B are then used to supervise the
target network. (iv) Pseudo-Labeling (PL) (Li et al., 2019), a unimodal two-stage pseudo-labeling
strategy, implemented following Jaritz et al. (2022), in which pseudo-labels produced by the source
network are used to guide training of the target model. (v) CDSPP (Wang and Breckon, 2022), a
HDA method that transfers knowledge from extracted features by learning domain-specific projections
to align source and target features in a shared subspace while preserving class structure, which we
reproduce using approximately 5% labeled target samples in a semi-supervised setup. For a fair
comparison, we use the same backbone ResNet34 and SparseConvNet for 2D and 3D samples as
LSB to extract features.

5.2 MAIN RESULTS

Table 2 shows the testing mIoU results on HMUDA tasks. As can be seen, the LSB achieves the
highest mIoU across all tasks except for Virt.→Sem.. For instance, on the 2D-to-3D task Virt.→A2D2
with bridge domain Sem., LSB surpasses Source-Only, PL, and CDSPP by a large margin of 14.37,
16.53, and 23.63, validating its effectiveness in addressing the heterogeneous domain gaps. LSB
achieves average mIoU improvements of 5.16 and 7.10 over PL across all the 2D-to-3D and 3D-to-2D
tasks, respectively, demonstrating its capability to bridge source and target networks through joint
training. Moreover, LSB consistently outperforms CDSPP across all tasks, achieving average mIoU
gains of 36.00 and 21.09 on the 2D-to-3D and 3D-to-2D settings, respectively, demonstrating the
effectiveness of the proposed end-to-end training framework. Compared with the supervision-heavy
xMUDA, which leverages paired 2D–3D data in both source and target domains, LSB achieves a
higher mIoU on the 2D-to-3D transfer task Sem.→A2D2 with the bridge domain Virt., suggesting
that the bridge domain can be effective for knowledge transfer even with less direct supervision.
Despite these improvements, all methods under HMUDA still fall short of the Oracle, underscoring
the challenges inherent in HMUDA tasks.

5.3 ABLATION STUDIES

Effect of Different Losses Ls
seg , Lt

seg , Lb
con, and Lali. We conduct experiments on HMUDA tasks

to study the effect of losses Ls
seg, Lt

seg, Lb
con, and Lali w.r.t. mIoU. Specifically, we consider four

combinations: (i) with the two segmentation losses Ls
seg, Lb

seg only (i.e., LSB (w/ seg only)); (ii)
without the alignment loss Lali (i.e., LSB (w/o Lali)); (iii) without the consistent loss Lb

con (i.e., LSB
(w/o Lb

con)); (iv) with all the proposed losses Ls
seg, Lb

seg, Lb
con and Lali together (i.e. the proposed

LSB). Since the two segmentation losses (i.e., Ls
seg and Lb

seg) are necessary for training the source
and target model, we do not remove them in any variant of HMUDA.

Table 3 shows the testing mIoU results on the 2D-to-3D HMUDA tasks for different variants of LSB.
As can be seen, LSB achieves the best mIoU across all HMUDA tasks, except for Sem.→A2D2. LSB
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outperforms LSB (w/o Lb
con) by a large margin of 3.97 on average, validating that encouraging the

consistent features benefits the learning of the target domain. Compared with LSB (w/o Lali, LSB
achieves an average improvement of 2.36, showing the effectiveness of minimizing the distance of
class centriod features between source and target domain. Moreover, LSB (w/ seg only) surpasses the
previous SOTA UDA method (PL in Table 2) by 1.19 on average, demonstrating the superiority of
the joint training strategy.

Table 4: Effect of pϕ and ph on three
2D-to-3D HMUDA tasks.

USA Day A2D2
Method B → → B →

Sing. Night Sem.

LSB (w/o pϕ)
A2D2

20.78 3.82
Virt.

15.00
LSB (w/o ph) 40.47 43.10 32.52
LSB 57.13 63.15 47.22

Effect of ph and pϕ. In LSB, we introduce two learnable
projections to map the source and target features into a
d-dimensional shared feature space. To study the effect of
these two projections, we compare LSB with its variants:
(i) LSB (w/o ph), which uses a linear layer to map the
target feature into the dh-dimensional source feature space.
(ii) LSB (w/o pϕ), which uses a linear layer to map the
source feature into the dϕ-dimensional target feature space.

Table 4 shows the testing mIoU for USA→ Sing., Day→ Night, and A2D2→ Sem. 2D-to-3D tasks.
As can be seen, LSB consistently outperforms LSB (w/o pϕ) and LSB (w/o ph) across all the tasks,
validating that aligning source and target feature in a common latent space helps effective transfer.
Notably, LSB (w/o pϕ) performs significantly worse, indicating that directly aligning features in the
target feature space hinders segmentation learning.

5.4 SENSITIVITY ANALYSIS
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Figure 3: Effect of λc.
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Figure 4: Effect of λa.
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Figure 5: Effect of sample size.
Effect of λc. We conduct experiments on the 2D-to-3D task of USA→Sing. via the bridge domain
A2D2 to study the effect of λc. According to Figure 3, LSB is insensitive to a wide range of
λc ∈ [1, 10]. Notably, LSB performs worse than LSB (w.o Lb

con) when λc < 0.1, showing that a
small λc is not suitable for LSB to learn a consistent feature.

Effect of λa. To investigate the sensitivity of λa, we conduct the experiments on the 2D-to-3D task
of USA→Sing. with the bridge domain A2D2. Figure 4 shows the testing mIoU w.r.t. λa. As can
be seen, LSB achieves good performance in the range of λa ∈ [0.001, 0.1]. Moreover, increasing
λa can boost mIoU when λa is small. However, excessively large values of λa lead to a significant
performance drop.

Effect of the number of bridge samples. We conduct experiments on the 2D-to-3D task of
Day→Night with the bridge domain A2D2 to study the effect of sample size in the bridge domain.
As shown in Figure 5, mIoU increases with the number of bridge samples and stabilizes after 500
samples, suggesting that a relatively small number of bridge samples is sufficient for LSB to achieve
stable performance.

6 CONCLUSION

In this paper, we introduce HMUDA, a novel setting designed to transfer knowledge between
heterogeneous modalities using a bridge domain. For HMUDA, we propose a specialized framework
LSB, with two distinct networks tailored for the source and target modalities. These networks are
trained jointly with two segmentation losses specific to each network, alongside a feature consistency
loss to promote similar feature representations between networks and a domain alignment loss
to reduce domain discrepancies. Experimental results on various HMUDA benchmark datasets
demonstrate the effectiveness of LSB in transferring knowledge across heterogeneous modalities. In
our future work, we will apply LSB to other HMUDA tasks, such as image classification and object
detection.
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ETHICS STATEMENT

This research aims to transfer knowledge between different modalities. We exclusively used publicly
available benchmark datasets (nuScenes, A2D2, SemanticKITTI, VirtualKITTI). Our work is intended
for positive societal impact and does not develop inherently harmful technology.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive details of our code, data, and experimental
setup. The complete source code is included in the supplementary material, and all experiments are
conducted on publicly available datasets. Further implementation specifics of LSB are described in
Section 5.1.
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A THE OVERALL ALGORITHM FOR THE LSB METHOD

Algorithm 1 The LSB method.

Require: Source domain S, target domain T , bridge domain B, learning rate η, hyper-parameters
λc and λa; trainable parameters θ: source network {h, f}, target network {ϕ, g} and projections
{ph, pϕ};

1: Initialize the source teacher model {ĥ, f̂}.
2: repeat
3: Sample a batch of data S̃ ⊂ S, B̃ ⊂ B, T̃ ⊂ T .
4: for (xs,ys) ∈ S̃ do
5: Compute loss Ls

seg(x
s,ys) by Eq. (1).

6: end for
7: for (xbs,xbt) ∈ B̃ do
8: Compute loss Lb

seg(x
bs,xbt) by Eq. (5).

9: Compute loss Lb
con(x

bs,xbt) by Eq. (6).
10: end for
11: Compute loss Lali(S̃, T̃ ) by Eq. (9).
12: Compute the overall loss L by Eq. (10).
13: θ ← θ − η∇θL;
14: Update {ĥ, f̂} using EMA from {h, f} by Eq. (2).
15: until convergence

B PROOF OF THEOREM 1

Proof. This proof relies on Theorem 2 in (Ben-David et al., 2010). We begin with the following
inequality:

Ebs({h, f}) ≤ Es({h, f}) +
1

2

(
dHs∆Hs

(Ds,Db)
)
+ λs (15)

and

Et({ϕ, g}) ≤ Ebt({ϕ, g}) +
1

2

(
dHt∆Ht(Db,Dt)

)
+ λt

≤ Ebs({h, f}) + Ebt({ϕ, g})− Ebs({h, f}) +
1

2

(
dHt∆Ht(Db,Dt)

)
+ λt

≤ Ebs({h, f}) +
∣∣Ebt({ϕ, g})− Ebs({h, f})∣∣+ 1

2

(
dHt∆Ht(Db,Dt)

)
+ λt, (16)

According to the modality assumption, we have:∣∣Ebt({ϕ, g})− Ebs({h, f})∣∣ ≤ LE(xbs,xbt)∼Db

(
d(h(xbs), ϕ(xbt))

)
(17)

By combining inequalities (15), (16) and (17), we obtain:

Et({ϕ, g}) ≤ Ebs({h, f}) +
∣∣Ebt({ϕ, g})− Ebs({h, f})∣∣+ 1

2

(
dHt∆Ht(Db,Dt)

)
+ λt

≤ Ebs({h, f}) + LE(xbs,xbt)∼Db

(
d(h(xbs), ϕ(xbt))

)
+

1

2

(
dHt∆Ht

(Db,Dt)
)
+ λt

≤ Es({h, f}) + LE(xbs,xbt)∼Db

(
d(h(xbs), ϕ(xbt))

)
+ (λs + λt)

+
1

2

(
dHs∆Hs

(Ds,Db)
)
+

1

2

(
dHt∆Ht

(Db,Dt)
)
, (18)

C DETAILED DATASETS SETTINGS

We construct eight HMUDA scenarios based on four datasets. Table 5 shows the details of each
scenario.
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B S T
Scenario Train Train Train Val/Test

USA→ Sing.
Sem. 18,029

15,695 9,665 2,770/2,929
Day→ Night 24,745 2,779 602/602
Virt. → A2D2 2,126 24,461 808/2,426

USA→ Sing.
A2D2 24,461

15,695 9,665 2,770/2,929
Day→ Night 24,745 2,779 602/602
Virt. → Sem. 2,126 18,029 1,101/4,071

Sem. → A2D2 Virt. 2,126 18,029 24,461 808/2,426
A2D2→ Sem. 24,461 18,029 1,101/4,071

Table 5: The sample number in each split of datasets for all eight settings. Note that the training
samples in target and bridge domains are without labels.

D EFFECT OF CROSS-MODAL ALIGNMENT

Table 6: Effect of cross-modal alignment
on three 2D-to-3D HMUDA tasks.

USA Day A2D2
Method B → → B →

Sing. Night Sem.

LSB (w. Lali(B, T )) A2D2 50.86 60.12 Virt. 44.44
LSB 57.13 63.15 47.22

We study the effect of cross-modal domain alignment
between the source and target domain on the HMUDA
tasks. Instead of aligning the target domain with the
source domain, we conduct an additional experiment,
i.e., LSB (w. Lali(B, T )), by minimizing the class cen-
troid feature of the target network between the bridge
and target domain. These class centroid features are
computed using pseudo labels for the bridge and target
domain samples. As shown in Table 6, LSB consistently outperforms LSB (w. Lali(B, T )), indicating
that aligning the target domain with the source domain is more effective.

E VISUALIZATION

Road Sidewalk Building Nature IgnoreVehicle

Target image Ground truth UDA Baseline (PL) LSB

Truck Road Building Nature IgnoreCar Other-Objects

Figure 6: Qualitative results on three 2D-to-3D HMUDA tasks: USA→Sing., Day→Night, and
A2D2→Sem.. The (·) in the vertical axis denotes the bridge domain B used in the HMUDA task. For
example, USA→Sing.(Sem.) denotes the transfer from USA to Sing. via the bridge domain Sem..

Qualitative results. Figure 6 presents the qualitative segmentation results for various 2D-to-3D tasks,
including USA→Sing., Day→Night, and A2D2→Sem. As can be seen, the LSB method predicts
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segmentation objects more accurately than the baseline method (PL). For instance, in the USA→Sing.
task, buses are highlighted with red bounding boxes. We can see that the proposed LSB method
correctly identifies the bus, while the baseline method PL misclassifies these points as ‘Sidewalk’.
Similar improvements are observed in the Day→Night and A2D2→Sem tasks, where LSB effectively
recognizes ‘Vehicle’ and ‘Other-Objects’.

t-SNE Visualization. Figure 7 presents the t-SNE visualization of target feature embeddings from
the Source-Only model (a) and LSB (b) on the 2D-to-3D task of Day→Night via the bridge domain
A2D2. Compared to Source-Only, LSB shows improved clustering for the vehicle class, with more
compact and better-separated features across domains.

vehicle
road
sidewalk
building
nature

(a) Source-Only

vehicle
road
sidewalk
building
nature

(b) LSB

Figure 7: t-SNE visualization of target feature embeddings for (a) Source-Only and (b) LSB.

F LIMITATIONS

This work focuses on establishing a novel unsupervised domain adaptation framework for heteroge-
neous modalities, while in application, we only evaluate the vision-based modalities, i.e., 2D images
and 3D point clouds. In our future work, we will apply LSB to other HMUDA tasks, such as image
classification and object detection.

G LARGE LANGUAGE MODEL USAGE STATEMENT

This work did not use large language models (LLMs) for any part of the research methodology,
data analysis, or conceptual development. LLMs were used solely during the writing and revision
stages to improve the clarity, grammar, and expressiveness of the manuscript. Specifically, the model
was employed as a language editing tool to enhance sentence fluency and readability. All technical
content, including methods, experiments, results, and interpretations, were developed entirely by the
authors.
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