

000 001 002 003 004 005 006 007 ABS: ENFORCING CONSTRAINT SATISFACTION ON GEN- 008 ERATED SEQUENCES VIA AUTOMATA-GUIDED BEAM 009 SEARCH 010 011 012

013 **Anonymous authors**
014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Sequence generation and prediction form a cornerstone of modern machine learning,
032 with applications spanning natural language processing, program synthesis,
033 and time-series forecasting. These tasks are typically modeled in an autoregressive
034 fashion, where each token is generated conditional on the preceding ones, and
035 beam search is commonly used to balance exploration and fluency during decod-
036 ing. While deep learning models and Large Language Models (LLMs) excel at
037 capturing statistical patterns in this setting, they remain ill-equipped to guarantee
038 compliance with formal constraints. In this paper, we introduce ABS: a general
039 and model-agnostic inference-time algorithm that guarantees compliance with any
040 constraint that can be compiled into a Deterministic Finite Automaton (DFA),
041 without requiring retraining. ABS leverages the DFA to guide a constrained variant
042 of beam search: at each decoding step, transitions leading to violations are masked,
043 while remaining paths are dynamically re-ranked according to both the model’s
044 probabilities and the automaton’s acceptance structure. We formally prove that
045 the resulting sequences are guaranteed to satisfy the given constraints, and we
046 empirically demonstrate that ABS also improves output quality. We validate our ap-
047 proach on three distinct tasks: constrained image-stream classification, controlled
048 text generation, and text infilling. In all settings, ABS achieves perfect constraint
049 satisfaction, while outperforming or matching state-of-the-art baselines on standard
050 quality metrics and efficiency.

1 INTRODUCTION

051 Sequence generation is a fundamental paradigm in machine learning, underpinning applications such
052 as natural language processing, program synthesis, and image-stream prediction. These problems
053 are typically approached through autoregressive modeling, where outputs are constructed sequentially,
054 and beam search is a standard decoding strategy used to trade off between exploration and fluency.
055 Despite their remarkable ability to capture statistical patterns in this setting, autoregressive models
056 like Large Language Models (LLMs) offer no guarantees that the sequences they produce will satisfy
057 formal constraints, such as temporal specifications or structural rules.

058 Existing approaches to constrained sequence generation can be grouped into four main categories: (i)
059 constrain the beam search to ensure the presence or absence of specific outputs (Lu et al., 2021; 2022),
060 (ii) use auxiliary models to steer the sequence generation (Krause et al., 2021; Zhang et al., 2024),
061 (iii) treat constraints as conditioning and sample from the posterior (Miao et al., 2019; Loula et al.,
062 2025), and (iv) employ automata-based guidance to enforce complex constraints (Willard and Louf,
063 2023; Lundberg et al., 2024; Manginas et al., 2025; Umili et al., 2023). However, none of the existing
064 approaches simultaneously (i) guarantees constraint satisfaction, (ii) avoids additional finetuning or
065 auxiliary models, (iii) achieves low latency, and (iv) preserves the quality of the generated text.

066 To address these limitations, we propose ABS, a decoding framework that enforces user-specified
067 constraints during autoregressive generation. A key design choice is that our method targets hard,
068 non-negotiable constraints. This makes ABS particularly suited for high-stakes and safety-critical
069 applications. In contrast, soft or probabilistic patterns (e.g., “usually after event A, event B happens”)
070 are naturally handled by the probabilistic nature of autoregressive models. Thus, our method is

complementary: the model accounts for soft regularities through its learned distribution, while ABS provides an additional mechanism that ensures strict adherence to symbolic rules.

Our method supports any constraint that can be compiled into a Deterministic Finite Automaton (DFA), and therefore applies to the full class of regular languages. This generality subsumes several specification formalisms, including Linear Temporal Logic over finite traces (LTLf) and regular expressions. Consequently, ABS is not tied to a single logic, but rather provides a unifying mechanism to enforce diverse temporal and structural rules across modalities.

Starting from a DFA expressing the hard constraints, we integrate its transition dynamics into beam search by re-ranking tokens according to both model logits and DFA state information. This integration guides the generation away from non-accepting sink states (constraint violated) and toward accepting states (constraint satisfied), thereby guaranteeing that all generated sequences satisfy the specified constraints. A natural concern is that such guidance could bias the generation, e.g., by producing overly short outputs or interfering with reasoning. To mitigate this, ABS introduces a Ramping Push-Up mechanism: the influence of the automaton is adaptive, starting very gentle when many decoding steps remain and gradually intensifying only if the model risks running out of steps to reach acceptance. This design preserves the model’s natural generation abilities while ensuring that constraints are ultimately satisfied.

We demonstrate the broad applicability of ABS by evaluating it across three distinct tasks: image sequence classification, constrained text generation, and text infilling. In all settings, ABS achieves perfect constraint satisfaction while matching or surpassing state-of-the-art baselines on standard quality metrics. ABS achieves these results with substantially lower computational overhead, yielding faster runtimes at fixed beam sizes. Moreover, our text generation experiments show that our adaptive Ramping Push-Up mechanism achieves a careful balance between control and naturalness, making ABS offer both formal guarantees and practical flexibility. Our implementation and benchmarks are provided in the supplementary materials and will be released publicly on GitHub.

2 NOTATION AND PROBLEM STATEMENT

Notation. Let \mathcal{X} be the finite set of possible values that the generated outputs can take at every time step (i.e., our vocabulary). Let \mathcal{X}^+ denote the set of all non-empty, finite sequences over \mathcal{X} . Let f_θ be a neural network with learnable weights θ , generating finite sequences of outputs, each denoted by $x_{1:T}$ (T can vary from one sequence to another). Given a sequence $x_{1:T}$, we denote the prefix up to the t -th output by $x_{<t}$ and the t -th element of the sequence by x_t . Finally, let $p_\theta(x_{1:T}) = \prod_{i=1}^T p_\theta(x_t \mid x_{<t})$ be the probability of generating the sequence $x_{1:T}$, where $p_\theta(x_t \mid x_{<t})$ is defined by applying a softmax to the logits outputted by $f_\theta(x_{<t})$.

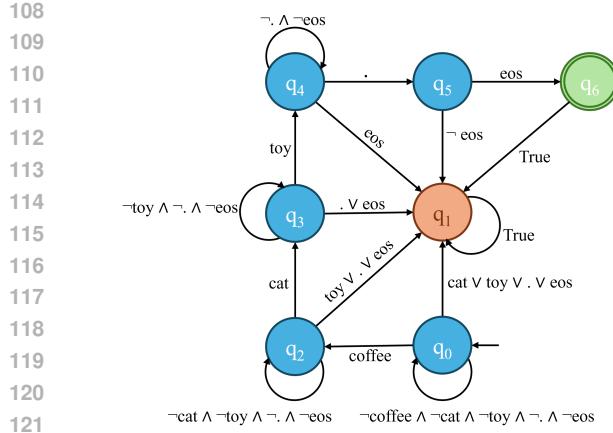
Definition 1. A Deterministic Finite Automaton (DFA) is a 5-tuple $\mathcal{A} = (\mathcal{Q}, \mathcal{C}, \delta, q_0, \mathcal{F})$ where: (i) \mathcal{Q} is a finite set of states, (ii) \mathcal{C} is a finite set of symbols (the alphabet), (iii) $\delta : \mathcal{Q} \times \mathcal{C} \rightarrow \mathcal{Q}$ is the transition function, (iv) $q_0 \in \mathcal{Q}$ is the initial state, (v) $\mathcal{F} \subseteq \mathcal{Q}$ is the set of accepting states.

An example of a DFA is given in Figure 1 (left). In simple cases, the DFA alphabet \mathcal{C} coincides with the model vocabulary \mathcal{X} . However, our approach supports more complex mappings. For example, LLMs typically output tokens while constraints are often written over words. To account for such cases, we assume there exists an injective function $\nu : \mathcal{X}^+ \rightarrow \mathcal{C}^+$ such that $\nu(x_{1:T}) = c_{1:m}$. This function maps a raw output sequence from the network (e.g., a sequence of tokens) to a sequence of higher-level concepts (e.g., words) that form the input symbols for the DFA.

A DFA \mathcal{A} accepts a sequence $c_{1:m} = \nu(x_{1:T}) \in \mathcal{C}^+$, noted $\mathcal{A} \vdash c_{1:T}$, if and only if there exists a sequence of states $r_0, r_1, \dots, r_m \in \mathcal{Q}^+$ such that: $r_0 = q_0$, $r_i = \delta(r_{i-1}, c_i)$ for $i = 1, \dots, m$ and $r_m \in \mathcal{F}$. In addition, a DFA state is a *deadlock state* or *sinking state* if it is a non-accepting state from which no accepting state is reachable via any sequence of transitions.

Problem Statement. Given f_θ and a DFA \mathcal{A} , we target the problem of ensuring $\mathcal{A} \vdash \nu(x_{1:T})$ for every sequence $x_{1:T}$ generated by f_θ , while maximizing the sequence log-likelihood under p_θ , i.e.,

$$x_{1:T}^* = \operatorname{argmax}_{x_{1:T} \in \mathcal{X}^T} \sum_{t=1}^T \log p_\theta(x_t \mid x_{<t}) \quad \text{such that } \mathcal{A} \vdash \nu(x_{1:T}). \quad (1)$$



State	coffee	cat	toy	.	eos
q_0	q_3	q_2	q_2	q_2	q_2
q_1	q_2	q_2	q_2	q_2	q_3
q_2	q_3	q_4	q_2	q_2	q_2
q_3	q_4	q_4	q_5	q_2	q_2
q_4	q_5	q_5	q_5	q_6	q_2
q_5	q_2	q_2	q_2	q_2	q_7
q_6	q_2	q_2	q_2	q_2	q_2

Distances to closest accepting state:

$$\begin{aligned} d(q_0) &= 5 & d(q_1) &= +\infty & d(q_2) &= 4 \\ d(q_3) &= 3 & d(q_4) &= 2 & d(q_5) &= 1 \\ d(q_6) &= 0 \end{aligned}$$

Figure 1: DFA (left) and corresponding state transition table with the distances to the closest accepting states (right) for the constraint: “Generate a sentence that contains coffee, cat, and toy in that order and ends with a dot” (note how this constraint can be easily expressed as a regex or LTL_f formula). The deadlock state is q_1 , the accepting state is q_6 while the initial state is q_0 .

This corresponds to the *Maximum A Posteriori* (MAP) inference problem under constraints specified by the DFA \mathcal{A} .

3 THE ABS ALGORITHM

The ABS algorithm consists of two main steps: (i) the *Automata Preprocessing Step*, where we process the given DFA into an efficient computational representation and (ii) the dynamic *Automata-guided Beam Search*, where the beam search is guided by both the model’s predictions and the DFA.

3.1 AUTOMATA PREPROCESSING STEP

In our setting, the maximum length T of the output sequence is not known at the time of DFA preprocessing and is only provided at runtime. Therefore, our automaton processing step must be prepared to handle traces of any finite length.

First, we process the given DFA $\mathcal{A} = (\mathcal{Q}, \mathcal{C}, \delta, q_0, \mathcal{F})$ into a more computationally efficient form. Hence, we represent the transition function δ as a matrix $\mathbf{M} \in \mathbb{Z}^{|\mathcal{Q}| \times |\mathcal{C}|}$, where each entry $m_{q,c}$ stores the next state $q' = \delta(q, c)$ for state $q \in \mathcal{Q}$ and symbol $c \in \mathcal{C}$. For notational convenience, we use q and c to denote both states/concepts and their corresponding indices in \mathbf{M} . This matrix representation enables efficient state transition lookups during the generation process.

However, the network f_θ might not necessarily output symbols in the alphabet \mathcal{C} . Hence, we also create the cost function $w : \mathcal{C} \rightarrow \mathbb{N}$ representing the number of outputs f_θ has to generate to create concept c . This will also represent the cost to move from q to $q' = \delta(q, c)$. How the cost function is defined varies from one use case to another. For example, in constrained text generation, if the DFA is defined over tokens (i.e., each symbol in \mathcal{C} corresponds to a single token), then each transition naturally has a cost of 1. On the other hand, if the DFA is defined over higher-level concepts such as words or phrases, each of which might require multiple tokens to generate, then the cost of a transition labeled with a concept $c \in \mathcal{C}$ is set to the minimum number of tokens needed to output c .

Given a cost function $w : \mathcal{C} \rightarrow \mathbb{N}$ and a DFA $\mathcal{A} = (\mathcal{Q}, \mathcal{C}, \delta, q_0, \mathcal{F})$, we define the corresponding *weighted DFA* \mathcal{A}^w by assigning each transition $\delta(q, c)$ a cost $\tilde{w}(q, c) = +\infty$ if q is a sinking state and $\tilde{w}(q, c) = w(c)$ otherwise. A sequence $c_{1:m} \in \mathcal{C}^*$ is accepted by \mathcal{A}^w iff it is accepted by \mathcal{A} . For any sequence $c_{1:m}$, its cost is defined as

$$W(c_{1:m}) = \sum_{i=1}^m \tilde{w}(q_{i-1}, c_i), \quad (2)$$

162 **Algorithm 1** ABS algorithm with Ramping Push-Up

163

164 1: **Input:** Prompt x_0 ; token set \mathcal{X} ; LLM log-prob function $\log p_\theta$; DFA $(\mathcal{Q}, \mathcal{C}, \delta, q_0, \mathcal{F})$; distance-
165 to-accepting-state function d ; num. beams k ; max length T ; ramping params (α_{\min}, γ)

166 2: **Output:** DFA compliant sequence $\hat{x}_{1:T}$

167 3:

168 4: Initialize k beams $\mathcal{B} \leftarrow \{(x_0, 0, q_0, d(q_0), \epsilon), \dots, (x_0, 0, q_0, d(q_0), \epsilon)\}$ $\triangleright \epsilon$ indicates empty string

169 5: **for** $t = 1$ to T **do**

170 6: Extend logits for all beams: $\mathbf{Z} \leftarrow [\log p_\theta(x | x_{<t}^i)]_{i \in [k], x \in \mathcal{X}} \in \mathbb{R}^{k \times |\mathcal{X}|}$

171 7: $\mathcal{S} \leftarrow \emptyset$ \triangleright Candidates pool

172 8: **for** $i = 1$ to k **do**

173 9: $\alpha_t^i \leftarrow \text{RAMPPUSHUP}(\alpha_{\min}, d_t^i, t, T, \gamma)$ \triangleright See Equation 3

174 10: **for all** $x \in \mathcal{X}$ **do**

175 11: $q' \leftarrow \text{NEXTSTATE}(q_t^i, l_t^i, x)$ \triangleright See Equation 4

176 12: **if** $d(q') > T - t$ **then**

177 13: **continue** \triangleright Skip: we cannot reach acceptance in $(T - t)$ steps

178 14: **end if**

179 15: $\tilde{z} \leftarrow \begin{cases} \alpha_t^i \cdot \max \mathbf{Z}[i, :] + (1 - \alpha_t^i) \cdot \mathbf{Z}[i, x], & \text{if } d(q') < d_t^i \\ \mathbf{Z}[i, x], & \text{otherwise} \end{cases}$

180 16: $s' \leftarrow s^i + \tilde{z}$

181 17: $\mathcal{S} \leftarrow \mathcal{S} \cup \{(x_{<t}^i, s', q', d(q'), l_t^i x)\}$ $\triangleright x_{<t}^i, l_t^i x$ are new sequences obtained via concatenation

182 18: **end for**

183 19: **end for**

184 20: $\mathcal{B} \leftarrow \text{TOPK}(\mathcal{S}, k; \text{key} = s_t^i)$ \triangleright Pick the k best successors by score

185 21: **end for**

186 22: **return** Token sequence $\hat{x}_{1:T} = x_{1:T}^{i^*}$, where $i^* = \arg \max s_T^i$

187

188 i.e., the sum of the transition costs along the unique accepting run. We apply Dijkstra’s algorithm (Dijkstra, 1959) to the weighted DFA in order to compute, for each state q , the minimal cost of reaching an accepting state $q \in \mathcal{F}$. We define a distance function $d : \mathcal{Q} \rightarrow \mathbb{N} \cup \{+\infty\}$, where $d(q)$ gives the minimal cost of reaching an accepting state from q .

193 3.2 AUTOMATA-GUIDED BEAM SEARCH

194 Automata-guided Beam Search has two goals: (i) prevent beams from entering deadlock states (from
195 which no accepting state is reachable), and (ii) bias exploration toward accepting states. The full
196 procedure is detailed in Algorithm 1, with a graphical example in Figure 2. Throughout this Section
197 and in the Algorithm, given two sequences x_1, x_2 , we will indicate with $x_1 x_2$ their concatenation.

198 In the Algorithm, for every t we maintain a set \mathcal{B} of k tuples, each representing the state of one beam.
199 The i -th tuple has form $(x_{<t}^i, s_t^i, q_t^i, d_t^i, l_t^i)$, where: (i) $x_{<t}^i$ is the partial sequence generated so far,
200 (ii) s_t^i is the score of the beam which we will compute taking into account both \mathbf{Z} and the DFA, (iii) q_t^i is
201 the current DFA state, (iv) $d_t^i = d(q_t^i)$ is the distance from q_t^i to the closest accepting state, and (v)
202 l_t^i is a sequence of outputs representing the last concept being “built up” to move to the next state
203 (possibly still not completed, e.g., if the LLM is trying to generate “politician”, l_t^i might be “polit”).
204 At $t = 0$, all the tuples in \mathcal{B} are initialized in the same way as $(x_0, 0, q_0, d(q_0), \epsilon)$, x_0 being the initial
205 prompt and ϵ being the empty sequence.

206 **Ramping Push-Up.** We want the model mostly to follow its own distribution, but to gradually steer
207 it to avoid dead ends and force it to satisfy the constraints when necessary. Hence, we introduce a
208 dynamic mechanism that biases decoding toward DFA transitions leading closer to an accepting state.
209 At each step t and for each beam i , we define a coefficient $\alpha_t^i \in [\alpha_{\min}, 1]$ that scales how strongly
210 we push the logits of promising outputs toward the maximum logit. The coefficient increases as the
211 remaining steps $T - t$ approach the current DFA distance to acceptance d_t^i :

212

$$\alpha_t^i = \text{RAMPPUSHUP}(\alpha_{\min}, d_t^i, t, T, \gamma) \stackrel{\text{def}}{=} \alpha_{\min} + (1 - \alpha_{\min}) \cdot \min\left(1, \left(\frac{d_t^i}{T-t}\right)^\gamma\right), \quad (3)$$

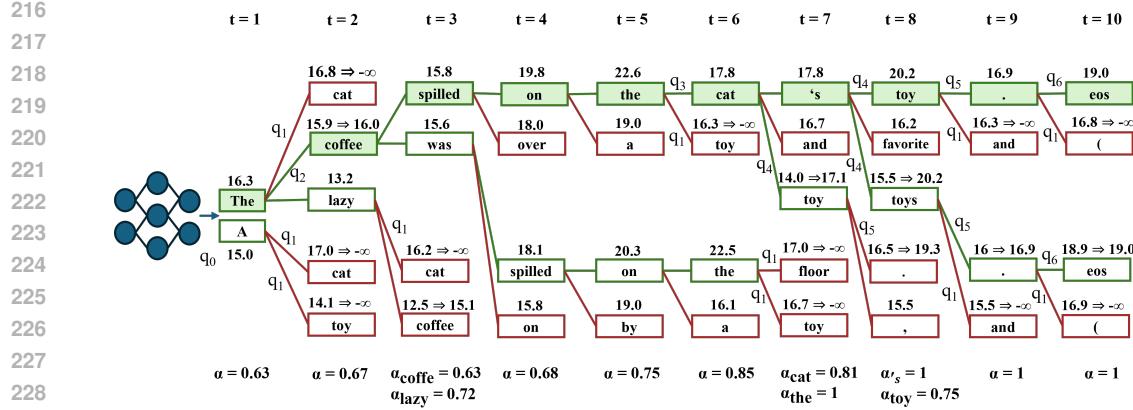


Figure 2: (Cont.’ed from Figure 1). Real generation using ABS, with 2 beams, $\alpha_{\min}=0.5$, $\gamma=1$, and $T=10$. The selected sequence is shaded in green. Above each token are the relative logits, before and after modification, while the arcs represent the state transitions inside the automaton. The same model without ABS generates “*The cat was playing with a toy while the owner*”, breaking the order constraints on word generation (cat before coffee). After generating “*The*”, the model prefers “*cat*” at $t=2$, violating the requirements.

where $\gamma > 0$ controls the sharpness of the ramp. This schedule encourages natural generation when slack is high ($T - t \gg d_t^i$), as the bias is mild ($\alpha_t^i \approx \alpha_{\min}$), and only intensifies when the model risks running out of steps ($T - t \approx d_t^i$). Additionally, the sharpness parameter γ controls how quickly the pressure ramps up as the sequence nears its limit, with smaller values yielding smoother guidance and larger values enforcing a sharper transition. In practice, both α_{\min} and γ are selected empirically on the validation set.

Next State. The DFA transitions are defined over symbols in \mathcal{C} , while the network f_θ (and hence the beam search) operate over the set of output symbols \mathcal{X} . To overcome this limitation, given the current state q , the sequence of outputs representing the last concept being built up l , and the current candidate output x :

$$\text{NEXTSTATE}(q, l, x) = \begin{cases} \delta(q, c') & \text{if } c' = lx \in \mathcal{C}, \\ q & \text{if } \exists c \in \mathcal{C} \text{ with prefix } lx, \\ \delta(q, \text{NOMATCH}) & \text{otherwise.} \end{cases} \quad (4)$$

The symbol **NOMATCH** is a special input that preserves DFA consistency when x does not extend any concept, allowing for unconstrained outputs (e.g., filler words) while preserving DFA consistency.

Distance from Accepting State. Before adding a candidate to the set of effective candidates, we verify that its distance to the nearest accepting state is at most $T - t$ (line 13 of Algorithm 1). If this condition is not met, the candidate is skipped. This check prevents the model from entering a state from which it cannot reach an accepting state within the remaining steps. Combined with the RPU mechanism, this process guarantees that all constraints are satisfied, as proven in Theorem 1.

4 THEORETICAL ANALYSIS

In this section we provide formal statements concerning the computational complexity of our inference tasks, soundness of our Automata-guided inference method, and comparison with existing works. Proofs of the stated theorems are reported in the Appendix.

4.1 SOUNDNESS AND COMPLEXITY OF AUTOMATA-GUIDED BEAM SEARCH

We recall that our problem (Eq. 1) is a constrained Maximum A Posteriori (MAP) inference task over the outputs of an autoregressive model. MAP inference with logical constraints is NP-hard in general, even for Bayesian networks of treewidth one (Roth, 1996). We therefore design a structured approximate method that is tractable in practice yet guarantees soundness.

270 **Theorem 1** (Soundness of Automata-guided Beam Search with Ramping α). *Let ϕ be a constraint*
 271 *over a sequence of concepts compiled into a DFA \mathcal{A} , and let q_0 be the initial state of \mathcal{A} . If (i) at step*
 272 *0, q_0 is within distance $d_0 \leq T$ of an accepting state, where T is the maximum sequence length; (ii)*
 273 *at each step t , the scheduler ramps c_t^i and transitions to states with $d_{q_{t+1}} > T - t$ are pruned,*
 274 *then the algorithm returns a sequence $\hat{x}_{1:T}$ such that $\hat{x}_{1:T} \models \phi$, whenever such a sequence exists.*

275
 276 This guarantees that Automata-guided Beam Search never discards all feasible paths: if a satisfying
 277 sequence exists, it will be produced.
 278

279 **Complexity** For a fixed-size DFA, Automata-guided Beam Search runs in polynomial time with
 280 respect to sequence length T , beam width k , and output space size $|\mathcal{X}|$. Each decoding step considers
 281 at most $k \cdot |\mathcal{X}|$ candidates, applies DFA filtering and scoring, and retains the top k . The overall time
 282 complexity is therefore

$$O(T \cdot k \cdot |\mathcal{X}|).$$

285 4.2 THEORETICAL COMPARISON WITH THE STATE OF THE ART

286 One method to address this problem, called Ctrl-G, and proposed by Zhang et al. (2024), is to distill
 287 the model f_θ into Markov models to hopefully obtain a tractable representation. Unfortunately, the
 288 next result shows that even in the simplest case, the constrained MAP inference task is NP-hard.
 289

290 **Theorem 2** (Complexity of Markov Chains MAP Inference with Unary Constraint). *MAP inference*
 291 *on Markov Chains with a unary equality constraint is NP-hard.*

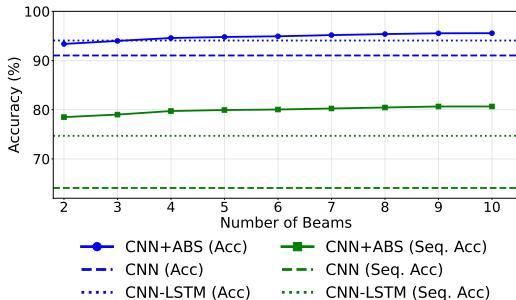
292 Thus, while HMMs admit polynomial-time MAP inference via Viterbi under dense emissions, LLM
 293 outputs are typically sparse, so HMM approximations (Zhang et al., 2024) might not guarantee
 294 tractable constrained decoding. Finally, we note that other Automata-based steering methods,
 295 including industry standards like Guidance (Lundberg et al., 2024) and Outlines (Willard and Louf,
 296 2023), are shown to be unsound through experimental results in the following section.
 297

298 5 EXPERIMENTAL EVALUATION

300 We report on experiments assessing the benefits of our approach applied to three tasks: image sequence
 301 classification and text generation, involving temporal constraints (expressed as LTL_f formulas), and
 302 text infilling, involving structural constraints (expressed as regular expressions). To produce the
 303 automata representing the LTL_f formulae, we exploit MONA¹ and $LTLf2DFA$ ² (Fuggitti, 2019).
 304 For regular expressions, we used FAdo (Reis and Moreira, 2002). All experiments ran on a machine
 305 with an Intel® Xeon® 20 cores and NVidia L40S GPU with 48 GB of VRAM.
 306

307 5.1 CONSTRAINED IMAGE SEQUENCE CLASSIFICATION

309 We first evaluate our method on a con-
 310 trolled sequential image classification task.
 311 Starting from Fashion-MNIST³, we con-
 312 struct *Ordered Fashion-MNIST*, in which
 313 images are arranged into sequences subject
 314 to LTL_f constraints we manually anno-
 315 tated (Appendix C). The constraints specify
 316 which clothing items cannot co-occur and
 317 enforce ordering constraints. For example,
 318 the sequence [trousers, t-shirt/top, sneakers,
 319 sandals] is not allowed as sneakers and san-
 320 dals cannot be worn at the same time, but
 321 neither is the sequence [sandals, trousers,



322 Figure 3: Performance on Ordered Fashion MNIST.
 323 ¹<https://www.brics.dk/mona/>, copyright 1997-2020 Aarhus University.
 324 ²<http://ltlf2dfa.diag.uniroma1.it/>, License LGPLv3+
 325 ³<https://github.com/zalandoresearch/fashion-mnist>, MIT License

324
 325 Table 1: Performance on CommonGen. ABS is run with: number of beams=64, $\alpha=0.5$ and $\gamma=1$, for both
 326 supervised and unsupervised model. Ctrl-G uses the HMM with 32768 hidden states the authors provided in
 327 their paper. Best scores are in bold, while second bests are underlined.
 328

Method	ROUGE-L	BLEU-4	CIDEr	SPICE	Coverage
<i>Unsupervised</i>					
InsNet (Lu and Peng (2021))	-	18.7	-	-	100.0
NADO (Meng et al. (2022))	-	26.2	-	-	<u>96.1</u>
GeLaTo (Zhang et al. (2023))	44.3	30.3	15.6	<u>30.2</u>	100.0
Ctrl-G (Zhang et al. (2024))	<u>45.2</u>	<u>32.1</u>	16.0	30.8	100.0
Outlines (Willard and Louf (2023))	31.4	18.7	2.8	19.7	80.6
Guidance (Lundberg et al. (2024))	19.4	9.2	3.3	15.3	92.1
ABS	48.7	47.9	<u>15.7</u>	29.3	100.0
<i>Supervised</i>					
NADO	44.4	30.8	16.1	<u>32.0</u>	88.8
GeLaTo	<u>46.2</u>	<u>34.0</u>	17.2	32.2	100.0
Outlines	<u>29.9</u>	<u>16.3</u>	2.7	18.5	76.5
Guidance	21.3	9.9	3.0	15.3	<u>89.0</u>
ABS	49.7	49.5	<u>16.2</u>	29.7	100.0

337
 338 Table 2: Runtimes comparison across different beam sizes (\pm standard error), with max length $T = 32$. ABS is
 339 used with $\alpha=0.5$ and $\gamma=1$. Ctrl-G uses the HMM with 32768 hidden states. Both use fine-tuned GPT2.
 340
 341

Method	4	8	16	32	64	128
Ctrl-G	3.49 ± 0.011	3.70 ± 0.014	4.25 ± 0.024	5.43 ± 0.053	8.05 ± 0.102	12.01 ± 0.161
ABS	0.74 ± 0.007	0.81 ± 0.006	1.33 ± 0.010	2.22 ± 0.019	4.42 ± 0.041	9.45 ± 0.084

350
 351 t-shirt/top] as sandals cannot be worn before
 352 trousers.
 353

354
 355 As a baseline, a frozen CNN trained on Fashion MNIST achieves 91.03% accuracy and 64.09%
 356 sequence accuracy (i.e., the ratio of sequences that are correctly classified) on Ordered Fashion-
 357 MNIST. As an additional baseline, we combined the frozen CNN with a trainable LSTM, which
 358 allows us to model sequential dependencies. In this setting, only the LSTM parameters are trained,
 359 while the CNN remains fixed. This CNN-LSTM sequence model achieves an accuracy of 94.07%
 360 and a sequence accuracy of 74.69%. In contrast, combining the frozen CNN with ABS (10 beams)
 361 yields 95.56% accuracy (+4.53 with respect to the CNN and +1.49 to the CNN-LSTM) and 80.66%
 362 sequence accuracy (+16.57 with respect to the CNN and +5.97 to the CNN-LSTM), surpassing both
 363 baselines without additional training. Figure 3 shows how performance improves with beam size.
 364 This experiment shows that our method replaces the need for such an additional recurrent module,
 365 avoiding extra training, while achieving better performance, especially in the sequence accuracy.
 366 Implementation details are provided in Appendix C.
 367

368 5.2 CONSTRAINED TEXT GENERATION

369
 370 We present two experiments on constrained text generation with LLMs. For both datasets, we
 371 computed the standard quality metrics in the literature: BLEU (Papineni et al., 2002), ROUGE (Lin,
 372 2004), CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016).

373
 374 **CommonGen.** For the first experiment we use the CommonGen dataset (Lin et al., 2020), a standard
 375 evaluation task for constrained text generation released under MIT License. In this task, a set of
 376 common concepts is provided (e.g., dog, frisbee, catch, throw) and the goal for the LLM is to generate
 377 a coherent sentence describing a scenario using all the given concepts (e.g., “A man throws a frisbee,
 378 and his dog catches it”). We compare our results with those obtained in relevant previous work, such
 379 as works of Zhang et al. (2024; 2023); Meng et al. (2022). In particular, we use the scores reported

378 Table 3: Performances on Ordered CommonGen. ABS use LLAMA 3.1 8B with number of beams=64, $\alpha=0.25$,
 379 $\gamma=1$. The best scores are in bold, while the second best are underlined.

Method/Model	ROUGE-L	BLEU-4	CIDEr	SPICE	Coverage
GPT 3.5	42.2	24.9	<u>13.5</u>	40.8	64.5
GPT 4	42.2	23.7	12.4	40.7	83.3
GPT 4o	<u>42.7</u>	<u>25.2</u>	13.4	42.2	73.9
o1	43.1	24.3	12.9	41.3	<u>99.8</u>
LLAMA 3.1 8B	32.2	22.6	12.3	38.0	44.4
LLAMA 3.1 8B + Outlines	33.5	21.8	10.4	40.5	49.9
LLAMA 3.1 8B + Guidance	38.0	22.8	10.4	43.0	54.0
LLAMA 3.1 8B + ABS	40.0	25.6	13.6	<u>41.7</u>	100.0

390
 391 in the first two cited papers. Moreover, to ensure a fair comparison, we apply ABS, Guidance and
 392 Outlines to the same models they employed: GPT2-large (Radford et al., 2019) (MIT License) as
 393 the unsupervised model, and GPT2-large fine-tuned by Zhang et al. (2023) on the training set of
 394 CommonGen as the supervised model. For this task we selected the best parameters on the training
 395 set and then applied these parameters to the validation set.

396 The results in Table 5.1 show that, for both models, ABS exceeds the current state of the art in
 397 two quality metrics (ROUGE-L and BLEU-4), is competitive in the remaining two (CIDEr and
 398 SPICE) and achieves 100% constraint satisfaction (“Coverage”). Moreover, these experiments show
 399 that approaches such as Outlines and Guidance, which also rely on DFAs to guide generation, do
 400 not achieve 100% coverage. This is because these methods prevent entering a deadlock state (i.e.
 401 constraint is violated) but they lack a mechanism that guarantees to land in an accepting state (i.e.
 402 constraint is satisfied) before reaching the model’s maximum token limit. Importantly, as shown in
 403 Table 2, ABS is systematically faster than Ctrl-G – the best competing method – when using the same
 404 number of beams and maximum token generation length.

405 **Ordered CommonGen.** In our second experiment, we introduce Ordered CommonGen, a variant
 406 of CommonGen with a temporal constraint that the generated sentence must include all provided
 407 concepts in a specified order. For example, given the ordered set *dog, frisbee, catch, throw*, a valid
 408 output would be: “The dog eagerly chased the frisbee trying to catch it after its owner threw it.”. This
 409 ordering constraint increases task difficulty and makes the setting well-suited for evaluating temporal
 410 constraint satisfaction. The prompt adapted from CommonGen Lite, is provided in Appendix D.1.

411 We compare ABS applied to LLAMA 3.1 8B with Guidance and Outlines applied to the same model,
 412 and with large OpenAI models: GPT-3.5, GPT-4, GPT-4o, and the o1 reasoning model Brown et al.
 413 (2020); OpenAI (2024a;b;c). Table 3 shows that, despite using a much smaller and locally deployed
 414 model, ABS outperforms the large models on two quality metrics (BLEU-4 and CIDEr) and remains
 415 competitive on the other two metrics. It is also the only approach that achieves 100% constraint
 416 satisfaction, consistent with its sound design, whereas GPT-3.5, GPT-4, and GPT-4o have a significant
 417 number of violations and o1 achieves 99.8% coverage. Compared to the base LLAMA 3.1 8B model,
 418 ABS achieves a substantial improvement in qualitative metrics (R: +7.8, B: +3.0, C: +1.3, S: +3.7,
 419 and Cov.: +55.6). While Guidance and Outlines also improve performance on most metrics, they do
 420 not reach the improvements made by ABS (except Guidance on SPICE metric only) and they yield
 421 significantly lower coverage than the various GPT models and ABS.

422 5.3 TEXT INFILLING

423 We also evaluate ABS on a text infilling benchmark introduced by Donahue et al. (2020), which
 424 is based on the ROC Stories corpus (Mostafazadeh et al. (2016)). Each test example consists of a
 425 short story with masked segments, and the task is to fill in these masks. For instance: “*My day on*
 426 *<|infill_word|> this week went as expected. My family and I attended Church. <|infill_sentence|>*”.
 427 We straightforwardly express these text infilling tasks with regular expressions.

428 We use the GPT-2 small checkpoint released by Donahue et al. (2020) as part of their ILM method, as
 429 the base model for ABS, Guidance and Outlines. Following their experimental protocol, we generate
 430 three test sets from the original one, with masking ratios of 10%, 20%, and 30%. To evaluate the

432 Table 4: Performances on Text Infilling. ABS is run with: with number of beams=16, $\alpha=0.5$, $\gamma=1$. Best scores
 433 are in bold, while second bests are underlined.

Method	10%			20%			30%		
	Rouge-L	Bleu-4	Cov.	Rouge-L	Bleu-4	Cov.	Rouge-L	Bleu-4	Cov.
ILM	74.5	<u>71.7</u>	86.5	63.2	<u>59.8</u>	49.7	51.1	<u>46.5</u>	23.0
Guidance	<u>80.5</u>	70.8	68.0	<u>67.9</u>	56.1	56.0	<u>55.6</u>	42.4	36.0
Outlines	71.2	56.4	<u>94.0</u>	55.7	38.8	<u>80.0</u>	43.6	28.6	<u>80.0</u>
ABS	85.4	79.1	100.0	73.3	64.1	100.0	61.6	50.3	100.0

442
 443 completed stories, we report BLEU-4 and ROUGE-L and Coverage. As shown in Table 4, ABS
 444 outperforms ILM, Guidance, and Outline. ABS is again the only method to achieve perfect coverage.
 445

446 6 RELATED WORK

447
 448
 449 **Neurosymbolic AI.** Neurosymbolic AI is a growing field of interest in machine learning due to the
 450 ability of its methods to reconcile neural perception with symbolic reasonings (Raedt et al., 2020;
 451 d’Avila Garcez and Lamb, 2023). While the field is quite vast, the neurosymbolic solutions that are
 452 the closest to our method are those that try to incorporate symbolic background knowledge in the form
 453 of constraints into neural models (Dash et al., 2022; Giunchiglia et al., 2022). These methods can be
 454 divided in two groups: those that give a probabilistic semantics to the constraints (Manhaeve et al.,
 455 2018; Xu et al., 2018; van Krieken et al., 2023) and those that give a fuzzy semantics (Donadello
 456 et al., 2017; Giunchiglia et al., 2024; Diligenti et al., 2012). Another way to categorize the methods
 457 in the field is by whether they incorporate the constraints in the loss function (Donadello et al., 2017;
 458 Xu et al., 2018; Fischer et al., 2019; van Krieken et al., 2022) or they change the final output space of
 459 the model (Manhaeve et al., 2018; Giunchiglia and Lukasiewicz, 2021; Ahmed et al., 2022; Pryor
 460 et al., 2023; Hoernle et al., 2022; Misino et al., 2022). The first can be used to nudge via the loss the
 461 network to satisfy the constraints, while the second can guarantee the constraints satisfaction.

462
 463 **Constrained Text Generation.** The work done in constrained text generation has been developing
 464 on multiple orthogonal axes. 1. *Search based decoding.* These approaches act at inference time
 465 and constrain the beam search with logical constraints. For example, in (Lu et al., 2021; 2022), the
 466 authors decide which beams to expand taking into account not only the LLM’s prediction but also the
 467 degree of satisfaction of the constraints reported for every sequence. 2. *Auxiliary Classifier Guidance.*
 468 The works that follow this line aim to guide the base model with an auxiliary one. GeDi (Krause
 469 et al., 2021), FUDGE (Yang and Klein, 2021) and NADO (Meng et al., 2022) steer generation with
 470 class-conditional or token-level predictors. However, they provide no hard guarantees and might
 471 require task-specific supervision. On the contrary, GeLaTo (Zhang et al., 2023) provides the guarantee
 472 as it distills the base LLM into a hidden-Markov model, which computes the probability that the
 473 remaining suffix can still contain a set of keywords and then multiplies this value into the LLM’s
 474 logits. Ctrl-G (Zhang et al., 2024) is the recent extension of GeLaTo, which allows for any constraint
 475 that can be compiled to a DFA (instead of propositional logic). 3. *Probabilistic Sampling* treats
 476 constraints as conditioning and samples from the posterior. This line was pioneered by (Miao et al.,
 477 2019) with Metropolis–Hastings token edits that provide unbiased samples under lexical constraints.
 478 This idea has then been further explored in the works of Ahmed et al. (2025); Loula et al. (2025).

479 7 CONCLUSIONS

480
 481 We introduced ABS, a DFA-guided method to constrain the output of a Neural Network. Because we
 482 enforce specifications via a compiled DFA, any *regular* constraint (e.g., regex or LTL_f) is supported,
 483 enabling both temporal and structural requirements, and thus broadening the range of case studies
 484 w.r.t. existing methods. Our algorithm is proved to be sound, while not optimal, and can easily be
 485 adapted to different applications. Comparison with the state of the art shows significant improvements
 486 in both efficiency and quality of the generated output. The introduced method can be used for multiple
 487 purposes, with a positive societal impact, like the detoxification of LLMs’ output.

486 REFERENCES
487

488 Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
489 NeuroLogic decoding: (un)supervised neural text generation with predicate logic constraints.
490 In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy,
491 Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors, *Proceed-
492 ings of the 2021 Conference of the North American Chapter of the Association for Compu-
493 tational Linguistics: Human Language Technologies*, pages 4288–4299, Online, June 2021.
494 Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.339. URL
495 <https://aclanthology.org/2021.naacl-main.339/>.
496

496 Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
497 Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic a*esque
498 decoding: Constrained text generation with lookahead heuristics. In Marine Carpuat, Marie-
499 Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors, *Proceedings of the 2022 Conference
500 of the North American Chapter of the Association for Computational Linguistics: Human Language
501 Technologies*, pages 780–799, Seattle, United States, July 2022. Association for Computational
502 Linguistics. doi: 10.18653/v1/2022.naacl-main.57. URL <https://aclanthology.org/2022.naacl-main.57/>.
503

504 Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq R. Joty,
505 Richard Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence
506 generation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih,
507 editors, *Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event /
508 Punta Cana, Dominican Republic, 16-20 November, 2021*, 2021.

509 Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng. Adapt-
510 able logical control for large language models. In *Proceedings of NeurIPS*, 2024.

511 Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li. CGMH: constrained sentence generation by
512 metropolis-hastings sampling. In *Proceedings of AAAI*, pages 6834–6842, 2019.

513

514 Joao Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya
515 Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew,
516 Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic control of large language models
517 via sequential monte carlo. In *Proceedings of ICLR*, 2025.

518 Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. *arXiv
519 preprint arXiv:2307.09702*, 2023.

520

521 Scott Lundberg, Marco Ribeiro, et al. Guidance. [https://github.com/guidance-ai/
522 guidance](https://github.com/guidance-ai/guidance), 2024. Accessed: 2025-09-17.

523

524 Nikolaos Manginas, George Palioras, and Luc De Raedt. Nesya: Neurosymbolic automata, 2025.
525 URL <https://arxiv.org/abs/2412.07331>.

526

527 Elena Umili, Roberto Capobianco, and Giuseppe De Giacomo. Grounding LTLf Specifications
528 in Image Sequences. In *Proceedings of the 20th International Conference on Principles of
Knowledge Representation and Reasoning*, pages 668–678, 8 2023. doi: 10.24963/kr.2023/65.
529 URL <https://doi.org/10.24963/kr.2023/65>.

530

531 Edsger W. Dijkstra. A note on two problems in connexion with graphs. *Numerische mathematik*, 1
532 (1):269–271, 1959.

533

534 Dan Roth. On the hardness of approximate reasoning. *Artificial Intelligence*, 82(1):273–302,
535 1996. ISSN 0004-3702. doi: [https://doi.org/10.1016/0004-3702\(94\)00092-1](https://doi.org/10.1016/0004-3702(94)00092-1). URL <https://www.sciencedirect.com/science/article/pii/0004370294000921>.

536

537 Francesco Fuggitti. Ltlf2dfa, mar 2019. URL <https://doi.org/10.5281/zenodo.3888410>.

538

539 Rogério Reis and Nelma Moreira. Fado: tools for finite automata and regular expressions manipula-
tion. 2002.

540 Sidi Lu and Nanyun Peng. On efficient training, controllability and compositional generalization
 541 of insertion-based language generators. *CoRR*, abs/2102.11008, 2021. URL <https://arxiv.org/abs/2102.11008>.

543 Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-
 544 decomposed oracle. In *Proceedings of NeurIPS*, 2022.

545 Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for
 546 autoregressive language generation. In *Proceedings of ICML*, 2023.

548 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 549 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 550 for Computational Linguistics*, pages 311–318, 2002.

551 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summariza-
 552 tion Branches Out*, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
 553 Linguistics. URL <https://aclanthology.org/W04-1013/>.

555 Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
 556 description evaluation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 557 Recognition (CVPR)*, June 2015.

558 Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional
 559 image caption evaluation. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
 560 *Computer Vision – ECCV 2016*, pages 382–398, Cham, 2016. Springer International Publishing.
 561 ISBN 978-3-319-46454-1.

562 Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
 563 Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense
 564 reasoning, 2020. URL <https://arxiv.org/abs/1911.03705>.

566 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 567 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

568 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 569 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 570 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

572 OpenAI. Gpt-4 technical report, 2024a. URL <https://arxiv.org/abs/2303.08774>.

573 OpenAI. Gpt-4o system card, 2024b. URL <https://arxiv.org/abs/2410.21276>.

575 OpenAI. Openai o1 system card, 2024c. URL <https://arxiv.org/abs/2412.16720>.

577 Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill in the blanks. *CoRR*,
 578 abs/2005.05339, 2020. URL <https://arxiv.org/abs/2005.05339>.

579 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
 580 derwende, Pushmeet Kohli, and James F. Allen. A corpus and evaluation framework for
 581 deeper understanding of commonsense stories. *CoRR*, abs/1604.01696, 2016. URL <https://arxiv.org/abs/1604.01696>.

583 Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, and Giuseppe Marra. From statistical
 584 relational to neuro-symbolic artificial intelligence. In *Proceedings of International Joint Conference
 585 on Artificial Intelligence*, 2020.

586 Artur d’Avila Garcez and Luis C. Lamb. Neurosymbolic AI: The 3rd wave. *Artificial Intelligence
 587 Review*, 2023.

589 Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ashwin Srinivasan. A review of some tech-
 590 niques for inclusion of domain-knowledge into deep neural networks. *Scientific Reports*, 12(1),
 591 2022.

592 Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. Deep learning with logical
 593 constraints. In *Proceedings of International Joint Conference on Artificial Intelligence*, 2022.

594 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 595 DeepProbLog: Neural probabilistic logic programming. In *Proceedings of Neural Information*
 596 *Processing Systems*, 2018.

597 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
 598 function for deep learning with symbolic knowledge. In *Proceedings of International Conference*
 599 *on Machine Learning*, 2018.

600 Emile van Krieken, Thiviyen Thanapalasingam, Jakub M. Tomczak, Frank Van Harmelen, and
 601 Annette Ten Teije. A-neSI: A scalable approximate method for probabilistic neurosymbolic
 602 inference. In *Proceedings of Neural Information Processing Systems*, 2023.

603 Ivan Donadello, Luciano Serafini, and Artur D'Avila Garcez. Logic tensor networks for semantic
 604 image interpretation. In *Proceedings of the 26th International Joint Conference on Artificial*
 605 *Intelligence*, IJCAI'17, page 1596–1602. AAAI Press, 2017. ISBN 9780999241103.

606 Eleonora Giunchiglia, Alex Tatomir, Mihaela Catalina Stoian, and Thomas Lukasiewicz. CCN+:
 607 A neuro-symbolic framework for deep learning with requirements. *International Journal of*
 608 *Approximate Reasoning*, 171, 2024.

609 Michelangelo Diligenti, Marco Gori, Marco Maggini, and Leonardo Rigutini. Bridging logic and
 610 kernel machines. *Machine Learning*, 2012.

611 Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin
 612 Vechev. DL2: Training and querying neural networks with logic. In *Proceedings of International*
 613 *Conference on Machine Learning*, 2019.

614 Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic
 615 operators. *Artificial Intelligence*, 302:103602, 2022.

616 Eleonora Giunchiglia and Thomas Lukasiewicz. Multi-label classification neural networks with hard
 617 logical constraints. *Journal of Artificial Intelligence Research*, 72, 2021.

618 Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic
 619 probabilistic layers for neuro-symbolic learning. In *Proceedings of Neural Information Processing*
 620 *Systems*, 2022.

621 Connor Pryor, Charles Dickens, Eriq Augustine, Alon Albalak, William Yang Wang, and Lise Getoor.
 622 Neupsl: Neural probabilistic soft logic. In *Proceedings of International Joint Conference on*
 623 *Artificial Intelligence*, 2023.

624 Nicholas Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, and Kobi Gal. MultiplexNet: Towards
 625 fully satisfied logical constraints in neural networks. In *Proceedings of Association for the*
 626 *Advancement of Artificial Intelligence*, 2022.

627 Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. Vael: Bridging Variational Autoencoders
 628 and Probabilistic Logic Programming. In *Proceedings of Neural Information Processing Systems*,
 629 2022.

630 Kevin Yang and Dan Klein. FUDGE: controlled text generation with future discriminators. In
 631 *Proceedings of NAACL-HLT*, pages 3511–3535, 2021.

632 Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. Controllable generation via locally
 633 constrained resampling. In *Proceedings of ICLR*, 2025.

634 Adil Erzin, Roman Plotnikov, and Ilya Ladygin. Constrained shortest path and hierarchical structures,
 635 2022. URL <https://arxiv.org/abs/2204.04960>.

636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A PROOFS
649650 A.1 SOUNDNESS OF THE ABS ALGORITHM
651652 We prove here that our method is sound (Theorem 1).
653654 *Proof of Theorem 1. (Soundness of the ABS algorithm).* We prove that the algorithm is sound by
655 induction on the length t of the sequence. More precisely, we propose the following inductive
656 hypothesis

657
$$\mathcal{H}_t : \text{for all beams } (x_{<t}, s, q) \in \mathcal{B}_t, d_{q_t} \leq T - t.$$

658 The base case is $t = 0$: the initial beam only contains the prompt x_0 , the initial state of the DFA q_0 ,
659 and the distance d_0 from an accepting state. By the hypothesis of the theorem, we have $d_0 \leq T$ and
660 thus \mathcal{H}_0 is verified.661 Let us now assume that \mathcal{H}_t is true, for $t \in [1, T - 1]$. At line 12 of the algorithm:663 • if a transition leads to a state q' such that $d_{q'} > T - t$ then it is impossible to complete
664 an accepting sequence within the remaining steps. But this choice is excluded by setting
665 $Z[i, x] \leftarrow -\infty$.667 This ensures that no sequence in \mathcal{B} is extended to a non-accepting sequence.

668 Indeed, at line 22:

669 • we choose the top k beam extensions among the valid ones with respect to their score
670 (denoted by Z in the pseudo-code), i.e. among those having distance $d_{q'_{t+1}} \leq T - (t + 1)$,
671 since invalid outputs have $-\infty$ as a score. In the case where we have less than k valid beam
672 extensions, then we pad the remaining beams with copies of the valid beams. We know that
673 at least one valid extension exists for each beam, since we assume that \mathcal{H}_t is true.
674676 Thus we have shown that \mathcal{H}_{t+1} is true whenever \mathcal{H}_t is true. By induction, \mathcal{H}_T is true.677 At time T , the algorithm returns the best sequence among those included in \mathcal{B}_T . But, by \mathcal{H}_T , every
678 sequence in \mathcal{B}_T has distance 0 from an accepting state, and hence terminates in an accepting state.
679 Thus the algorithm is sound. \square 681 A.2 COMPLEXITY OF MAP INFERENCE ON MARKOV CHAINS
682683 *Proof of Theorem 2.* We show NP-hardness by providing a polynomial-time reduction from the
684 *Constrained Shortest Path (CSP) problem with uniform arc lengths* to the *MAP inference problem on*
685 *time-homogeneous Markov chains under a unary constraint*.686 **Step 1: CSP Formulation.** Consider a directed graph $G = (V, E)$, where each arc $(i, j) \in E$ has
687 an associated cost $c(i, j) \geq 0$ and a length $b(i, j) \in \mathbb{N}$. We focus on the special case where all arcs
688 have the same length, specifically $b(i, j) = 1$ for all $(i, j) \in E$. Given vertices $s, t \in V$ (source and
689 target) and an integer bound $\beta \geq 1$, the CSP problem seeks a path of exact length β from s to t that
690 minimizes total cost:
691

692
$$\min_{x_{1:\beta} \in V^\beta, x_1=s, x_\beta=t, (x_k, x_{k+1}) \in E} \sum_{k=1}^{\beta-1} c(x_k, x_{k+1}).$$

693

694 This uniform-length CSP variant is known to be NP-hard (Erzin et al., 2022).

695 **Step 2: MAP Inference Problem Formulation.** In the MAP inference setting, we have a time-
696 homogeneous Markov chain over a state space S , an initial distribution μ , and transition matrix P .
697 Given a unary constraint specifying the state at time β , i.e., $X_\beta = t$, the MAP inference problem is:
698

700
$$x_{1:\beta}^* = \arg \max_{x_{1:\beta} \in S^\beta, x_\beta=t} \mu(x_1) \prod_{k=1}^{\beta-1} P(x_{k+1} | x_k).$$

701

702 **Step 3: Reduction from CSP to MAP Inference.** Given a CSP instance (G, c, s, t, β) , construct a
 703 MAP inference instance as follows:
 704

705 1. **State space.** Define the state space as $S = V \cup D$, where $D = \{d_i \mid i \in V\}$ is a set of
 706 newly introduced dummy states, with one dummy state per original vertex.
 707

708 2. **Initial distribution.** Set $\mu(x) = \delta_{x,s}$, ensuring the chain always starts at the source vertex
 709 s .

710 3. **Transition probabilities.** First, define an extended cost function $\tilde{c} : V \times S \rightarrow [0, +\infty]$ by:

$$712 \quad 713 \quad 714 \quad 715 \quad 716 \quad \tilde{c}(i, j) = \begin{cases} c(i, j), & (i, j) \in E \\ -\log(Z_{\max} - Z_i), & j = d_i \\ +\infty, & \text{otherwise} \end{cases}$$

717 where for each vertex $i \in V$, we set:

$$718 \quad 719 \quad 720 \quad Z_i = \sum_{j \in V} e^{-c(i,j)}, \quad Z_{\max} = \max_{i \in V} Z_i.$$

721 With these definitions, we set the transition probabilities for all $i \in V$ as:

$$723 \quad 724 \quad 725 \quad P(j \mid i) = \frac{e^{-\tilde{c}(i,j)}}{Z_{\max}}, \quad j \in S.$$

726 This ensures that all transitions from states in V are properly normalized, as:

$$728 \quad 729 \quad 730 \quad \sum_{j \in S} P(j \mid i) = \frac{Z_i + (Z_{\max} - Z_i)}{Z_{\max}} = 1, \quad \forall i \in V.$$

731 4. **Absorbing states.** Explicitly set the target vertex t and all dummy states d_i as absorbing
 732 states:

$$734 \quad P(t \mid t) = 1, \quad P(j \mid t) = 0 \text{ for } j \neq t, \quad \text{and} \quad P(d_i \mid d_i) = 1, \quad P(j \mid d_i) = 0 \text{ for } j \neq d_i.$$

736 Thus, any path entering a dummy state or t remains there indefinitely.

737 5. **Unary constraint.** Set the unary constraint as $\phi \equiv X_\beta = t$.

740 **Step 4: Correctness and Equivalence.** Consider any path $x_{1:\beta}$ that satisfies the constraint $X_\beta = t$.
 741 If the path ever enters a dummy state d_i , it will remain there indefinitely (absorbing), contradicting
 742 the constraint $X_\beta = t$. Thus, any feasible path must stay entirely within V .

743 For feasible paths $x_{1:\beta} \in V^\beta$, we have:

$$745 \quad 746 \quad 747 \quad P(x_{1:\beta}) = \prod_{k=1}^{\beta-1} \frac{e^{-\tilde{c}(x_k, x_{k+1})}}{Z_{\max}} = Z_{\max}^{-(\beta-1)} \cdot e^{-\sum_{k=1}^{\beta-1} \tilde{c}(x_k, x_{k+1})} \cdot \delta_{x_1, s} \\ 748 \quad 749 \quad (x_{1:\beta} \models \phi) = Z_{\max}^{-(\beta-1)} \cdot e^{-\sum_{k=1}^{\beta-1} c(x_k, x_{k+1})}$$

750 Hence, the MAP objective is exactly equivalent to minimizing the total cost:

$$752 \quad 753 \quad 754 \quad \arg \min_{x_{1:\beta} \in S^\beta, x_\beta = t} -\log P(x_{1:\beta}) = \arg \min_{x_{1:\beta} \in V^\beta, x_1 = s, x_\beta = t, (x_k, x_{k+1}) \in E} \sum_{k=1}^{\beta-1} c(x_k, x_{k+1}),$$

755 recovering precisely the original CSP objective.

756 **Step 5: Complexity and Conclusion.** The construction described above clearly runs in polynomial
 757 time (adding one dummy state per vertex and computing simple exponentials). Thus, we have
 758 demonstrated a polynomial-time reduction from the CSP problem (known NP-hard) to the MAP
 759 inference problem under unary constraints in a Markov chain. \square
 760

761 B HARDWARE FOR EXPERIMENTS

763 All the experiments were run on a machine equipped with the following infrastructure: Intel® Xeon®
 764 Silver 4416+ CPU, 20 Cores, 40 Threads, 2.00/3.90 GHz; NVidia L40S GPU, 48 GB GDDR6, 18176
 765 CUDA Cores, 142 RT Cores, 568 Tensor Cores.
 766

767 C ORDERED FASHION MNIST

770 For this task, we trained a CNN model on the Fashion MNIST training set for 7 epochs using a batch
 771 size of 64 and a learning rate of 0.002. The model consists of two convolutional blocks followed by
 772 three fully connected layers, incorporating Dropout and Layer Normalization. The convolutional
 773 layers use 2×2 and 5×5 filters, each followed by MaxPooling operations. The final classification layer
 774 applies a Softmax activation for 10-class classification. Afterward, we also trained the CNN-LSTM
 775 model, where the CNN component was kept frozen and only the LSTM was trained on the Ordered
 776 Fashion MNIST training set. We selected the LSTM checkpoint that achieved the best performance
 777 on the validation set to capture the temporal dependencies across sequences. The LSTM module was
 778 implemented with a hidden dimension of 128, one recurrent layer, and batch-first input formatting.
 779 Its outputs were then passed through a fully connected linear layer mapping to the 10 output classes,
 780 enabling sequence-level classification. This setup allowed the model to leverage pre-trained spatial
 781 feature representations from the CNN while adapting the temporal modeling capacity of the LSTM
 782 to the sequential structure of the Ordered Fashion MNIST dataset. We used CrossEntropyLoss as the
 783 loss function, and the Adam optimizer for both trainings.

784 C.1 NATURAL LANGUAGE CONSTRAINTS

785 We report here all the constraints enforced on the Ordered Fashion-Mnist dataset, expressed in natural
 786 language. The LTL_f formulation of each constraint is reported below.
 787

- 788 • If you wear a T-shirt/top, you will not be able to wear a Shirt, Dress, or another T-shirt/top.
 789
- 790 • If you wear Trousers, you will not be able to wear a Dress or another Trouser.
 791
- 792 • If you wear a Pullover, you will not be able to wear a Dress, T-shirt/top, Shirt, or another
 793 Pullover.
 794
- 795 • If you wear a Dress, you will not be able to wear a T-shirt/top, Shirt, Trouser, Pullover, or
 796 another Dress.
 797
- 798 • If you wear a Coat, you will not be able to wear a T-shirt/top, Shirt, Pullover, Dress, or
 799 another Coat.
 800
- 801 • If you wear Sandals, you will not be able to wear Sneakers, Trousers, Ankle boots, or
 802 another pair of Sandals.
 803
- 804 • If you wear a Shirt, you will not be able to wear a T-shirt/top, Dress, or another Shirt.
 805
- 806 • If you wear Sneakers, you will not be able to wear Sandals, Trousers, Ankle boots, or
 807 another pair of Sneakers.
 808
- 809 • If you wear a Bag, you will not be able to wear a T-shirt/top, Shirt, Dress, Pullover, Coat, or
 810 another Bag.
 811
- 812 • If you wear Ankle boots, you will not be able to wear Sandals, Trousers, Sneakers, or
 813 another pair of Ankle boots.
 814
- 815 • You must wear at least one of the following: T-shirt/top, Pullover, Shirt, or Dress.
 816
- 817 • You must wear at least one of the following: Trouser or Dress.
 818
- 819 • You must wear at least one of the following: Sandal, Sneaker, or Ankle boot.
 820

810 C.2 LTL_f CONSTRAINTS
811812 The listed formulas must be interpreted as being conjoined via the logical AND operator (\wedge). That is,
813 the complete specification is given by:
814

815
$$\varphi = \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_{13}$$

816

817 where each φ_i corresponds to the respective in the list:
818

- 819 • $G(t_shirt_top \rightarrow \neg F Shirt) \wedge G(t_shirt_top \rightarrow \neg F Dress) \wedge G(t_shirt_top \rightarrow$
820 $WX G \neg t_shirt_top)$
- 821 • $G(Trouser \rightarrow \neg F Dress) \wedge G(Trouser \rightarrow WX G \neg Trouser)$
- 822 • $G(Pullover \rightarrow \neg F Dress) \wedge G(Pullover \rightarrow \neg F t_shirt_top) \wedge G(Pullover \rightarrow$
823 $\neg F Shirt) \wedge G(Pullover \rightarrow WX G \neg Pullover)$
- 824 • $G(Dress \rightarrow \neg F t_shirt_top) \wedge G(Dress \rightarrow \neg F Shirt) \wedge G(Dress \rightarrow \neg F Trouser) \wedge$
825 $G(Dress \rightarrow \neg F Pullover) \wedge G(Dress \rightarrow WX G \neg Dress)$
- 826 • $G(Coat \rightarrow \neg F t_shirt_top) \wedge G(Coat \rightarrow \neg F Shirt) \wedge G(Coat \rightarrow \neg F Pullover) \wedge$
827 $G(Coat \rightarrow \neg F Dress) \wedge G(Coat \rightarrow WX G \neg Coat)$
- 828 • $G(Sandal \rightarrow \neg F Sneaker) \wedge G(Sandal \rightarrow \neg F Trouser) \wedge G(Sandal \rightarrow$
829 $\neg F Ankle boot) \wedge G(Sandal \rightarrow WX G \neg Sandal)$
- 830 • $G(Shirt \rightarrow \neg F t_shirt_top) \wedge G(Shirt \rightarrow \neg F Dress) \wedge G(Shirt \rightarrow WX G \neg Shirt)$
- 831 • $G(Sneaker \rightarrow \neg F Sandal) \wedge G(Sneaker \rightarrow \neg F Trouser) \wedge G(Sneaker \rightarrow$
832 $\neg F Ankle boot) \wedge G(Sneaker \rightarrow WX G \neg Sneaker)$
- 833 • $G(Bag \rightarrow \neg F t_shirt_top) \wedge G(Bag \rightarrow \neg F Shirt) \wedge G(Bag \rightarrow \neg F Dress) \wedge$
834 $G(Bag \rightarrow \neg F Pullover) \wedge G(Bag \rightarrow \neg F Coat) \wedge G(Bag \rightarrow WX G \neg Bag)$
- 835 • $G(Ankle boot \rightarrow \neg F Sandal) \wedge G(Ankle boot \rightarrow \neg F Trouser) \wedge G(Ankle boot \rightarrow$
836 $\neg F Sneaker) \wedge G(Ankle boot \rightarrow WX G \neg Ankle boot)$
- 837 • $F(t_shirt_top \vee Pullover \vee Shirt \vee Dress)$
- 838 • $F(Trouser \vee Dress)$
- 839 • $F(Sandal \vee Sneaker \vee Ankle boot)$

843 D ORDERED COMMONGEN
844845 Each experiment in Ordered CommonGen has a prompt and a set of ordered concepts, given as a
846 constraint on the output. A sample prompt for experiments is reported below.
847848 D.1 PROMPT
849

850 # Instruction

851 Given several concepts (i.e., nouns or verbs), write a short and simple sentence that contains *all* the
852 required words in the given order.853 The sentence should describe a common scene in daily life, and the concepts should be used in a
854 natural way.

855 # Examples

856 ## Example 1

857 - Concepts: "dog, frisbee, catch, throw"

858 - Sentence: The dog eagerly chased the frisbee trying to catch it after its owner threw it.

859 ## Example 2

860 - Concepts: "apple, place, tree, pick"

861 - Sentence: I found an apple in a place near a tree and I picked it up.

862 # Your Task

864 - Concepts: **Concepts**
 865 - Sentence:
 866

867 **D.2 LTL_f CONSTRAINTS EXAMPLE**
 868

869 The listed formulas should be interpreted as being conjoined via the logical AND operator (\wedge).
 870 Therefore, the complete specification is given by:

871
$$\varphi = \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_5$$

 872

873 where each φ_i corresponds to the respective formula in the list below. This represents an example
 874 with 3 concepts.
 875

- 876 • $((\neg(secondword \vee dot) \wedge firstword) \wedge F(secondword))$
 877
- 878 • $((\neg(thirdword \vee dot) \wedge secondword) \wedge F(thirdword))$
 879
- 880 • $((\neg(eos \vee dot) \wedge thirdword) \wedge F(eos))$
 881
- 882 • $G(dot \rightarrow X eos)$
 883
- 884 • $G(firstword \vee secondword \vee thirdword \vee dot \vee eos \vee nomatch)$

885 **D.3 QUALITATIVE EXAMPLES**

886 GPT-2 large on CommonGen (Concepts: "shave", "look", "mirror", "face")
 887

888 No ABS: "The boy looks at himself in the mirror." (Fails constraint: "shave" and "face" are missing)
 889 ABS ($\alpha = 0.25$): "Shave your face and look at the mirror." (Satisfies constraint, natural structure)
 890 ABS ($\alpha = 0.5$): "The boy looks at the mirror to shave his face." (Satisfies constraint, natural structure)
 891 ABS ($\alpha = 0.75$): "Look mirror face shave." (Satisfies constraint, but unnatural structure)

892 **D.4 ABLATION STUDIES**

893 In Table 5 and 6, we present the ablation studies to empirically demonstrate how the Ramping Push
 894 Up (RPU) is necessary to ensure constraint satisfaction. Furthermore, it can be observed that text
 895 quality metrics slightly improve when RPU is applied, while efficiency increases significantly thanks
 896 to solutions being found in fewer steps compared to standard generation when setting $\alpha > 0$.
 897

898 **D.5 USE OF LARGE LANGUAGE MODELS**

900 Large Language Models (LLMs) were employed in a limited manner during the preparation of this
 901 manuscript. They were used to assist in improving the phrasing of certain passages and to accelerate
 902 technical aspects of the writing process, such as generating LaTeX code for tables and formatting.
 903 Importantly, the use of LLMs was restricted to supporting and refining the writing process; they did
 904 not contribute to the research design, analysis, or interpretation of results. All text and suggestions
 905 generated by the models were thoroughly reviewed and verified by the authors to ensure accuracy
 906 and appropriateness before inclusion in the final version of the paper.
 907

908 Table 5: Ablation Study on CommonGen (Supervised Model) with/without Ramping Push-up (RPU).
 909

RPU	ROUGE-L	BLEU-4	CIDEr	SPICE	Constraint (%)	Avg Time (s)
False	49.25	48.85	15.76	29.61	99.98	10.01
True	49.70	49.50	16.20	29.70	100.00	4.42

913 Table 6: Ablation Study on CommonGen (Unsupervised Model) with/without Ramping Push-up (RPU).
 914

RPU	ROUGE-L	BLEU-4	CIDEr	SPICE	Constraint (%)	Avg Time (s)
False	48.61	47.80	15.56	29.12	99.98	9.93
True	48.70	47.90	15.70	29.30	100.00	4.92