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Abstract

Temporal Point Processes (TPPs) serve as the standard mathematical framework
for modeling asynchronous event sequences in continuous time. However, classical
TPP models are often constrained by strong assumptions, limiting their ability
to capture complex real-world event dynamics. To overcome this limitation, re-
searchers have proposed Neural TPPs, which leverage neural network parametriza-
tions to offer more flexible and efficient modeling. While recent studies demonstrate
the effectiveness of Neural TPPs, they often lack a unified setup, relying on differ-
ent baselines, datasets, and experimental configurations. This makes it challenging
to identify the key factors driving improvements in predictive accuracy, hinder-
ing research progress. To bridge this gap, we present a comprehensive large-scale
experimental study that systematically evaluates the predictive accuracy of state-
of-the-art neural TPP models. Our study encompasses multiple real-world and
synthetic event sequence datasets, following a carefully designed unified setup. We
thoroughly investigate the influence of major architectural components such as
event encoding, history encoder, and decoder parametrization on both time and
mark prediction tasks. Additionally, we delve into the less explored area of prob-
abilistic calibration for neural TPP models. By analyzing our results, we draw
insightful conclusions regarding the significance of history size and the impact of
architectural components on predictive accuracy. Furthermore, we shed light on
the miscalibration of mark distributions in neural TPP models. Our study aims to
provide valuable insights into the performance and characteristics of neural TPP
models, contributing to a better understanding of their strengths and limitations.

1 Introduction

From human social activity to natural phenomena, the evolution of a system of interest can often
be characterized by a sequence of discrete events occurring at irregular time intervals. Online shop-
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ping activity (Cai et al., 2018), earthquake occurrences (Ogata, 1998), measurement of electronic
health records (Wang et al., 2016), and users activity on social media (Farajtabar et al., 2015) are
typical examples where such sequences are frequently encountered. Given a sequence of observed
historical events, a crucial challenge in numerous applications is to predict the timing of future
events. Additionally, in cases where events are assigned a label, referred to as marks, it is necessary
to also predict the type of event that is likely to occur. It is reasonable to assume that events are
interdependent and that the future evolution of a system is directly influenced by past occurrences.
For example, an individual might be inclined to purchase a particular item at a specific time on an
e-commerce platform solely because a previous purchase made it necessary. Hence, modeling the
intricate dynamics of event occurrences becomes crucial in predicting future events based on past
observations.

Drawing upon solid theoretical foundations, the framework of Temporal Point Processes (TPPs)
(Daley & Vere-Jones, 2007) has established itself as a suitable choice for modeling these sequences
of asynchronous and time-dependent data. A TPP is fully characterized by its conditional intensity
function, which provides the instantaneous unit rate of event arrivals based on the process history
(Rasmussen, 2018). For event sequence modeling in a variety of domains, including finance (Hawkes,
2018), crime (Egesdal et al., 2010), or epidemiology (Rizoiu et al., 2018), a large number of earlier
works examined classical parametric forms of TPPs, such as the Hawkes process (Hawkes, 1971).
However, these classical parameterizations have faced criticism due to their limited flexibility in
capturing complex event dynamics (Mei & Eisner, 2016). To address this, deep learning techniques
have been introduced into the TPP literature, enabling more flexible models capable of capturing
more complex temporal dependencies. Examples include recurrent neural networks (RNNs) (Mei
& Eisner, 2016; Shchur et al., 2019) and self-attention mechanisms (Zhang et al., 2020; Zuo et al.,
2020; Enguehard et al., 2020). Since its introduction by Du et al. (2016), the field of neural
TPPs has experienced rapid development, with the emergence of numerous novel architectures and
applications (Shchur et al., 2021).

Given a sequence of events, neural TPP models typically involve a combination of three main
architectural components: 1) an event encoder, creating a fixed-sized embedding for each event
in the sequence. 2) a history encoder, generating a summary of the history from past events’
embeddings, and 3) a decoder parametrizing a function that fully characterizes the distribution
of future events’ arrival times and marks. Among other possibilities, improvements with respect
to existing baselines are obtained by proposing alternatives to either of these components. For
instance, one can replace an RNN-based history encoder with a self-attentive one, or choose to
parametrize a certain TPP function that leads to useful properties, such as reduced computational
costs or closed-form sampling. However, as pointed out by Shchur et al. (2021), “new architectures
often change all these components at once, which makes it hard to pinpoint the source of empirical
gains”. Moreover, the baselines against which a newly proposed architecture is compared, as well as
the datasets employed and the experimental setups, often differ from paper to paper, which renders
a fair comparison even harder.

Additionally, modeling marked TPPs from data is a challenging problem from a statistical perspec-
tive in the sense that it requires joint modeling of discrete distributions over marks and continuous
distributions over time. In practice, a model’s ability to estimate the joint distribution of future
arrival times and marks is often solely evaluated on its performance with respect to the negative
log-likelihood (NLL). However, reporting a single NLL value encompasses the contributions of both
arrival time and mark distributions, making it hard to evaluate model performance with respect to
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each prediction task separately. Moreover, while the NLL enables the comparison of different base-
lines, it provides a limited understanding of the distribution shapes and the allocation of probability
mass across their respective domains. Furthermore, while probabilistic calibration is a desirable
property that any competent or ideal predictive distribution should possess (Dheur & Ben Taieb,
2023; Guo et al., 2017), the assessment of calibration in TPP models has been overlooked by the
neural TPP community, both for the predictive distributions of time and marks.

In this paper, our objective is to address the aforementioned concerns by presenting the following
contributions:

• We perform a large-scale experimental study to assess the predictive accuracy of state-of-
the-art neural TPP models on 15 real-world event sequence datasets in a carefully designed
unified setup. Our study also includes classical parametric TPP models as well as synthetic
datasets. In particular, we study the influence of each major architectural component (event
encoding, history encoder, decoder parametrization) for both time and mark prediction
tasks. To the best of our knowledge, this is the largest comprehensive study for neural
TPPs to date. Our study is fully reproducible and implemented in a common code base1.

• We assess the probabilistic calibration of neural TPP models, both for the time and mark
predictive distributions. To this end, we employ standard metrics and tools borrowed
from the forecasting literature, namely the probabilistic calibration error and reliability
diagrams. Probabilistic calibration is a desirable property that any competent or ideal
predictive distribution should possess. Yet, to the best of our knowledge, this has been
generally overlooked by the neural TPP community.

• Among other findings, we found that neural TPP models often do not fully leverage the
complete information contained in all historical events. In fact, relying solely on a subset
of the most recent observed occurrences can yield comparable performance to encoding
the entire historical context. Furthermore, we demonstrate the high sensitivity of various
decoder parameterizations to the event encoder, highlighting the significant gains in pre-
dictive accuracy that can be achieved through appropriate selection. In addition, while the
distribution of arrival times is generally well-calibrated, our research reveals that classical
parametric baselines exhibit better calibration of mark distributions compared to neural
TPP models. Lastly, our study shows that several commonly used event sequence datasets
within the TPP literature may not be suitable for accurately benchmarking neural TPP
baselines.

2 Background and Notations

Marked Temporal Point Processes are stochastic processes whose realizations consist in a
sequence of n discrete events S = {(t1, k1), ..., (tn, kn)} observed within a fixed window [0, T ] with
T > 0. Each event ei = (ti, ki) in the sequence represents an arrival time ti for the ith event,
satisfying 0 ≤ t1 < ... < tn ≤ T , and is associated with a mark ki belonging to the mark space K.
The mark space K can either be discrete, such as K = {1, ..., K} (Du et al., 2016), or continuous,
i.e. K = R. Note that within this definition, the number of events n itself is a random variable.

1https://github.com/tanguybosser/ntpp-tmlr2023
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In the case of an unmarked scenario, events are solely characterized by their arrival times, i.e.
S = {t1, ..., tn}. Without loss of generality, we will primarily focus on the marked setting for the
remainder of this section, exclusively considering univariate discrete marks throughout the paper. A
realization of a marked TPP can also be represented using a counting process N(t) =

∑K
k=1 Nk(t),

where Nk(t) = |{(ti, ki) ∈ S|ti < t}| is the number of events with mark k that have occurred prior
to time t.

Let ei−1 = (ti−1, ki−1) be the last observed event. The occurrence of the next event ei in (ti−1, ∞[
can be characterized by the conditional joint distribution of arrival-times and marks f(t, k|Ht),
where Ht = {(tj , kj) ∈ S | tj < t} denotes the observed process’ history. The conditional joint dis-
tribution can be decomposed as f(t, k|Ht) = f(t|Ht)p(k|t, Ht), where f(t|Ht) corresponds to the
conditional density of time t, while p(k|t, Ht) is the probability of observing mark k, conditional on
both t and Ht. Given the conditional cumulative distribution of arrival-times F (t|Ht), a marked
TPP can be equivalently characterized by the mark-wise conditional intensity function (MCIF)
λk(t|Ht), i.e:

λk(t|Ht) = f(t, k|Ht)
1 − F (t|Ht)

. (1)

Furthermore, for t > ti−1, we have (Rasmussen, 2018):

λk(t|Ht) = f(t, k|Ht)
1 − F (t|Ht)

= λ(t|Ht)p(k|t, Ht) (2)

= E [Nk(t + dt) − Nk(t)]|Ht, ti /∈ [ti−1, t]]
dt

, (3)

where λ(t|Ht) =
∑K

k=1 λk(t|Ht) is the ground conditional intensity function of the process (GCIF).
In essence, the MCIF gives the expected instantaneous occurrence rate of an event of mark k ∈ K.
Furthermore, as a heuristic interpretation, the MCIF can be seen as the instantaneous “probability”
of observing the next event of mark k in an infinitesimal interval around t, conditional on the past
of the process up to but not including t:

λk(t|Ht)dt ≃ P
[
ti ∈ [t, t + dt], ki = k|Ht, ti /∈ [ti−1, t]

]
. (4)

In the following, we will employ the notation ’∗’ of Daley & Vere-Jones (2007) to indicate dependence
on Ht, i.e. λ∗

k(t) = λk(t|Ht). From the MCIF, we can define the cumulative MCIF,

Λ∗
k(t) =

∫ t

ti−1

λ∗
k(s)ds, (5)

allowing us to define the conditional joint density of time t and mark k,

f∗(t, k) = λ∗
k(t)exp

(
−

K∑
k=1

Λ∗
k(t)

)
. (6)

The proof of (6) can be found in Appendix E. Additionally, note that a realization of a marked
TPP can be equivalently represented by the sequence {(τ1, k1), ..., (τn, kn)} where τ1 = t1 and τi =
ti − ti−1, for i > 1, are the inter-arrival times associated to the events. We will use both notations
interchangeably throughout the paper. Lastly, all expressions will be defined for ti−1 < t ≤ ti,
unless stated otherwise.
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Parametrization of TPP models and Learning. Defining a marked TPP model usually
involves specifying a parametric form for any of the functions in (2), (5) or (6), provided that the
chosen parametrization defines a valid joint distribution of arrival times and marks, f∗(t, k). In
this regard, a distinct set of requirements need to be fulfilled depending on the chosen function. We
consider exclusively the setting of non-terminating TPP, meaning that a future event will arrive
eventually with probability one. For a non-terminating TPP, if one decides to parametrize the
MCIF, then the following conditions must be satisfied (Rasmussen, 2018):

Rλ
1 : λ∗

k(t) ≥ 0. Rλ
2 : lim

t→∞

∫ t

ti−1
λ∗

k(s)ds = ∞.

Alternatively, parametrizing the conditional joint density implies:

Rf
1 : f(t, k) > 0. Rf

2 :
∫∞

ti−1

∑K
k=1 f(t, k)dt = 1.

Specifying a parametrization of the cumulative MCIF involves four constraints (Enguehard et al.,
2020):

RΛ
1 : Λ∗

k(t) > 0.

RΛ
2 : Λ∗

k(ti−1) =
∫ ti−1

ti−1
λ∗

k(s)ds = 0.

RΛ
3 : lim

t→∞
Λ∗

k(t) = ∞.

RΛ
4 : dΛ∗

k(t)/dt ≥ 0,

where conditions RΛ
1 and RΛ

4 result from λ∗
k(t) ≥ 0, while RΛ

3 directly follows Rλ
2 . In the setting

of terminating TPP, where there is a probability π that the process stops after the last observed
event, Rf

2 , Rλ
2 and RΛ

3 are no longer satisfied.

A common example of parametrization is the homogeneous Poisson process (Daley & Vere-Jones,
2007; De et al., 2019) that defines a constant MCIF:

λ∗
k(t) = µk ≥ 0, (7)

and hence implicitly assumes an exponential distribution with rate µ =
∑K

k=1 µk for the inter-arrival
times τ :

f∗(τ) = µ exp(−µτ). (8)
Another example is the well-known Hawkes process (Hawkes, 1971; Liniger, 2009), which defines
the MCIF to account for the influence of previous events on the process’ dynamics:

λ∗
k(t) = µk +

K∑
k′=1

∑
{(ti,k′):ti<t}

ϕk,k′(t − ti), (9)

where ϕk,k′ : R+ → R+ is the so-called triggering kernel. For instance, choosing the exponential
kernel ϕk,k′(t − ti) = αk,k′exp

(
− βk,k′(t − ti)

)
1[t − ti ≥ 0] with αk,k′ > 0 and βk,k′ > 0 allows

to explicitly model self-excitation dynamics, for which the occurrence of an event increases the
probability of observing future events, in a positive, additive and exponentially decaying fashion.

Let θ be the set of learnable parameters for a valid parametrization of a marked TPP function. As
an example, for the Hawkes process in (9), we have θ = {µ, α, β}, where µ ∈ RK

+ and α, β ∈ RK×K
+ .

5



Published in Transactions on Machine Learning Research (06/2023)

The most common approach to learning θ is achieved by maximum likelihood estimation, i.e. by
minimizing the negative log-likelihood (NLL). Given a parametric form of λ∗

k(t; θ), f∗(t, k; θ) or
Λ∗

k(t; θ) for all k ∈ K, and a sequence S of n events observed on [0, T ], the NLL objective writes:

L(θ; S) = −
n∑

i=1

[
log λ∗

ki
(ti; θ) − Λ∗(ti; θ)

]
+ Λ∗(T ; θ) (10)

= −
n∑

i=1
[log f∗(ti; θ) + log p∗(ki|ti; θ)] + Λ∗(T ; θ), (11)

where the term Λ∗(T ; θ) =
∑K

k=1 Λ∗
k(T ; θ) accounts for the fact that no event has been observed in

the interval (tn, T ].

Prediction tasks with marked TPPs. The expression (11) presented above highlights that
learning a marked TPP model from an event sequence involves two main estimation tasks: (T1)
estimating the conditional density of arrival times f∗(t), and (T2) estimating the conditional dis-
tribution of marks p∗(k|t). Once we have estimates for f∗(t) and p∗(k|t), we can effectively address
queries such as: When is the next event likely to occur? What will be the type of the next event,
given that it occurs at a certain time t? How long until an event of type k occurs? .

Additionally, by utilizing f∗(t; θ) and p∗(k|t; θ), we can compute an estimate for the next expected
arrival time (T3) as:

t̃ = E[t] =
∫ ∞

ti−1

tf∗(t; θ)dt, (12)

and estimate the mark of the event at time t (T4) as:

k̃ = argmax
k∈K

p∗(k|t; θ) = argmax
k∈K

λ∗
k(t; θ)

λ∗(t; θ) = argmax
k∈K

λ∗
k(t; θ). (13)

In this paper, our focus will be exclusively on T1, which corresponds to the time prediction task,
as well as T2 and T4, which are referred to as the mark prediction tasks. We will not generate
point estimates for the next expected arrival time (T3) since most of the considered models do not
allow for estimating (12) in closed form. To maintain clarity in notation, we will omit the explicit
dependency of the parametrizations on θ throughout the remainder of the paper.

3 Neural Temporal Point Processes

While simple parametric forms of marked TPPs, such as the Hawkes process, have been used to
model event sequences in a variety of real-world scenarios, they have been criticized for their lack of
flexibility. For instance, events may inhibit the occurrences of future events rather than excite them,
or their influence might not be strictly additive. While previous works proposed modifications of
the Hawkes process to encompass such complementary effects, e.g. excitation and inhibition (Chen
et al., 2019; Costa et al., 2020; Duval et al., 2022), others relied on the expressiveness of neural
networks to capture more complex event dynamics Mei & Eisner (2016). The resulting framework,
called Neural TPPs, defines models that can be characterized by three major components (Shchur
et al., 2021). Recall that S = {e1, ..., en}, where ei = (ti, ki). A neural TPP model involves:
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1. An event encoder which, for each ei ∈ S, generates a fixed size embedding2 ei ∈ Rde ;

2. A history encoder, which for each ei ∈ S, generates a fixed size history embedding
hi ∈ Rdh from past event representations {e1, ..., ei−1};

3. A decoder, which given a query time t and its associated embedding et for ti−1 ≤ t < ti,
parametrizes a function characterizing the TPP (i.e. λ∗

k(t), Λ∗
k(t), or f∗(t, k)) using et,

and/or hi.

The general modeling pipeline is shown in Figure 1. In the following, we will give more details
about each of its major components.

3.1 Event encoding

The task of event encoding consists in generating a representation ei ∈ Rde for each event in S, to
be fed to the history encoder, and eventually to the decoder, at a later stage. This task essentially
boils down to finding an embedding et

i ∈ Rdt for the (inter-)arrival time ti, and an embedding
ek

i ∈ Rdk for the associated mark ki. The event embedding ei is finally obtained through some
combination of et

i and ek
i , e.g. via concatenation:

ei =
[

et
i

ek
i

]
. (14)

Encoding the (inter-)arrival times. A straightforward approach to obtain et
i is to select the

raw inter-arrival times as time embeddings et
i = τi or their logarithms et

i = log τi (Omi et al.,
2019; Shchur et al., 2019; Mei & Eisner, 2016; Du et al., 2016). Inspired by the positional encoding
of Transformer architectures (Vaswani et al., 2017) and their extension to temporal data (Kazemi
et al., 2019), other works exploit more expressive representations by encoding the arrival times as
vectors of sinusoïdals (Enguehard et al., 2020):

et
i =

dt/2−1⊕
j=0

sin (αjti) ⊕ cos (αjti), (15)

where αj ∝ 1000
−2j
dt and ⊕ is the concatenation operator. Variants of sinusoïdal encoding can also

be found in Zhang et al. (2020) and Zuo et al. (2020). Alternatively, learnable embeddings can be
obtained by feeding the inter-arrival times to a fully connected layer (FC) (Enguehard et al., 2020):

et
i = FC (τi) , (16)

where FC : R+ → Rdt .

Encoding the mark: When marks are available, the most common approach to obtain the mark
embeddings is achieved by specifying a learnable embedding matrix Ek ∈ Rdk×K (Du et al., 2016;
Mei & Eisner, 2016; Shchur et al., 2019; Zhang et al., 2020; Zuo et al., 2020; Enguehard et al.,
2020). Given the one-hot encoding ki ∈ {0, 1}K of mark ki, its embedding ek

i ∈ Rdk is retrieved as

ek
i = Ekki. (17)

2Note that ei is used to designate an event, while the bold notation ei is used for the event representation.
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Figure 1: General workflow of neural parametrizations for marked TPPs. Events inter-arrival
times τi and marks ki are encoded into a vector ei, which is in turn used to generate the history
embeddings hi through some form of auto-regressive mechanisms g(·) (e.g. GRU). A query-time
embedding et and the history embeddings are then fed to the decoder to estimate the conditional
density f∗(τi+1) and conditional distribution p∗(ki+1|ti+1) of the next event.

3.2 History encoding

The general principle behind history encoding in the context of neural TPP approaches is to con-
struct a fixed-size embedding hi ∈ Rdh for event ei from its sequence of past events representations
{e1, ..., ei−1}, using some form of auto-regressive mechanism or set aggregator. Naturally, the main
goal when constructing hi is to capture as closely as possible relevant patterns in the process history,
in order to accurately estimate the distributions of arrival times and marks of future events.

Recurrent architectures. A natural choice to handle ordered sequences of tokens is achieved
by employing a form of recurrent architecture, such as an LSTM or a GRU (Shchur et al., 2019;
Du et al., 2016; Mei & Eisner, 2016). In this context, starting from an initial state h1 initialized
randomly, the history embedding hi of an event ei is constructed by sequentially updating the
history embeddings at the previous time steps by using the next event’s representation:

h2 = g
(
h1, e1

)
,

...

hi = g
(
hi−1, ei−1

)
, (18)

where h1 is the initial state and g : Rdh → Rdh refers to the update function of the chosen recurrent
layer.

Self-attention encoders. As an alternative to recurrent architectures, the self-attention mecha-
nism of Transformers (Vaswani et al., 2017) computes the hi’s for each i independently as follows
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(Zhang et al., 2020; Zuo et al., 2020; Enguehard et al., 2020):

hi = SA(qi, Ki, Vi) = W2σR

(
W1ĥT

i + b1
)

+ b2, (19)

ĥi = Softmax
(qT

i Ki√
dq

)
VT

i , (20)

where SA(·) refers to the self-attention mechanism between a query vector qi, a key matrix Ki and
a value matrix Vi defined as

qi = WQei−1, Ki = WK [e1, ..., ei−1], Vi = WV [e1, ..., ei−1], (21)

where WQ, WK ∈ Rdq×de , WV ∈ Rdh×de , W2, W1 ∈ Rdh×dh , b1, b2 ∈ Rdh , and σR is the
ReLU activation function. In essence, the history embedding hi is therefore constructed as a
weighted sum of the representations of the past events, where the attention weights are obtained by
measuring a similarity score (e.g. dot product) between the projection of ei−1, and the projections
of {e1, ..., ei−1}.

As pointed out by Zuo et al. (2020), recurrent architectures may fail to capture long-term depen-
dencies and are difficult to train due to vanishing and exploding gradients. Moreover, due to their
inherently sequential nature, recurrent models forbid parallel processing and are usually trained
using truncated backpropagation through time, which only returns an approximation of the true
gradients. Conversely, architectures based on a self-attention mechanism can compute the history
embeddings hi for each i in parallel, leading to improved computational efficiency. However, since
each hi depends on all events preceding ei, computing such embeddings for all L events of a se-
quence scales in O(L2) time for architectures based on a self-attention mechanism, while it scales
in O(L) time for their recurrent counterparts (Shchur et al., 2021).

3.3 Decoders

As mentioned in Section 2, fully characterizing a marked TPP can be achieved by parametrizing
either of the functions λ∗

k(t), Λ∗
k(t) or f∗(k, t), as any can be uniquely retrieved from the others.

While being mathematically equivalent, a specific choice among these functions leads to particular
advantages, challenges, and constraints, which will be discussed below. Nonetheless, given the
encoding e of a query event e = (t, k) with t > ti and its history embedding hi, the parametrization
is almost systematically carried out by a neural network. We will consider the following state-of-
the-art decoders in our study:

• The Exponential Constant decoder (EC) (Upadhyay et al., 2018) parametrizes a constant
MCIF between two events using a feed-forward network on hi as in (22).

• The MLP decoder (MLP/MC) (Enguehard et al., 2020) parametrizes the MCIF as in (26)
using a feed-forward network on e and hi.

• The Self-Attention decoder (SA/MC) (Enguehard et al., 2020) parametrizes the MCIF as
in (28) by letting e attend to all {h1, ..., hi}.

• The Neural Hawkes decoder (NH) (Mei & Eisner, 2016) parametrizes the MCIF as in (34)
using a set of continuous-time LSTM equations.

9
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• The RMTPP decoder (RMTPP) (Du et al., 2016) separately parametrizes the GCIF as
in (30), and a mark distribution independent of time given the history as in (31).

• The LogNormMix decoder (LNM) (Shchur et al., 2019) separately parametrizes the con-
ditional density of inter-arrival times as a mixture of log-normals as in (44), and the mark
distribution similarly to RMTPP.

• The LogNorm decoder (LN) is defined similarly to LNM, but with a single mixture com-
ponent.

• The FullyNN decoder (FNN) (Omi et al., 2019) parametrizes the cumulative MCIF as in
(52) using a feed-forward network on e and hi.

• The Cumulative Self-Attention decoder (SA/CM) (Enguehard et al., 2020) parametrizes
the cumulative MCIF as in (56) by letting e attend to all {h1, ..., hi}.

• A Hawkes decoder (Hawkes) with exponential kernels, which parametrizes the MCIF as
in (9).

• A simple Poisson decoder (Poisson), which parametrizes a constant MCIF as in (7).

In the following, we will describe and discuss each of the above decoders, except the Poisson and
Hawkes decoders which have already been introduced in Section 2.

EC decoder. The MCIF is assumed to be constant between two events and is parametrized using
a feed-forward network on the history embedding, i.e.

λ∗
k(t) = λ∗

k = σS,k

(
wT

k (σR

(
W1hi + b1

)
+ bk

)
, (22)

where W1 ∈ Rdin×dh and b1 ∈ Rdin , and wk ∈ Rdin and bk are mark-specific weights and biases,
respectively. σS,k is a mark-specific Softplus activation function:

σS,k(x) = sklog
(

1 + exp
(

x

sk

))
, (23)

with sk ∈ R+ ensuring Rλ
1 . The MCIF being independent of time between two events, its cumulative

is given by
Λ∗

k(t) = (t − ti−1)λ∗
k(t), (24)

and the distribution of inter-arrival times is exponential with rate λ∗ =
∑K

k=1 λ∗
k:

f∗(τ) = λ∗ exp(−λ∗τ). (25)

MLP/MC decoder. Although the EC decoder can capture more general patterns than the
Hawkes decoder, it does not allow evolving dynamics between consecutive events. To circumvent
this limitation, the MLP/MC decoder takes as input the concatenation of et (which is a function
of t) and hi. In contrast to the EC decoder, the MCIF can vary between consecutive events:

λ∗
k(t) = µk + σS,k

(
wT

k (σR

(
W1[hi, et] + b1

)
+ bk

)
. (26)

10
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where µk ∈ R+ ensures that Rλ
2 is met. The Softplus activation forbids the computation of the

cumulative MCIF in closed form, requiring numerical integration techniques, such as Monte Carlo,
to approximate its expression:

Λ∗
k(t) ≃ t − ti−1

ns

ns∑
j=1

λ∗
k(sj), (27)

where sj ∼ U [ti−1, t] and ns is the number of Monte Carlo samples.

SA/MC decoder. The MCIF is parametrized by re-employing the same set of equations as (20),
with the only difference being that the query vector is constructed using et. By doing so, this allows
the query event e to attend to previous event representations in Ht:

λ∗
k(t) = µk + σS,k

(
wT

k (SA
(
q, Ki, Vi

)
+ bk

)
, (28)

q = WQet, Ki = WK [h1, ..., hi], WV = Vi[h1, ..., hi], (29)
where WQ ∈ Rdq×dt , WK ∈ Rdq×dh and WV ∈ Rdh×dz , dz being the output dimension of
the attention mechanism. Similarly to the MLP/MC decoder, the cumulative MCIF must be
approximated by numerical integration techniques, e.g. as in (27).

RMTPP decoder. Instead of specifying the MCIF, the RMTPP decoder separately parametrizes
the GCIF λ∗(t) and the mark distribution p∗(k) as:

λ∗(t) = exp
(

wt(t − ti−1) + (wh)Thi + b
)

, (30)

p∗(k) = Softmax
(
Whhi + b

)
k
, (31)

where wt ∈ R+, wh ∈ Rdh , b ∈ R, Wh ∈ RK×dh , and b ∈ RK . The exponential transformation in
(30), along with the positivity of wt, ensure that Rλ

1 and Rλ
2 are met. By assuming the distribution

of marks to be independent of the time given the history of the process, the RMTPP decoder
makes a strong simplifying assumption, which has been criticized in previous works (Enguehard
et al., 2020). However, the exponential in (30) allows us to directly compute the cumulative GCIF
in closed form:

Λ∗(t) = 1
wt

(
exp
(
wt(t − ti−1) + (wh)Thi + b

)
− exp

(
(wh)Thi + b)

)
. (32)

Moreover, as pointed out by Shchur et al. (2019), the RMTPP decoder defines a Gompertz distri-
bution (Wienke, 2010) on the inter-arrival times, with a density given by

f∗(τ) = βη exp (βτ − η exp(βτ) + η) , (33)

with shape η = exp((wh)Thi+b)
wt and scale β = wt.

NH decoder. The MCIF is parametrized using a fully-connected layer on a history embedding
hi(t) that is allowed to vary between consecutive events, i.e:

λ∗
k(t) = σS,k

(
(wk)Thi(t)

)
. (34)

In contrast to a classical discrete-time LSTM, which would only update the history embedding hi

when the event at time ti is observed, a continuous-time LSTM allows the history embedding to

11
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exponentially decay in the interval ]ti−1, ti], making it a function of time. Once (ti, ki) is observed,
the continuous-time LSTM will apply a discrete update to hi(ti), using a modified set of discrete-
time LSTM equations (37)-(43). Specifically, the parametrization of the MCIF can be summarized
as

hi(t) = oi ⊙
(

2σSi

(
2c(t)

)
− 1
)

, (35)

c(t) = c̄i + (ci − c̄i)exp
(

− δi(t − ti−1)
)
, (36)

ii = σSi(Wiki−1 + Uihi−1(ti) + bi), (37)
fi = σSi(Wf ki−1 + Uf hi−1(ti) + bf ), (38)
zi = 2σSi(Wzki−1 + Uzhi−1(ti) + bz) − 1, (39)
oi = σSi(Woki−1 + Uohi−1(ti) + bo), (40)

ci = fi ⊙ c(ti−1) + ii ⊙ zi, (41)
c̄i = fi ⊙ c̄i−1 + ii ⊙ zi, (42)
δi = σS(Wdki−1 + Udhi−1(ti) + bd),

(43)

where ki−1 ∈ {0, 1}K is the one-hot encoding of mark ki−1, wk ∈ Rdh , Wi, Wf , Wz, Wo,
Wd ∈ Rdh×K , Ui, Uf , Uz, Uo, Ud ∈ Rdh×dh , and bi, bf , bz, bo, bd ∈ Rdh . σSi is the
Sigmoïd activation function, and σS is the unmarked formulation of the Softplus activation, i.e.
σS(x) = s log (1 + exp (x/s)) with s ∈ R+. Here also, one must rely on numerical integration
techniques to estimate the cumulative MCIF.

LNM decoder. The conditional density of inter-arrival times is parametrized as a mixture of
log-normal distributions, i.e:

f∗(τ) =
M∑

m=1
pm

1
τσm

√
2π

exp
(

− (log τ − µm)2

2σ2
m

)
, (44)

where pm = Softmax
(
Wphi + bp

)
m

corresponds to the probability that τi was generated by the
mth mixture component, while µm = (Wµhi + bµ)m, σm = exp(Wσhi + bσ)m are the mean
and standard deviation of the mth mixture component, respectively. Wp, Wµ, Wσ ∈ RM×dh and
bp, bµ, bσ ∈ RM , M being the number of mixture components. Defined similarly to equation (31),
the mark distribution p∗(k) is assumed to be conditionally independent of the inter-arrival times
given the history of the process. Although not available in closed-form, the cumulative distribution
of a mixture of log-normals can be approximated with high precision (Abramowitz & Stegun, 1965):

F ∗(τ) =
M∑

m=1

1
2

[
1 + erf

( log τ − µm

σm

√
2

)]
, (45)

where erf(x) = 2√
π

∫ x

0 e−s2
ds is the Gaussian error function. From F ∗(τ), we can retrieve the

cumulative GCIF as:
Λ∗(t) = −log

(
1 − F ∗(τ)

)
. (46)

FNN decoder. A major bottleneck of models parametrizing the MCIF resides in its cumulative
not always being available in closed-form, thus requiring expensive numerical integration techniques.
An elegant way of addressing this challenge is to directly parametrize the cumulative MCIF, from
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which λ∗
k(t) can be easily retrieved through differentiation. The original definition of FullyNN

involved parameterizing Λ∗(t) using a fully-connected network that operated on both the inter-
arrival times and the history embeddings. In the context of a marked setting, this can be expressed
as follows:

Λ∗
k(t) = σS,k

(
wT

k (tanh
(
wt(t − ti−1) + Whhi + b

)
+ bk

)
, (47)

where each weight is constrained to be positive, ensuring condition RΛ
1 and RΛ

4 , i.e. wk ∈ Rdin
+ ,

wt ∈ Rdin
+ , Wh ∈ Rdin×dh

+ , b ∈ Rdin
+ and bk ∈ R+. However, as pointed out by Shchur et al. (2019),

equation (47) fails to satisfy RΛ
2 :

Λ∗
k(ti−1) = σS

(
wT

k (tanh
(
Whhi + b1

)
+ bk

)
> 0, (48)

which in turn yields F ∗(τ = 0) > 0. In other terms, the original FNN model attributes non-zero
probability mass to null inter-arrival times. The original formulation also fails to satisfy RΛ

3 due to
the saturation of the tanh activation function:

lim
t→∞

Λ∗
k(t) = σS

(
din∑
d=1

wk,d + bk

)
< ∞. (49)

To prevent both these shortcomings, Enguehard et al. (2020) proposed to replace the tanh activation
function with a Gumbel-Softplus activation:

σGS,k(x) =
[
1 −

(
1 + αkexp(x)

)− 1
αk
][

1 + σS,k(x)
]
, (50)

with αk ∈ R+. The Gumbel-Softplus activation function being non-saturating (i.e.
lim

x→∞
σGS,k(x) = ∞), using it as a replacement for the tanh activation function in (52) indeed satisfies

RΛ
3 . Finally, RΛ

2 can be satisfied by defining Λ∗
k(t) as

Λ∗
k(t) = G∗

k(t) − G∗
k(ti−1), (51)

G∗
k(t) = σS,k

(
wT

k (σGS,k

(
Wt

1et + Wh
1 hi + b1

)
+ bk

)
, (52)

which defines the generalized corrected version of FullyNN. Note that G∗
k(t) takes now as input any

encoding of a query time et with Wt
1 ∈ Rdin×dt . However, to ensure that RΛ

4 remains satisfied, et

must be monotonic in its input. Therefore, when parametrizing a cumulative decoder, the temporal
event encoding in (15) cannot be used, and the weights of encoding (16) must be constrained to be
positive. From the cumulative MCIF, λ∗

k(t) can finally be retrieved through differentiation:

λ∗
k(t) = d

dt
Λ∗

k(t). (53)

SA/CM decoder. The SA/CM decoder shares a similar set of equations as in (28) to parametrize
the cumulative MCIF. However, alike FullyNN, several modifications of the latter are required
to ensure that the decoder meets the various constraints imposed by Λ∗

k(t). First, the Softmax
activation is replaced by a Sigmoid to satisfy RΛ

4 . Then, the ReLU activation is replaced by a
Gumbel-Softplus, which prevents

d2Λ∗
k(t)

dt2 = dλ∗
k(t)
dt

= 0. (54)
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In other terms, a cumulative model defined with a ReLU activation is equivalent to the EC decoder
in (22) (Enguehard et al., 2020). Moreover, given the saturation of the Sigmoid function, a term
µk(t − ti) with µk ∈ R+ is added to the cumulative MCIF to satisfy RΛ

4 . Note that including
this term is equivalent to adding µk directly to the MCIF. Finally, the Cumulative Self-Attention
decoder is given by

Λ∗
k(t) = G∗

k(t) − G∗
k(ti−1), (55)

G∗
k(t) = µk(t − ti−1) + σS,k

(
wT

k (SA
(
q, Ki, Vi

)
+ bk

)
, (56)

SA(q, Ki, Vi) = W2σGS,k

(
W1ẑT

i + b1
)

+ b2, (57)

ẑi = Sigmoid
(qTKi√

dq

)
VT

i ,

where W1, W2 ∈ Rdz×dz
+ , b1, b2 ∈ Rdz

+ , and where each entry of WK , WV , WQ, wk and bk is
now constrained to be positive. The query q, keys Ki, and values Vi are given in (29). As before,
the MCIF can be retrieved through differentiation.

4 Related Work

Neural Temporal Point Processes. Simple parametric forms of TPP models, such as the self-
exciting Hawkes process (Hawkes, 1971), or the self-correcting process (Isham & Westcott, 1979),
rely on strong modeling assumptions, which inherently limits their flexibility. To capture complex
dynamics of real-world processes, the ML community eventually turned to the latest advances in
neural modeling and proposed new TPP models based on various neural-network architectures.
For instance, Du et al. (2016) proposed to model the inter-arrival time distribution as a Gompertz
distribution with a history encoding based on a discrete-time RNN. On a similar line of work, Mei
& Eisner (2016) extended this idea by parametrizing the MCIF using a modified continuous-time
RNN that allows the history to evolve between consecutive events. Given their huge success as
sequence encoders in NLP, Zuo et al. (2020) and Zhang et al. (2020) employed a self-attention
mechanism to encode the process history. Since differentiation is often easier to carry out than
integration, FullyNN (Omi et al., 2019) instead proposed to directly parametrize the cumulative
GCIF using a feed-forward network, avoiding expensive numerical integration techniques. Inspired
by FullyNN, Enguehard et al. (2020) corrected and extended the FullyNN model to the marked case,
and proposed a generic self-attention decoder that can be employed to parametrize the cumulative
MCIF, but also the MCIF itself. Instead of modeling the (cumulative) MCIF, Xiao et al. (2017b)
directly modeled the conditional density of inter-arrival times with a Gaussian distribution, while
Shchur et al. (2019) relies on a mixture of log-normals whose parameters are obtained from an RNN-
encoded history. To further alleviate the strong assumption of independence of times and marks
given the history, Waghmare et al. (2022) proposed to model conditional mixtures of log-normals for
each mark separately. Finally, Ben Taieb (2022) proposed to parametrize the conditional quantile
function using recurrent neural splines, enabling analytical sampling of inter-arrival times. Alter-
natives to NLL optimization techniques for training neural TPPs include β−VAE objectives (Boyd
et al., 2020), CRPS (Ben Taieb, 2022), reinforcement learning (De et al., 2019), noise contrastive
estimation (Guo et al., 2018; Mei et al., 2020) and adversarial learning (Xiao et al., 2017a; 2018).
For surveys on recent advances in neural TPP modeling, refer to Shchur et al. (2021) and Yan
(2019).
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Experimental studies. Most papers in the neural TPP literature mainly focused on proposing
methodological improvements for modeling streams of event data, often inspired by contemporary
advances in neural network representation learning. While these contributions are paramount to
driving future progress in the field of TPP, few studies have been carried out to identify real sources
of empirical gains across neural architectures and highlight future interesting research directions.
The empirical study of Lin et al. (2021) is the closest to our work. While they also compared the
impact of various history encoders and decoders, they did not discuss the influence of different event
encoding mechanisms. However, we found that specific choices for this architectural component can
lead to drastic performance gains. Additionally, they did not include simple parametric models to
their baselines, such as the Hawkes decoder. Considering these models in an experimental study
allows however to fairly evaluate the true gains brought by neural architectures. We also assess the
calibration of neural and non-neural TPP models on the distribution of arrival times and marks,
and our experiments are conducted across a wider range of real-world datasets. Finally, our results
are supported by rigorous statistical tests. Lin et al. (2022) also conducted empirical comparisons
in the context of neural TPPs but their attention was focused on deep generative models which are
orthogonal to our work.

5 Experimental study of neural TPP models

We carry out a large-scale experimental study to assess the predictive accuracy of state-of-the-art
neural TPP models on 15 real-world event sequence datasets in a carefully designed unified setup.
We also consider classical parametric TPP models, such as Hawkes and Poisson processes, as well
as synthetic Hawkes datasets. In particular, we study the influence of each major architectural
component (event encoding, history encoder, decoder parametrization) for both time and mark
prediction tasks. The next section summarizes the variations of the architectural components we
have considered in our experimental study. Section 5.2 presents the datasets including summary
statistics and pre-processing steps. Section 5.3 describes our experimental setup. Finally, Section
5.4 presents the evaluation metrics and statistical tools used to assess the accuracy of the considered
models, and Section 5.5 describes the procedure employed to aggregate the results across multiple
datasets.

5.1 Models

To ease the understanding of the following sections, a brief summary of the different architectures
considered in our experiments is presented below. Table 1 summarizes the correspondence between
all variations of event encoding, history encoder, and decoder, and their mathematical expressions.

Event encoding mechanisms. For the event encoding mechanism, we consider the raw inter-
arrival times τ (TO), the logarithms of inter-arrival times (LTO), a temporal encoding of arrival
times (TEM), and a learnable encoding of inter-arrival times (LE). Additionally, we include all
their variants resulting from the concatenation of the mark embeddings ek, i.e. CONCAT (TO
and ek), LCONCAT (LTO an ek), TEMWL (TEM and ek), and LEWL (LE and ek).

History encoders. To encode a process’ history, we employ a GRU, and a self-attention mech-
anism (SA). Additionally, we consider a constant history encoder (CONS), which systematically
outputs hi = 1dh

. Note that a decoder equipped with this encoder parametrizes a function in-
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Table 1: Summary of the various architectures components considered in the comparative study.

Component Name Acronym Parametrization

Event encoding

Times TO ei = τi

Log-times LTO ei = log τi

Concatenate CONCAT et
i = τi, ek

i as in (17), ei as in (14)
Log-concatenate LCONCAT et

i = log τi, ek
i as in (17, ei as in (14

Temporal TEM ei as in (15)
Temporal with labels TEMWL et

i as in (15), ek
i as in (17), ei as in (14)

Learnable LE ei as in (16)
Learnable with labels LEWL et

i as in (16), ek
i as in (17), ei as in (14)

Encoder
GRU GRU hi = GRU(e1, ..., ei−1) as in (18)

Self-attention SA hi as in (20)
Constant CONS hi = 1dh

Component Name Acronym Parametrization Closed-form MLE

Decoder

Exponential constant EC λ∗
k as in (22) ✓

MLP MLP/MC λ∗
k(t) as in (26) ✗

FullyNN FNN Λ∗
k(t) as in (52) ✓

LogNormMix LNM f∗(τ) as in (44), p∗(k) in (31) ✓

LogNorm LN f∗(τ) as in (44) with M = 1, p∗(k) in (31) ✓

RMTPP RMTPP λ∗(t) as in (30), p∗(k) in (31) ✓

Neural Hawkes NH λ∗
k(t) as in (34) ✗

Self-attention SA/MC λ∗
k(t) as in (28) ✗

Cumulative Self-attention SA/CM Λ∗
k(t) as in (56) ✓

Hawkes Hawkes λ∗
k(t) as in (9) ✓

Poisson Poisson λ∗
k(t) as in (7) ✓

dependent of the process’ history and reduces essentially to a renewal process (Lindqvist et al.,
2003).

Decoders. The decoders considered in this experimental study can be classified on the basis of the
function that they parametrize, as well as on the assumptions they make regarding the distribution
of inter-arrival times and marks. As described in Section 3.3, decoders that parametrize the MCIF
are the EC , MLP/MC , SA/MC, NH, Hawkes and Poisson decoders. On the other hand,
decoders that directly parametrize the cumulative MCIF are the FNN and SA/CM decoders.
Finally, RMTPP separately parametrizes the GCIF and the distribution of marks, while LNM
and its single mixture version, LN, separately parametrize the density of inter-arrival times and
the distribution of marks. For these last three decoders, the distribution of marks is assumed to be
independent of the time, conditional on the history of the process.

Although not required to define a valid parametrization of a marked TPP, we also consider for
completeness the setting where a constant baseline intensity term µk (B) is added to the MCIF of
the EC and RMTPP decoders. We define a model as a specific choice of event encoding mechanism,
history encoder, and decoder, e.g. GRU-MLP/MC-TO corresponds to a model using the GRU
encoder to build hi, the MLP/MC decoder to parametrizes λ∗

k(t), and where the events are encoding
using the TO event encoding. While in most cases, any variation of a component can be seamlessly
associated with any other variation of other components, some combinations are either impossible
or meaningless. Indeed, all cumulative decoders (SA/CM and FullyNN) cannot be trained with
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the TEM or TEMWL event encodings, as both would violate the monotonicity constraint of the
cumulative MCIF. Moreover, as all event encodings are irrelevant with respect to the CONS history
encoder, all CONS-EC models are equivalent. For the NH decoder, we stick to the original model
definition, as it can be hardly disentangled into different components. A complete list of the
considered combinations is given in Table 14 in Appendix C.

We further classify the different models into three categories: parametric, semi-parametric, and non-
parametric. Parametric TPP models include classical (i.e. non-neural) architectures, characterized
by strong modeling assumptions and hence, low flexibility. We consider the Hawkes and Poisson
decoders as parametric baselines. On the other hand, semi-parametric models include architectures
that still make assumptions regarding the distribution of inter-arrival times, but their parameters
are obtained from the output of a neural network. All models equipped with LNM, LN, RMTPP, or
EC decoders are deemed semi-parametric. All remaining baselines, i.e. FNN, MLP/MC, SA/MC,
SA/CM, and NH, are considered non-parametric models.

5.2 Datasets

Real-world datasets. A total of 15 real-world datasets containing sequences of various lengths
are used in our experiments, among which 7 possess marked events. A brief description is presented
below, while their general statistics are summarized in Tables 2 and 3.

• Marked Datasets

– LastFM 3 (Kumar et al., 2019) : Records of users listening to songs. Each sequence
corresponds to a user, and the artist of the song is the mark.

– MOOC 3 (Kumar et al., 2019): Records of student’s actions on an online course
system. Each sequence corresponds to a user, and the type of action is the mark.

– Wikipedia 3 (Kumar et al., 2019) : Records of Wikipedia pages’ edits. Each se-
quence corresponds to a Wikipedia page, and marks relate to the user that edited the
corresponding page.

– MIMIC2 4 (Du et al., 2016) : Clinical records of patients of an intensive care unit
for seven years. Each sequence corresponds to a patient, and marks describe the type
of disease.

– Github 5 (Trivedi et al., 2018) : Records of users’ actions on the open-source platform
Github during the year 2013. Each sequence corresponds to a user, and the marks
describe the action performed (Watch, Star, Fork, Push, Issue, Comment Issue, Pull
Request, Commit).

– Stack Overflow 7 (Du et al., 2016) : Records of the time users received a specific
badge on the question-answering website Stack Overflow. Each sequence corresponds
to a user, and the mark is the badge received.

– Retweets 4 (Mei & Eisner, 2016) : Streams of retweet events following the creation
of an original tweet. Each sequence corresponds to a tweet, and the category (i.e.
"small", "medium", "large") to which a retweeter belongs corresponds to the mark.

3https://github.com/srijankr/jodie/
4https://github.com/babylonhealth/neuralTPPs
5https://github.com/uoguelph-mlrg/LDG
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Table 2: Marked datasets statistics after pre-processing. "Sequences (%)" and "Events (%)" re-
spectively correspond to the number of sequences and events that remain in the dataset after the
pre-processing step. "MSL" is the mean sequence length.

Sequences Sequences (%) Events Events (%) MSL Max Len. Min Len. Marks

Wikipedia 590 0.59 30472 0.19 51.6 1163 2 50
MOOC 7047 1.00 351160 0.89 49.8 416 2 50
LastFM 856 0.92 193441 0.15 226.0 6396 2 50
MIMIC2 599 0.84 1812 0.68 3.0 32 2 43
Github 173 1.00 20657 1.00 119.4 4698 3 8

Stack Overflow 7959 1.00 569688 0.99 71.6 735 40 22
Retweets 24000 1.00 2610102 1.00 108.8 264 50 3

Table 3: Unmarked datasets statistics after pre-processing. "MSL" is the mean sequence length.

Sequences Events MSL Max Len. Min Len.

Reddit Subs. 1094 1235128 1129.0 2658 362
Reddit Ask Comments 1355 400933 295.9 2137 4

Taxi 182 17904 98.4 140 12
Twitter 1804 29862 16.6 169 2

Yelp Toronto 300 215146 717.2 2868 424
Yelp Airport 319 9716 30.5 55 9

Yelp Mississauga 319 17621 55.2 107 3
PUBG 3001 229703 76.5 97 26

• Unmarked Datasets

– Twitter 6 (Shchur et al., 2020) : Records of tweets made by a user over several years.
– PUBG 6 (Shchur et al., 2020) : Records of players’ death in the online game PUBG.

Each sequence corresponds to a user.
– Yelp Airport 6, Mississauga 6 (Shchur et al., 2020), and Toronto 7 (Shchur et al.,

2019) : Records of users’ reviews on the platform Yelp for the McCarran airport,
Toronto city and Mississauga city respectively. Each sequence corresponds to a user.

– Reddit Ask Comments 6(Shchur et al., 2020) : Records of comments in reply to
Reddit threads within 24hrs of the original post submission. Each sequence corre-
sponds to a thread.

– Reddit Subs 6(Shchur et al., 2020) : Records of submissions to a political sub-Reddit
in the period from 01.01.2017 to 31.12.2019. Each sequence corresponds to a 24hrs
window.

– Taxi 6 (Shchur et al., 2020) : Records of taxi pick-ups in the South of Manhattan.

6https://github.com/shchur/triangular-tpp
7https://github.com/shchur/ifl-tpp
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Pre-processing. Some marked datasets, such as Wikipedia and LastFM, originally presented a
very large amount of marks, which distributions turn out to be highly spread across their respective
domains. This observation raises two issues: (1) Some marks are therefore highly under-represented,
rendering the task of learning their underlying distribution difficult, and (2), as each mark is
associated with an MCIF, the computational requirements drastically increase with the number of
marks, which is even more exacerbated when Monte Carlo samples need to be drawn. With the
incentive to avoid either of these two bottlenecks, each marked dataset is filtered to only contain
events belonging to the 50 most represented marks. The resulting sequences containing less than
two events are further removed from the dataset, which makes the number of distinct marks in
MIMIC2 drop from 75 to 43. Finally, to avoid numerical instabilities, the arrival times of events
are scaled in the interval [0,10]. Specifically, we compute ti,scaled = 10ti/tmax, where tmax is the
largest observed timestamp in the dataset. Unmarked datasets do not go through any processing
steps, at the exception of the scaling and removal of sequences containing less than two events.

As observed in Tables 2 and 3, the considered datasets are relatively diverse in their characteristics.
Indeed, some datasets, such as Yelp Toronto or LastFM, possess a relatively short number of very
long sequences, while others, such as Twitter or MOOC, show the exact opposite characteristics.
Figure 2 shows the distributions of the inter-arrival times logarithms across all sequences for all
real-world datasets, as well as the mark distribution across all sequences for marked datasets. As
observed, the distribution of the pooled (log) inter-arrival times differ significantly from one dataset
to the other, in some cases presenting characteristics such as multimodality (LastFM, MOOC,
Wikipedia, Yelp Toronto, PUBG) or large variance (MOOC, Wikipedia, Github, Yelp Toronto).
The distribution of pooled marks also shows different characteristics. While the marks look evenly
spread across their domains on LastFM, MOOC, and Wikipedia, their distribution appears sharper
on Github, MIMIC2, Stack Overflow, and Retweets. Such diversity should be empirically beneficial,
as it would allow us to assess the models’ performance across a wider range of real-life applications.
In Figures 12, 13 and 14 of Appendix D, we show the distribution of inter-arrival times and marks
for some randomly sampled sequences in each dataset.

Synthetic datasets. We generate a synthetic dataset from the multidimensional Hawkes process
with the exponential kernel as in (9) with the following parameter values:

µ =


0.2
0.6
0.1
0.7
0.9

 α =


0.25 0.13 0.13 0.13 0.13
0.13 0.35 0.13 0.13 0.13
0.13 0.13 0.2 0.13 0.13
0.13 0.13 0.13 0.3 0.13
0.13 0.13 0.13 0.13 0.25

 β =


4.1 0.5 0.5 0.5 0.5
0.5 2.5 0.5 0.5 0.5
0.5 0.5 6.2 0.5 0.5
0.5 0.5 0.5 4.9 0.5
0.5 0.5 0.5 0.5 4.1

 ,

where the matrix α was scaled to have a spectral radius of approximately 0.8, guaranteeing station-
arity of the process (Bacry et al., 2020). The process essentially corresponds to a marked process
with K = 5 marks, from which we simulate 5 distinct datasets of 1000 sequences using the library
tick (Bacry et al., 2018).

5.3 Experimental Setup

For each real-world and synthetic dataset, we randomly split the sequences into train/validation/test
splits of sizes 60%/20%/20%, respectively. The models are trained to minimize the NLL in (11)
on the training sequences using mini-batch gradient descent (Suvrit et al., 2011). The NLL on
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Figure 2: Distribution of log τ (top left) and mark distribution (top right) for marked datasets,
after pre-processing. For unmarked datasets, only the distribution of log τ (bottom) is reported.

the validation sequences is evaluated at each epoch, and the training procedure is interrupted if
the number of epochs reaches 500, or if no improvement is observed for 20 consecutive epochs. In
the latter case, the model’s parameters are reverted to their state of lowest validation loss. For all
models, optimization is carried out using the Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 10−3. If no improvement in validation loss is observed for 5 consecutive epochs, the
learning rate is divided by a factor of 2, and training continues. We repeat this protocol 5 times
using different random train/validation/test splits.

We conduct experiments with different values of event encoding dimension, specifically {4, 8, 16, 32},
as well as varying the number of hidden units for fully-connected layers in {8, 16, 32}. For models
utilizing GRU, SA encoder, and SA/MC decoder, we explore different numbers of hidden units
in {8, 16, 32, 64}, and consider one or two layers. In the case of SA encoder and SA/MC de-
coder, we consider one or two heads. Additionally, the number of mixtures in LNM is explored
in {8, 16, 32, 64}. To determine the model’s hyperparameters, we follow a specific procedure. For
each model and dataset split, we randomly select five hyperparameter configurations. The model is
trained using each of these configurations, and we select the configuration with the lowest validation
loss. These five best configurations (which may differ depending on the split) are then evaluated
on the respective test set. Finally, we report the average test metrics as described in the following
section.
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5.4 Evaluation metrics

We consider a range of metrics to assess the performance of the model in terms of the time prediction
task, which involves estimating f∗(τ), and the mark prediction task, which involves estimating
p∗(k|t) and predicting the mark of the next event. As discussed in Section 2, reporting a single
NLL metric gathers the contributions of both inter-arrival times and marks, and in effect, obscures
how a model actually performs on fitting the two distributions separately. Consequently, we split
the NLL into NLL-T and NLL-M terms, highlighting the contribution of each term to the total
NLL metric. Given a set of test sequences S = {S1, ..., SL}, where each sequence Sl contains nl

events, the average test NLL is given by

L(θ; S) = − 1
L

L∑
l=1

nl∑
i=1

log f∗(tl,i; θ) + Λ∗(T ; θ)︸ ︷︷ ︸
NLL-T

− 1
L

L∑
l=1

nl∑
i=1

log p∗(kl,i|tl,i; θ)︸ ︷︷ ︸
NLL-M

. (58)

On the other hand, a model’s ability to predict the next event’s mark is measured with the F1-
score.

Calibration. TPP models are probabilistic models which estimate predictive distributions over
arrival times and marks. While achieving a low out-of-sample NLL score is crucial, it is also
important to ensure that the predictive distributions are well-calibrated. Calibration, in the context
of forecasting theory, refers to the statistical consistency between the predicted distribution and the
observed outcomes (Gneiting et al., 2007). Formally, a model that outputs a predictive CDF F ∗(τ)
(which may be retrieved from f∗(τ), λ∗(t) or Λ∗(t)) is (unconditionally) probabilistically calibrated
if (Dawid, 1984; Kuleshov et al., 2018):

P
(
F ∗(τ) ≤ p

)
= p, ∀p ∈ [0, 1], (59)

where the probability is taken over τ and Ht. For example, if a predictive distribution is well-
calibrated, it means that a 90% prediction interval for inter-arrival times would, on average, contains
the observed inter-arrival times 90% of the time. Similarly, in the context of mark prediction,
probabilistic calibration is defined as (Guo et al., 2017):

P
(
k̃ = k̄ | p∗(k̃|t) = p

)
= p, ∀p ∈ [0, 1], (60)

where k̃ and k̄ are the predicted and true mark at time t, respectively. Intuitively, when we say
a model is calibrated with respect to the mark distribution, it means that 90% of the predictions
made with a confidence level of 0.9 should match the observed mark, on average.

We measure probabilistic calibration for the arrival time distribution using the Probabilistic
Calibration Error (PCE), defined as (Dheur & Ben Taieb, 2023):

PCE = 1
M

M∑
m=1

∣∣∣∣∣
n∑

i=1

1[F ∗(τi) ≤ pm]
n

− pm

∣∣∣∣∣ , (61)

where pm = m
M ∈ [0, 1] are specific probability levels, n =

∑L
l=1 nl, and where we set M = 50. For

the mark distribution, we report the Expected Calibration Error (ECE) (Naeini et al., 2015)
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defined as:

ECE = 1
M

M∑
j=1

∣∣∣acc(Bj) − conf(Bj)
∣∣∣, (62)

where each prediction k̃ is assigned to the jth out of J bins (obtained by discretizing the interval
[0, 1] in J equal-size bins) if p∗(k̃|t) lies in the interval [ j−1

J , j
J ]. Bj is the set of predictions that fell

within bin j, acc(Bj) corresponds to the model’s accuracy within bin j, and conf(Bj) is the average
confidence level of all predictions that fell within bin j. We set J = 10, and lower PCE and ECE
are better.

Reliability diagrams. A disadvantage with PCE and ECE metrics is that information regarding
the calibration error at individual probability levels p1, ..., pM , or within individual bins B1, ..., BJ ,
is lost. Reliability diagrams are visual tools that can be used to assess the probabilistic calibration of
a model at a fine-grained level for both continuous and discrete distributions. For the distribution of
inter-arrival times, a reliability diagram is obtained by plotting the empirical CDF

∑n
i=1

1[F ∗(τi)≤pm]
n

in (61) against all probability levels pm. For the distribution of marks, it is obtained by plotting
acc(Bj) against conf(Bj) for all Bj . In both cases, a probabilistically calibrated model should align
with the diagonal line, and any significant deviation from it corresponds to miscalibration (Gneiting
et al., 2007; Guo et al., 2017).

Statistical comparisons. We further conduct statistical pairwise comparisons between all de-
coders, for each metric separately. First, Friedman test (Friedman, 1937; 1940) is employed to
assess of at least one statistical difference among all decoders. If the null hypothesis is rejected
at the α = 0.05 significance level, we proceed with comparing each decoder against each other,
using Holm’s posthoc test (Holm, 1979) to account for multiple hypothesis testing. The outcome of
the pairwise comparisons is displayed on critical difference (CD) diagrams, which show the average
rank of a model on a metric of interest across all datasets, as well as groups of models that are not
statistically different from one another at a given significance level. Refer to Demšar (2006); García
& Herrera (2008) for additional details.

5.5 Results Aggregation

Given the high number of variations per model’s component, the number of possible combinations
renders the comparison of all individual models across every dataset unmanageable. To overcome
this challenge, we aggregate the model results for each metric separately across all datasets as
follows. When comparing different event encodings, we first group all models that are equipped
with a specific decoder variation (e.g. MLP/MC). Then, among this decoder group, we further
group all models by event encoding variations (e.g. TO-Any history encoder-MLP/MC). We then
compute the average score of that event encoding-decoder group on a given dataset with respect to
each metric. Finally, for each metric, we rank this encoding-decoder group against other encoding-
decoder groups based on their average score on the same dataset. We apply this operation for each
dataset separately and report the average and median scores, as well as the average rank of that
component variation group across all datasets.

Moreover, as the scale of the NLLs (NLL-T and NLL-M) vary significantly from one dataset to
another, we standardize their values on each dataset separately prior to applying the aggregation
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procedure above. For each model, we compute its standardized NLL (-T or -M) as

NLLm
d − md

IQR , (63)

where NLLm
d is the NLL score of model m on dataset d, while md and IQR are the median and

inter-quartile ranges of NLL scores for all models on dataset d, respectively.

6 Results and Discussion

Tables 4 and 5 present the average results across all marked datasets for different variations of
decoders and event encoding/history encoders, respectively. Table 6 displays the results for the
combination of architectural components that achieved the lowest NLL-T and NLL-M on average
across all marked datasets and decoders. Appendix A provides the same results for unmarked
datasets, while Appendix B includes additional raw metrics and standard errors for each dataset.
In the tables, the "Mean" and "Median" columns represent the average and median aggregated
scores, respectively. The "Rank" column indicates the average rank across all marked datasets,
as explained in the previous section. For the subsequent discussion, we will focus on the "Mean"
column.

We would like to note that while these tables include all marked datasets, we found that certain
datasets (MIMIC2, Stack Overflow, Taxi, Reddit Subs, Reddit Comments, Yelp Toronto, and Yelp
Mississauga) may not be suitable for benchmarking neural TPP models, as most decoders achieve
competitive performance on them. We urge researchers to exercise caution when using these datasets
in future studies, and we will discuss this concern later in this section. For completeness, we have
included the results of the aggregation procedure with these datasets excluded in Appendix F, and
we found no significant differences in the results.

Analysis of the event encoding. Comparing the results in Table 4, we aim to provide answers
to the two following questions: (1) Are vectorial representations of time better for estimating the
inter-arrival time distribution? (2) Do we need to encode past mark occurrences to better model the
distribution of future marks?

(1) We observe that vectorial representations of time (i.e. TEM and LE in opposition to TO and
LTO) improve the NLL-T and PCE scores for the EC and both SA decoders. Given that a model
equipped with the EC decoder only uses the event encoding mechanism at the history encoding
stage, this finding suggests that GRU and SA encoders rely on expressive transformations of time to
capture patterns of event occurrences. However, we observed that the GRU encoder is rather stable
with respect to the time encoding employed, while the performance of the SA encoder drastically
decreases with TO or LTO encodings. Added to the fact that both SA decoders only perform
well when using TEM and LE, we conclude that self-attention mechanisms must be combined with
vectorial representations of time to yield good performance in the context of neural TPP models.

Furthermore, a log transformation of the inter-arrival times (i.e. LTO) improves performance on
the same metrics for the RMTPP, FNN and MLP/MC decoders. Using the LTO encoding in
combination with the RMTPP decoder effectively defines an inverse Weibull distribution for the
inter-arrival times (Kleiber & Kotz, 2003). It appears to be a better fit for the data than the
Gompertz distribution from the original formulation of RMTPP.

23



Published in Transactions on Machine Learning Research (06/2023)

Moreover, for FNN and MLP/MC decoders, we found that the last Softplus activation prevents the
gradient of the GCIF to take large values for very short inter-arrival times. However, in many of the
considered datasets, most events occur in packs during extremely short time spans, requiring the
GCIF to change quickly between two events. The LTO encoding in combination with the Softplus
activation allows steeper gradients for short inter-arrival times and thus enables rapid changes in
the GCIF. As a result, the FNN and MLP/MC decoders can reach lower NLL-T with the LTO
encoding.

(2) Including a mark representation in the event encoding generally improves performance in terms
of NLL-T and PCE when moving from TO to CONCAT and from LTO to LCONCAT. On the
one hand, this observation suggests that information contained in previous marks does help the
model to better estimate the arrival times of future events. However, we observe that in most cases,
TEMWL and LEWL encodings show higher NLL-T compared to their TE and LE counterparts.
Therefore, relevant information contained in previous marks appears less readily exploitable by the
models when the mark embedding is concatenated to a vectorial representation of time.

All decoders improve substantially with respect to the NLL-M, ECE, and F1-score metrics when
the mark is included in the event encoding. While expected, this finding confirms that expressive
representations of past marks are paramount to predicting future marks.

Analysis of the history encoder. From the results of Table 5, we observe that models equipped
with a GRU history encoder yield overall better performance with respect to all time and mark-
specific metrics compared to ones equipped with a SA encoder. While self-attention mechanisms
have gained increasing popularity since their introduction by (Vaswani et al., 2017) for sequence
modeling tasks, we found that they are on average less suited than their RNN counterparts in
the context of TPPs. Specifically, the GRU encoder is more stable with respect to the choice of
event encoding mechanism, while the SA encoder requires vectorial event representation to achieve
good performance. Furthermore, the constant (CONS) history-independent encoder systematically
achieves the worst results with respect to all metrics. This observation confirms the common as-
sumption that future event occurrences associated with real-world TPPs indeed depend on past
arrival times and marks, and hence better predictive accuracy can be achieved with better repre-
sentations of the observed history.

Analysis of the decoder. On Table 6, we report for each decoder separately the combination
that yielded the best performance with respect to the NLL-T (top rows) and the NLL-M (bottom
rows), on average across all marked datasets. While we previously explained that some variations
of event encoding and history encoders worked on average better for a given decoder, it does not
necessarily mean that the best combination includes that variation. Moreover, we find that a single
combination does not perform equally well on both metrics separately. In the following, we will
thus focus our discussion on the top-row models for time-related metrics (NLL-T, PCE), and on
bottom-row models for the mark-related ones (NLL-M, ECE, F1-score).

As a first observation, we note that LNM achieves the lowest NLL-T, outperforming all other base-
lines. The difference in performance with the LN decoder further suggests that the assumption of
log-normality for the distribution of the inter-arrival times is not a sufficient inductive bias by itself
and that the additional flexibility granted by the mixture is necessary to achieve a lower NLL-T.
Additionally, most neural baselines achieve on average a lower NLL-T than their parametric coun-
terparts, indicating that high-capacity models are more amenable to capturing complex patterns in
real-world event data.
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Table 4: Average and median scores, as well as average ranks per decoder and variation of event
encoding, for marked datasets. Best results are highlighted in bold. Among others, our key insights
include that (1) the SA/MC and SA/CM decoders achieve significantly lower NLL-T and PCE when
combined with vectorial representations of time (i.e. TEM and LE) compared to the TO and LTO
encodings, (2) in comparison to the TO encoding, LTO significantly improves performance on the
NLL-T and PCE for the RMTPP, FNN and MLP/MC decoders, and (3) including a representation
of past observed marks when encoding the history (CONCAT, TEMWL, LEWL) is paramount to
achieve good performance with respect to the NLL-M, ECE and F1-score for all decoders. Refer to
text for more details, and to Section 5.5 for details on the aggregation procedure.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

EC-TO 0.59 0.56 6.5 0.2 0.23 6.25 0.19 0.21 6.5 0.44 0.44 7.12 0.19 0.17 6.88
EC-LTO 0.7 0.57 7.25 0.2 0.23 6.38 0.15 0.17 5.5 0.44 0.45 7.0 0.19 0.17 7.25

EC-CONCAT 0.13 0.14 2.5 0.17 0.15 2.25 -0.51 -0.75 2.75 0.34 0.31 1.88 0.3 0.28 2.12
EC-LCONCAT 0.36 0.29 4.25 0.19 0.2 4.75 -0.45 -0.66 3.5 0.34 0.3 2.75 0.28 0.27 2.88

EC-TEM 0.2 0.17 4.38 0.18 0.15 4.5 0.18 0.2 6.38 0.42 0.42 6.12 0.2 0.18 5.88
EC-TEMWL 1.48 0.3 4.25 0.19 0.17 4.88 -0.67 -0.78 2.0 0.33 0.27 2.38 0.3 0.29 1.88

EC-LE 0.05 0.11 3.0 0.18 0.15 2.88 0.15 0.15 5.38 0.41 0.42 5.38 0.2 0.18 5.75
EC-LEWL 0.17 0.19 3.88 0.18 0.15 4.12 -0.33 -0.59 4.0 0.35 0.35 3.38 0.29 0.28 3.38

LNM-TO -0.95 -0.57 6.0 0.02 0.02 5.38 0.06 0.11 6.88 0.44 0.45 6.88 0.19 0.17 7.62
LNM-LTO -0.58 -0.59 6.25 0.02 0.01 5.5 0.03 0.06 6.38 0.44 0.46 7.25 0.19 0.17 6.5

LNM-CONCAT -1.14 -0.98 2.0 0.02 0.01 4.0 -2.25 -1.47 1.38 0.25 0.21 1.75 0.39 0.35 1.5
LNM-LCONCAT -0.83 -0.83 2.62 0.02 0.01 2.12 -1.87 -1.18 2.88 0.29 0.25 2.75 0.34 0.31 2.88

LNM-TEM -0.87 -0.79 4.75 0.02 0.01 4.5 0.03 0.05 6.62 0.42 0.44 5.75 0.2 0.18 6.0
LNM-TEMWL -0.83 -0.87 4.75 0.03 0.02 4.12 -1.99 -1.49 2.25 0.28 0.25 2.12 0.36 0.32 2.25

LNM-LE -1.11 -0.78 5.12 0.02 0.02 6.12 0.0 0.02 6.12 0.42 0.44 6.12 0.2 0.18 5.88
LNM-LEWL -0.95 -0.92 4.5 0.02 0.01 4.25 -1.89 -1.18 3.5 0.3 0.28 3.38 0.32 0.29 3.38

FNN-TO 0.96 0.68 4.5 0.21 0.28 4.5 0.3 0.34 4.5 0.46 0.47 5.25 0.17 0.17 5.25
FNN-LTO -0.32 -0.31 2.0 0.03 0.02 2.12 0.05 0.01 3.75 0.4 0.42 2.25 0.21 0.19 2.62

FNN-CONCAT 0.86 0.45 4.38 0.21 0.27 4.5 0.06 0.02 2.88 0.43 0.46 3.5 0.19 0.19 3.0
FNN-LCONCAT -0.57 -0.66 1.0 0.03 0.02 1.62 -0.99 -0.69 2.12 0.31 0.35 1.75 0.26 0.23 1.38

FNN-LE 0.87 0.53 4.25 0.21 0.29 3.75 0.27 0.31 4.12 0.46 0.47 4.25 0.17 0.16 4.62
FNN-LEWL 0.95 0.41 4.88 0.21 0.29 4.5 0.14 0.12 3.62 0.45 0.46 4.0 0.18 0.18 4.12

MLP/MC-TO 0.11 0.22 6.0 0.16 0.16 6.38 0.36 0.33 6.75 0.41 0.4 6.75 0.2 0.18 7.25
MLP/MC-LTO -0.16 -0.14 4.0 0.09 0.06 1.88 0.44 0.25 6.75 0.39 0.42 6.0 0.21 0.18 6.0

MLP/MC-CONCAT 0.0 0.06 4.88 0.16 0.13 5.62 -0.16 -0.26 2.62 0.33 0.34 3.38 0.28 0.29 3.12
MLP/MC-LCONCAT -0.34 -0.28 2.25 0.09 0.07 2.0 -0.19 -0.42 3.25 0.29 0.28 2.38 0.28 0.28 2.88

MLP/MC-TEM 0.01 -0.01 5.5 0.15 0.13 5.75 0.26 0.23 5.5 0.4 0.41 6.38 0.2 0.18 6.5
MLP/MC-TEMWL 0.29 0.36 7.25 0.18 0.17 7.62 -0.45 -0.45 2.62 0.34 0.33 2.75 0.3 0.29 2.5

MLP/MC-LE -0.2 -0.19 3.12 0.13 0.11 3.12 0.37 0.22 5.62 0.38 0.37 6.0 0.21 0.19 5.5
MLP/MC-LEWL -0.18 -0.16 3.0 0.13 0.11 3.62 -0.42 -0.35 2.88 0.29 0.26 2.38 0.3 0.28 2.25

RMTPP-TO 0.15 0.23 6.75 0.16 0.16 6.75 0.11 0.12 6.25 0.42 0.43 7.12 0.19 0.18 7.12
RMTPP-LTO -0.19 -0.19 4.62 0.06 0.05 3.25 0.09 0.07 6.25 0.42 0.42 7.0 0.19 0.18 6.38

RMTPP-CONCAT -0.05 -0.05 4.0 0.15 0.12 4.12 -1.52 -1.28 2.88 0.26 0.24 2.5 0.35 0.33 2.5
RMTPP-LCONCAT -0.42 -0.34 2.25 0.04 0.04 2.0 -1.65 -1.51 3.0 0.25 0.21 2.12 0.37 0.34 2.0

RMTPP-TEM -0.01 0.01 5.5 0.15 0.12 5.25 0.1 0.15 6.0 0.41 0.41 6.25 0.21 0.19 6.5
RMTPP-TEMWL 0.0 0.05 4.5 0.15 0.14 5.0 -2.1 -1.42 1.5 0.24 0.21 1.88 0.4 0.37 1.62

RMTPP-LE -0.14 0.01 3.88 0.15 0.13 4.75 0.12 0.14 6.25 0.4 0.41 5.62 0.21 0.19 6.0
RMTPP-LEWL -0.03 -0.0 4.5 0.15 0.13 4.88 -1.19 -1.03 3.88 0.3 0.29 3.5 0.32 0.32 3.88

SA/CM-TO 10.78 0.12 4.75 0.11 0.06 4.12 1.14 0.31 4.75 0.45 0.46 5.12 0.14 0.1 4.75
SA/CM-LTO 20.39 -0.01 3.0 0.1 0.05 2.75 0.66 0.11 4.0 0.43 0.44 2.88 0.18 0.1 2.88

SA/CM-CONCAT -0.08 -0.09 3.38 0.07 0.05 3.25 0.6 0.16 4.0 0.44 0.44 3.38 0.17 0.17 3.0
SA/CM-LCONCAT 20.53 0.05 4.12 0.12 0.06 3.62 0.61 0.08 2.5 0.43 0.45 3.25 0.18 0.11 3.0

SA/CM-LE -0.37 -0.4 2.0 0.05 0.04 2.38 0.09 0.07 3.0 0.42 0.44 3.62 0.19 0.17 4.12
SA/CM-LEWL 2.14 -0.07 3.75 0.09 0.08 4.88 -0.0 -0.01 2.75 0.41 0.44 2.75 0.2 0.16 3.25

SA/MC-TO 1.22 1.0 7.38 0.23 0.31 6.75 0.24 0.31 5.12 0.47 0.47 7.12 0.17 0.16 7.5
SA/MC-LTO 1.07 0.82 5.75 0.22 0.29 5.88 0.28 0.4 6.25 0.46 0.47 6.0 0.17 0.16 6.38

SA/MC-CONCAT 0.64 0.85 6.5 0.19 0.17 6.25 0.1 0.2 5.0 0.44 0.47 6.25 0.2 0.17 5.88
SA/MC-LCONCAT 0.53 0.74 5.12 0.19 0.16 6.25 0.16 0.23 5.38 0.43 0.47 5.25 0.2 0.17 5.5

SA/MC-TEM -0.42 -0.4 3.25 0.1 0.07 2.75 0.15 0.05 5.12 0.39 0.4 4.25 0.2 0.18 4.12
SA/MC-TEMWL -0.28 -0.26 4.25 0.11 0.08 4.25 -0.51 -0.34 1.88 0.32 0.32 1.88 0.28 0.25 1.5

SA/MC-LE -0.76 -0.52 1.62 0.07 0.04 1.5 0.11 -0.03 4.88 0.37 0.38 3.38 0.21 0.19 3.38
SA/MC-LEWL -0.48 -0.45 2.12 0.08 0.07 2.38 -0.29 -0.23 2.38 0.34 0.32 1.88 0.25 0.24 1.75
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Table 5: Average and median scores, as well as average ranks per decoder and variation of history
encoder, for marked datasets. Best results are highlighted in bold. The key insight parsed from this
Table is that models equipped with a GRU encoder (i.e. GRU-∗) show overall improved performance
with respect to all metrics compared to ones equipped with a self-attention encoder (i.e. SA-∗).
Refer to text for more details, and to Section 5.5 for details on the aggregation procedure.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

CONS-EC 1.74 1.34 3.0 0.3 0.35 2.83 0.63 0.56 2.67 0.48 0.49 3.0 0.14 0.06 3.0
SA-EC 0.73 0.63 2.0 0.25 0.27 2.17 0.04 -0.04 2.0 0.43 0.42 2.0 0.2 0.15 1.83

GRU-EC 0.19 0.14 1.0 0.22 0.23 1.0 -0.17 -0.29 1.33 0.39 0.38 1.0 0.22 0.17 1.17

CONS-LNM -0.35 -0.44 2.83 0.02 0.02 2.33 0.58 0.43 3.0 0.48 0.49 3.0 0.14 0.06 3.0
SA-LNM -0.61 -0.68 1.83 0.02 0.02 2.17 -0.63 -0.39 1.83 0.39 0.39 1.83 0.24 0.17 1.83

GRU-LNM -0.8 -0.83 1.33 0.03 0.01 1.5 -1.11 -0.83 1.17 0.35 0.37 1.17 0.26 0.2 1.17

CONS-FNN 1.02 0.72 3.0 0.2 0.24 2.67 0.5 0.25 2.83 0.46 0.46 2.83 0.17 0.11 2.5
SA-FNN 0.78 0.53 1.83 0.19 0.23 2.0 0.05 0.06 2.17 0.45 0.45 1.83 0.18 0.11 2.0

GRU-FNN 0.52 0.13 1.17 0.18 0.21 1.33 -0.17 -0.04 1.0 0.42 0.44 1.33 0.18 0.11 1.5

CONS-MLP/MC 0.5 0.52 3.0 0.19 0.23 2.83 0.4 0.3 2.33 0.39 0.4 2.0 0.22 0.17 2.33
SA-MLP/MC 0.13 0.13 2.0 0.17 0.21 2.0 0.04 -0.02 2.33 0.38 0.39 2.67 0.22 0.17 2.33

GRU-MLP/MC -0.15 -0.14 1.0 0.16 0.18 1.17 -0.03 -0.26 1.33 0.35 0.37 1.33 0.23 0.18 1.33

CONS-RMTPP 0.87 0.66 3.0 0.18 0.21 2.33 0.97 0.65 2.67 0.47 0.48 3.0 0.13 0.05 3.0
SA-RMTPP 0.13 0.17 1.83 0.17 0.19 2.17 -0.38 -0.36 2.17 0.38 0.39 1.83 0.24 0.18 1.83

GRU-RMTPP -0.15 -0.17 1.17 0.15 0.17 1.5 -0.95 -0.66 1.17 0.34 0.37 1.17 0.26 0.22 1.17

CONS-SA/CM 0.01 -0.06 3.0 0.1 0.12 2.83 0.51 0.36 2.67 0.44 0.44 2.17 0.18 0.11 2.17
SA-SA/CM -0.17 -0.2 1.83 0.08 0.08 1.83 0.12 0.09 1.5 0.44 0.44 1.83 0.18 0.11 1.17

GRU-SA/CM -0.22 -0.22 1.17 0.07 0.08 1.33 0.12 0.07 1.83 0.44 0.44 2.0 0.18 0.11 2.67

CONS-SA/MC 0.44 0.2 3.0 0.18 0.19 2.83 0.42 0.28 2.67 0.41 0.41 2.33 0.2 0.13 2.0
SA-SA/MC 0.07 0.03 1.67 0.16 0.16 1.83 -0.05 -0.16 1.5 0.39 0.41 1.67 0.19 0.12 2.33

GRU-SA/MC 0.05 -0.04 1.33 0.16 0.16 1.33 -0.1 -0.16 1.83 0.39 0.42 2.0 0.2 0.12 1.67

Figure 3 shows λ∗(t) (orange) and f∗(t) (green) between two events in a test sequence in LastFM,
for the combinations of Table 6 that performed the best on the NLL-T. The greater the gap
between λ∗(t) and f∗(t), the higher the cumulative GCIF between two events. We observe that
most decoders learn to assign a high probability to very low inter-arrival times, which allows them
to reach low NLL-T on datasets where events are highly clustered, such as LastFM. This behavior
is only possible if the GCIF is allowed to vary rapidly once a new event is observed. As discussed
previously, for decoders employing a Softplus activation, such as MLP/MC, FNN, or SA/CM, a
steeper gradient for the GCIF can be obtained at low inter-arrival times by using the LTO or
LCONCAT encodings.

With respect to the mark prediction task, we find that the Hawkes decoder achieves the overall
best results, outperforming all baselines in terms of NLL-M, ECE, and F1-score. While the Hawkes
decoder did not perform favorably on time-related metrics, its clear superiority compared to more
complex models on the mark prediction task is rather intriguing. Likewise, the RMTPP and LN(M)
decoders also show competitive performance on these metrics, despite their simplifying assumption
of marks being independent of the time given the history of the process. The overall superiority
of parametric and semi-parametric architectures on the mark prediction task suggests that non-
parametric decoders may actually suffer from their high flexibility, making them hard to optimize
in practice. This particularly stands out for the NH decoder which performs extremely badly on
all metrics, only marginally outperforming the Poison decoder. Nonetheless, although LN, LNM,
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Table 6: Average and median scores, and average ranks of the best combinations per decoder on the
NLL-T (top rows) and NLL-M (bottom row) across all marked datasets. Best results are highlighted
in bold.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

GRU-EC-LE -0.22 -0.02 7.75 0.17 0.14 9.12 -0.1 -0.03 6.5 0.39 0.41 7.0 0.21 0.18 7.38
GRU-LNM-TO -1.44 -0.93 1.5 0.02 0.01 1.88 -0.06 -0.07 6.5 0.41 0.42 6.75 0.21 0.18 7.12

GRU-LN-LEWL -0.54 -0.56 5.25 0.07 0.04 5.75 -1.56 -1.38 2.75 0.28 0.28 4.5 0.33 0.35 2.88
GRU-FNN-LCONCAT -0.6 -0.71 3.38 0.02 0.02 2.25 -1.57 -1.0 3.5 0.29 0.35 4.5 0.27 0.23 4.12

GRU-MLP/MC-LCONCAT -0.42 -0.38 5.5 0.09 0.07 6.38 -0.47 -0.47 5.62 0.26 0.26 2.88 0.28 0.28 4.38
GRU-RMTPP-LCONCAT -0.52 -0.41 4.75 0.04 0.03 4.88 -1.88 -1.99 2.38 0.22 0.15 2.88 0.4 0.35 1.62

GRU-SA/CM-LE -0.46 -0.42 6.12 0.05 0.03 3.75 0.1 0.07 7.75 0.43 0.45 8.12 0.19 0.18 8.75
GRU-SA/MC-LE -0.85 -0.55 3.88 0.08 0.05 4.88 0.08 -0.04 7.62 0.35 0.37 6.5 0.21 0.2 6.62

Hawkes 1.21 -0.15 7.62 0.11 0.1 6.5 -3.42 -1.01 4.12 0.15 0.13 2.12 0.45 0.43 2.38
Poisson 1.86 1.35 10.75 0.25 0.34 10.25 2.23 1.26 10.75 0.48 0.48 10.5 0.16 0.15 10.75

NH 1.32 1.07 9.5 0.24 0.32 10.38 0.25 0.41 8.5 0.48 0.47 10.25 0.17 0.16 10.75

GRU-EC-TEMWL 0.16 0.16 7.88 0.18 0.16 8.62 -1.42 -1.1 5.0 0.29 0.24 5.75 0.3 0.3 6.12
GRU-LNM-CONCAT -1.41 -1.0 1.12 0.02 0.01 1.62 -2.62 -1.76 2.5 0.23 0.18 3.88 0.38 0.34 3.0

GRU-LN-CONCAT -0.51 -0.57 4.25 0.07 0.04 4.88 -2.59 -1.81 3.12 0.25 0.25 4.12 0.33 0.34 4.38
GRU-FNN-LCONCAT -0.6 -0.71 2.75 0.02 0.02 2.25 -1.57 -1.0 5.25 0.29 0.35 4.88 0.27 0.23 5.12

GRU-MLP/MC-TEMWL 0.11 0.23 7.5 0.17 0.16 7.12 -0.73 -0.64 7.0 0.32 0.33 6.38 0.32 0.3 5.5
GRU-RMTPP-TEMWL + B -0.19 -0.11 5.62 0.14 0.11 5.62 -2.67 -1.85 2.38 0.2 0.16 2.88 0.42 0.42 2.62

GRU-SA/CM-LEWL -0.23 -0.23 5.5 0.08 0.07 5.12 -0.18 -0.11 8.12 0.41 0.43 8.5 0.21 0.2 8.88
GRU-SA/MC-TEMWL -0.29 -0.3 4.88 0.11 0.09 5.25 -0.55 -0.55 7.38 0.31 0.31 6.25 0.28 0.26 6.5

RMTPP, and Hawkes do better than their non-parametric counterparts, we find that all decoders
perform rather poorly on the mark prediction task.

Figure 4 shows the CD diagrams between the average ranks of all decoders at the α = 0.1 significance
level, on each metric separately. The lower the rank (further to the left on the top horizontal axis),
the better the performance of a decoder with respect to that metric, while a bold black line groups
decoders that are not significantly different from one another. As can be seen, there are clear
differences between the models’ average ranks (e.g. LNM on the NLL-T for marked datasets).
The fact that Holm’s posthoc tests do not allow us to conclude statistically significant differences
between them can be explained by a large number of pairwise comparisons compared to the few
available samples (datasets), which results in high adjusted p-values.

On the calibration of TPP models. Figure 5 shows the reliability diagrams for the inter-arrival
time predictive distributions associated with the combinations presented in Table 6, averaged over
all marked datasets. We observe a good probabilistic calibration for the LNM, FNN, MLP/MC,
RMTPP, and SA/CM decoders, as demonstrated by their curves closely matching the diagonal.
On the other hand, the other decoders present higher degrees of miscalibration. More precisely,
their empirical CDF lays systematically above the diagonal line, which suggests that the predictive
distributions attribute little probability mass to low inter-arrival times. This observation supports
our argument about the behavior of f∗(τ) on Figure 3, i.e. the conditional density of calibrated
models attributes most of the mass to short inter-arrival times.

Figure 6 shows the reliability diagrams for the mark distributions associated with the best-
performing combinations (in terms of the NLL-M) in Table 6, aggregated over all marked datasets.
Overall, we observe that the calibration of these decoders mirrors their performance on the NLL-M
and F1-scores, i.e. better scores with respect to these metrics correspond to better calibration.
Indeed, the Hawkes decoder is the best-calibrated model among our baselines, followed by RMTPP
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Figure 3: Evolution of λ∗(t) (orange) and f(t|Ht) (green) between two events on the LastFM
dataset. Arrival times correspond to 2.0975 and 2.0986, respectively.

and LNM. Nonetheless, we note that all decoders are usually over-confident in their predictions, as
shown by the bin accuracies falling systematically below the diagonal line.

Analysis of the history size. When training a neural TPP model, it is typically assumed that
the complete history Hti, spanning from the first to the last observed event, contains valuable
information about the future dynamics of the process. In other words, the joint distribution of an
event ei = (ti, ki) is commonly modeled as dependent on the entire history of the process up to ei,
denoted as f(ei|Hti

) = f(ei|ei−1, . . . , e1). However, in certain real-world scenarios, it may be more
appropriate to explicitly assume a q-order Markovian property, where only q of the last i − 1 events
preceding ei actually influence the distribution of ei.

When comparing the impact of different encoders, we have found that effectively encoding the
process history is crucial for modeling the joint distribution. However, it does not provide insights
into the number of past events that truly contain useful information. To address this question, we
train models using variations of both the GRU and self-attention history encoders. These encoders
generate a history embedding hi specifically for event ei using Hq

ti
= {(tj , kj) ∈ H|tj < ti, i − q ≤

j < i}, which includes at most q events preceding ei.

In Figure 7, we show the evolution of the NLL-T and NLL-M (when relevant), by varying the
maximal history size q to which the history encoder has access to during training. We report our
observations for the GRU encoder operating on this fixed-size window (GRU-Fixed), but similar
results were obtained for a fixed self-attentive encoder (SA-Fixed). Compared to a completely
masked history, which is equivalent to training the model with the CONS encoder (i.e. q = 0), we
observe a substantial improvement in NLL-T for most models when only the last event is made
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(a) NLL-T. (b) PCE.

(c) NLL-M. (d) ECE.

(e) F1-score.

Figure 4: Critical Distance (CD) diagrams per metric at the α = 0.10 significance level for all
decoders on marked datasets. The decoders’ average ranks are displayed on top, and a bold line
joins the decoders’ variations that are not statistically different.

Figure 5: Reliability diagrams of the distribution of inter-arrival times for the decoder’s combi-
nations that performed the best on the NLL-T (top rows of Table 6), averaged over all marked
datasets. The bold black line corresponds to perfect marginal calibration.
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Figure 6: Reliability diagrams of the distribution of marks for various decoders, averaged over all
marked datasets. Front rows depict a decoder’s average accuracy per bin, while bottom rows show
the average proportion of samples falling per bin. Bins aligning with the bold black line corresponds
to perfect calibration.

available to the encoder. This indicates a process’ past does indeed contain useful information.
However, as observed on most datasets, additional context does not yield significant improvement,
with an NLL-T that often quickly stabilizes as q increases.

On the one hand, this finding suggests that real-world processes do possess a Markovian property
and that going far in history does not bring valuable additional insight regarding the arrival time of
the next event. On the other hand, it could also indicate that RNNs (and self-attention mechanisms)
fail to capture dependencies among event occurrences in the context of TPPs and that more research
is needed to design better alternatives to encode the history. In essence, masking part of the history
translates to a reduction in model complexity, making them effectively less prone to overfitting on
the training sequences. Additionally, the EC decoder appears to be more impacted on the NLL-T
as q increases than other baselines. Considering that this decoder can only leverage the history
embedding to define the MCIF, we hypothesize that optimization may in this case force the encoder
to extract as much information as possible from the patterns of previous marks occurrences.
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Figure 7: Evolution of models’ performance with respect to the Time NLL, and the Mark NLL
when available, as a function of the maximal number of events used to construct hi when using
a GRU operating on a fixed-size window. ’F’ refers to the unconstrained GRU, i.e. the encoder
having access to the full history.

A similar statement can be made for the NLL-M. However, we find continuous improvement as q
increases for FNN, RMTPP, and LNM on Github and LastFM. As LNM and RMTPP parametrize
the mark distribution solely from hi, they also require expressive representations of the history to
perform well with respect to the NLL-M.
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(a) Marked datasets.

(b) Unmarked datasets.

Figure 8: Performance OF LNM, EC, Hawkes (H), and SA/CM on the NLL-T and NLL-M for each
dataset.

On the adequacy of TPPs datasets. A concern that is rarely addressed in the neural TPP
literature relates to the validity of the current benchmark datasets for neural TPP models. En-
guehard et al. (2020) raised some concerns regarding MIMIC2 and Stack Overflow as the simple
time-independent EC decoder yielded competitive performance with more complex baselines on
such datasets. Figure 8 reports both NLL-T and NLL-M (when available) for LNM, EC, Hawkes
and FNN decoders8 on all real-world datasets. We indeed observe that the EC decoder is com-
petitive with LNM on the NLL-T and NLL-M for MIMIC2 and Stack Overflow, supporting their
recommendation that future research should show a certain degree of caution when benchmarking
new methods on these datasets. We further express additional concerns about Taxi, Reddit Subs
and Reddit Ask Comments, Yelp Toronto, and Yelp Mississauga, on which all decoders achieve com-
parable performance. All remaining datasets appear to be appropriate benchmarks for evaluating
neural TPP models, as higher variability is observed in the results.

Computational times. On Table 7, we report the computing time (in seconds) for each decoder
averaged over 10 epochs for a single forward and backward pass on the training sequences of the
MOOC dataset (standard deviation is given in parenthesis). All decoders were equipped with the
GRU history encoder and the TEMWL event encoding, when relevant (i.e. not for Hawkes, Poisson,
and NH), with similar hyper-parameters configurations. Additionally, the batch size was 32, and
the models were trained on an NVIDIA RTX A5000. With respect to the results on both the time
and mark prediction tasks, we find LNM to provide the best performance/runtime trade-off among
all the decoders considered in the study. On the other hand, the NH decoder is extremely expensive
to train, while generally performing worse than other neural baselines.

8Here also, we employed the combinations on the top row of Table 6 to compute the NLL-T on marked datasets,
and the combinations of Table 10 to compute the NLL-T on unmarked datasets. The NLL-M was computed using
the combinations on the bottom row of Table 6.
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Table 7: Average execution time in seconds per decoder for a single forward and backward pass on
the MOOC dataset.

EC LNM MLP/MC FNN RMTPP SA/CM SA/MC Hawkes Poisson NH

1.21 (0.06) 1.51 (0.06) 1.66 (0.07) 2.39 (0.07) 1.32 (0.07) 4.01 (0.08) 2.47 (0.06) 17.11 (0.27) 0.66 (0.01) 234.13 (1.36)

7 Conclusion

We conducted a large-scale empirical study of state-of-the-art neural TPP models using multiple
real-world and synthetic event sequence datasets in a carefully designed unified setup. Specifically,
we studied the influence of major architectural components on predictive accuracy and highlighted
that some specific combinations of architectural components can lead to significant improvements
for both time and mark prediction tasks. Moreover, we assessed the rarely discussed topic of
probabilistic calibration for neural TPP models and found that the mark distributions are often
poorly calibrated despite time distributions being well calibrated. Additionally, while recurrent
encoders are better at capturing a process’ history, we found that solely encoding a few of the
last observed events yielded comparable performance to an embedding of the complete history for
most datasets and decoders. Finally, we confirmed the concerns of previous research regarding the
commonly used datasets for benchmarking neural TPP models and raised concerns about others.
We believe our findings will bring valuable insights to the neural TPP research community, and we
hope will inspire future work.
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A Results on unmarked datasets.

We report the comparison of different event encoding mechanisms and history encoders for un-
marked datasets in Table 8 and Table 9, respectively, where we also added the worst score of each
component’s variation. The results of the combinations that performed best with respect to the
NLL-T can be found in Table 10. Overall, our findings regarding unmarked datasets align with the
ones described in Section 6. However, we note that most decoders show a lower PCE, and hence,
improved calibration with respect to the distribution of inter-arrival time compared to marked
datasets. The reliability diagrams displayed in Figure 9 for unmarked datasets do indeed confirm
this observation.

In Figure 10, we present the CD diagrams illustrating the relationships between all combinations
of Table 10 for the NLL-T and PCE metrics. While there is a noticeable distinction in the average
ranks among the decoders, the available data for marked datasets do not provide sufficient evidence
to establish statistical differences between them at the α = 0.1 significance level.

Table 8: Average, median, and worst scores, as well as average ranks per decoder and variation
of event encoding, for unmarked datasets. Refer to Section 5.5 for details on the aggregation
procedure. Best scores are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

EC-TO 0.25 0.24 0.6 3.5 0.07 0.06 0.16 3.25
EC-LTO 0.25 0.26 0.64 3.5 0.07 0.06 0.16 3.62
EC-TEM -0.21 -0.26 0.31 1.0 0.05 0.03 0.14 1.25

EC-LE -0.09 -0.04 0.46 2.0 0.05 0.03 0.15 1.88

LNM-TO -1.15 -0.5 -0.26 3.0 0.01 0.01 0.01 3.12
LNM-LTO -1.17 -0.57 -0.25 3.38 0.01 0.01 0.01 2.25
LNM-TEM -1.46 -0.79 -0.51 1.12 0.01 0.01 0.01 1.5

LNM-LE -0.98 -0.59 -0.44 2.5 0.01 0.01 0.01 3.12

FNN-TO 0.7 0.6 1.06 2.62 0.09 0.09 0.15 2.62
FNN-LTO -0.19 -0.25 1.69 1.25 0.02 0.01 0.06 1.0
FNN-LE 0.56 0.5 1.03 2.12 0.08 0.07 0.15 2.38

MLP/MC-TO -0.02 0.0 0.1 3.75 0.05 0.04 0.08 3.62
MLP/MC-LTO -0.14 -0.17 0.06 2.5 0.03 0.03 0.08 1.88
MLP/MC-TEM -0.23 -0.21 -0.04 2.12 0.04 0.03 0.09 2.62

MLP/MC-LE -0.3 -0.33 -0.04 1.62 0.03 0.02 0.07 1.88

RMTPP-TO -0.07 -0.07 0.11 3.75 0.04 0.03 0.08 3.75
RMTPP-LTO -0.21 -0.13 0.2 2.75 0.02 0.02 0.03 2.0
RMTPP-TEM -0.37 -0.32 -0.25 1.25 0.03 0.02 0.07 1.88

RMTPP-LE -0.3 -0.28 -0.14 2.25 0.03 0.02 0.08 2.38

SA/CM-TO 0.71 0.24 4.19 2.38 0.05 0.03 0.14 2.62
SA/CM-LTO 1.08 0.23 4.93 2.12 0.05 0.03 0.14 2.25
SA/CM-LE -0.22 -0.18 0.19 1.5 0.02 0.01 0.05 1.12

SA/MC-TO 0.78 0.66 1.17 3.5 0.09 0.08 0.16 3.38
SA/MC-LTO 0.68 0.69 1.09 3.5 0.09 0.1 0.15 3.38
SA/MC-TEM -0.42 -0.39 -0.18 1.88 0.02 0.01 0.07 1.62

SA/MC-LE -0.5 -0.49 0.17 1.12 0.03 0.02 0.08 1.62
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Table 9: Average, median, and worst scores, as well as average ranks per decoder and variation
of history encoder, for unmarked datasets. Refer to Section 5.5 for details on the aggregation
procedure. Best scores are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

CONS-EC 1.03 0.87 2.14 3.0 0.1 0.09 0.2 3.0
SA-EC 0.48 0.54 0.85 2.0 0.08 0.07 0.17 2.0

GRU-EC -0.38 -0.4 0.25 1.0 0.04 0.02 0.14 1.0

CONS-LNM -0.83 -0.16 0.13 2.75 0.01 0.01 0.02 2.25
SA-LNM -0.69 -0.26 -0.14 2.25 0.01 0.01 0.02 2.25

GRU-LNM -1.7 -0.92 -0.61 1.0 0.01 0.01 0.01 1.5

CONS-FNN 0.63 0.53 1.26 2.62 0.06 0.05 0.13 2.12
SA-FNN 0.46 0.35 1.06 2.25 0.06 0.06 0.1 1.62

GRU-FNN 0.25 0.16 0.94 1.12 0.06 0.06 0.11 2.25

CONS-MLP/MC 0.46 0.5 0.74 2.88 0.06 0.06 0.11 2.88
SA-MLP/MC 0.15 0.17 0.33 2.12 0.05 0.04 0.09 2.0

GRU-MLP/MC -0.49 -0.47 -0.33 1.0 0.03 0.02 0.06 1.12

CONS-RMTPP 0.31 0.26 0.79 2.88 0.04 0.03 0.06 2.38
SA-RMTPP 0.04 0.01 0.29 2.12 0.04 0.03 0.07 2.38

GRU-RMTPP -0.52 -0.54 -0.33 1.0 0.02 0.01 0.06 1.25

CONS-SA/CM 1.03 0.68 2.87 2.88 0.05 0.04 0.11 2.62
SA-SA/CM 0.53 0.26 2.7 1.62 0.04 0.03 0.1 1.88

GRU-SA/CM 0.51 0.2 3.0 1.5 0.04 0.03 0.1 1.5

CONS-SA/MC 0.52 0.49 0.86 2.88 0.07 0.06 0.11 2.62
SA-SA/MC 0.17 0.21 0.34 1.75 0.06 0.07 0.08 1.5

GRU-SA/MC 0.1 0.14 0.38 1.38 0.06 0.07 0.08 1.88

Table 10: Average, median, worst scores, and average ranks of the best combinations per decoder
on the NLL-T across all unmarked datasets. Best results are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

GRU-EC-TEM + B -0.41 -0.46 0.16 5.5 0.04 0.02 0.13 7.12
GRU-LNM-TEM -1.96 -0.95 -0.62 1.25 0.01 0.01 0.01 2.12
GRU-LNK1-TEM -0.25 -0.25 0.41 7.0 0.03 0.03 0.07 7.75

GRU-FNN-LTO + B -0.48 -0.59 1.48 4.12 0.01 0.01 0.05 3.38
GRU-MLP/MC-LTO + B -0.57 -0.56 -0.44 4.25 0.02 0.01 0.05 5.5

GRU-RMTPP-LTO -0.6 -0.55 -0.28 4.25 0.01 0.01 0.03 4.12
SA-SA/CM-LE + B -0.23 -0.15 0.0 7.38 0.02 0.01 0.04 4.5

GRU-SA/MC-LE + B -0.56 -0.55 0.4 4.12 0.03 0.02 0.1 5.25
Hawkes -0.22 -0.16 0.16 7.12 0.02 0.01 0.06 5.25
Poisson 4.23 2.54 12.29 11.0 0.25 0.26 0.47 11.0

NH 2.29 1.11 8.2 10.0 0.16 0.15 0.3 10.0
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Figure 9: Reliability diagrams of the distribution of inter-arrival times for the decoder’s combina-
tions that performed the best on the NLL-T averaged over all unmarked datasets. The bold black
line corresponds to perfect marginal calibration.

(a) NLL-T. (b) PCE.

Figure 10: Critical Distance (CD) diagrams per metric at the α = 0.10 significance level for all
decoders on unmarked datasets. The decoders’ average ranks are displayed on top, and a bold line
joins the decoders’ variations that are not statistically different.
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B Additional results

In Table 11, we report the results with respect to all time-related metrics (NLL-T, PCE) for all
models of Table 6 on marked datasets, while results with respect to marked related metrics (NLL-
M, ECE, F1-score) are given in Table 12. In turn, results with respect to time-related metrics for
models of Table 10 on unmarked datasets are reported in Table 13. Finally, we report in Figure 11
the standardized NLL-T and NLL-M for all models of Table 6 for all marked datasets.

Table 11: Results with respect to the NLL-T and PCE for the combinations of models presented
in Table 6 on all marked datasets. Standard error across all splits is reported in parenthesis.

NLL-T

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-LNM-TO -1363.43 (59.03) -275.49 (3.53) -242.45 (30.64) -378.09 (57.75) 0.13 (0.33) -75.62 (1.01) -79.21 (2.32) -613.77 (14.25)
GRU-LN-TO -1351.97 (60.26) -275.49 (3.53) -226.75 (31.05) -369.38 (57.05) 0.66 (0.07) -73.68 (0.76) -74.24 (1.42) -582.47 (2.47)

GRU-FNN-LCONCAT -1355.58 (59.91) -287.65 (3.56) -239.87 (29.03) -371.57 (58.27) 1.76 (0.11) -78.33 (0.8) -87.99 (1.41) -596.29 (2.65)
GRU-SA/CM-LE -1299.86 (57.52) -280.73 (3.8) -200.89 (47.85) -331.96 (60.72) 1.23 (0.23) -78.01 (0.79) -84.05 (1.3) -545.31 (13.15)

GRU-RMTPP-LCONCAT -1331.75 (58.87) -268.91 (3.25) -267.41 (24.59) -382.4 (61.05) 1.66 (0.08) -78.49 (0.79) -83.99 (1.47) -570.73 (2.18)
GRU-SA/MC-LE -1349.8 (60.0) -277.66 (3.03) -207.39 (51.79) -348.82 (56.8) 0.47 (0.12) -78.5 (0.76) -85.17 (1.33) -581.05 (2.59)

GRU-MLP/MC-LCONCAT -1338.38 (56.91) -275.43 (3.55) -186.58 (47.99) -325.3 (57.09) 1.82 (0.14) -78.49 (0.79) -87.82 (1.15) -577.8 (1.7)
Hawkes -1189.48 (55.2) -235.9 (3.09) 332.83 (93.92) -308.42 (57.77) 4.49 (0.24) -78.66 (0.82) -83.18 (1.4) -554.6 (2.15)

GRU-EC-LE -1102.45 (49.95) -105.23 (3.43) -153.79 (14.4) -290.58 (55.37) 0.91 (0.05) -78.05 (0.78) -82.38 (1.34) -546.95 (2.86)
NH -788.33 (33.0) -76.64 (1.21) -102.72 (12.9) -168.39 (29.39) 1.73 (0.11) -72.54 (0.67) -73.79 (1.06) -236.29 (4.38)

Poisson -747.35 (46.13) -51.74 (1.01) -57.32 (16.36) -142.58 (26.06) 2.98 (0.12) -71.6 (0.7) -73.6 (1.11) -234.81 (0.5)

GRU-LNM-CONCAT -1363.78 (59.77) -289.3 (3.06) -261.79 (37.08) -367.41 (56.35) 0.59 (0.22) -76.57 (1.18) -85.12 (3.03) -621.33 (22.55)
GRU-LN-CONCAT -1348.27 (57.29) -280.3 (3.15) -228.31 (31.13) -367.41 (56.35) 0.97 (0.05) -73.68 (0.76) -81.42 (1.34) -583.42 (2.36)

GRU-SA/CM-LEWL -1274.49 (50.07) -268.28 (5.07) -174.11 (29.42) -316.81 (51.14) 1.5 (0.18) -77.52 (0.65) -80.23 (1.5) -555.59 (9.08)
GRU-RMTPP-TEMWL + B -1118.02 (52.48) -202.08 (9.0) -136.01 (22.52) -276.45 (51.41) 1.34 (0.14) -78.48 (0.79) -82.96 (1.36) -565.46 (3.72)

GRU-SA/MC-TEMWL -1243.21 (47.96) -257.48 (3.25) -158.02 (27.61) -322.72 (53.94) 1.77 (0.11) -78.04 (0.73) -86.24 (1.29) -569.34 (4.58)
GRU-MLP/MC-LEWL -1192.81 (46.5) -232.97 (1.31) -135.52 (20.11) -285.31 (51.34) 1.41 (0.11) -78.59 (0.79) -85.9 (1.42) -577.61 (2.41)

GRU-EC-TEMWL -1002.13 (37.43) -97.11 (1.01) -144.57 (14.46) -269.0 (51.2) 1.82 (0.11) -78.0 (0.76) -82.78 (1.42) -535.75 (1.39)

PCE

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-LNM-TO 0.02 (0.0) 0.04 (0.0) 0.22 (0.07) 0.03 (0.01) 0.05 (0.01) 0.02 (0.01) 0.03 (0.01) 0.01 (0.0)
GRU-LN-TO 0.03 (0.0) 0.04 (0.0) 0.28 (0.05) 0.05 (0.0) 0.07 (0.01) 0.03 (0.0) 0.05 (0.0) 0.01 (0.0)

GRU-FNN-LCONCAT 0.02 (0.0) 0.02 (0.0) 0.07 (0.01) 0.02 (0.0) 0.06 (0.0) 0.0 (0.0) 0.0 (0.0) 0.01 (0.0)
GRU-SA/CM-LE 0.05 (0.01) 0.02 (0.0) 0.18 (0.05) 0.09 (0.01) 0.05 (0.01) 0.0 (0.0) 0.0 (0.0) 0.01 (0.0)

GRU-RMTPP-LCONCAT 0.06 (0.0) 0.07 (0.0) 0.1 (0.01) 0.02 (0.0) 0.04 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0)
GRU-SA/MC-LE 0.06 (0.01) 0.13 (0.0) 0.24 (0.04) 0.12 (0.01) 0.04 (0.01) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

GRU-MLP/MC-LCONCAT 0.08 (0.01) 0.13 (0.01) 0.27 (0.03) 0.14 (0.01) 0.05 (0.01) 0.01 (0.0) 0.01 (0.0) 0.02 (0.0)
Hawkes 0.21 (0.0) 0.2 (0.0) 0.19 (0.01) 0.15 (0.01) 0.06 (0.0) 0.0 (0.0) 0.01 (0.0) 0.03 (0.0)

GRU-EC-LE 0.27 (0.0) 0.37 (0.01) 0.35 (0.01) 0.19 (0.01) 0.08 (0.01) 0.02 (0.0) 0.02 (0.0) 0.09 (0.0)
NH 0.35 (0.01) 0.4 (0.0) 0.35 (0.01) 0.3 (0.02) 0.07 (0.0) 0.04 (0.0) 0.05 (0.0) 0.36 (0.0)

Poisson 0.38 (0.01) 0.4 (0.0) 0.34 (0.01) 0.33 (0.02) 0.07 (0.0) 0.04 (0.0) 0.04 (0.0) 0.36 (0.0)

GRU-LNM-CONCAT 0.02 (0.01) 0.03 (0.01) 0.16 (0.06) 0.05 (0.01) 0.03 (0.01) 0.01 (0.01) 0.03 (0.01) 0.01 (0.0)
GRU-LN-CONCAT 0.04 (0.01) 0.04 (0.0) 0.28 (0.06) 0.05 (0.01) 0.05 (0.01) 0.03 (0.0) 0.04 (0.0) 0.01 (0.0)

GRU-SA/CM-LEWL 0.09 (0.01) 0.09 (0.02) 0.28 (0.02) 0.11 (0.01) 0.05 (0.0) 0.01 (0.0) 0.02 (0.01) 0.01 (0.0)
GRU-RMTPP-TEMWL + B 0.25 (0.0) 0.27 (0.01) 0.32 (0.01) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.04 (0.0)

GRU-SA/MC-TEMWL 0.17 (0.01) 0.19 (0.01) 0.33 (0.01) 0.13 (0.01) 0.05 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0)
GRU-MLP/MC-LEWL 0.21 (0.01) 0.24 (0.01) 0.33 (0.01) 0.19 (0.01) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.02 (0.0)

GRU-EC-TEMWL 0.29 (0.01) 0.39 (0.0) 0.35 (0.01) 0.19 (0.01) 0.06 (0.0) 0.02 (0.0) 0.02 (0.0) 0.12 (0.01)
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Table 12: Results with respect to the NLL-M, ECE and F1-score for the combinations of models
presented in Table 6 on all marked datasets. Standard error across all splits is reported in paren-
thesis.

NLL-M

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-LNM-CONCAT 762.03 (22.43) 92.47 (1.85) 259.12 (21.41) 124.34 (18.24) 2.51 (0.14) 110.15 (0.6) 107.09 (0.6) 85.16 (0.83)
GRU-FNN-LCONCAT 791.0 (31.28) 103.16 (4.6) 346.6 (47.58) 128.11 (19.55) 4.34 (0.15) 110.72 (0.61) 109.83 (0.87) 83.38 (0.23)

GRU-SA/CM-LCONCAT 864.68 (29.32) 110.49 (1.87) 292.59 (29.1) 152.63 (21.43) 4.37 (0.15) 111.6 (0.54) 115.49 (0.69) 90.19 (0.17)
GRU-RMTPP-LCONCAT 834.05 (40.33) 89.92 (1.67) 327.16 (77.34) 122.9 (16.42) 2.29 (0.23) 110.34 (0.56) 107.33 (0.34) 82.63 (0.18)

GRU-SA/MC-LE 869.85 (30.36) 177.49 (2.28) 407.99 (74.55) 156.81 (22.86) 4.55 (0.17) 111.71 (0.54) 117.3 (0.91) 88.5 (0.21)
GRU-MLP/MC-LTO 875.01 (31.01) 163.62 (4.1) 476.0 (136.36) 166.51 (23.07) 4.61 (0.2) 111.67 (0.54) 118.33 (0.73) 90.93 (2.61)

Hawkes 514.13 (16.19) 112.14 (1.26) 144.79 (11.89) 122.44 (15.5) 12.84 (0.23) 110.83 (0.54) 114.99 (0.75) 89.5 (0.14)
GRU-EC-TO 870.76 (29.88) 152.98 (1.71) 289.66 (41.0) 154.62 (21.3) 4.4 (0.16) 111.66 (0.55) 120.25 (0.69) 89.96 (0.25)

NH 869.55 (30.47) 184.55 (2.35) 272.66 (21.64) 161.84 (21.59) 4.66 (0.11) 111.99 (0.54) 131.2 (0.74) 91.1 (0.15)
Poisson 873.82 (30.24) 188.13 (2.37) 534.95 (131.14) 168.37 (21.04) 11.25 (0.46) 113.46 (0.54) 132.93 (0.74) 92.11 (0.15)

Hawkes 514.13 (16.19) 112.14 (1.26) 144.79 (11.89) 122.44 (15.5) 12.84 (0.23) 110.83 (0.54) 114.99 (0.75) 89.5 (0.14)
GRU-RMTPP-LCONCAT + B 722.89 (18.13) 86.32 (0.95) 461.49 (117.39) 123.67 (16.18) 3.75 (0.25) 110.31 (0.58) 108.45 (0.99) 82.74 (0.21)

GRU-LNM-CONCAT 762.03 (22.43) 92.47 (1.85) 259.12 (21.41) 124.34 (18.24) 2.51 (0.14) 110.15 (0.6) 107.09 (0.6) 85.16 (0.83)
GRU-MLP/MC-LCONCAT 800.68 (22.15) 117.88 (5.34) 520.5 (162.31) 147.26 (21.75) 3.69 (0.34) 110.85 (0.49) 112.62 (0.9) 83.37 (0.3)

GRU-FNN-LCONCAT 791.0 (31.28) 103.16 (4.6) 346.6 (47.58) 128.11 (19.55) 4.34 (0.15) 110.72 (0.61) 109.83 (0.87) 83.38 (0.23)
GRU-EC-TEMWL 830.42 (33.2) 98.53 (1.65) 298.61 (38.42) 150.4 (21.71) 3.06 (0.18) 110.06 (0.53) 108.8 (0.93) 85.55 (0.9)

SA-SA/MC-CONCAT 862.04 (28.39) 130.75 (2.06) 281.81 (34.96) 148.24 (23.17) 3.14 (0.31) 111.12 (0.5) 111.44 (0.6) 87.58 (0.46)
SA-SA/CM-LCONCAT 860.87 (30.33) 111.51 (3.0) 321.69 (41.29) 152.42 (20.93) 4.43 (0.16) 111.6 (0.51) 116.43 (0.44) 89.67 (0.34)

ECE

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-LNM-TO 0.5 (0.0) 0.45 (0.01) 0.49 (0.0) 0.4 (0.01) 0.41 (0.02) 0.44 (0.0) 0.28 (0.02) 0.28 (0.03)
GRU-LN-TO 0.5 (0.0) 0.45 (0.01) 0.5 (0.0) 0.42 (0.01) 0.4 (0.02) 0.44 (0.0) 0.26 (0.01) 0.23 (0.02)

GRU-FNN-LCONCAT 0.43 (0.05) 0.31 (0.04) 0.5 (0.01) 0.15 (0.0) 0.46 (0.0) 0.39 (0.01) 0.03 (0.0) 0.06 (0.0)
GRU-SA/CM-LE 0.5 (0.0) 0.45 (0.0) 0.5 (0.0) 0.43 (0.01) 0.46 (0.0) 0.44 (0.0) 0.26 (0.04) 0.41 (0.0)

GRU-RMTPP-LCONCAT 0.43 (0.03) 0.06 (0.01) 0.36 (0.06) 0.15 (0.01) 0.16 (0.02) 0.4 (0.0) 0.15 (0.02) 0.08 (0.02)
GRU-SA/MC-LE 0.5 (0.0) 0.42 (0.01) 0.49 (0.0) 0.22 (0.02) 0.33 (0.01) 0.44 (0.0) 0.15 (0.01) 0.27 (0.02)

GRU-MLP/MC-LCONCAT 0.42 (0.02) 0.21 (0.04) 0.47 (0.02) 0.14 (0.03) 0.32 (0.03) 0.44 (0.01) 0.03 (0.01) 0.06 (0.0)
Hawkes 0.03 (0.0) 0.14 (0.0) 0.11 (0.03) 0.07 (0.02) 0.19 (0.01) 0.34 (0.01) 0.09 (0.02) 0.19 (0.0)

GRU-EC-LE 0.5 (0.0) 0.44 (0.01) 0.48 (0.01) 0.31 (0.01) 0.38 (0.0) 0.44 (0.0) 0.23 (0.02) 0.38 (0.01)
NH 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.47 (0.01) 0.46 (0.0) 0.48 (0.0) 0.46 (0.0) 0.45 (0.01)

Poisson 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.49 (0.01) 0.47 (0.0) 0.48 (0.0) 0.46 (0.0) 0.46 (0.0)

GRU-LNM-CONCAT 0.35 (0.03) 0.18 (0.02) 0.36 (0.07) 0.31 (0.04) 0.15 (0.01) 0.4 (0.0) 0.12 (0.02) 0.08 (0.01)
GRU-LN-CONCAT 0.29 (0.05) 0.13 (0.02) 0.46 (0.03) 0.31 (0.04) 0.2 (0.05) 0.39 (0.01) 0.13 (0.03) 0.07 (0.01)

GRU-SA/CM-LEWL 0.5 (0.0) 0.42 (0.02) 0.5 (0.0) 0.43 (0.01) 0.39 (0.03) 0.44 (0.0) 0.34 (0.03) 0.23 (0.04)
GRU-RMTPP-TEMWL + B 0.31 (0.02) 0.06 (0.01) 0.34 (0.08) 0.19 (0.02) 0.1 (0.01) 0.4 (0.0) 0.13 (0.02) 0.07 (0.01)

GRU-SA/MC-TEMWL 0.49 (0.01) 0.36 (0.02) 0.35 (0.06) 0.25 (0.01) 0.27 (0.02) 0.44 (0.0) 0.08 (0.04) 0.26 (0.03)
GRU-MLP/MC-LEWL 0.4 (0.05) 0.23 (0.01) 0.44 (0.05) 0.22 (0.02) 0.18 (0.03) 0.44 (0.0) 0.03 (0.0) 0.17 (0.04)

GRU-EC-TEMWL 0.48 (0.01) 0.21 (0.03) 0.49 (0.0) 0.27 (0.04) 0.17 (0.02) 0.4 (0.0) 0.21 (0.01) 0.12 (0.02)

F1-score

LastFM MOOC Wikipedia Github MIMIC2 Hawkes SO Retweets

GRU-LNM-TO 0.01 (0.0) 0.06 (0.01) 0.01 (0.0) 0.4 (0.03) 0.22 (0.02) 0.14 (0.01) 0.28 (0.01) 0.54 (0.01)
GRU-LN-TO 0.01 (0.0) 0.06 (0.01) 0.01 (0.0) 0.4 (0.03) 0.23 (0.02) 0.15 (0.01) 0.28 (0.0) 0.55 (0.0)

GRU-FNN-LCONCAT 0.02 (0.01) 0.23 (0.04) 0.02 (0.01) 0.49 (0.02) 0.22 (0.02) 0.23 (0.0) 0.33 (0.0) 0.6 (0.0)
GRU-SA/CM-LE 0.0 (0.0) 0.04 (0.0) 0.0 (0.0) 0.4 (0.03) 0.22 (0.02) 0.13 (0.01) 0.28 (0.0) 0.45 (0.04)

GRU-RMTPP-LCONCAT 0.03 (0.01) 0.38 (0.01) 0.31 (0.11) 0.52 (0.01) 0.74 (0.01) 0.25 (0.01) 0.33 (0.0) 0.6 (0.0)
GRU-SA/MC-LE 0.0 (0.0) 0.03 (0.0) 0.01 (0.0) 0.4 (0.03) 0.24 (0.03) 0.16 (0.01) 0.31 (0.0) 0.55 (0.0)

GRU-MLP/MC-LCONCAT 0.02 (0.0) 0.24 (0.03) 0.03 (0.02) 0.4 (0.03) 0.43 (0.09) 0.2 (0.01) 0.32 (0.0) 0.6 (0.0)
Hawkes 0.3 (0.0) 0.29 (0.0) 0.66 (0.02) 0.54 (0.01) 0.63 (0.0) 0.28 (0.0) 0.32 (0.0) 0.56 (0.0)

GRU-EC-LE 0.0 (0.0) 0.06 (0.0) 0.02 (0.0) 0.4 (0.03) 0.22 (0.02) 0.14 (0.01) 0.29 (0.0) 0.53 (0.0)
NH 0.0 (0.0) 0.01 (0.0) 0.0 (0.0) 0.4 (0.03) 0.22 (0.02) 0.11 (0.0) 0.26 (0.0) 0.33 (0.0)

Poisson 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.4 (0.03) 0.2 (0.02) 0.11 (0.0) 0.26 (0.0) 0.33 (0.0)

GRU-LNM-CONCAT 0.1 (0.03) 0.36 (0.01) 0.22 (0.1) 0.47 (0.03) 0.64 (0.01) 0.26 (0.0) 0.33 (0.0) 0.59 (0.01)
GRU-LN-CONCAT 0.1 (0.02) 0.36 (0.01) 0.02 (0.01) 0.47 (0.03) 0.53 (0.09) 0.26 (0.0) 0.32 (0.0) 0.6 (0.0)

GRU-SA/CM-LEWL 0.0 (0.0) 0.05 (0.01) 0.0 (0.0) 0.4 (0.03) 0.25 (0.04) 0.14 (0.0) 0.28 (0.01) 0.56 (0.01)
GRU-RMTPP-TEMWL + B 0.11 (0.01) 0.39 (0.0) 0.46 (0.09) 0.48 (0.02) 0.73 (0.03) 0.27 (0.0) 0.32 (0.0) 0.59 (0.0)

GRU-SA/MC-TEMWL 0.01 (0.0) 0.08 (0.02) 0.1 (0.04) 0.4 (0.03) 0.57 (0.02) 0.19 (0.02) 0.32 (0.0) 0.56 (0.0)
GRU-MLP/MC-LEWL 0.02 (0.01) 0.25 (0.01) 0.07 (0.04) 0.42 (0.02) 0.59 (0.02) 0.18 (0.01) 0.33 (0.0) 0.57 (0.01)

GRU-EC-TEMWL 0.02 (0.0) 0.28 (0.01) 0.01 (0.0) 0.41 (0.03) 0.53 (0.03) 0.27 (0.0) 0.32 (0.0) 0.58 (0.01)
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Table 13: Results with respect to the NLL-T and PCE for the combinations of models presented
in Table 10 on all unmarked datasets. Standard error across all splits is reported in parenthesis.

NLL-T

Taxi Twitter Reddit Subs Reddit Ask PUBG Yelp T. Yelp A. Yelp M.

GRU-EC-TEM + B -136.78 (3.91) -6.21 (0.46) -4403.97 (24.0) -917.48 (13.1) -106.99 (0.21) -2803.23 (85.58) -5.76 (0.18) -56.18 (0.76)
GRU-LNM-TEM -137.02 (3.87) -11.89 (0.62) -4496.27 (37.01) -926.36 (12.67) -194.39 (18.07) -2957.96 (92.81) -6.8 (0.19) -59.61 (0.9)
GRU-FNN-LTO -132.51 (4.01) -11.66 (0.53) -4424.06 (24.21) -926.25 (12.87) -121.88 (0.18) -2486.32 (80.2) -5.72 (0.16) -58.52 (0.78)

GRU-MLP/MC-LTO -136.25 (3.95) -10.4 (0.32) -4403.41 (24.25) -921.58 (12.77) -110.44 (1.21) -2808.32 (84.78) -5.75 (0.26) -58.21 (0.79)
GRU-RMTPP-LTO -136.15 (3.98) -9.96 (0.53) -4407.58 (24.0) -919.08 (12.91) -107.04 (0.2) -2906.91 (87.45) -5.85 (0.14) -58.31 (0.79)

SA-SA/CM-LE -134.2 (4.13) -10.54 (0.51) -4320.9 (23.17) -856.8 (12.31) -104.81 (1.31) -2739.73 (81.7) -5.29 (0.15) -55.49 (0.88)
GRU-SA/MC-LE -124.53 (5.1) -12.11 (0.5) -4387.88 (19.64) -922.39 (13.07) -109.3 (0.9) -2901.79 (92.0) -6.83 (0.23) -57.35 (0.84)

Hawkes -134.09 (3.93) -7.62 (0.51) -4395.2 (23.74) -919.51 (12.92) -102.69 (0.2) -2773.63 (87.1) -4.62 (0.18) -53.33 (0.8)
NH -48.21 (24.44) -1.94 (0.22) -4158.41 (58.74) -714.92 (11.7) -94.95 (0.14) -2084.84 (291.26) -3.23 (0.14) -39.19 (0.6)

Poisson -41.71 (1.02) 5.18 (0.11) -3706.3 (17.61) -676.53 (10.2) -93.11 (0.15) -673.76 (17.22) -2.11 (0.1) -25.2 (0.29)

PCE

Taxi Twitter Reddit Subs Reddit Ask PUBG Yelp T. Yelp A. Yelp M.

GRU-EC-TEM + B 0.01 (0.0) 0.13 (0.0) 0.01 (0.0) 0.02 (0.0) 0.02 (0.0) 0.05 (0.0) 0.02 (0.0) 0.05 (0.0)
GRU-LNM-TEM 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)
GRU-FNN-LTO 0.02 (0.0) 0.01 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.05 (0.0) 0.01 (0.0) 0.01 (0.0)

GRU-MLP/MC-LTO 0.01 (0.0) 0.03 (0.01) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.05 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-RMTPP-LTO 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.01 (0.0)

SA-SA/CM-LE 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.04 (0.0) 0.01 (0.0) 0.02 (0.0)
GRU-SA/MC-LE 0.1 (0.03) 0.02 (0.0) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.02 (0.0)

Hawkes 0.01 (0.0) 0.01 (0.0) 0.0 (0.0) 0.01 (0.0) 0.01 (0.0) 0.06 (0.0) 0.02 (0.0) 0.05 (0.0)
NH 0.3 (0.06) 0.17 (0.0) 0.1 (0.02) 0.17 (0.0) 0.06 (0.0) 0.28 (0.06) 0.04 (0.0) 0.13 (0.0)

Poisson 0.35 (0.0) 0.2 (0.0) 0.27 (0.0) 0.25 (0.0) 0.07 (0.0) 0.47 (0.0) 0.12 (0.0) 0.27 (0.0)
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Figure 11: Standardized NLL-T and NLL-M for various decoders per dataset. The NLL-T was
computed using the top row models of Table 6, while the NLL-M was computed using the bottom
row models of Table 6. Lower NLL-T and NLL-M is better.
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C TPP models considered

Table 14: Combinations included in the experimental study. "Unmarked" refers to whether the
method is adapted for unmarked datasets. For EC, LNM and RMTPP, the setting where a baseline
intensity term (B) is also considered.

Decoder Encoder Event encoding Name Unmarked

EC

CONS \ CONS-EC ✓

GRU

TO GRU-EC-TO ✓
LTO GRU-EC-LTO ✓

CONCAT GRU-EC-CONCAT ✗
LCONCAT GRU-EC-LCONCAT ✗

TEM GRU-EC-TEM ✓
TEMWL GRU-EC-TEMWL ✗

LE GRU-EC-LE ✓
LEWL GRU-EC-LEWL ✗

SA

TO SA-EC-TO ✓
LTO SA-EC-LTO ✓

CONCAT SA-EC-CONCAT ✗
LCONCAT SA-EC-LCONCAT ✗

TEM SA-EC-TEM ✓
TEMWL SA-EC-TEMWL ✗

LE SA-EC-LE ✓
LEWL SA-EC-LEWL ✗

LNM

CONS \ CONS-LNM ✓

GRU

TO GRU-LNM-TO ✓
LTO GRU-LNM-LTO ✓

CONCAT GRU-LNM-CONCAT ✗
LCONCAT GRU-LNM-LCONCAT ✗

TEM GRU-LNM-TEM ✓
TEMWL GRU-LNM-TEMWL ✗

LE GRU-LNM-LE ✓
LEWL GRU-LNM-LEWL ✗

SA

TO SA-LNM-TO ✓
LTO SA-LNM-LTO ✓

CONCAT SA-LNM-CONCAT ✗
LCONCAT SA-LNM-LCONCAT ✗

TEM SA-LNM-TEM ✓
TEMWL SA-LNM-TEMWL ✗

LE SA-LNM-LE ✓
LEWL SA-LNM-LEWL ✗

RMTPP

CONS \ CONS-RMTPP ✓

GRU

TO GRU-RMTPP-TO ✓
LTO GRU-RMTPP-LTO ✓

CONCAT GRU-RMTPP-CONCAT ✗
LCONCAT GRU-RMTPP-LCONCAT ✗

TEM GRU-RMTPP-TEM ✓
TEMWL GRU-RMTPP-TEMWL ✗

LE GRU-RMTPP-LE ✓
LEWL GRU-RMTPP-LEWL ✗

SA

TO SA-RMTPP-TO ✓
LTO SA-RMTPP-LTO ✓

CONCAT SA-RMTPP-CONCAT ✗
LCONCAT SA-RMTPP-LCONCAT ✗

TEM SA-RMTPP-TEM ✓
TEMWL SA-RMTPP-TEMWL ✗

LE SA-RMTPP-LE ✓
LEWL SA-RMTPP-LEWL ✗

FNN

CONS

TO CONS-FNN-TO ✓
LTO CONS-FNN-LTO ✓

CONCAT CONS-FNN-CONCAT ✗
LCONCAT CONS-FNN-LCONCAT ✗

LE CONS-FNN-LE ✓
LEWL CONS-FNN-LEWL ✗

GRU

TO GRU-FNN-TO ✓
LTO GRU-FNN-LTO ✓

CONCAT GRU-FNN-CONCAT ✗
LCONCAT GRU-FNN-LCONCAT ✗

LE GRU-FNN-LE ✓
LEWL GRU-FNN-LEWL ✗

SA

TO SA-FNN-TO ✓
LTO SA-FNN-LTO ✓

CONCAT SA-FNN-CONCAT ✗
LCONCAT SA-FNN-LCONCAT ✗

LE SA-FNN-LE ✓
LEWL SA-FNN-LEWL ✗

Decoder Encoder Event encoding Name Unmarked

MLP/MC

CONS

TO CONS-MLP/MC-TO ✓
LTO CONS-MLP/MC-LTO ✓

CONCAT CONS-MLP/MC-CONCAT ✗
LCONCAT CONS-MLP/MC-LCONCAT ✗

TEM CONS-MLP/MC-TEM ✓
TEMWL CONS-MLP/MC-TEMWL ✗

LE CONS-MLP/MC-LE ✓
LEWL CONS-MLP/MC-LEWL ✗

GRU

TO GRU-MLP/MC-TO ✓
LTO GRU-MLP/MC-LTO ✓

CONCAT GRU-MLP/MC-CONCAT ✗
LCONCAT GRU-MLP/MC-LCONCAT ✗

TEM GRU-MLP/MC-TEM ✓
TEMWL GRU-MLP/MC-TEMWL ✗

LE GRU-MLP/MC-LE ✓
LEWL GRU-MLP/MC-LEWL ✗

SA

TO SA-MLP/MC-TO ✓
LTO SA-MLP/MC-LTO ✓

CONCAT SA-MLP/MC-CONCAT ✗
LCONCAT SA-MLP/MC-LCONCAT ✗

TEM SA-MLP/MC-TEM ✓
TEMWL SA-MLP/MC-TEMWL ✗

LE SA-MLP/MC-LE ✓
LEWL SA-MLP/MC-LEWL ✗

SA/CM

CONS

TO CONS-SA/CM-TO ✓
LTO CONS-SA/CM-LTO ✓

CONCAT CONS-SA/CM-CONCAT ✗
LCONCAT CONS-SA/CM-LCONCAT ✗

LE CONS-SA/CM-LE ✓
LEWL CONS-SA/CM-LEWL ✗

GRU

TO GRU-SA/CM-TO ✓
LTO GRU-SA/CM-LTO ✓

CONCAT GRU-SA/CM-CONCAT ✗
LCONCAT GRU-SA/CM-LCONCAT ✗

LE GRU-SA/CM-LE ✓
LEWL GRU-SA/CM-LEWL ✗

SA

TO SA-SA/CM-TO ✓
LTO SA-SA/CM-LTO ✓

CONCAT SA-SA/CM-CONCAT ✗
LCONCAT SA-SA/CM-LCONCAT ✗

LE SA-SA/CM-LE ✓
LEWL SA-SA/CM-LEWL ✗

SA/MC

CONS

TO CONS-SA/MC-TO ✓
LTO CONS-SA/MC-LTO ✓

CONCAT CONS-SA/MC-CONCAT ✗
LCONCAT CONS-SA/MC-LCONCAT ✗

TEM CONS-SA/MC-TEM ✓
TEMWL CONS-SA/MC-TEMWL ✗

LE CONS-SA/MC-LE ✓
LEWL CONS-SA/MC-LEWL ✗

GRU

TO GRU-SA/MC-TO ✓
LTO GRU-SA/MC-LTO ✓

CONCAT GRU-SA/MC-CONCAT ✗
LCONCAT GRU-SA/MC-LCONCAT ✗

TEM GRU-SA/MC-TEM ✓
TEMWL GRU-SA/MC-TEMWL ✗

LE GRU-SA/MC-LE ✓
LEWL GRU-SA/MC-LEWL ✗

SA

TO SA-SA/MC-TO ✓
LTO SA-SA/MC-LTO ✓

CONCAT SA-SA/MC-CONCAT ✗
LCONCAT SA-SA/MC-LCONCAT ✗

TEM SA-SA/MC-TEM ✓
TEMWL SA-SA/MC-TEMWL ✗

LE SA-SA/MC-LE ✓
LEWL SA-SA/MC-LEWL ✗

Neural Hawkes \ \ NH ✓

Hawkes \ \ Hawkes ✓

Poisson \ \ Poisson ✓

45



Published in Transactions on Machine Learning Research (06/2023)

D Sequence distribution plots

Figure 12: Distribution of log τi (left) and mark distribution (right) for 10 randomly sampled
sequences in LastFM, MOOC, Wikipedia, and Github, after preprocessing.
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Figure 13: Distribution of log τi (left) and mark distribution (right) for 10 randomly sampled
sequences in MIMIC2, Stack Overflow, and Retweets, after preprocessing.
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Figure 14: Distribution of log τi for 10 randomly sampled sequences in unmarked datasets, after
preprocessing.
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E Proofs

1) Proof of Equation (6) in Section 2. By definition of λ∗(t) Rasmussen (2018), we have:

λ∗(t) = f∗(t)
1 − F ∗(t) (64)

= − d

dt
log (1 − F ∗(t)) . (65)

Integrating both sides from ti−1 to t, we get

Λ∗(t) =
∫ t

ti−1

λ∗(s)ds =
∫ t

ti−1

−dlog (1 − F ∗(s)) (66)

= −log (1 − F ∗(t)) + log

1 − F ∗(ti−1)︸ ︷︷ ︸
=0

 , (67)

where F ∗(ti−1) = 0 results from the point process being simple, i.e. two events cannot occur
simultaneously. Rearranging the terms, we find:

F ∗(t) = 1 − exp (−Λ∗(t)) = 1 − exp
(

−
K∑

k=1
Λ∗

k(t)
)

. (68)

Differentiating with respect to t gives

f∗(t) = d

dt
F ∗(t) = λ∗(t)exp (−Λ∗(t)) . (69)

Given that λ∗
k(t) = λ∗(t)p∗(k|t), we finally find

f∗(t, k) = f∗(t)p∗(k|t) = λ∗
k(t)exp (−Λ∗(t)) (70)
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F Results on relevant datasets only

The discussion in Section 6 highlighted that some datasets (MIMIC2, Stack Overflow, Taxi, Reddit
Subs, Reddit Ask Comments, Yelp Toronto and Yelp Mississauga) might potentially be inappropri-
ate for benchmarking neural TPP models. For completeness, we report in Tables 15, 16, 17, 18, 19
and 20 the results of the aggregation procedure discussed in Section 5.5 without these borderline
inadequate datasets included. We found no significance differences with respect to the conclusions
of Section 6.

Table 15: Average and median scores, and average ranks of the best combinations per decoder on
the NLL-T (top rows) and NLL-M (bottom row) across all relevant marked datasets. Best results
are highlighted in bold.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

GRU-EC-LCONCAT 0.07 -0.01 8.5 0.22 0.23 9.17 -0.97 -1.34 4.5 0.29 0.28 4.33 0.27 0.27 4.0
GRU-LNM-CONCAT -0.86 -0.84 1.5 0.02 0.01 1.5 -2.97 -1.76 2.33 0.26 0.27 3.33 0.34 0.31 2.67

GRU-LN-LTO -0.41 -0.63 4.17 0.06 0.04 5.0 -0.26 -0.33 5.83 0.4 0.4 7.17 0.21 0.14 7.5
GRU-FNN-LTO -0.62 -0.7 3.17 0.02 0.02 1.83 -0.09 -0.14 6.83 0.39 0.42 6.33 0.21 0.14 6.33

GRU-MLP/MC-LCONCAT -0.41 -0.38 5.67 0.11 0.11 7.0 -0.58 -0.47 5.5 0.29 0.32 3.5 0.25 0.22 4.33
GRU-RMTPP-LCONCAT -0.59 -0.5 4.67 0.05 0.04 4.67 -1.94 -1.99 2.67 0.25 0.26 2.67 0.35 0.34 2.17

GRU-SA/CM-LE -0.33 -0.39 6.33 0.06 0.04 4.0 0.11 0.11 8.17 0.45 0.45 8.33 0.17 0.09 9.0
GRU-SA/MC-LE -0.5 -0.46 4.17 0.09 0.09 5.5 0.1 -0.04 8.17 0.39 0.43 7.33 0.19 0.1 7.33

Hawkes 0.5 -0.15 7.17 0.13 0.17 6.67 -6.27 -1.58 3.17 0.15 0.13 2.0 0.44 0.42 2.0
Poisson 1.72 1.31 10.83 0.31 0.35 10.5 1.39 1.26 10.83 0.49 0.49 10.67 0.14 0.06 10.33

NH 1.53 1.07 9.83 0.3 0.35 10.17 0.16 0.41 8.0 0.48 0.49 10.33 0.14 0.06 10.33

GRU-EC-TEMWL 0.22 0.16 8.17 0.23 0.24 9.0 -1.5 -1.1 5.0 0.33 0.33 5.83 0.26 0.27 5.5
GRU-LNM-CONCAT -0.86 -0.84 1.17 0.02 0.01 1.83 -2.97 -1.76 2.83 0.26 0.27 4.33 0.34 0.31 3.17

GRU-LN-CONCAT -0.37 -0.57 4.33 0.08 0.04 4.5 -3.0 -1.81 3.5 0.28 0.3 3.83 0.3 0.31 4.0
GRU-FNN-LCONCAT -0.62 -0.71 2.5 0.02 0.02 1.33 -1.98 -1.51 5.0 0.31 0.35 4.67 0.27 0.23 5.5

GRU-MLP/MC-TEMWL 0.16 0.24 7.83 0.22 0.25 8.17 -0.77 -0.64 7.17 0.35 0.39 6.17 0.27 0.26 6.33
GRU-RMTPP-LCONCAT + B -0.54 -0.49 3.33 0.05 0.04 4.0 -3.28 -2.0 3.17 0.2 0.16 2.67 0.37 0.33 2.17

GRU-SA/CM-LEWL -0.25 -0.23 5.83 0.1 0.09 5.17 -0.21 -0.17 8.0 0.42 0.44 8.5 0.19 0.1 9.0
GRU-SA/MC-TEMWL -0.26 -0.3 5.67 0.14 0.15 6.0 -0.39 -0.46 7.67 0.36 0.36 6.83 0.22 0.15 7.17
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Table 16: Average and median scores, as well as average ranks per decoder and variation of event
encoding, for relevant marked datasets. Refer to Section 5.5 for details on the aggregation procedure.
Best results are highlighted in bold.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

EC-TO 0.83 0.59 7.17 0.26 0.28 6.0 0.15 0.19 6.17 0.45 0.46 7.17 0.17 0.08 7.0
EC-LTO 0.82 0.6 7.33 0.26 0.27 6.5 0.12 0.15 5.67 0.45 0.46 6.67 0.17 0.08 7.5

EC-CONCAT 0.22 0.22 2.5 0.22 0.23 2.5 -0.39 -0.75 3.0 0.37 0.39 1.67 0.25 0.23 2.17
EC-LCONCAT 0.41 0.29 4.0 0.24 0.24 4.83 -0.38 -0.66 3.67 0.36 0.35 2.67 0.24 0.22 3.17

EC-TEM 0.24 0.2 4.0 0.23 0.24 4.5 0.14 0.13 6.0 0.44 0.45 6.17 0.19 0.09 5.67
EC-TEMWL 0.32 0.3 4.17 0.23 0.25 5.0 -0.69 -0.84 1.83 0.35 0.35 2.0 0.27 0.24 1.33

EC-LE 0.2 0.16 3.0 0.22 0.24 2.0 0.11 0.1 5.17 0.43 0.45 5.5 0.19 0.09 5.5
EC-LEWL 0.26 0.25 3.83 0.23 0.25 4.67 -0.15 -0.45 4.5 0.39 0.41 4.17 0.24 0.22 3.67

LNM-TO -0.55 -0.57 6.5 0.02 0.02 5.0 0.03 0.11 6.83 0.45 0.46 6.83 0.17 0.09 7.5
LNM-LTO -0.56 -0.59 6.17 0.02 0.02 5.5 0.0 0.06 6.5 0.45 0.46 7.17 0.17 0.1 6.67

LNM-CONCAT -0.8 -0.8 1.67 0.02 0.02 4.0 -2.48 -1.47 1.5 0.28 0.26 2.0 0.35 0.35 1.5
LNM-LCONCAT -0.79 -0.83 2.0 0.02 0.01 2.33 -1.99 -1.18 3.0 0.31 0.33 2.83 0.29 0.27 3.33

LNM-TEM -0.74 -0.78 4.5 0.02 0.01 4.0 -0.0 0.05 6.5 0.44 0.45 6.0 0.19 0.1 5.83
LNM-TEMWL -0.7 -0.72 4.83 0.03 0.02 4.0 -2.17 -1.49 2.17 0.3 0.32 1.83 0.32 0.29 2.0

LNM-LE -0.71 -0.77 5.67 0.03 0.02 6.83 -0.03 -0.02 6.17 0.43 0.44 6.0 0.19 0.1 6.0
LNM-LEWL -0.71 -0.75 4.67 0.02 0.02 4.33 -2.13 -1.18 3.33 0.32 0.31 3.33 0.29 0.26 3.17

FNN-TO 1.15 0.68 4.5 0.26 0.31 4.67 0.34 0.37 4.5 0.48 0.48 5.5 0.14 0.07 5.17
FNN-LTO -0.43 -0.54 2.0 0.03 0.02 1.67 0.06 0.05 3.5 0.42 0.42 1.83 0.2 0.12 2.17

FNN-CONCAT 1.1 0.54 4.33 0.27 0.31 4.33 0.19 0.13 3.33 0.46 0.46 4.0 0.15 0.09 3.5
FNN-LCONCAT -0.59 -0.66 1.0 0.02 0.02 1.33 -1.23 -1.17 1.67 0.33 0.35 1.17 0.25 0.22 1.0

FNN-LE 1.14 0.72 4.33 0.27 0.32 4.17 0.3 0.34 4.0 0.48 0.48 4.0 0.15 0.06 4.67
FNN-LEWL 1.19 0.65 4.83 0.27 0.32 4.83 0.24 0.34 4.0 0.47 0.47 4.5 0.15 0.08 4.5

MLP/MC-TO 0.23 0.22 6.67 0.19 0.25 5.83 0.34 0.33 6.33 0.43 0.43 6.67 0.18 0.09 7.33
MLP/MC-LTO -0.19 -0.17 3.33 0.11 0.1 1.67 0.5 0.25 7.17 0.41 0.45 6.33 0.19 0.1 5.83

MLP/MC-CONCAT 0.03 0.06 4.83 0.2 0.22 5.83 -0.03 -0.18 3.17 0.37 0.39 3.0 0.24 0.22 3.33
MLP/MC-LCONCAT -0.33 -0.28 1.83 0.11 0.1 1.67 -0.17 -0.42 3.17 0.33 0.34 2.67 0.24 0.21 2.83

MLP/MC-TEM 0.04 0.03 5.67 0.19 0.23 6.0 0.26 0.18 5.17 0.41 0.41 5.83 0.19 0.1 6.67
MLP/MC-TEMWL 0.24 0.32 7.33 0.22 0.25 7.83 -0.6 -0.43 2.17 0.35 0.38 2.5 0.26 0.26 1.67

MLP/MC-LE -0.11 -0.13 3.17 0.16 0.19 3.5 0.38 0.22 5.67 0.4 0.42 6.33 0.19 0.1 5.83
MLP/MC-LEWL -0.09 -0.13 3.17 0.17 0.2 3.67 -0.39 -0.33 3.17 0.34 0.35 2.67 0.24 0.2 2.5

RMTPP-TO 0.32 0.23 7.33 0.2 0.24 6.83 0.07 0.09 6.17 0.44 0.45 7.17 0.17 0.09 7.33
RMTPP-LTO -0.28 -0.42 3.83 0.06 0.07 2.17 0.05 0.03 6.5 0.44 0.44 6.67 0.18 0.11 6.33

RMTPP-CONCAT 0.0 0.06 4.17 0.19 0.22 4.33 -1.66 -1.29 3.0 0.29 0.34 2.33 0.31 0.3 2.5
RMTPP-LCONCAT -0.52 -0.47 1.5 0.05 0.05 1.0 -1.85 -1.57 3.0 0.26 0.27 1.83 0.34 0.32 1.67

RMTPP-TEM 0.03 0.04 5.33 0.19 0.22 5.83 0.06 0.05 5.67 0.43 0.44 6.5 0.19 0.11 6.33
RMTPP-TEMWL 0.08 0.12 4.83 0.19 0.22 5.83 -2.28 -1.42 1.67 0.27 0.29 2.17 0.35 0.37 1.83

RMTPP-LE 0.01 0.02 4.17 0.19 0.22 4.5 0.07 0.05 6.0 0.43 0.44 5.67 0.19 0.11 6.0
RMTPP-LEWL 0.05 0.12 4.83 0.19 0.23 5.5 -1.24 -1.03 4.0 0.32 0.38 3.67 0.28 0.28 4.0

SA/CM-TO -0.06 -0.09 4.67 0.08 0.06 4.17 0.75 0.22 4.5 0.46 0.46 5.0 0.14 0.1 4.33
SA/CM-LTO -0.21 -0.18 2.5 0.05 0.05 2.33 0.14 0.07 3.5 0.44 0.44 2.67 0.19 0.1 2.5

SA/CM-CONCAT -0.12 -0.29 3.5 0.08 0.07 3.17 0.78 0.2 4.5 0.46 0.46 3.5 0.14 0.1 3.0
SA/CM-LCONCAT -0.02 0.05 4.33 0.08 0.06 3.5 0.16 0.08 2.33 0.45 0.45 3.0 0.19 0.11 3.0

SA/CM-LE -0.3 -0.36 2.33 0.06 0.04 2.83 0.1 0.1 3.17 0.45 0.45 4.17 0.18 0.08 4.5
SA/CM-LEWL -0.19 -0.19 3.67 0.1 0.08 5.0 -0.12 -0.11 3.0 0.42 0.44 2.67 0.19 0.09 3.67

SA/MC-TO 1.4 1.0 7.5 0.29 0.34 6.67 0.22 0.31 5.5 0.48 0.49 7.0 0.14 0.06 7.33
SA/MC-LTO 1.24 0.82 5.67 0.28 0.32 6.0 0.25 0.4 6.0 0.47 0.48 6.33 0.15 0.06 6.17

SA/MC-CONCAT 0.63 0.85 6.67 0.24 0.31 6.33 0.03 0.11 5.0 0.44 0.49 5.83 0.18 0.06 5.83
SA/MC-LCONCAT 0.52 0.74 5.17 0.24 0.3 6.5 0.1 0.15 5.17 0.42 0.48 5.0 0.18 0.06 5.67

SA/MC-TEM -0.35 -0.3 3.33 0.13 0.14 3.33 0.18 0.05 5.0 0.41 0.44 4.33 0.18 0.08 4.17
SA/MC-TEMWL -0.25 -0.26 4.17 0.14 0.14 4.17 -0.32 -0.27 2.17 0.37 0.38 2.0 0.22 0.14 1.67

SA/MC-LE -0.48 -0.42 1.5 0.09 0.09 1.33 0.12 -0.03 4.67 0.4 0.43 3.67 0.19 0.09 3.5
SA/MC-LEWL -0.45 -0.45 2.0 0.1 0.1 1.67 -0.1 -0.13 2.5 0.37 0.42 1.83 0.2 0.1 1.67
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Table 17: Average and median scores, as well as average ranks per decoder and variation of event
encoding, for relevant marked datasets. Refer to Section 5.5 for details on the aggregation procedure.
Best results are highlighted in bold.

Marked Datasets

NLL-T PCE NLL-M ECE F1-score

Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank Mean Median Rank

CONS-EC 1.66 1.26 3.0 0.3 0.35 2.83 0.7 0.46 2.67 0.48 0.49 3.0 0.14 0.06 3.0
SA-EC 0.68 0.54 2.0 0.25 0.27 2.17 -0.02 -0.16 2.0 0.43 0.42 2.0 0.2 0.15 1.83

GRU-EC 0.15 0.15 1.0 0.22 0.23 1.0 -0.25 -0.4 1.33 0.39 0.38 1.0 0.22 0.17 1.17

CONS-LNM -0.34 -0.5 2.83 0.02 0.02 2.33 0.65 0.39 3.0 0.48 0.49 3.0 0.14 0.06 3.0
SA-LNM -0.6 -0.66 1.83 0.02 0.02 2.17 -0.8 -0.44 1.83 0.39 0.39 1.83 0.24 0.17 1.83

GRU-LNM -0.79 -0.8 1.33 0.03 0.01 1.5 -1.39 -0.89 1.17 0.35 0.37 1.17 0.26 0.2 1.17

CONS-FNN 0.94 0.61 3.0 0.2 0.23 2.67 0.76 0.41 3.0 0.47 0.48 2.67 0.16 0.07 3.0
SA-FNN 0.68 0.38 1.83 0.19 0.22 2.0 0.15 0.16 2.0 0.45 0.45 1.83 0.17 0.11 1.83

GRU-FNN 0.51 0.12 1.17 0.18 0.21 1.33 -0.18 -0.08 1.0 0.43 0.45 1.5 0.18 0.1 1.17

CONS-MLP/MC 0.46 0.43 2.67 0.19 0.22 2.0 0.88 0.58 2.67 0.44 0.46 3.0 0.17 0.07 3.0
SA-MLP/MC 0.09 0.15 2.0 0.17 0.21 2.33 0.13 -0.04 2.0 0.39 0.4 2.0 0.21 0.15 1.83

GRU-MLP/MC -0.14 -0.12 1.33 0.17 0.19 1.67 -0.06 -0.23 1.33 0.36 0.37 1.0 0.22 0.17 1.17

CONS-RMTPP 0.81 0.56 3.0 0.18 0.21 2.33 1.1 0.59 2.67 0.47 0.48 3.0 0.13 0.05 3.0
SA-RMTPP 0.1 0.1 1.83 0.17 0.19 2.17 -0.49 -0.41 2.17 0.38 0.39 1.83 0.24 0.18 1.83

GRU-RMTPP -0.18 -0.17 1.17 0.15 0.17 1.5 -1.2 -0.83 1.17 0.34 0.37 1.17 0.26 0.22 1.17

CONS-SA/CM -0.02 -0.01 2.33 0.09 0.1 2.17 0.75 0.47 2.67 0.45 0.45 2.0 0.17 0.09 1.83
SA-SA/CM -0.14 -0.16 1.67 0.07 0.06 2.17 0.29 0.1 1.83 0.45 0.45 1.83 0.17 0.1 1.67

GRU-SA/CM -0.16 -0.07 2.0 0.07 0.07 1.67 0.31 0.1 1.5 0.45 0.45 2.17 0.17 0.1 2.5

CONS-SA/MC 0.8 0.52 3.0 0.22 0.25 2.83 0.76 0.44 3.0 0.46 0.47 3.0 0.16 0.07 3.0
SA-SA/MC 0.29 0.23 1.67 0.19 0.21 1.83 0.1 0.13 1.83 0.42 0.46 2.0 0.18 0.08 1.5

GRU-SA/MC 0.28 0.22 1.33 0.19 0.21 1.33 0.02 0.07 1.17 0.42 0.45 1.0 0.18 0.08 1.5
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Table 18: Average, median, worst scores, and average ranks of the best combinations per decoder
on the NLL-T across all relevant unmarked datasets. Best results are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

GRU-EC-TEM + B -0.21 -0.28 0.16 7.0 0.06 0.02 0.13 8.33
GRU-LNM-TEM -3.7 -1.03 -0.83 1.67 0.01 0.01 0.01 1.67

GRU-LN-LE -0.25 -0.46 0.47 6.0 0.02 0.02 0.04 6.67
GRU-FNN-LTO -1.03 -0.79 -0.49 4.0 0.01 0.01 0.01 2.33

GRU-MLP/MC-LTO -0.57 -0.57 -0.5 4.67 0.02 0.01 0.03 5.67
GRU-RMTPP-TEM + B -0.51 -0.54 -0.36 5.67 0.02 0.01 0.05 5.0

GRU-SA/CM-TO -0.71 -0.56 0.73 5.67 0.02 0.01 0.03 6.0
GRU-SA/MC-LE -0.81 -0.87 -0.51 2.33 0.01 0.01 0.02 5.0

Hawkes 0.05 0.06 0.16 8.0 0.01 0.01 0.02 4.33
Poisson 1.54 1.32 2.14 11.0 0.13 0.12 0.2 11.0

NH 0.87 0.9 0.96 10.0 0.09 0.06 0.17 10.0

Table 19: Average, median, and worst scores, as well as average ranks per decoder and variation of
event encoding, for relevant unmarked datasets. Refer to Section 5.5 for details on the aggregation
procedure. Best scores are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

EC-TO 0.36 0.35 0.6 3.33 0.08 0.04 0.16 2.67
EC-LTO 0.39 0.34 0.64 3.67 0.08 0.04 0.16 4.0
EC-TEM -0.03 -0.13 0.31 1.0 0.06 0.03 0.14 1.0

EC-LE 0.17 0.04 0.46 2.0 0.07 0.03 0.15 2.33

LNM-TO -2.19 -0.73 -0.53 3.0 0.01 0.01 0.01 2.67
LNM-LTO -2.18 -0.72 -0.49 3.33 0.01 0.01 0.01 2.33
LNM-TEM -2.64 -0.82 -0.76 1.33 0.01 0.01 0.01 1.67

LNM-LE -1.55 -0.82 -0.56 2.33 0.01 0.01 0.01 3.33

FNN-TO 0.54 0.51 0.62 2.33 0.08 0.04 0.15 2.33
FNN-LTO -0.78 -0.65 -0.25 1.0 0.01 0.01 0.01 1.0
FNN-LE 0.51 0.52 0.54 2.67 0.08 0.05 0.15 2.67

MLP/MC-TO -0.03 0.01 0.1 3.33 0.04 0.03 0.08 3.33
MLP/MC-LTO -0.21 -0.17 0.06 2.33 0.02 0.03 0.03 1.33
MLP/MC-TEM -0.12 -0.14 -0.04 2.33 0.04 0.03 0.09 3.0

MLP/MC-LE -0.31 -0.39 -0.12 2.0 0.03 0.02 0.06 2.33

RMTPP-TO -0.11 -0.16 0.11 3.33 0.04 0.02 0.08 3.33
RMTPP-LTO -0.12 -0.15 0.2 3.0 0.02 0.02 0.03 2.33
RMTPP-TEM -0.33 -0.29 -0.25 1.33 0.03 0.01 0.07 2.33

RMTPP-LE -0.25 -0.24 -0.14 2.33 0.03 0.01 0.08 2.0

SA/CM-TO -0.34 -0.5 0.72 2.0 0.02 0.02 0.03 2.33
SA/CM-LTO 0.67 -0.55 3.38 2.33 0.04 0.02 0.1 2.67
SA/CM-LE -0.25 -0.3 0.19 1.67 0.01 0.01 0.01 1.0

SA/MC-TO 0.76 0.72 0.96 4.0 0.08 0.07 0.15 4.0
SA/MC-LTO 0.51 0.42 0.89 3.0 0.07 0.06 0.14 3.0
SA/MC-TEM -0.57 -0.66 -0.39 2.0 0.01 0.01 0.02 1.0

SA/MC-LE -0.69 -0.8 -0.43 1.0 0.01 0.01 0.02 2.0
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Table 20: Average, median, and worst scores, as well as average ranks per decoder and variation of
history encoder, for relevant unmarked datasets. Refer to Section 5.5 for details on the aggregation
procedure. Best scores are highlighted in bold.

Unmarked Datasets

NLL-T PCE

Mean Median Worst Rank Mean Median Worst Rank

CONS-EC 1.29 1.14 2.14 3.0 0.1 0.07 0.2 3.0
SA-EC 0.61 0.55 0.75 2.0 0.09 0.05 0.17 2.0

GRU-EC -0.17 -0.27 0.25 1.0 0.06 0.02 0.14 1.0

CONS-LNM -1.83 -0.25 0.12 2.33 0.01 0.01 0.02 1.67
SA-LNM -1.24 -0.64 -0.24 2.67 0.01 0.01 0.01 2.33

GRU-LNM -3.04 -0.93 -0.9 1.0 0.01 0.01 0.01 2.0

CONS-FNN 0.61 0.37 1.26 2.67 0.06 0.03 0.13 2.0
SA-FNN 0.15 0.16 0.34 2.0 0.05 0.03 0.1 1.33

GRU-FNN 0.03 0.14 0.17 1.33 0.06 0.03 0.11 2.67

CONS-MLP/MC 0.51 0.58 0.74 2.67 0.04 0.03 0.07 2.67
SA-MLP/MC 0.1 0.23 0.33 2.33 0.04 0.03 0.06 2.0

GRU-MLP/MC -0.44 -0.41 -0.38 1.0 0.03 0.02 0.06 1.33

CONS-RMTPP 0.45 0.6 0.79 2.67 0.03 0.02 0.05 1.67
SA-RMTPP 0.03 -0.04 0.29 2.33 0.03 0.02 0.07 2.67

GRU-RMTPP -0.43 -0.37 -0.33 1.0 0.03 0.01 0.06 1.67

CONS-SA/CM 0.7 0.12 2.02 3.0 0.03 0.02 0.04 2.67
SA-SA/CM 0.01 -0.43 0.99 1.67 0.02 0.02 0.04 1.33

GRU-SA/CM 0.04 -0.61 1.54 1.33 0.03 0.01 0.06 2.0

CONS-SA/MC 0.54 0.73 0.83 3.0 0.05 0.04 0.09 2.67
SA-SA/MC 0.05 -0.06 0.27 2.0 0.05 0.03 0.08 1.33

GRU-SA/MC -0.05 -0.16 0.25 1.0 0.05 0.04 0.08 2.0
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G Critical distance diagrams for event encodings and history encoders

(1) NLL-T. (2) PCE. (3) NLL-M.

Figure 15: Critical Distance (CD) diagrams for the NLL-T, PCE and NLL-M at the α = 0.10
significance level for all event encoding-decoder combinations of Table 4. The combinations’ average
ranks are displayed on top, and a bold line joins the combinations that are not statistically different.
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(1) ECE. (2) F1-score.

Figure 16: Critical Distance (CD) diagrams for the ECE and F1-score at the α = 0.10 significance
level for all event encoding-decoder combinations of Table 4. The combinations’ average ranks are
displayed on top, and a bold line joins the combinations that are not statistically different.
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(1) NLL-T. (2) PCE. (3) NLL-M.

Figure 17: Critical Distance (CD) diagrams for the NLL-T, PCE and NLL-M at the α = 0.10
significance level for all event history encoder-decoder combinations of Table 5. The combinations’
average ranks are displayed on top, and a bold line joins the combinations that are not statistically
different.
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(1) ECE. (2) F1-score.

Figure 18: Critical Distance (CD) diagrams for the ECE and F1-score at the α = 0.10 significance
level for all event history encoder-decoder combinations of Table 5. The combinations’ average ranks
are displayed on top, and a bold line joins the combinations that are not statistically different.
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