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ABSTRACT

Sequence generation and prediction form a cornerstone of modern machine learn-
ing, with applications spanning natural language processing, program synthesis,
and time-series forecasting. These tasks are typically modeled in an autoregressive
fashion, where each token is generated conditional on the preceding ones, and
beam search is commonly used to balance exploration and fluency during decod-
ing. While deep learning models and Large Language Models (LLMs) excel at
capturing statistical patterns in this setting, they remain ill-equipped to guarantee
compliance with formal constraints. In this paper, we introduce ABS: a general
and model-agnostic inference-time algorithm that guarantees compliance with any
constraint that can be compiled into a Deterministic Finite Automaton (DFA),
without requiring retraining. ABS leverages the DFA to guide a constrained variant
of beam search: at each decoding step, transitions leading to violations are masked,
while remaining paths are dynamically re-ranked according to both the model’s
probabilities and the automaton’s acceptance structure. We formally prove that
the resulting sequences are guaranteed to satisfy the given constraints, and we
empirically demonstrate that ABS also improves output quality. We validate our ap-
proach on three distinct tasks: constrained image-stream classification, controlled
text generation, and text infilling. In all settings, ABS achieves perfect constraint
satisfaction, while outperforming or matching state-of-the-art baselines on standard
quality metrics and efficiency.

1 INTRODUCTION

Sequence generation is a fundamental paradigm in machine learning, underpinning applications such
as natural language processing , program synthesis , and image-stream prediction. These problems
are typically approached through autoregressive modeling, where outputs are constructed sequentially,
and beam search is a standard decoding strategy used to trade off between exploration and fluency.
Despite their remarkable ability to capture statistical patterns in this setting, autoregressive models
like Large Language Models (LLMs) offer no guarantees that the sequences they produce will satisfy
formal constraints, such as temporal specifications or structural rules.

Existing approaches to constrained sequence generation can be grouped into four main categories: (i)
constrain the beam search to ensure the presence or absence of specific outputs (Lu et al., 2021; 2022),
(ii) use auxiliary models to steer the sequence generation (Krause et al., 2021; Zhang et al., 2024),
(iii) treat constraints as conditioning and sample from the posterior (Miao et al., 2019; Loula et al.,
2025), and (iv) employ automata-based guidance to enforce complex constraints (Willard and Louf,
2023; Lundberg et al., 2024; Manginas et al., 2025; Umili et al., 2023). However, none of the existing
approaches simultaneously (i) guarantees constraint satisfaction, (ii) avoids additional finetuning or
auxiliary models, (iii) achieves low latency, and (iv) preserves the quality of the generated text.

To address these limitations, we propose ABS, a decoding framework that enforces user-specified
constraints during autoregressive generation. A key design choice is that our method targets hard,
non-negotiable constraints.This makes ABS particularly suited for high-stakes and safety-critical
applications. In contrast, soft or probabilistic patterns (e.g., “usually after event A, event B happens”)
are naturally handled by the probabilistic nature of autoregressive models. Thus, our method is
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complementary: the model accounts for soft regularities through its learned distribution, while ABS
provides an additional mechanism that ensures strict adherence to symbolic rules.

Our method supports any constraint that can be compiled into a Deterministic Finite Automaton
(DFA), and therefore applies to the full class of regular languages. This generality subsumes several
specification formalisms, including Linear Temporal Logic over finite traces (LTLf) and regular
expressions. Consequently, ABS is not tied to a single logic, but rather provides a unifying mechanism
to enforce diverse temporal and structural rules across modalities.

Starting from a DFA expressing the hard constraints, we integrate its transition dynamics into
beam search by re-ranking tokens according to both model logits and DFA state information. This
integration guides the generation away from non-accepting sink states (constraint violated) and toward
accepting states (constraint satisfied), thereby guaranteeing that all generated sequences satisfy the
specified constraints. A natural concern is that such guidance could bias the generation, e.g., by
producing overly short outputs or interfering with reasoning. To mitigate this, ABS introduces a
Ramping Push-Up mechanism: the influence of the automaton is adaptive, starting very gentle when
many decoding steps remain and gradually intensifying only if the model risks running out of steps
to reach acceptance. This design preserves the model’s natural generation abilities while ensuring
that constraints are ultimately satisfied.

We demonstrate the broad applicability of ABS by evaluating it across three distinct tasks: image
sequence classification, constrained text generation, and text infilling. In all settings, ABS achieves
perfect constraint satisfaction while matching or surpassing state-of-the-art baselines on standard
quality metrics. ABS achieves these results with substantially lower computational overhead, yielding
faster runtimes at fixed beam sizes. Moreover, our text generation experiments show that our adaptive
Ramping Push-Up mechanism achieves a careful balance between control and naturalness, making
ABS offer both formal guarantees and practical flexibility. Our implementation and benchmarks are
provided in the supplementary materials and will be released publicly on GitHub.

2 NOTATION AND PROBLEM STATEMENT

Notation. Let X be the finite set of possible values that the generated outputs can take at every
time step (i.e., our vocabulary). Let X+ denote the set of all non-empty, finite sequences over
X . Let fθ be a neural network with learnable weights θ, generating finite sequences of outputs,
each denoted by x1:T (T can vary from one sequence to another). Given a sequence x1:T , we
denote the prefix up to the t-th output by x<t and the t-th element of the sequence by xt. Finally,
let pθ(x1:T ) =

∏T
i=1 pθ(xt | x<t) be the probability of generating the sequence x1:T , where

pθ(xt | x<t) is defined by applying a softmax to the logits outputted by fθ(x<t).

Definition 1. A Deterministic Finite Automaton (DFA) is a 5-tuple A = (Q, C, δ, q0,F) where: (i)
Q is a finite set of states, (ii) C is a finite set of symbols (the alphabet), (iii) δ : Q× C → Q is the
transition function, (iv) q0 ∈ Q is the initial state, (v) F ⊆ Q is the set of accepting states.

An example of a DFA is given in Figure 1 (left). In simple cases, the DFA alphabet C coincides with
the model vocabulary X . However, our approach supports more complex mappings. For example,
LLMs typically output tokens while constraints are often written over words. To account for such
cases, , we assume there exists an injective function ν : X+ → C+ such that ν(x1:T ) = c1:m. This
function maps a raw output sequence from the network (e.g., a sequence of tokens) to a sequence of
higher-level concepts (e.g., words) that form the input symbols for the DFA.

A DFA A accepts a sequence c1:m = ν(x1:T ) ∈ C+, noted A ⊢ c1:T , if and only if there exists a
sequence of states r0, r1, . . . , rm ∈ Q+ such that: r0 = q0, ri = δ(ri−1, ci) for i = 1, . . . ,m and
rm ∈ F . In addition, a DFA state is a deadlock state or sinking state if it is a non-accepting state
from which no accepting state is reachable via any sequence of transitions.

Problem Statement. Given fθ and a DFA A, we target the problem of ensuring A ⊢ ν(x1:T ) for
every sequence x1:T generated by fθ, while maximizing the sequence log-likelihood under pθ, i.e.,

x⋆
1:T = argmax

x1:T∈XT

T∑
t=1

log pθ(xt | x<t) such that A ⊢ ν(x1:T ). (1)
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State coffee cat toy . eos
q0 q3 q2 q2 q2 q2
q1 q2 q2 q2 q2 q3
q2 q3 q4 q2 q2 q2
q3 q4 q4 q5 q2 q2
q4 q5 q5 q5 q6 q2
q5 q2 q2 q2 q2 q7
q6 q2 q2 q2 q2 q2

Distances to closest accepting state:

d(q0) = 5 d(q1) = +∞ d(q2) = 4
d(q3) = 3 d(q4) = 2 d(q5) = 1
d(q6) = 0

Figure 1: DFA (left) and corresponding state transition table with the distances to the closest accepting states
(right) for the constraint: “Generate a sentence that contains coffee, cat, and toy in that order and ends with a
dot” (note how this constraint can be easily expressed as a regex or LTLf formula). The deadlock state is q1, the
accepting state is q6 while the initial state is q0.

This corresponds to the Maximum A Posteriori (MAP) inference problem under constraints specified
by the DFA A.

3 THE ABS ALGORITHM

The ABS algorithm consists of two main steps: (i) the Automata Preprocessing Step, where we process
the given DFA into an efficient computational representation and (ii) the dynamic Automata-guided
Beam Search, where the beam search is guided by both the model’s predictions and the DFA.

3.1 AUTOMATA PREPROCESSING STEP

In our setting, the maximum length T of the output sequence is not known at the time of DFA
preprocessing and is only provided at runtime. Therefore, our automaton processing step must be
prepared to handle traces of any finite length.

First, we process the given DFA A = (Q, C, δ, q0,F) into a more computationally efficient form.
Hence, we represent the transition function δ as a matrix M ∈ Z|Q|×|C|, where each entry mq,c stores
the next state q′ = δ(q, c) for state q ∈ Q and symbol c ∈ C. For notational convenience, we use q
and c to denote both states/concepts and their corresponding indices in M. This matrix representation
enables efficient state transition lookups during the generation process.

However, the network fθ might not necessarily output symbols in the alphabet C. Hence, we also
create the cost function w : C → N representing the number of outputs fθ has to generate to create
concept c. This will also represent the cost to move from q to q′ = δ(q, c). How the cost function is
defined varies from one use case to another. For example, in constrained text generation, if the DFA
is defined over tokens (i.e., each symbol in C corresponds to a single token), then each transition
naturally has a cost of 1. On the other hand, if the DFA is defined over higher-level concepts such
as words or phrases, each of which might require multiple tokens to generate, then the cost of a
transition labeled with a concept c ∈ C is set to the minimum number of tokens needed to output c.

Given a cost function w : C → N and a DFA A = (Q, C, δ, q0,F), we define the corresponding
weighted DFA Aw by assigning each transition δ(q, c) a cost w̃(q, c) = +∞ if q is a sinking state
and w̃(q, c) = w(c) otherwise. A sequence c1:m ∈ C∗ is accepted by Aw iff it is accepted by A. For
any sequence c1:m, its cost is defined as

W (c1:m) =

m∑
i=1

w̃(qi−1, ci), (2)

3
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Algorithm 1 ABS algorithm with Ramping Push-Up

1: Input: Prompt x0; token set X ; LLM log-prob function log pθ; DFA (Q, C, δ, q0,F); distance-
to-accepting-state function d; num. beams k; max length T ; ramping params (αmin, γ)

2: Output: DFA compliant sequence x̂1:T

3:
4: Initialize k beams B ← {(x0, 0, q0, d(q0), ϵ), . . . , (x0, 0, q0, d(q0), ϵ)} ▷ ϵ indicates empty string
5: for t = 1 to T do
6: Extend logits for all beams: Z←

[
log pθ(x | xi

<t)
]
i∈[k], x∈X ∈ Rk×|X|

7: S ← ∅ ▷Candidates pool
8: for i = 1 to k do
9: αi

t ← RAMPPUSHUP(αmin, d
i
t, t, T, γ) ▷See Equation 3

10: for all x ∈ X do
11: q′ ← NEXTSTATE(qit, l

i
t, x) ▷See Equation 4

12: if d(q′) > T − t then
13: continue ▷Skip: we cannot reach acceptance in (T − t) steps
14: end if

15: z̃ ←
{
αi
t ·maxZ[i, :] + (1−αi

t) · Z[i, x], if d(q′) < dit
Z[i, x], otherwise

16: s′ ← si + z̃
17: S ← S ∪{(xi

<tx, s
′, q′, d(q′), litx)} ▷ xi

<tx, l
ix are new sequences obtained via concatenation

18: end for
19: end for
20: B ← TOPK

(
S, k; key = sit

)
▷Pick the k best successors by score

21: end for
22: return Token sequence x̂1:T = xi⋆

1:T , where i⋆ = argmax siT

i.e., the sum of the transition costs along the unique accepting run. We apply Dijkstra’s algorithm (Di-
jkstra, 1959) to the weighted DFA in order to compute, for each state q, the minimal cost of reaching
an accepting state q ∈ F . We define a distance function d : Q → N ∪ {+∞}, where d(q) gives the
minimal cost of reaching an accepting state from q.

3.2 AUTOMATA-GUIDED BEAM SEARCH

Automata-guided Beam Search has two goals: (i) prevent beams from entering deadlock states (from
which no accepting state is reachable), and (ii) bias exploration toward accepting states. The full
procedure is detailed in Algorithm 1, with a graphical example in Figure 2. Throughout this Section
and in the Algorithm, given two sequences x1, x2, we will indicate with x1x2 their concatenation.

In the Algorithm, for every t we maintain a set B of k tuples, each representing the state of one beam.
The i-th tuple has form (xi

<t, s
i
t, q

i
t, d

i
t, l

i
t), where: (i) xi

<t is the partial sequence generated so far, (ii)
sit is the score of the beam which we will compute taking into account both Z and the DFA, (iii) qit is
the current DFA state, (iv) dit = d(qit) is the distance from qit to the closest accepting state, and (v)
lit is a sequence of outputs representing the last concept being “built up” to move to the next state
(possibly still not completed, e.g., if the LLM is trying to generate “politician”, lit might be “polit”).
At t = 0, all the tuples in B are initialized in the same way as (x0, 0, q0, d(q0), ϵ), x0 being the initial
prompt and ϵ being the empty sequence.

Ramping Push-Up. We want the model mostly to follow its own distribution, but to gradually steer
it to avoid dead ends and force it to satisfy the constraints when necessary. Hence, we introduce a
dynamic mechanism that biases decoding toward DFA transitions leading closer to an accepting state.
At each step t and for each beam i, we define a coefficient αi

t ∈ [αmin, 1] that scales how strongly
we push the logits of promising outputs toward the maximum logit. The coefficient increases as the
remaining steps T − t approach the current DFA distance to acceptance dit:

αi
t = RAMPPUSHUP(αmin, d

i
t, t, T, γ)

def
= αmin + (1− αmin) ·min

(
1,
(

di
t

T−t

)γ)
, (3)

4
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Figure 2: (Cont.’ed from Figure 1). Real generation using ABS, with 2 beams, αmin=0.5, γ=1, and T=10. The
selected sequence is shaded in green. Above each token are the relative logits, before and after modification,
while the arcs represent the state transitions inside the automaton. The same model without ABS generates “The
cat was playing with a toy while the owner”, breaking the order constraints on word generation (cat before
coffee). After generating “The”, the model prefers “cat” at t = 2, violating the requirements.

where γ > 0 controls the sharpness of the ramp. This schedule encourages natural generation when
slack is high (T − t≫ dit), as the bias is mild (αi

t ≈ αmin), and only intensifies when the model risks
running out of steps (T − t ≈ dit). Additionally, the sharpness parameter γ controls how quickly the
pressure ramps up as the sequence nears its limit, with smaller values yielding smoother guidance
and larger values enforcing a sharper transition. In practice, both αmin and γ are selected empirically
on the validation set.

Next State. The DFA transitions are defined over symbols in C, while the network fθ (and hence
the beam search) operate over the set of output symbols X . To overcome this limitation, given the
current state q, the sequence of outputs representing the last concept being built up l, and the current
candidate output x:

NEXTSTATE(q, l, x) =


δ(q, c′) if c′ = lx ∈ C,
q if ∃c ∈ C with prefix lx,

δ(q, NOMATCH) otherwise.

(4)

The symbol NOMATCH is a special input that preserves DFA consistency when x does not extend any
concept, allowing for unconstrained outputs (e.g., filler words) while preserving DFA consistency.

Distance from Accepting State. Before adding a candidate to the set of effective candidates, we
verify that its distance to the nearest accepting state is at most T − t (line 13 of Algorithm 1). If this
condition is not met, the candidate is skipped. This check prevents the model from entering a state
from which it cannot reach an accepting state within the remaining steps. Combined with the RPU
mechanism, this process guarantees that all constraints are satisfied, as proven in Theorem 1.

4 THEORETICAL ANALYSIS

In this section we provide formal statements concerning the computational complexity of our inference
tasks, soundness of our Automata-guided inference method, and comparison with existing works.
Proofs of the stated theorems are reported in the Appendix.

4.1 SOUNDNESS AND COMPLEXITY OF AUTOMATA-GUIDED BEAM SEARCH

We recall that our problem (Eq. 1) is a constrained Maximum A Posteriori (MAP) inference task
over the outputs of an autoregressive model. MAP inference with logical constraints is NP-hard in
general, even for Bayesian networks of treewidth one (Roth, 1996). We therefore design a structured
approximate method that is tractable in practice yet guarantees soundness.

5
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Theorem 1 (Soundness of Automata-guided Beam Search with Ramping α). Let ϕ be a constraint
over a sequence of concepts compiled into a DFA A, and let q0 be the initial state of A. If (i) at step
0, q0 is within distance d0 ≤ T of an accepting state, where T is the maximum sequence length; (ii)
at each step t, the scheduler ramps αi

t and transitions to states with dqt+1
> T − t are pruned,

then the algorithm returns a sequence x̂1:T such that x̂1:T |= ϕ, whenever such a sequence exists.

This guarantees that Automata-guided Beam Search never discards all feasible paths: if a satisfying
sequence exists, it will be produced.

Complexity For a fixed-size DFA, Automata-guided Beam Search runs in polynomial time with
respect to sequence length T , beam width k, and output space size |X |. Each decoding step considers
at most k · |X | candidates, applies DFA filtering and scoring, and retains the top k. The overall time
complexity is therefore

O(T · k · |X |).

4.2 THEORETICAL COMPARISON WITH THE STATE OF THE ART

One method to address this problem, called Ctrl-G, and proposed by Zhang et al. (2024), is to distill
the model fθ into Markov models to hopefully obtain a tractable representation. Unfortunately, the
next result shows that even in the simplest case, the constrained MAP inference task is NP-hard.

Theorem 2 (Complexity of Markov Chains MAP Inference with Unary Constraint). MAP inference
on Markov Chains with a unary equality constraint is NP-hard.

Thus, while HMMs admit polynomial-time MAP inference via Viterbi under dense emissions, LLM
outputs are typically sparse, so HMM approximations (Zhang et al., 2024) might not guarantee
tractable constrained decoding. Finally, we note that other Automata-based steering methods,
including industry standards like Guidance (Lundberg et al., 2024) and Outlines (Willard and Louf,
2023), are shown to be unsound through experimental results in the following section.

5 EXPERIMENTAL EVALUATION

We report on experiments assessing the benefits of our approach applied to three tasks: image sequence
classification and text generation, involving temporal constraints (expressed as LTLf formulas), and
text infilling, involving structural constraints (expressed as regular expressions). To produce the
automata representing the LTLf formulae, we exploit MONA 1 and LTLf2DFA 2 (Fuggitti, 2019).
For regular expressions, we used FAdo (Reis and Moreira, 2002). All experiments ran on a machine
with an Intel® Xeon® 20 cores and NVidia L40S GPU with 48 GB of VRAM.

5.1 CONSTRAINED IMAGE SEQUENCE CLASSIFICATION

2 3 4 5 6 7 8 9 10
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70
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CNN+ABS (Acc)
CNN (Acc)
CNN-LSTM (Acc)

CNN+ABS (Seq. Acc)
CNN (Seq. Acc)
CNN-LSTM (Seq. Acc)

Figure 3: Performance on Ordered Fashion MNIST.

We first evaluate our method on a con-
trolled sequential image classification task.
Starting from Fashion-MNIST3, we con-
struct Ordered Fashion-MNIST, in which
images are arranged into sequences subject
to LTLf constraints we manually anno-
tated (Appendix C). The constraints specify
which clothing items cannot co-occur and
enforce ordering constraints. For example,
the sequence [trousers, t-shirt/top, sneakers,
sandals] is not allowed as sneakers and san-
dals cannot be worn at the same time, but
neither is the sequence [sandals, trousers,

1https://www.brics.dk/mona/, copyright 1997-2020 Aarhus University.
2http://ltlf2dfa.diag.uniroma1.it/, License LGPLv3+
3https://github.com/zalandoresearch/fashion-mnist, MIT License
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Table 1: Performance on CommonGen. ABS is run with: number of beams=64, α=0.5 and γ=1, for both
supervised and unsupervised model. Ctrl-G uses the HMM with 32768 hidden states the authors provided in
their paper. Best scores are in bold, while second bests are underlined.

Method ROUGE-L BLEU-4 CIDEr SPICE Coverage
Unsupervised
InsNet (Lu and Peng (2021)) - 18.7 - - 100.0
NADO (Meng et al. (2022)) - 26.2 - - 96.1
GeLaTo (Zhang et al. (2023)) 44.3 30.3 15.6 30.2 100.0
Ctrl-G (Zhang et al. (2024)) 45.2 32.1 16.0 30.8 100.0
Outlines (Willard and Louf (2023)) 31.4 18.7 2.8 19.7 80.6
Guidance (Lundberg et al. (2024)) 19.4 9.2 3.3 15.3 92.1
ABS 48.7 47.9 15.7 29.3 100.0
Supervised
NADO 44.4 30.8 16.1 32.0 88.8
GeLaTo 46.2 34.0 17.2 32.2 100.0
Outlines 29.9 16.3 2.7 18.5 76.5
Guidance 21.3 9.9 3.0 15.3 89.0
ABS 49.7 49.5 16.2 29.7 100.0

Table 2: Runtimes comparison across different beam sizes (± standard error), with max length T = 32. ABS is
used with α=0.5 and γ=1. Ctrl-G uses the HMM with 32768 hidden states. Both use fine-tuned GPT2.

Method 4 8 16 32 64 128
Ctrl-G 3.49 ± 0.011 3.70 ± 0.014 4.25 ± 0.024 5.43 ± 0.053 8.05 ± 0.102 12.01 ± 0.161

ABS 0.74 ± 0.007 0.81 ± 0.006 1.33 ± 0.010 2.22 ± 0.019 4.42 ± 0.041 9.45 ± 0.084

t-shirt/top] as sandals cannot be worn before
trousers.

As a baseline, a frozen CNN trained on Fashion MNIST achieves 91.03% accuracy and 64.09%
sequence accuracy (i.e., the ratio of sequences that are correctly classified) on Ordered Fashion-
MNIST. As an additional baseline, we combined the frozen CNN with a trainable LSTM, which
allows us to model sequential dependencies. In this setting, only the LSTM parameters are trained,
while the CNN remains fixed. This CNN-LSTM sequence model achieves an accuracy of 94.07%
and a sequence accuracy of 74.69%. In contrast, combining the frozen CNN with ABS (10 beams)
yields 95.56% accuracy (+4.53 with respect to the CNN and +1.49 to the CNN-LSTM) and 80.66%
sequence accuracy (+16.57 with respect to the CNN and +5.97 to the CNN-LSTM), surpassing both
baselines without additional training. Figure 3 shows how performance improves with beam size.
This experiment shows that our method replaces the need for such an additional recurrent module,
avoiding extra training, while achieving better performance, especially in the sequence accuracy.
Implementation details are provided in Appendix C.

5.2 CONSTRAINED TEXT GENERATION

We present two experiments on constrained text generation with LLMs. For both datasets, we
computed the standard quality metrics in the literature: BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016).

CommonGen. For the first experiment we use the CommonGen dataset (Lin et al., 2020), a standard
evaluation task for constrained text generation released under MIT License. In this task, a set of
common concepts is provided (e.g., dog, frisbee, catch, throw) and the goal for the LLM is to generate
a coherent sentence describing a scenario using all the given concepts (e.g., “A man throws a frisbee,
and his dog catches it”). We compare our results with those obtained in relevant previous work, such
as works of Zhang et al. (2024; 2023); Meng et al. (2022). In particular, we use the scores reported

7
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Table 3: Performances on Ordered CommonGen. ABS use LLAMA 3.1 8B with number of beams=64, α=0.25,
γ=1. The best scores are in bold, while the second best are underlined.

Method/Model ROUGE-L BLEU-4 CIDEr SPICE Coverage
GPT 3.5 42.2 24.9 13.5 40.8 64.5
GPT 4 42.2 23.7 12.4 40.7 83.3
GPT 4o 42.7 25.2 13.4 42.2 73.9
o1 43.1 24.3 12.9 41.3 99.8
LLAMA 3.1 8B 32.2 22.6 12.3 38.0 44.4
LLAMA 3.1 8B + Outlines 33.5 21.8 10.4 40.5 49.9
LLAMA 3.1 8B + Guidance 38.0 22.8 10.4 43.0 54.0
LLAMA 3.1 8B + ABS 40.0 25.6 13.6 41.7 100.0

in the first two cited papers. Moreover, to ensure a fair comparison, we apply ABS, Guidance and
Outlines to the same models they employed: GPT2-large (Radford et al., 2019) (MIT License) as
the unsupervised model, and GPT2-large fine-tuned by Zhang et al. (2023) on the training set of
CommonGen as the supervised model. For this task we selected the best parameters on the training
set and then applied these parameters to the validation set.

The results in Table 5.1 show that, for both models, ABS exceeds the current state of the art in
two quality metrics (ROUGE-L and BLEU-4), is competitive in the remaining two (CIDEr and
SPICE) and achieves 100% constraint satisfaction (“Coverage”). Moreover, these experiments show
that approaches such as Outlines and Guidance, which also rely on DFAs to guide generation, do
not achieve 100% coverage. This is because these methods prevent entering a deadlock state (i.e.
constraint is violated) but they lack a mechanism that guarantees to land in an accepting state (i.e.
constraint is satified) before reaching the model’s maximum token limit. Importantly, as shown in
Table 2, ABS is systematically faster than Ctrl-G – the best competing method – when using the same
number of beams and maximum token generation length.

Ordered CommonGen. In our second experiment, we introduce Ordered CommonGen, a variant
of CommonGen with a temporal constraint that the generated sentence must include all provided
concepts in a specified order. For example, given the ordered set dog, frisbee, catch, throw, a valid
output would be: “The dog eagerly chased the frisbee trying to catch it after its owner threw it.”. This
ordering constraint increases task difficulty and makes the setting well-suited for evaluating temporal
constraint satisfaction. The prompt adapted from CommonGen Lite, is provided in Appendix D.1.

We compare ABS applied to LLAMA 3.1 8B with Guidance and Outlines applied to the same model,
and with large OpenAI models: GPT-3.5, GPT-4, GPT-4o, and the o1 reasoning model Brown et al.
(2020); OpenAI (2024a;b;c). Table 3 shows that, despite using a much smaller and locally deployed
model, ABS outperforms the large models on two quality metrics (BLEU-4 and CIDEr) and remains
competitive on the other two metrics. It is also the only approach that achieves 100% constraint
satisfaction, consistent with its sound design, whereas GPT-3.5, GPT-4, and GPT-4o have a significant
number of violations and o1 achieves 99.8% coverage. Compared to the base LLAMA 3.1 8B model,
ABS achieves a substantial improvement in qualitative metrics (R: +7.8, B: +3.0, C: +1.3, S: +3.7,
and Cov.: +55.6). While Guidance and Outlines also improve performance on most metrics, they do
not reach the improvements made by ABS (except Guidance on SPICE metric only) and they yield
significantly lower coverage than the various GPT models and ABS.

5.3 TEXT INFILLING

We also evaluate ABS on a text infilling benchmark introduced by Donahue et al. (2020), which
is based on the ROC Stories corpus (Mostafazadeh et al. (2016)). Each test example consists of a
short story with masked segments, and the task is to fill in these masks. For instance: "My day on
<|infill_word|> this week went as expected. My family and I attended Church. <|infill_sentence|>".
We straightforwardly express these text infilling tasks with regular expressions.

We use the GPT-2 small checkpoint released by Donahue et al. (2020) as part of their ILM method, as
the base model for ABS, Guidance and Outlines. Following their experimental protocol, we generate
three test sets from the original one, with masking ratios of 10%, 20%, and 30%. To evaluate the
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Table 4: Performances on Text Infilling. ABS is run with: with number of beams=16, α=0.5, γ=1. Best scores
are in bold, while second bests are underlined.

Method 10% 20% 30%
Rouge-L Bleu-4 Cov. Rouge-L Bleu-4 Cov. Rouge-L Bleu-4 Cov.

ILM 74.5 71.7 86.5 63.2 59.8 49.7 51.1 46.5 23.0
Guidance 80.5 70.8 68.0 67.9 56.1 56.0 55.6 42.4 36.0
Outlines 71.2 56.4 94.0 55.7 38.8 80.0 43.6 28.6 80.0
ABS 85.4 79.1 100.0 73.3 64.1 100.0 61.6 50.3 100.0

completed stories, we report BLEU-4 and ROUGE-L and Coverage. As shown in Table 4, ABS
outperforms ILM, Guidance, and Outline. ABS is again the only method to achieve perfect coverage.

6 RELATED WORK

Neurosymbolic AI. Neurosymbolic AI is a growing filed of interest in machine learning due to the
ability of its methods to reconcile neural perception with symbolic reasonings (Raedt et al., 2020;
d’Avila Garcez and Lamb, 2023). While the field is quite vast, the neurosymbolic solutions that are
the closest to our method are those that try to incorporate symbolic background knowledge in the form
of constraints into neural models (Dash et al., 2022; Giunchiglia et al., 2022). These methods can be
divided in two groups: those that give a probabilistic semantics to the constraints (Manhaeve et al.,
2018; Xu et al., 2018; van Krieken et al., 2023) and those that give a fuzzy semantics (Donadello
et al., 2017; Giunchiglia et al., 2024; Diligenti et al., 2012). Another way to categorize the methods
in the field is by whether they incorporate the constraints in the loss function (Donadello et al., 2017;
Xu et al., 2018; Fischer et al., 2019; van Krieken et al., 2022) or they change the final output space of
the model (Manhaeve et al., 2018; Giunchiglia and Lukasiewicz, 2021; Ahmed et al., 2022; Pryor
et al., 2023; Hoernle et al., 2022; Misino et al., 2022). The first can be used to nudge via the loss the
network to satisfy the constraints, while the second can guarantee the constraints satisfaction.

Constrained Text Generation. The work done in constrained text generation has been developing
on multiple orthogonal axes. 1. Search based decoding. These approaches act at inference time
and constrain the beam search with logical constraints. For example, in (Lu et al., 2021; 2022), the
authors decide which beams to expand taking into account not only the LLM’s prediction but also the
degree of satisfaction of the constraints reported for every sequence. 2. Auxiliary Classifier Guidance.
The works that follow this line aim to guide the base model with an auxiliary one. GeDi (Krause
et al., 2021), FUDGE (Yang and Klein, 2021) and NADO (Meng et al., 2022) steer generation with
class-conditional or token-level predictors. However, they provide no hard guarantees and might
require task-specific supervision. On the contrary, GeLaTo (Zhang et al., 2023) provides the guarantee
as it distills the base LLM into a hidden-Markov model, which computes the probability that the
remaining suffix can still contain a set of keywords and then multiplies this value into the LLM’s
logits. Ctrl-G (Zhang et al., 2024) is the recent extension of GeLato, which allows for any constraint
that can be compiled to a DFA (instead of propositional logic). 3. Probabilistic Sampling treats
constraints as conditioning and samples from the posterior. This line was pioneered by (Miao et al.,
2019) with Metropolis–Hastings token edits that provide unbiased samples under lexical constraints.
This idea has then been further explored in the works of Ahmed et al. (2025); Loula et al. (2025).

7 CONCLUSIONS

We introduced ABS, a DFA-guided method to constrain the output of a Neural Network. Because we
enforce specifications via a compiled DFA, any regular constraint (e.g., regex or LTLf ) is supported,
enabling both temporal and structural requirements, and thus broadening the range of case studies
w.r.t. existing methods. Our algorithm is proved to be sound, while not optimal, and can easily be
adapted to different applications. Comparison with the state of the art shows significant improvements
in both efficiency and quality of the generated output. The introduced method can be used for multiple
purposes, with a positive societal impact, like the detoxification of LLMs’ output.
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A PROOFS

A.1 SOUNDNESS OF THE ABS ALGORITHM

We prove here that our method is sound (Theorem 1).

Proof of Theorem 1. (Soundness of the ABS algorithm). We prove that the algorithm is sound by
induction on the length t of the sequence. More precisely, we propose the following inductive
hypothesis

Ht : for all beams (x<t, s, q) ∈ Bt, dqt ≤ T − t.

The base case is t = 0: the initial beam only contains the prompt x0, the initial state of the DFA q0,
and the distance d0 from an accepting state. By the hypothesis of the theorem, we have d0 ≤ T and
thusH0 is verified.

Let us now assume thatHt is true, for t ∈ [1, T − 1]. At line 12 of the algorithm:

• if a transition leads to a state q′ such that dq′ > T − t then it is impossible to complete
an accepting sequence within the remaining steps. But this choice is excluded by setting
Z[i, x]← −∞.

This ensures that no sequence in B is extended to a non-accepting sequence.

Indeed, at line 22:

• we choose the top k beam extensions among the valid ones with respect to their score
(denoted by Z in the pseudo-code), i.e. among those having distance dq′t+1

≤ T − (t+ 1),
since invalid outputs have −∞ as a score. In the case where we have less than k valid beam
extensions, then we pad the remaining beams with copies of the valid beams. We know that
at least one valid extension exists for each beam, since we assume thatHt is true.

Thus we have shown thatHt+1 is true wheneverHt is true. By induction,HT is true.

At time T , the algorithm returns the best sequence among those included in BT . But, byHT , every
sequence in BT has distance 0 from an accepting state, and hence terminates in an accepting state.
Thus the algorithm is sound.

A.2 COMPLEXITY OF MAP INFERENCE ON MARKOV CHAINS

Proof of Theorem 2. We show NP-hardness by providing a polynomial-time reduction from the
Constrained Shortest Path (CSP) problem with uniform arc lengths to the MAP inference problem on
time-homogeneous Markov chains under a unary constraint.

Step 1: CSP Formulation. Consider a directed graph G = (V,E), where each arc (i, j) ∈ E has
an associated cost c(i, j) ≥ 0 and a length b(i, j) ∈ N. We focus on the special case where all arcs
have the same length, specifically b(i, j) = 1 for all (i, j) ∈ E. Given vertices s, t ∈ V (source and
target) and an integer bound β ≥ 1, the CSP problem seeks a path of exact length β from s to t that
minimizes total cost:

min
x1:β∈V β , x1=s, xβ=t, (xk,xk+1)∈E

β−1∑
k=1

c(xk, xk+1).

This uniform-length CSP variant is known to be NP-hard (Erzin et al., 2022).

Step 2: MAP Inference Problem Formulation. In the MAP inference setting, we have a time-
homogeneous Markov chain over a state space S, an initial distribution µ, and transition matrix P .
Given a unary constraint specifying the state at time β, i.e., Xβ = t, the MAP inference problem is:

x∗
1:β = argmax

x1:β∈Sβ , xβ=t

µ(x1)

β−1∏
k=1

P (xk+1 | xk).
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Step 3: Reduction from CSP to MAP Inference. Given a CSP instance (G, c, s, t, β), construct a
MAP inference instance as follows:

1. State space. Define the state space as S = V ∪ D, where D = {di | i ∈ V } is a set of
newly introduced dummy states, with one dummy state per original vertex.

2. Initial distribution. Set µ(x) = δx,s, ensuring the chain always starts at the source vertex
s.

3. Transition probabilities. First, define an extended cost function c̃ : V × S → [0,+∞] by:

c̃(i, j) =


c(i, j), (i, j) ∈ E

− log(Zmax − Zi), j = di

+∞, otherwise

where for each vertex i ∈ V , we set:

Zi =
∑
j∈V

e−c(i,j), Zmax = max
i∈V

Zi.

With these definitions, we set the transition probabilities for all i ∈ V as:

P (j | i) = e−c̃(i,j)

Zmax
, j ∈ S.

This ensures that all transitions from states in V are properly normalized, as:∑
j∈S

P (j | i) = Zi + (Zmax − Zi)

Zmax
= 1, ∀i ∈ V.

4. Absorbing states. Explicitly set the target vertex t and all dummy states di as absorbing
states:

P (t | t) = 1, P (j | t) = 0 for j ̸= t, and P (di | di) = 1, P (j | di) = 0 for j ̸= di.

Thus, any path entering a dummy state or t remains there indefinitely.

5. Unary constraint. Set the unary constraint as ϕ ≡ Xβ = t.

Step 4: Correctness and Equivalence. Consider any path x1:β that satisfies the constraint Xβ = t.
If the path ever enters a dummy state di, it will remain there indefinitely (absorbing), contradicting
the constraint Xβ = t. Thus, any feasible path must stay entirely within V .

For feasible paths x1:β ∈ V β , we have:

P (x1:β) =

β−1∏
k=1

e−c̃(xk,xk+1)

Zmax
= Z−(β−1)

max · e−
∑β−1

k=1 c̃(xk,xk+1) · δx1,s

=
(x1:β |=ϕ)

Z−(β−1)
max · e−

∑β−1
k=1 c(xk,xk+1)

Hence, the MAP objective is exactly equivalent to minimizing the total cost:

argmin
x1:β∈Sβ , xβ=t

− logP (x1:β) = argmin
x1:β∈V β , x1=s, xβ=t, (xk,xk+1)∈E

β−1∑
k=1

c(xk, xk+1),

recovering precisely the original CSP objective.
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Step 5: Complexity and Conclusion. The construction described above clearly runs in polynomial
time (adding one dummy state per vertex and computing simple exponentials). Thus, we have
demonstrated a polynomial-time reduction from the CSP problem (known NP-hard) to the MAP
inference problem under unary constraints in a Markov chain.

B HARDWARE FOR EXPERIMENTS

All the experiments were run on a machine equipped with the following infrastructure: Intel® Xeon®
Silver 4416+ CPU, 20 Cores, 40 Threads, 2.00/3.90 GHz; NVidia L40S GPU, 48 GB GDDR6, 18176
CUDA Cores, 142 RT Cores, 568 Tensor Cores.

C ORDERED FASHION MNIST

For this task, we trained a CNN model on the Fashion MNIST training set for 7 epochs using a batch
size of 64 and a learning rate of 0.002. The model consists of two convolutional blocks followed by
three fully connected layers, incorporating Dropout and Layer Normalization. The convolutional
layers use 2×2 and 5×5 filters, each followed by MaxPooling operations. The final classification layer
applies a Softmax activation for 10-class classification. Afterward, we also trained the CNN-LSTM
model, where the CNN component was kept frozen and only the LSTM was trained on the Ordered
Fashion MNIST training set. We selected the LSTM checkpoint that achieved the best performance
on the validation set to capture the temporal dependencies across sequences. The LSTM module was
implemented with a hidden dimension of 128, one recurrent layer, and batch-first input formatting.
Its outputs were then passed through a fully connected linear layer mapping to the 10 output classes,
enabling sequence-level classification. This setup allowed the model to leverage pre-trained spatial
feature representations from the CNN while adapting the temporal modeling capacity of the LSTM
to the sequential structure of the Ordered Fashion MNIST dataset. We used CrossEntropyLoss as the
loss function, and the Adam optimizer for both trainings.

C.1 NATURAL LANGUAGE CONSTRAINTS

We report here all the constraints enforced on the Ordered Fashion-Mnist dataset, expressed in natural
language. The LTLf formulation of each constraint is reported below.

• If you wear a T-shirt/top, you will not be able to wear a Shirt, Dress, or another T-shirt/top.

• If you wear Trousers, you will not be able to wear a Dress or another Trouser.

• If you wear a Pullover, you will not be able to wear a Dress, T-shirt/top, Shirt, or another
Pullover.

• If you wear a Dress, you will not be able to wear a T-shirt/top, Shirt, Trouser, Pullover, or
another Dress.

• If you wear a Coat, you will not be able to wear a T-shirt/top, Shirt, Pullover, Dress, or
another Coat.

• If you wear Sandals, you will not be able to wear Sneakers, Trousers, Ankle boots, or
another pair of Sandals.

• If you wear a Shirt, you will not be able to wear a T-shirt/top, Dress, or another Shirt.

• If you wear Sneakers, you will not be able to wear Sandals, Trousers, Ankle boots, or
another pair of Sneakers.

• If you wear a Bag, you will not be able to wear a T-shirt/top, Shirt, Dress, Pullover, Coat, or
another Bag.

• If you wear Ankle boots, you will not be able to wear Sandals, Trousers, Sneakers, or
another pair of Ankle boots.

• You must wear at least one of the following: T-shirt/top, Pullover, Shirt, or Dress.

• You must wear at least one of the following: Trouser or Dress.

• You must wear at least one of the following: Sandal, Sneaker, or Ankle boot.
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C.2 LTLf CONSTRAINTS

The listed formulas must be interpreted as being conjoined via the logical AND operator (∧). That is,
the complete specification is given by:

φ = φ1 ∧ φ2 ∧ · · · ∧ φ13

where each φi corresponds to the respective in the list:

• G(t_shirt_top → ¬F Shirt) ∧ G(t_shirt_top → ¬F Dress) ∧ G(t_shirt_top →
WXG¬t_shirt_top)

• G(Trouser → ¬F Dress) ∧G(Trouser →WXG¬Trouser)
• G(Pullover → ¬F Dress) ∧ G(Pullover → ¬F t_shirt_top) ∧ G(Pullover →
¬F Shirt) ∧G(Pullover →WXG¬Pullover)

• G(Dress→ ¬F t_shirt_top)∧G(Dress→ ¬F Shirt)∧G(Dress→ ¬F Trouser)∧
G(Dress→ ¬F Pullover) ∧G(Dress→WXG¬Dress)

• G(Coat → ¬F t_shirt_top) ∧ G(Coat → ¬F Shirt) ∧ G(Coat → ¬F Pullover) ∧
G(Coat→ ¬F Dress) ∧G(Coat→WXG¬Coat)

• G(Sandal → ¬F Sneaker) ∧ G(Sandal → ¬F Trouser) ∧ G(Sandal →
¬F Ankle boot) ∧G(Sandal→WXG¬Sandal)

• G(Shirt→ ¬F t_shirt_top) ∧G(Shirt→ ¬F Dress) ∧G(Shirt→WXG¬Shirt)
• G(Sneaker → ¬F Sandal) ∧ G(Sneaker → ¬F Trouser) ∧ G(Sneaker →
¬F Ankle boot) ∧G(Sneaker →WXG¬Sneaker)

• G(Bag → ¬F t_shirt_top) ∧ G(Bag → ¬F Shirt) ∧ G(Bag → ¬F Dress) ∧
G(Bag → ¬F Pullover) ∧G(Bag → ¬F Coat) ∧G(Bag →WXG¬Bag)

• G(Ankle boot → ¬F Sandal) ∧ G(Ankle boot → ¬F Trouser) ∧ G(Ankle boot →
¬F Sneaker) ∧G(Ankle boot→WXG¬Ankle boot)

• F (t_shirt_top ∨ Pullover ∨ Shirt ∨Dress)

• F (Trouser ∨Dress)

• F (Sandal ∨ Sneaker ∨Ankle boot)

D ORDERED COMMONGEN

Each experiment in Ordered CommonGen has a prompt and a set of ordered concepts, given as a
constraint on the output. A sample prompt for experiments is reported below.

D.1 PROMPT

# Instruction

Given several concepts (i.e., nouns or verbs), write a short and simple sentence that contains *all* the
required words in the given order.
The sentence should describe a common scene in daily life, and the concepts should be used in a
natural way.

# Examples

## Example 1
- Concepts: "dog, frisbee, catch, throw"
- Sentence: The dog eagerly chased the frisbee trying to catch it after its owner threw it.

## Example 2
- Concepts: "apple, place, tree, pick"
- Sentence: I found an apple in a place near a tree and I picked it up.

# Your Task
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- Concepts: **Concepts**
- Sentence:

D.2 LTLf CONSTRAINTS EXAMPLE

The listed formulas should be interpreted as being conjoined via the logical AND operator (∧).
Therefore, the complete specification is given by:

φ = φ1 ∧ φ2 ∧ · · · ∧ φ5

where each φi corresponds to the respective formula in the list below. This represents an example
with 3 concepts.

• ((¬(secondword ∨ dot) U firstword) ∧ F (secondword))

• ((¬(thirdword ∨ dot) U secondword) ∧ F (thirdword))

• ((¬(eos ∨ dot) U thirdword) ∧ F (eos))

• G(dot→ X eos)

• G(firstword ∨ secondword ∨ thirdword ∨ dot ∨ eos ∨ nomatch)

D.3 QUALITATIVE EXAMPLES

GPT-2 large on CommonGen (Concepts: "shave", "look", "mirror", "face")

No ABS: "The boy looks at himself in the mirror." (Fails constraint: "shave" and "face" are missing)
ABS (α = 0.25): "Shave your face and look at the mirror." (Satisfies constraint, natural structure)
ABS (α = 0.5): "The boy looks at the mirror to shave his face." (Satisfies constraint, natural structure)
ABS (α = 0.75): "Look mirror face shave." (Satisfies constraint, but unnatural structure)

D.4 ABLATION STUDIES

In Table 5 and 6 , we present the ablation studies to empirically demonstrate how the Ramping Push
Up (RPU) is necessary to ensure constraint satisfaction. Furthermore, it can be observed that text
quality metrics slightly improve when RPU is applied, while efficiency increases significantly thanks
to solutions being found in fewer steps compared to standard generation when setting α > 0.

D.5 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were employed in a limited manner during the preparation of this
manuscript. They were used to assist in improving the phrasing of certain passages and to accelerate
technical aspects of the writing process, such as generating LaTeX code for tables and formatting.
Importantly, the use of LLMs was restricted to supporting and refining the writing process; they did
not contribute to the research design, analysis, or interpretation of results. All text and suggestions
generated by the models were thoroughly reviewed and verified by the authors to ensure accuracy
and appropriateness before inclusion in the final version of the paper.

Table 5: Ablation Study on CommonGen (Supervised Model) with/without Ramping Push-up (RPU).

RPU ROUGE-L BLEU-4 CIDEr SPICE Constraint (%) Avg Time (s)

False 49.25 48.85 15.76 29.61 99.98 10.01
True 49.70 49.50 16.20 29.70 100.00 4.42

Table 6: Ablation Study on CommonGen (Unsupervised Model) with/without Ramping Push-up (RPU).

RPU ROUGE-L BLEU-4 CIDEr SPICE Constraint (%) Avg Time (s)

False 48.61 47.80 15.56 29.12 99.98 9.93
True 48.70 47.90 15.70 29.30 100.00 4.92
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