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Abstract
Score matching is an alternative to maximum like-
lihood (ML) for estimating a probability distribu-
tion parametrized up to a constant of proportion-
ality. By fitting the “score” of the distribution, it
sidesteps the need to compute this constant of pro-
portionality (which is often intractable). While
score matching and variants thereof are popular in
practice, precise theoretical understanding of the
benefits and tradeoffs with maximum likelihood—
both computational and statistical—are not well
understood. In this work, we give the first ex-
ample of a natural exponential family of distribu-
tions such that the score matching loss is compu-
tationally efficient to optimize, and has a compa-
rable statistical efficiency to ML, while the ML
loss is intractable to optimize using a gradient-
based method. The family consists of exponen-
tials of polynomials of fixed degree, and our result
can be viewed as a continuous analogue of recent
developments in the discrete setting. Precisely,
we show: (1) Designing a zeroth-order or first-
order oracle for optimizing the maximum likeli-
hood loss is NP-hard. (2) Maximum likelihood
has a statistical efficiency polynomial in the am-
bient dimension and the radius of the parameters
of the family. (3) Minimizing the score matching
loss is both computationally and statistically effi-
cient, with complexity polynomial in the ambient
dimension.

1. Introduction
Energy-based models are a flexible class of probabilistic
models with wide-ranging applications. They are parameter-
ized by a class of energies Eθ(x) which in turn determines
the distribution pθ(x) = exp(−Eθ(x))/Zθ up to a constant
of proportionality Zθ that is called the partition function.
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One of the major challenges of working with energy-based
models is designing efficient algorithms for fitting them to
data. Statistical theory tells us that the maximum likelihood
estimator (MLE)—i.e., the parameters θ which maximize
the likelihood—enjoys good statistical properties including
consistency and asymptotic efficiency.

However, there is a major computational impediment to
computing the MLE: Both evaluating the log-likelihood and
computing its gradient with respect to θ (i.e., implementing
zeroth and first order oracles, respectively) seem to require
computing the partition function, which is often computa-
tionally intractable. More precisely, the gradient of the nega-
tive log-likelihood depends on ∇θ logZθ = Epθ

[∇θEθ(x)].
A popular approach is to estimate this quantity by using a
Markov chain to approximately sample from pθ. However
in high-dimensional settings, Markov chains often require
many, sometimes even exponentially many, steps to mix.

Score matching (Hyvärinen, 2005) is a popular alternative
that sidesteps needing to compute the partition function of
sample from pθ. The idea is to fit the score of the distri-
bution, in the sense that we want θ such that ∇x log p(x)
matches ∇x log pθ(x) for a typical sample from p. This ap-
proach turns out to have many nice properties. It is con-
sistent in the sense that minimizing the objective function
yields provably good estimates for the unknown parameters.
Moreover, while the definition depends on the unknown
∇x log p(x), by applying integration by parts, it is possible
to transform the objective into an equivalent one that can be
estimated from samples.

The main question is to bound its statistical performance,
especially relative to that of the maximum likelihood esti-
mator. Recent work by (Koehler et al., 2022) showed that
the cost can be quite steep. They gave explicit examples
of distributions that have bad isoperimetric properties (i.e.,
large Poincaré constant) and showed how such properties
can cause poor statistical performance.

Despite wide usage, there is little rigorous understanding
of when score matching helps. This amounts to finding a
general setting where maximizing the likelihood with stan-
dard first-order optimization is provably hard, and yet score
matching is both computationally and statistically efficient,
with only a polynomial loss in sample complexity relative
to the MLE. In this work, we show the first such guaran-
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tees, and we do so for a natural class of exponential families
defined by polynomials. As we discuss in Section 1.1, our
results parallel recent developments in learning graphical
models—where it is known that pseudolikelihood methods
allow efficient learning of distributions that are hard to sam-
ple from—and can be viewed as a continuous analogue of
such results.

In general, an exponential family on Rn has the form
pθ(x) ∝ h(x) exp(⟨θ, T (x)⟩) where h(x) is the base mea-
sure, θ is the parameter vector, and T (x) is the vector of
sufficient statistics. Exponential families are one of the most
classic parametric families of distributions, dating back to
works by (Darmois, 1935), (Koopman, 1936) and (Pitman,
1936). They have a number of natural properties, includ-
ing: (1) The parameters θ are uniquely determined by the
expectation of the sufficient statistics Epθ

[T ]; (2) The dis-
tribution pθ is the maximum entropy distribution, subject
to having given values for Epθ

[T ]; (3) They have conjugate
priors (Brown, 1986), which allow characterizations of the
family for the posterior of the parameters given data.

For any (odd positive integer) constant d and norm bound
B ≥ 1, we study a natural exponential family Pn,d,B on Rn

where

1. The sufficient statistics T (x) ∈ RM−1 consist of all
monomials in x1, . . . , xn of degree at least 1 and at most
d
(

where M =
(
n+d
d

))
.

2. The base measure is defined as h(x) =
exp(−

∑n
i=1 x

d+1
i ).1

3. The parameters θ lie in an l∞-ball: θ ∈ ΘB = {θ ∈
RM−1 : ∥θ∥∞ ≤ B}.

Towards stating our main results, we formally define the
maximum likelihood and score matching objectives, denot-
ing by Ê the empirical average over the training samples
drawn from some p ∈ Pn,d,B :

LMLE(θ) = Êx∼p[log pθ(x)]

LSM(θ) =
1

2
Êx∼p[∥∇ log p(x)−∇ log pθ(X)∥2] +Kp

= Êx∼p

[
Tr∇2 log pθ(x) +

1

2
∥∇ log pθ(x)∥2

]
(1)

where Kp is a constant depending only on p and (1) follows
by integration by parts (Hyvärinen, 2005). In the special
case of exponential families, (1) is a quadratic, and in fact

1We note that the choice of base measure is for convenience in
ensuring tail bounds necessary in our proof.

the optimum can be written in closed form:

argmin
θ

LSM(θ) = −Êx∼p[(JT )x(JT )
T
x ]

−1Êx∼p∆T (x)

(2)

where (JT )x : (M − 1) × n is the Jacobian of T at the
point x, ∆f =

∑
i ∂

2
i f is the Laplacian, applied coordinate

wise to the vector-valued function f .

With this setting in place, we show the following intractabil-
ity result.

Theorem 1.1 (Informal, computational lower bound). Un-
less RP = NP, there is no poly(n,N)-time algorithm that
evaluates LMLE(θ) and ∇LMLE(θ) given θ ∈ ΘB and ar-
bitrary samples x1, . . . , xN ∈ Rn, for d = 7, B = poly(n).
Thus, optimizing the MLE loss using a zeroth-order or first-
order method is computationally intractable.

The main idea of the proof is to construct a polynomial
FC(x) which has roots exactly at the satisfying assign-
ments of a given 3-SAT formula C. We then argue that
exp(−γFC(x)), for sufficiently large γ > 0, concentrates
near the satisfying assignments. Finally, we show sampling
from this distribution or approximating logZθ or ∇θ logZθ

(where θ ∈ RM−1 is the parameter vector corresponding to
the polynomial −γFC(x)) would enable efficiently finding
a satisfying assignment.

Our next result shows that MLE, though computationally
intractable to compute via implementing zeroth or first order
oracles, has (asymptotic) sample complexity poly(n,B)
(for constant d).

Theorem 1.2 (Informal, efficiency of MLE). The MLE es-
timator θ̂MLE = argmaxθ LMLE(θ) has asymptotic sam-
ple complexity polynomial in n. That is, for all sufficiently
large N it holds with probability at least 0.99 (over N sam-
ples drawn from pθ∗ ) that:

∥θ̂MLE − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
.

The main proof technique for this is an anticoncentration
bound of low-degree polynomials, for distributions in our
exponential family.

Lastly, we prove that score matching also has polynomial
(asymptotic) statistical complexity.

Theorem 1.3 (Informal, efficiency of SM). The score match-
ing estimator θ̂SM = argmaxθ LSM(θ) also has asymp-
totic sample complexity at most polynomial in n. That is,
for all sufficiently large N it holds with probability at least
0.99 (over N samples drawn from pθ∗ ) that:

∥θ̂SM − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
. (3)
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The main ingredient in this result is a bound on the restricted
Poincaré constant—namely, the Poincaré constant, when re-
stricted to functions that are linear in the sufficient statistics
T (Definition A.1). We bound this quantity for the exponen-
tial family we consider in terms of the condition number of
the Fisher matrix of the distribution, which we believe is a
result of independent interest. With this tool in hand, we can
use the framework of (Koehler et al., 2022), which relates
the asymptotic sample complexity of score matching to the
asymptotic sample complexity of maximum likelihood, in
terms of the restricted Poincaré constant of the distribution.

1.1. Discussion and related work

Score matching: Score matching was proposed by
(Hyvärinen, 2005), who also gave conditions under which
it is consistent and asymptotically normal. Asymptotic nor-
mality is also proven for various kernelized variants of score
matching in (Barp et al., 2019). (Koehler et al., 2022) prove
that the statistical sample complexity of score matching
is not much worse than the sample complexity of maxi-
mum likelihood when the distribution satisfies a (restricted)
Poincaré inequality. While we leverage machinery from
(Koehler et al., 2022), their work only bounds the sample
complexity of score matching by a quantity polynomial in
the ambient dimension for a specific distribution in a spe-
cific bimodal exponential family. By contrast, we can han-
dle an entire class of exponential families with low-degree
sufficient statistics.

Poincaré vs Restricted Poincaré: We note that while
Poincaré inequalities are directly related to isoperimetry
and mixing of Markov chains, sample efficiency of score
matching only depends on the Poincaré inequality holding
for a restricted class of functions, namely, functions linear
in the sufficient statistics. Hence, hardness of sampling only
implies sample complexity lower bounds in cases where the
family is expressive enough—indeed, the key to exponential
lower bounds for score matching in (Koehler et al., 2022) is
augmenting the sufficient statistics with a function defined
by a bad cut. This gap means that we can hope to have good
sample complexity for score matching even in cases where
sampling is hard—which we take advantage of in this work.

Learning exponential families: Despite the fact that ex-
ponential families are both classical and ubiquitous, both in
statistics and machine learning, there is relatively little un-
derstanding about the computational-statistical tradeoffs to
learn them from data, that is, what sample complexity can be
achieved with a computationally efficient algorithm. (Ren
et al., 2021) consider a version of the “interaction screening”
estimator, a close relative of pseudolikelihood, but do not
prove anything about the statistical complexity of this esti-
mator. (Shah et al., 2021) consider a related estimator, and
analyze it under various low-rank and sparsity assumptions
of reshapings of the sufficient statistics into a tensor. Un-

fortunately, these assumptions are somewhat involved, and
it’s unclear if they are needed for designing computationally
and statistically efficient algorithms.

Discrete exponential families (Ising models): Ising mod-
els have the form pJ(x) ∝ exp(

∑
i∼j Jijxixj +

∑
i Jixi)

where ∼ denotes adjacency in some (unknown) graph, and
Jij , Ji denote the corresponding pairwise and singleton po-
tentials. (Bresler, 2015) gave an efficient algorithm for
learning any Ising model over a graph with constant degree
(and l∞-bounds on the coefficients); see also the more re-
cent work (Dagan et al., 2021). In contrast, it is a classic
result (Arora & Barak, 2009) that approximating the parti-
tion function of members in this family is NP-hard.

Similarly, the exponential family we consider is such that
it contains members for which sampling and approximat-
ing their partition function is intractable (the main ingredi-
ent in the proof of Theorem 1.1). Nevertheless, by Theo-
rem 3, we can learn the parameters for members in this fam-
ily computationally efficiently, and with sample complex-
ity comparable to the optimal one (achieved by maximum
likelihood). This also parallels other developments in Ising
models (Bresler et al., 2014; Montanari, 2015), where it is
known that restricting the type of learning algorithm (e.g.,
requiring it to work with sufficient statistics only) can make
a tractable problem become intractable.

The parallels can be drawn even on an algorithmic level: a
follow up work to (Bresler, 2015) by (Vuffray et al., 2016)
showed that similar results can be shown in the Ising model
setting by using the “screening estimator”, a close relative
of the classical pseudolikelihood estimator (Besag, 1977)
which tries to learn a distribution by matching the condi-
tional probability of singletons, and thereby avoids having
to evaluate a partition function. Since conditional probabil-
ities of singletons capture changes in a single coordinate,
they can be viewed as a kind of “discrete gradient”—a fur-
ther analogy to score matching in the continuous setting.2

2. Hardness of zero- and first-order oracles
In this section we sketch the NP-hardness of implementing
approximate zeroth-order and first-order optimization ora-
cles for maximum likelihood, as in Theorem 1.1. Both hard-
ness results proceed by reduction from 3-SAT and use the
same construction. The idea is that for any formula C on n
variables, we can construct a non-negative polynomial FC
of degree at most 6 in variables x1, . . . , xn, which has roots
exactly at the points of the hypercube H := {−1, 1}n ⊆ Rn

that correspond to satisfying assignments (under the bijec-
tion that xi = 1 corresponds to True and xi = −1 corre-
sponds to False). Intuitively, the distribution with density

2In fact, ratio matching, proposed in (Hyvärinen, 2007) as a
discrete analogue of score matching, relies on exactly this intuition.
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proportional to exp(−γFC(x)) will, for sufficiently large
γ > 0, concentrate on the satisfying assignments. It is then
straightforward to see that sampling from this distribution
or efficiently computing either logZθ or ∇θ logZθ (where
θ ∈ RM−1 is the parameter vector corresponding to the
polynomial −γFC(x)) would enable efficiently finding a
satisfying assignment. Details are deferred to Appendix B.

3. Statistical Efficiency of Maximum
Likelihood

The proof of Theorem 1.2 proceeds by showing that for any
θ ∈ ΘB , we can lower bound the smallest eigenvalue of the
Fisher information matrix I(θ). Concretely, we show:

Theorem 3.1. For any θ ∈ ΘB , it holds that

λmin(I(θ)) ≥ (nB)−O(d3).

As a corollary, given N samples from pθ, it holds as
N → ∞ that

√
N(θ̂MLE − θ) → N(0,ΓMLE) where

∥ΓMLE∥op ≤ (nB)O(d3). Moreover, for sufficiently large N ,

with probability at least 0.99 it holds that
∥∥∥θ̂MLE − θ

∥∥∥2
2
≤

(nB)O(d3)/N .

Once we have the bound on λmin(I(θ)), the first corol-
lary follows from standard bounds for MLE, and the sec-
ond corollary follows from Markov’s inequality (see e.g.,
Remark 4 in (Koehler et al., 2022)). Lower-bounding
λmin(I(θ)) itself requires lower-bounding the variance of
any polynomial (with respect to pθ) in terms of its coeffi-
cients. To do this, we first show that the norm of a polyno-
mial in the monomial basis is upper-bounded in terms of its
L2 norm on [−1, 1]n:

Lemma 3.2. For f ∈ R[x1, . . . , xn]≤d, we have ∥f∥2mon ≤(
n+d
d

)
(4e)d ∥f∥2L2([−1,1]n) .

The key idea behind the proof of Lemma 3.2 is to work with
the basis of (tensorized) Legendre polynomials, which is
orthonormal with respect to the L2 norm. Once we write the
polynomial with respect to this basis, the L2 norm equals the
Euclidean norm of the coefficients. Given this observation,
all that remains is to bound the coefficients after the change-
of-basis. The formal proof is in Appendix C.

Next, we show that if a polynomial f : Rn → R has small
variance with respect to p, then there is some box on which
f has small variance with respect to the uniform distribution.
This provides a way of comparing the variance of f with its
L2 norm (after an appropriate rescaling). The proof of this
is given as Lemma C.1. Putting these together, we get the
proof of Theorem 1.2 (see Appendix C).

4. Statistical Efficiency of Score Matching
The proof of Theorem 1.3 proceeds by bounding the re-
stricted Poincaré constants (Definition A.1) of distributions
in Pn,d,B . For any fixed θ ∈ ΘB , we show that CP can be
bounded in terms of the condition number of the Fisher in-
formation matrix I(θ). We describe the building blocks of
the proof below.

Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. First, we
need to upper bound Varpθ

(f). This is where (the first half
of) the condition number appears. Using the crucial fact that
the restricted Poincaré constant only considers functions f
that are linear in the sufficient statistics, and the definition of
I(θ), we get the following bound on Varpθ

(f) in terms of
the coefficient vector w. The proof is deferred to Section D.

Lemma 4.1. Fix θ, w ∈ RM−1 and define f(x) :=
⟨w, T (x)⟩. Then

∥w∥22 λmin(I(θ)) ≤ Varpθ
(f) ≤ ∥w∥22 λmax(I(θ)).

Next, we lower bound Ex∼pθ
∥∇xf(x)∥22. To do so, we

could pick an orthonormal basis and bound E⟨u,∇xf(x)⟩2
over all directions u in the basis; however, it is unclear
how to choose this basis. Instead, we pick u ∼ N (0, In)
randomly, and use the following identity:

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

For any fixed u, the function g(x) = ⟨u,∇xf(x)⟩ is also a
polynomial. If this polynomial had no constant coefficient,
we could immediately lower bound E⟨u,∇xf(x)⟩2 in terms
of the remaining coefficients, as above. Of course, it may
have a nonzero constant coefficient, but with some case-
work over the value of the constant, we can still prove the
following bound:

Lemma 4.2. Fix θ, w̃ ∈ RM−1 and c ∈ R, and define
g(x) := ⟨w̃, T (x)⟩+ c. Then

Ex∼pθ
[g(x)2] ≥

c2 + ∥w̃∥22
4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ))).

With Lemma 4.1 and Lemma 4.2 in hand (taking g(x) =
⟨u,∇xf(x)⟩ in the latter), all that remains is to relate the
squared monomial norm of ⟨u,∇xf(x)⟩ (in expectation
over u) to the squared monomial norm of f . The detailed
proof is provided in Section D.

5. Conclusion
We have provided a concrete example of an exponen-
tial family—namely, exponentials of bounded degree
polynomials—where score matching is significantly more
computationally efficient than maximum likelihood estima-
tion (through optimization with a zero- or first-order oracle),
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while still achieving the same sample efficiency up to poly-
nomial factors. While score matching was designed to be
more computationally efficient for exponential families, the
determination of statistical complexity is more challenging,
and we give the first separation between these two methods
for a general class of functions.
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A. Preliminaries
We consider the following exponential family. Fix positive integers n, d,B ∈ N where d is odd. Let h(x) =
exp(−

∑n
i=1 x

d+1
i ), and let T (x) ∈ RM−1 be the vector of monomials in x1, . . . , xn of degree at least 1 and at most d (so

that M =
(
n+d
d

)
). Define Θ ⊆ RM−1 by Θ = {θ ∈ RM−1 : ∥θ∥∞ ≤ B}. For any θ ∈ Θ define pθ : Rn → [0,∞) by

pθ(x) :=
h(x) exp(⟨θ, T (x)⟩)

Zθ

where Zθ =
∫
Rn h(x) exp(⟨θ, T (x)⟩) dx is the normalizing constant. Then we consider the family Pn,d,B := (pθ)θ∈ΘB

.
Throughout, we will assume that B ≥ 1.

Polynomial notation: Let R[x1, . . . , xn]≤d denote the space of polynomials in x1, . . . , xn of degree at most d. We can
write any such polynomial f as f(x) =

∑
|d|≤d adxd where d denotes a degree function d : [n] → N, and |d| =

∑n
i=1 d(i),

and we write xd to denote
∏n

i=1 x
d(i)
i . Note that every d with 1 ≤ |d| ≤ d corresponds to an index of T , i.e. T (x)d = xd.

Let ∥·∥mon denote the ℓ2 norm of a polynomial in the monomial basis; that is, ∥
∑

d adxd∥mon =
(∑

d a2d
)1/2

. For any
function f : Rn → R, let ∥f∥2L2([−1,1]n) = Ex∼Unif([−1,1]n)f(x)

2.

Statistical efficiency of MLE: For any θ ∈ RM−1, the Fisher information matrix of pθ with respect to the sufficient
statistics T (x) is defined as

I(θ) := Ex∼pθ
[T (x)T (x)⊤]− Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤.

It is well-known that for any exponential family with no affine dependencies among the sufficient statistics (see e.g., Theorem
4.6 in (Van der Vaart, 2000)), it holds that for any θ∗ ∈ RM−1, given N independent samples x(1), . . . , x(N) ∼ pθ∗ , the
estimator θ̂MLE = θ̂MLE(x

(1), . . . , x(N)) satisfies

√
N
(
θ̂MLE − θ∗

)
→ N (0, I(θ∗)−1).

Statistical efficiency of score matching: Our analysis of the statistical efficiency of score matching is based on a result
due to (Koehler et al., 2022). We state a requisite definition followed by the result.

Definition A.1 (Restricted Poincaré for exponential families). The restricted Poincaré constant of p ∈ Pn,d,B is the smallest
CP > 0 such that for all w ∈ RM−1, it holds that

Varp(⟨w, T (x)⟩) ≤ CPEx∼p ∥∇x⟨w, T (x)⟩∥22 .

Theorem A.2 ((Koehler et al., 2022)). Under certain regularity conditions (see Lemma D.6), for any pθ∗ with restricted
Poincaré constant CP and with λmin(I(θ∗)) > 0, given N independent samples x(1), . . . , x(N) ∼ pθ∗ , the estimator
θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗) → N (0,Γ)

where Γ satisfies

∥Γ∥op ≤
2C2

P (∥θ∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2

where (JT )(x)i = ∇xTi(x) and ∆T (x) = Tr∇2
xT (x).

B. Hardness for zero- and first-order oracles
In this section, we make the construction and proofs for the hardness results for zero- and first-order oracles. First, we
formally define the hard family of distributions we consider. Towards that, we will need several definitions.
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Definition B.1 (Clause/formula polynomials). Given a 3-clause formula of the form C = x̃i ∨ x̃j ∨ x̃k where x̃i = xi or
x̃i = ¬xi, we construct a polynomial HC ∈ R[x1, . . . , xn]≤6 defined by

HC(x) = fi(xi)
2fj(xj)

2fk(xk)
2

where

fi(t) =

{
(t+ 1) if xi is negated in C

(t− 1) otherwise
.

For example, if C = x1 ∨ x2 ∨ ¬x3, then HC = (x1 − 1)2(x2 − 1)2(x3 + 1)2. Further, given a 3-SAT formula
C = C1 ∧ · · · ∧ Cm on m clauses3, we define the polynomial

HC(x) = HC1
(x) + · · ·+HCm

(x).

It can be seen that any x ∈ H corresponds to a satisfying assignment for C if and only if HC(x) = 0. Note that there are
possibly points outside H which satisfy HC(x) = 0. To avoid these solutions, we introduce another polynomial:

Definition B.2 (Hypercube polynomial). We define G : Rn → R by G(x) =
∑n

i=1(1− x2
i )

2.

Note that G(x) ≥ 0 for all x, and the roots of G(x) are precisely the vertices of H. Therefore for any α, β > 0, the roots (in
Rn) of the polynomial FC(x) = αHC(x) + βG(x) are precisely the vertices of H that correspond to satisfying assignments
for C.

Definition B.3. Let C be a 3-CNF formula with n variables and m clauses. Let α, β > 0. Then we define a distribution
PC,α,β with density function

pC,α,β(x) :=
h(x) exp(−αHC(x)− βG(x))

ZC,α,β

where ZC,α,β =
∫
Rn h(x) exp(−αHC(x)− βG(x)) dx.

This distribution lies in the exponential family Pn,d,B , for d = 7 and B = Ω(β +mα) (Lemma B.12). Thus, if θ(C, α, β)
is the parameter vector that induces PC,α,β , then it suffices to show that (a) approximating logZθ(C,α,β), (b) approximating
∇θ logZθ(C,α,β), and (c) sampling from PC,α,β are NP-hard (under randomized reductions).

B.1. Hardness of approximating logZC,α,β

In order to prove (a), we bound the mass of PC,α,β in each orthant of Rn. In particular, we show that for α = Ω(n) and
β = Ω(m logm), any orthant corresponding to a satisfying assignment has exponentially larger contribution to ZC,α,β
than any orthant corresponding to an unsatisfying assignment. A consequence is that the partition function ZC,α,β is
exponentially larger when the formula C is satisfiable than when it isn’t (Lemma B.5). But then approximating ZC,α,β allows
distinguishing a satisfiable formula from an unsatisfiable formula, which is NP-hard. This implies the following theorem

Theorem B.4. Fix n ∈ N and let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP, there is no poly(n)-time
algorithm which takes as input an arbitrary θ ∈ ΘB and outputs an approximation of logZθ with additive error less than
n log 1.16.

Proof. First, observe that the following problem is NP-hard (under randomized reductions): given two 3-CNF formulas C, C′

each with n variables and at most 10n clauses, where it is promised that exactly one of the formulas is satisfiable, determine
which of the formulas is satisfiable. Indeed, this follows from Theorem B.11: given a 3-CNF formula C with n variables, at
most 5n clauses, and at most one satisfying assignment, consider adjoining either the clause xi or the clause ¬xi to C. If C has
a satisfying assignment v∗, then exactly one of the resulting formulas is satisfiable, and determining which one is satisfiable
identifies v∗i . Repeating this procedure for all i ∈ [n] yields an assignment v, which satisfies C if and only if C is satisfiable.

For each n ∈ N define α = 2(n+ 1) and β = 64800n log(13n
√
10n). Let B > 0 be chosen later. Suppose that there is a

poly(n)-time algorithm which, given θ ∈ ΘB , computes an approximation of logZθ with additive error less than n log 1.16.
Then given two formulas C and C′ with n variables and at most 10n clauses each, we can compute θ = θ(C, α, β) and
θ′ = θ(C′, α, β). By Lemma B.12, we have θ, θ′ ∈ ΘB so long as B ≥ Cn2 for a sufficiently large constant C. Hence

3It suffices to work with m = O(n), see Theorem B.11.
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by assumption we can compute approximations Z̃θ and Z̃θ′ of Zθ and Zθ′ respectively, with multiplicative error less than
1.16n. However, by Lemma B.5 and the assumption that exactly one of C and C′ is satisfiable, we know that Z̃θ > Z̃θ′ if
and only if C is satisfiable. Thus, NP = RP.

Lemma B.5. Fix n,m ∈ N and let α ≥ 2(n+ 1) and β ≥ 6480m log(13n
√
m). There is a constant A = A(n,m,α, β)

so that the following hold for every 3-CNF formula C with n variables and m clauses:

• If C is unsatisfiable, then ZC,α,β ≤ A

• If C is satisfiable, then ZC,α,β ≥ (2/e)nA.

Proof. If C is unsatisfiable, then by the second part of Lemma B.13, we have

Z = Z
∑
w∈H

Pr
x∼p

(x ∈ O(w)) ≤ 2ne−α

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Aunsat.

On the other hand, if C is satisfiable, then by the first part of Lemma B.13 with r = 1/
√
162m,

Z ≥ Z Pr
x∼p

(x ∈ Br(v)) ≥ e−1−α/2

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Asat.

Since α ≥ 2(n+ 1), we get
Aunsat ≤ (2/e)nAsat

as claimed.

B.2. Hardness of approximating ∇θ logZθ(C,α,β)

Note that ∇θ logZθ = Ex∼pθ
[T (x)], so in particular approximating the gradient yields an approximation to the mean

Ex∼pθ
[x]. Since PC,α,β is concentrated in orthants corresponding to satisfying assignments of C, we would intuitively

expect that if C has exactly one satisfying assignment v∗, then sign(Epθ
[x]) corresponds to this assignment. Formally, we

show that if α = Θ(n) and β = Ω(mn logm), then Ex∼pC,α,β
[v∗i xi] ≥ 1/20 for all i ∈ [n] (Lemma B.8). Since solving a

formula with a unique satisfying assignment is still NP-hard, we get the following theorem:

Theorem B.6. Fix n ∈ N and let B ≥ Cn2 log(n) for a sufficiently large constant C. Unless RP = NP, there is no
poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs an approximation of ∇θ logZθ with additive
error (in an l∞ sense) less than 1/20.

Proof. Suppose that such an algorithm exists. Set α = 4n and β = 129600n2 log(102n2
√
5). Given a 3-CNF formula C

with n variables, at most 5n clauses, and exactly one satisfying assignment v∗ ∈ H, we can compute θ = θ(C, α, β). Let E ∈
Rn be the algorithm’s estimate of ∇θ logZθ = Ex∼pC,α,β

T (x). Then
∥∥E − Ex∼pC,α,β

T (x)
∥∥
∞ < 1/20. But by Lemma B.8,

for each i ∈ [n], the i-th entry of Ex∼pC,α,β
T (x), which corresponds to the monomial xi, has sign v∗i and magnitude at least

1/20. Thus, sign(Ei) = v∗i . So we can compute v∗ in polynomial time. By Theorem B.11, it follows that NP = RP.

With the above two theorems in hand, we are ready to present the formal version of Theorem 1.1; the proof is immediate
from the definition of LMLE(θ)

Corollary B.7. Fix n,N ∈ N and let B ≥ Cn2 log n for a sufficiently large constant C. Unless RP = NP, there is no
poly(n,N)-time algorithm which takes as input an arbitrary θ ∈ ΘB , and an arbitrary sample x1, . . . , xN ∈ Rn, and
outputs an approximation of LMLE(θ) up to additive error of n log 1.16, or ∇θLMLE(θ) up to an additive error of 1/20.

Proof. Recall that log pθ(x) = log h(x) + ⟨θ, T (x)⟩ − logZθ. Therefore LMLE(θ) = Ê log h(x) + ⟨θ, ÊT (x)⟩ − logZθ

and ∇θLMLE(θ) = ÊT (x)−∇θ logZθ. Note that we can compute Ê log h(x) and ÊT (x) exactly. It follows that if we
can approximate LMLE(θ) up to an additive error of n log 1.16 , then we can compute logZθ up to an additive error of
n log 1.16. Similarly, if we can compute ∇θLMLE(θ) up to an additive error of 1/20, then we can compute ∇θ logZθ up
to an additive error of 1/20. This contradicts Theorems B.4 and B.6 respectively, completing the proof.



Provable benefits of score matching

Returning to filling in the missing lemmas, we have the following:

Lemma B.8. Let C be a 3-CNF formula with m clauses and n variables, and exactly one satisfying assignment v∗ ∈ H.
Let α = 4n and β ≥ 25920mn log(102n

√
mn), and define p := pC,α,β and Z := ZC,α,β . Then Ex∼p[v

∗
i xi] ≥ 1/20 for

all i ∈ [n].

Proof. Without loss of generality take i = 1 and v∗i = 1. Set r = 1/(
√
648mn), α = 4n, and β ≥ 40r−2 log(4n/r). We

want to show that Ex∼p[x1] ≥ 1/20. We can write

E[x1] = E[x11[x ∈ Br(v
∗)]] + E[x11[x ∈ O(v∗) \Br(v

∗)]] +
∑

v∈H\{v∗}

E[x11[x ∈ O(v)]]

≥ (1− r) Pr[x ∈ Br(v
∗)]− 2n max

v∈H\{v∗}
E[|x1|1[x ∈ O(v)]] (4)

since x1 ≥ 1− r for x ∈ Br(v
∗) and x1 ≥ 0 for x ∈ O(v∗). Now observe that on the one hand,

Pr(x ∈ Br(v
∗)) ≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x∗ − βg(x)) dx

)n

(5)

by Lemma B.13. On the other hand, for any v ∈ H \ {v∗},

E[|x1|1[x ∈ O(v)]] =
1

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

x exp(−x8 − βg(x)) dx

)(∫ ∞

0

exp(−x8 − βg(x)) dx

)n−1

≤ 2e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

(6)

where the second inequality is by Lemma B.15 with k = 1. Combining (5) and (6) with (4), we have

E[x1] ≥
(1− r)e−1−81mαr2 − 2n+1e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

∫
O(v∗)

exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

=
1

10
Pr[x ∈ O(v∗)]

≥ 1

20

where the second inequality is by choice of α and r; the third inequality is by nonnegativity of H(x); and the fourth
inequality is by Lemma B.9 and uniqueness of the satisfying assignment v∗.

B.3. Hardness of approximate sampling:

We show that for α = Ω(n) and β = Ω(m logm), the likelihood that x ∼ PC,α,β lies in an orthant corresponding
to a satisfying assignment for C is at least 1/2 (Lemma B.9). Hardness of approximate sampling follows immediately
(Theorem B.10). Hence, although we show that score matching can efficiently estimate θ∗ from samples produced by nature,
knowing θ∗ isn’t enough to efficiently generate samples from the distribution.
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Lemma B.9. Let C be a satisfiable instance of 3-SAT with m clauses and n variables. Let α, β > 0 satisfy α ≥ 2(n+ 1)
and β ≥ 6480m log(13n

√
m). Set p := pC,α,β and Z := ZC,α,β . If V ⊆ H is the set of satisfiable assignments for C, then∑

v∈V
Pr
x∼p

(x ∈ O(v)) ≥ 1

2
.

Proof. Let v ∈ H be any assignment that satisfies C, and let w ∈ H be any assignment that does not satisfy C. By
Lemma B.13 with r = 1/

√
162m, we have

Pr
x∼pC

(x ∈ O(v)) ≥ Pr
x∼pC

(x ∈ Br(v))

≥ e−1−α/2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

≥ e−1+α/2 Pr(x ∈ O(w)).

Since we chose α sufficiently large that e−1+α/2 ≥ 2n, we get that

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)).

Hence, ∑
v∈V

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)) = 1−
∑
v∈V

Pr
x∼pC

(x ∈ O(v)).

The lemma statement follows.

Theorem B.10. Let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP, there is no algorithm which takes as
input an arbitrary θ ∈ ΘB and outputs a sample from a distribution Q with TV(Pθ, Q) ≤ 1/3 in poly(n) time.

Proof. Suppose that such an algorithm exists. For each n ∈ N define α = 2(n+ 1) and β = 32400n log(13n
√
5n). Given

a 3-CNF formula C with n variables and at most 5n clauses, we can compute θ = θ(C, α, β). By Lemma B.12 we have
θ ∈ ΘB so long as B ≥ Cn2 for a sufficiently large constant C. Thus, by assumption we can generate a a sample from
a distribution Q with TV(PC,α,β , Q) ≤ 1/3. But by Lemma B.9, we have Prx∼PC,α,β

[sign(x) satisfies C] ≥ 1/2. Thus,
Prx∼Q[sign(x) satisfies C] ≥ 1/6. It follows that we can find a satisfying assignment with O(1) invocations of the sampling
algorithm in expectation. By Theorem B.11 we get NP = RP.

B.4. Technical lemmas and integral bounds

Theorem B.11 ((Valiant & Vazirani, 1985; Cook, 1971)). Suppose that there is a randomized poly(n)-time algorithm for
the following problem: given a 3-CNF formula C with n variables and at most 5n clauses, under the promise that C has at
most one satisfying assignment, determine whether C is satisfiable. Then, NP = RP.

Lemma B.12. In the setting of Definition B.3, set d := 7 and B := 64mα+ 2β. Then pC,α,β ∈ Pn,d,B .

Proof. Since αHC(x) + βG(x) is a polynomial in x1, . . . , xn of degree at most 7, there is some θ = θ(C, α, β) ∈ RM−1

such that ⟨θ, T (x)⟩+αHC(x)+βG(x) is a constant independent of x. Then h(x) exp(−αHC(x)−βG(x)) is proportional
to h(x) exp(⟨θ, T (x)⟩), so pC,α,β = pθ. Moreover, for any clause Cj , every monomial of HCj

has coefficient at most 64 in
absolute value, so every monomial of HC has coefficient at most 64m. Similarly, every monomial of G has coefficient at
most 2 in absolute value. Thus, ∥θ∥∞ ≤ 64mα+ 2β =: B, so pC,α,β ∈ Pn,d,B .

Given a point v ∈ H, let O(v) := {x ∈ Rn : xivi ≥ 0;∀i ∈ [n]} denote the octant containing v, and let Br(v) := {x ∈
Rn : ∥x− v∥∞ ≤ r} denote the ball of radius r with respect to ℓ∞ norm.

Lemma B.13. Let p := pC,α,β and Z := ZC,α,β for some 3-CNF C with m clauses and n variables, and some parameters
α, β > 0. Let r ∈ (0, 1). If β ≥ 40r−2 log(4n/r), then for any v ∈ H that is a satisfying assignment for C,

Pr
x∼p

(x ∈ Br(v)) ≥
e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.
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For any w ∈ H that is not a satisfying assignment for C,

Pr
x∼p

(x ∈ O(w)) ≤ e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

Proof. We begin by lower bounding the probability over Br(v). Pick any clause Cℓ included in C. We claim that HCℓ
(v′) ≤

81r2 for all v′ ∈ Br(v). Indeed, say that Cℓ = x̃i ∨ x̃j ∨ x̃k. Since v satisfies Cℓ, at least one of {fi(vi), fj(vj), fk(vk)}
must be zero. Without loss of generality, say that fi(vi) = 0; also observe that |fj(vj)|, |fk(vk)| ≤ 2. It follows that for any
v′ ∈ Br(v), |fi(v′i)| ≤ r and |fj(v′j)|, |fj(v′k)| ≤ 2 + r ≤ 3 (since r ≤ 1). Therefore, we have

HCℓ
(v′) ≤ r2 · (3)2 · (3)2 = 81r2.

Summing over all m possible clauses, we have HC(v
′) ≤ 81mr2 for all v′ ∈ Br(v). Hence,

Pr
x∼p

(x ∈ Br(v)) =
1

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≥ e−81mαr2

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−81mαr2

Z

(∫ 1+r

1−r

exp(−x8 − β(1− x2)2) dx

)n

≥ e−81mαr2

Z

(
1 +

1

n

)−n(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

(7)

≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

where the second inequality (7) is by Lemma B.14. Next, we upper bound the probability over O(w). Let Cℓ be any clause
in C that is not satisfied by w. Say that Cℓ = x̃i ∨ x̃j ∨ x̃k. Then |fi(wi)| = |fj(wj)| = |fk(wk)| = 2. Furthermore, for
any w′ ∈ Od(w), we have |fi(w′

i)|, |fj(w′
j)|, |fk(w′

k)| ≥ 1, and hence HCℓ
(w′) ≥ 1. Since HC′(x) ≥ 0 for all x,C ′, we

conclude that HC(w
′) ≥ HCℓ

(w′) ≥ 1 for all w′ ∈ O(w). In particular, this gives us

Pr
x∼p

(x ∈ O(w)) =
1

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

as claimed.

Lemma B.14. Fix β > 150 and γ ∈ [0, 1]. Define f : R → R by f(x) = γx8+β(1−x2)2. Pick any r ∈ (6/β, 0.04). Then∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr2/8)
+

2 exp(−βr/40)

r

)∫ 1+r

1−r

exp(−f(x)) dx.

In particular, for any m ∈ N, if β ≥ 40r−2 log(4m/r), then∫ ∞

0

exp(−f(x)) dx ≤
(
1 +

1

m

)∫ 1+r

1−r

exp(−f(x)) dx.

Proof. Set a = 1/
√
2. For any x ∈ [a,∞) we have f ′′(x) = 56γx6 − 2β + 6βx2 ≥ β > 0 for β > 150. Thus, f has

at most one critical point in [a,∞); call this point t0. Since f ′(x) = 8γx7 − 4βx(1− x2), we have f ′(1) = 8γ ≥ 0 and



Provable benefits of score matching

f ′(1− 3/β) ≤ 8− 4β(1− 3/β)(3/β)(2− 3/β) < 0. Thus, t0 ∈ (1− 3/β, 1]. Set r′ = r − 3/β ≥ r/2. Then∫ 1+r

1−r

exp(−f(x)) dx ≥
∫ t0+r′

t0−r′
exp(−f(x)) dx.

For every t ∈ R define I(t) =
∫ t+r′

t
exp(−f(x)) dx. Since f is β-strongly convex on [a,∞), we have for any t ≥ t0 that

f(t+ r′)− f(t) ≥ r′f ′(t) +
r′2

2
β ≥ r′2

2
β

where the final inequality is because f ′(t) ≥ 0 for t ∈ [t0,∞). Thus, for any t ≥ t0,

I(t+ r′) =

∫ t+2r′

t+r′
exp(−f(x)) dx =

∫ t+r

t

exp(−f(x+ r′)) dx ≤ exp(−βr′2/2)I(t).

By induction, for any k ∈ N it holds that I(t0 + kr′) ≤ exp(−βkr′2/2)I(t0), so∫ ∞

t0

exp(−f(x)) dx =

∞∑
k=0

I(t0 + kr′) ≤ I(t0)

∞∑
k=0

exp(−βkr′2/2) =
I(t0)

1− exp(−βr′2/2)
. (8)

Similarly, for any t ∈ [a+ r′, t0], we have

f(t− r′)− f(t) ≥ −r′f ′(t) +
r′2

2
β ≥ r′2

2
β

using β-strong convexity on [a,∞) and the bound f ′(t) ≤ 0 on [a, t0]. Thus, for any t ∈ [a, t0 − r′],

I(t− r′) =

∫ t

t−r′
exp(−f(x)) dx =

∫ t+r′

t

exp(−f(x− r′)) dx ≤ exp(−βr′2/2)I(t),

so by induction, I(t0 − kr′) ≤ exp(−β(k − 1)r′2/2)I(t0 − r′) for any 1 ≤ k ≤ K := ⌊(t0 − a)/r′⌋. It follows that∫ t0

t0−Kr′
exp(−f(x)) dx =

K∑
k=1

I(t0 − kr′) ≤ I(t0 − r′)

K∑
k=1

exp(−β(k − 1)r′2/2) ≤ I(t0 − r′)

1− exp(−βr′2/2)
. (9)

Finally, note that t0−(K−1)r′ ≤ a+2r′ ≤ 0.8. For any x ∈ [0, 0.8], we have f ′(x) ≤ 8x7−0.72βx = x(8x6−1.44β) ≤ 0,
since β > 150. That is, f is non-increasing on [0, t0 − (K − 1)r′]. It follows that∫ t0−Kr′

0

exp(−f(x)) dx ≤ t0 −Kr′

r′

∫ t0−(K−1)r′

t0−Kr′
exp(−f(x)) dx

≤ 1

r′
I(t0 −Kr′)

≤ exp(−β(K − 1)r′2/2)

r′
I(t0 − r′).

Since (K − 1)r′ ≥ t0 − 0.8 ≥ 1− 3
β − 0.8 ≥ 0.1, we conclude that∫ t0−Kr′

0

exp(−f(x)) dx ≤ exp(−βr′/20)

r′
I(t0 − r′). (10)

Combining (8), (9), and (10), we get∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr′2/2)
+

exp(−βr′/20)

r′

)∫ t0+r′

t0−r′
exp(−f(x)) dx.

Substituting in r′ ≥ r/2 gives the claimed result.
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Lemma B.15. Fix β ≥ 160 log(8). Then for any 1 ≤ k ≤ 8,∫ ∞

0

xk exp(−x8 − β(1− x2)2) dx ≤ 2k
∫ ∞

0

exp(−x8 − β(1− x2)2) dx.

Proof. Define a distribution q(x) ∝ exp(−x8 − β(1− x2)2) for x ∈ [0,∞). We want to show that Eq[x
k] ≤ 2k. Indeed,

Eq[exp(x
8)] =

∫∞
0

exp(−β(1− x2)2) dx∫∞
0

exp(−x8 − β(1− x2)2) dx

≤
2
∫ 3/2

1/2
exp(−β(1− x2)2) dx∫∞

0
exp(−x8 − β(1− x2)2) dx

= 2Eq[exp(x
8)1[1/2 ≤ x ≤ 3/2]]

≤ 2 exp((3/2)8)

where the first inequality is by an application of Lemma B.14 with r = 1/2 and m = 1. Now by Jensen’s inequality we get

Eq[x
8] ≤ logEq[exp(x

8)] = log(2) + (3/2)8 ≤ 28

and consequently, an application of Hölder inequality gives us Eq[x
k] ≤ 2k, for any 1 ≤ k ≤ 8.

C. Statistical Efficiency of Maximum Likelihood
First, we provide the proof of Lemma 3.2:

Proof of Lemma 3.2. We use the fact that the Legendre polynomials

Lk(x) =
1

2k

k∑
j=0

(
k

j

)2

(x− 1)k−j(x+ 1)j ,

for integers 0 ≤ k ≤ d, form an orthogonal basis for the vector space R[x]≤d with respect to L2[−1, 1] (see e.g. (Koepf,

1998)). We consider the normalized versions L̂k =
√

2k+1
2 Lk, so that

∥∥∥L̂k

∥∥∥
L2[−1,1]

= 1. By tensorization, the set of

products of Legendre polynomials

L̂d(x) =

n∏
i=1

L̂d(i)(xi),

as d ranges over degree functions with |d| ≤ d, form an orthonormal basis for R[x1, . . . , xn]≤d with respect to L2([−1, 1]n).

Using the formula for Lk, we obtain that the sum of absolute values of coefficients of Lk (in the monomial basis) is at most
1
2k

∑k
j=0

(
k
j

)2
2k = 2k. By the bound ∥·∥2 ≤ ∥·∥1 and the definition of L̂k,

∥∥∥L̂k

∥∥∥2
mon

≤ 2k + 1

2
∥Lk∥2mon ≤ 2k + 1

2
22k

and hence for any degree function d with |d| ≤ d,

∥∥∥L̂d

∥∥∥2
mon

=

n∏
i=1

∥∥∥L̂d(i)

∥∥∥2
mon

≤
n∏

i=1

2d(i) + 1

2
22d(i)

≤
n∏

i=1

ed(i)22d(i) ≤ (4e)d.
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Consider any polynomial f ∈ R[x1, . . . , xn]≤d, and write f =
∑

|d|≤d adL̂d. By orthonormality, it holds that
∑

|d|≤d a
2
d =

∥f∥2L2([−1,1]n). Thus, by the triangle inequality and Cauchy-Schwarz,

∥p∥2mon =

∥∥∥∥∥∥
∑
|d|≤d

adL̂d

∥∥∥∥∥∥
2

mon

≤
∑
|d|≤d

a2d ·
∑
|d|≤d

∥∥∥L̂d

∥∥∥2
mon

≤ ∥p∥2L2([−1,1]n)

(
n+ d

d

)
(4e)d

as claimed.

Next, we show that if a polynomial f : Rn → R has small variance with respect to p, then there is some box on which f has
small variance with respect to the uniform distribution. This provides a way of comparing the variance of f with its L2

norm (after an appropriate rescaling).

The formal version of this is the following lemma:

Lemma C.1. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any f ∈ R[x1, . . . , xn]≤d, there is
some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+ 1)MRd(n+B)) such that

Varp(f) ≥
1

2e
VarŨ (f),

where Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}.

In order to prove this result, we pick a random box of radius ϵ (within a large bounding box of radius R). In expectation, the
variance on this box (with respect to p) is not much less than Varp(f). Moreover, for sufficiently small ϵ, the density function
of p on this box has bounded fluctuations, allowing comparison of Varp(f) and VarŨ (f). This argument is formalized
below. First, we require the following fact that monomials of bounded degree are Lipschitz within a bounding box:

Lemma C.2. Fix R > 0. For any degree function d : [n] → N with |d| ≤ d, and for any u, v ∈ Rn with ∥u∥∞ , ∥v∥∞ ≤ R,
it holds that

|ud − vd| ≤ dRd−1 ∥u− v∥∞ .

Proof. Define m(x) = xd =
∏n

i=1 x
d(i)
i . Then

|m(u)−m(v)| ≤ ∥u− v∥∞ sup
x∈BR(0)

∥∇xm(x)∥1

= ∥u− v∥∞ sup
x∈BR(0)

∑
i∈[n]:d(i)>0

αi

n∏
j=1

x
d(i)−1[i=j]
i

≤ ∥u− v∥∞ · dRd−1

as claimed.

Proof of Lemma C.1. Let f ∈ R[x1, . . . , xn]≤d be a polynomial of degree at most d in x1, . . . , xn. Define g(x) = f(x)−
Ex∼pf(x). Set ϵ = 1/(2(d+1)MRd(n+B)) and let (Wi)i∈I be ℓ∞-balls of radius ϵ partitioning {x ∈ Rn : ∥x∥∞ ≤ R}.
Define random variable X ∼ p|{∥X∥∞ ≤ R} and let ι ∈ I be the random index so that X ∈ Bι. Then

Varp(f) = Ex∼p[g(x)
2]

≥ 1

2
E[g(X)2]

=
1

2
EιEX [g(X)2|X ∈ Wι]

where the inequality uses guarantee (c) of Lemma D.4 that Prx∼p[∥x∥∞ > R] ≤ 1/2.
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Thus, there exists some ι∗ ∈ I such that EX [g(X)2|X ∈ Wι∗ ] ≤ 2Varp(f). Let q : Rn → R+ be the density function of
X|X ∈ Wι∗ . Since q(x) ∝ p(x)1[x ∈ Wι∗ ], for any u, v ∈ Wι∗ we have that

q(u)

q(v)
=

p(u)

p(v)
=

h(u) exp(⟨θ, T (u)⟩)
h(v) exp(⟨θ, T (v)⟩)

= exp

(
n∑

i=1

vd+1
i − ud+1

i + ⟨θ, T (u)− T (v)⟩

)
.

Applying Lemma C.2, we get that

q(u)

q(v)
≤ exp

(
n(d+ 1)Rd ∥u− v∥∞ +MB ∥T (u)− T (v)∥∞

)
≤ exp

(
(n+B) ·M(d+ 1)Rd ∥u− v∥∞

)
≤ exp(2ϵ(n+B) ·M(d+ 1)Rd)

≤ exp(1)

by choice of ϵ. It follows that if Ũ is the uniform distribution on Wι∗ , then q(x) ≥ e−1Ũ(x) for all x ∈ Rn. Thus,

Varp(f) ≥
1

2
EX [g(X)2|X ∈ Wι∗ ] ≥

1

2e
Ex∼Ũ [g(x)

2] ≥ 1

2e
VarŨ (g) =

1

2e
VarŨ (f)

as desired.

Together, Lemma 3.2 and C.1 allow us to lower bound the variance Varp(f) in terms of ∥f∥mon.
Lemma C.3. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any f ∈ R[x1, . . . , xn]≤d with
f(0) = 0, it holds that

Varp(f) ≥
1

22d(d+ 1)2d(4e)d+1M2d+3R2d2+2d(n+B)2d
∥f∥2mon .

Proof. By Lemma C.1, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+ 1)MRd(n+B)) so that if Ũ is the
uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}, then

Varp(f) ≥
1

2e
VarŨ (f).

Define g : Rn → R by g(x) = f(ϵx+ z)− EŨf . Then by Lemma 3.2,

∥g∥2mon ≤ (4e)dMEx∼Unif([−1,1]n)g(x)
2.

= (4e)dM VarŨ (f)

≤ (4e)d+1M Varp(f).

Write f(x) =
∑

1≤|d|≤d αdxd and g(x) =
∑

1≤|d|≤d βdxd. We know that f(x) = g(ϵ−1(x− z)) + EŨf . Thus, for any
nonzero degree function d, we have

αd =
∑
d′≥d
|d′|≤d

ϵ−|d′|(−z)d
′−dβd′ .

Thus |αd| ≤ ϵ−dRd ∥β∥1 ≤ ϵ−dRd
√
M ∥g∥mon, and so summing over monomials gives

∥f∥2mon ≤ M2ϵ−2dR2d ∥g∥2mon ≤ (4e)d+1M3ϵ−2dR2d Varp(f).

Substituting in the choice of ϵ from Lemma C.1 completes the proof.

We are now ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix θ ∈ ΘB . Pick any w ∈ RM and define f(x) = ⟨w, T (x)⟩. By definition of I(θ), we have
Varpθ

(f) = w⊤I(θ)w. Moreover, ∥f∥2mon = ∥w∥22. Thus, Lemma C.3 gives us that w⊤I(θ)w ≥ (nB)−O(d3) ∥w∥22, using
that R = 2d+3nBM and M =

(
n+d
d

)
. The bound λmin(I(θ)) ≥ (nB)−O(d3) follows.
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D. Statistical Efficiency of Score Matching
First, we provide the proof of Lemma 4.1

Proof. We have

Varpθ
(f) = Ex∼pθ

[f(x)2]− Ex∼pθ
[f(x)]2

= w⊤Ex∼pθ
[T (x)T (x)⊤]w − w⊤Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤w

= w⊤I(θ)w,

and since
∥w∥22 λmin(I(θ)) ≤ w⊤I(θ)w ≤ ∥w∥22 λmax(I(θ),

the lemma statement follows.

We also provide the proof of Lemma 4.2:

Proof. We have

Ex∼pθ
[g(x)2] = Varpθ

(g) + Ex∼pθ
[g(x)]2

= Varpθ
(g − c) + (c+ w̃⊤Ex∼pθ

[T (x)])2

≥ ∥w̃∥22 λmin(I(θ)) + (c+ w̃⊤Ex∼pθ
[T (x)])2

where the inequality is by Lemma 4.1. We now distinguish two cases.

Case I. Suppose that |c+ w̃⊤Ex∼pθ
[T (x)]| ≥ c/2. Then

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) +

c2

4
≥

c2 + ∥w̃∥22
4

min(1, λmin(I(θ))).

Case II. Otherwise, we have |c+ w̃⊤Ex∼pθ
[T (x)]| < c/2. By the triangle inequality, it follows that |w̃⊤Ex∼pθ

[T (x)]| ≥
c/2, so ∥w̃∥2 ≥ c/(2 ∥Ex∼pθ

[T (x)]∥2). Therefore

c2 + ∥w̃∥22 ≤ (1 + 4 ∥Ex∼pθ
[T (x)]∥22) ∥w̃∥

2
2 ,

from which we get that

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) ≥

c2 + ∥w̃∥22
1 + 4 ∥Ex∼pθ

[T (x)]∥22
λmin(I(θ))

as claimed.

With Lemma 4.1 and Lemma 4.2 in hand (taking g(x) = ⟨u,∇xf(x)⟩ in the latter), all that remains is to relate the squared
monomial norm of ⟨u,∇xf(x)⟩ (in expectation over u) to the squared monomial norm of f . This crucially uses the choice
u ∼ N(0, In). We put together the pieces in the following lemma.

Lemma D.1. Fix θ, w ∈ RM−1. Define f(x) := ⟨w, T (x)⟩. Then

Varpθ
(f) ≤ (4 + 4 ∥Ex∼pθ

[T (x)]∥22)
λmax(I(θ))

min(1, λmin(I(θ)))
Ex∼pθ

[∥∇xf(x)∥22].

Proof. Since f(x) =
∑

1≤|d|≤d wdxd, we have for any u ∈ Rn that

⟨u,∇xf(x)⟩ =
n∑

i=1

ui

∑
0≤|d|<d

(1 + d(i))wd+{i}xd = c(u) +
∑

1≤|d|<d

w̃(u)dxd
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where c(u) :=
∑n

i=1 uiw{i} and w̃(u)d :=
∑n

i=1 ui(1 + d(i))wd+{i}. But now

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

= Eu∼N(0,In)Ex∼pθ
(c(u) + ⟨w̃(u), T (x)⟩)2

≥ Eu∼N(0,In)
c(u)2 + ∥w̃(u)∥22

4 + 4 ∥Ex∼pθ
[T (x)]∥22

min(1, λmin(I(θ))).

where the last inequality is by Lemma 4.2. Finally,

Eu∼N(0,In)

[
c(u)2 + ∥w̃(u)∥22

]
=

∑
0≤|d|<d

Eu∼N(0,In)

( n∑
i=1

ui(1 + d(i))wd+{i}

)2


=
∑

0≤|d|<d

n∑
i=1

(1 + d(i))2w2
d+{i} ≥ ∥w∥22

where the second equality is because E[uiuj ] = 1[i = j] for all i, j ∈ [n], and the last inequality is because every term w2
d

in ∥w∥22 appears in at least one of the terms of the previous summation (and has coefficient at least one). Putting everything
together gives

Ex∼pθ
[∥∇xf(x)∥22] ≥

∥w∥22
4 + 4 ∥Ex∼pθ

[T (x)]∥22
min(1, λmin(I(θ)))

≥ 1

4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ)))
λmax(I(θ))

Varpθ
(f)

where the last inequality is by Lemma 4.1.

Finally, putting together Lemma D.1, Theorem 3.1, that lower bounds λmin(I(θ)), and Corollary D.4, that upper bounds
λmax(I(θ)) (a straightforward consequence of the distributions in Pn,d,B having bounded moments), we can prove the
following formal version of Theorem 1.3:

Theorem D.2. Fix n, d,B,N ∈ N. Pick any θ∗ ∈ ΘB and let x(1), . . . , x(N) ∼ pθ∗ be independent samples. Then as
N → ∞, the score matching estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗) → N(0,Γ)

where ∥Γ∥op ≤ (nB)O(d3). As a corollary, for all sufficiently large N it holds with probability at least 0.99 that∥∥∥θ̂SM − θ∗
∥∥∥2
2
≤ (nB)O(d3)/N .

Proof. We apply Theorem A.2. By Lemma D.6 and the fact that λmin(I(θ
∗)) > 0 (Theorem 3.1), the necessary regularity

conditions are satisfied so that the score matching estimator is consistent and asymptotically normal, with asymptotic
covariance Γ satisfying

∥Γ∥op ≤
2C2

P (∥θ∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2
(11)

where CP is the restricted Poincaré constant for pθ∗ with respect to linear functions in T (x) (see Definition A.1). By
Lemma D.1, we have

CP ≤ (4 + 4 ∥Ex∼pθ
[T (x)]∥22)

λmax(I(θ∗))
min(1, λmin(I(θ∗))

≤ (4 + 4B2dM2d+222d(d+1)+1)
B2dM2d+122d(d+1)+1

(nB)−O(d3)
≤ (nB)O(d3)
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using parts (a) and (b) of Corollary D.4; Theorem 3.1; and the fact that M =
(
n+d
d

)
. Substituting into (11) and bounding

the remaining terms using Lemma D.5 and a second application of Theorem 3.1, we conclude that ∥Γ∥op ≤ (nB)O(d3) as
claimed. The high-probability bound now follows from Markov’s inequality; see Remark 4 in (Koehler et al., 2022) for
details.

D.1. Technical lemmas: moment and eigenvalue bounds

Lemma D.3 (Moment bound). For any θ ∈ ΘB , i ∈ [n], and ℓ ∈ N it holds that

Ex∼pθ
xℓ
i ≤ max(2ℓℓ, BℓM ℓ2ℓ(d+1)+1).

Proof. Without loss of generality assume i = 1. Let L0 := max(ℓ, BM2d+1). Then

Ex∼pθ
xℓ
1 ≤ Lℓ

0 + Ex∼pθ
xℓ
11[∥x∥∞ > L0]

= Lℓ
0 +

∞∑
k=0

Ex∼pθ

[
xℓ
11[2

kL0 < ∥x∥∞ ≤ 2k+1L0]
]

Now for any L ≥ L0,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
=

1

Zθ

∫
B2L(0)\BL(0)

xℓ
1 exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≤ (2L)n

Zθ
(2L)ℓ exp

(
−Ld+1 +BM(2L)d

)
≤ (2L)n+ℓ exp(−Ld+1/2)

Zθ
.

We can lower bound Zθ as

Zθ ≥
∫
B1/(BM)(0)

exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≥ (BM)−n exp(−n(BM)−d−1 −BM(BM)−d)

≥ e−2(BM)−n.

Thus,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
≤ exp

(
(n+ ℓ) log(2L)− 1

2
Ld+1 + 2 + n log(BM)

)
≤ exp

(
−1

4
Ld+1

)
since L was assumed to be sufficiently large (recall that we assume B ≥ 1). We conclude that

Ex∼pθ
xℓ
1 ≤ Lℓ

0 +

∞∑
k=0

exp

(
−1

4
2k(d+1)Ld+1

0

)
≤ Lℓ

0 + 1 ≤ 2Lℓ
0

which completes the proof.

Corollary D.4 (Largest eigenvalue bound). For any θ ∈ ΘB , it holds that

Ex∼pθ
T (x)T (x)⊤ ⪯ B2dM2d+122d(d+1)+1.

We also have the following consequences:
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(a) ∥Ex∼pθ
T (x)∥22 ≤ B2dM2d+222d(d+1)+1,

(b) λmax(I(θ)) ≤ B2dM2d+122d(d+1)+1,

(c) Prx∼pθ
[∥x∥∞ > 2d+3nBM ] ≤ 1/2.

Proof. Fix any u, v ∈ [M ]. Then T (x)uT (x)v =
∏n

i=1 x
γi

i for some nonnegative integers γ1, . . . , γn where d′ :=∑n
i=1 γi ≤ 2d. Therefore

Ex∼pθ
T (x)uT (x)v = Ex∼pθ

n∏
i=1

xγi

i ≤
n∏

i=1

(
Ex∼pθ

xd′

i

)γi/d
′

≤ B2dM2d22d(d+1)+1

by Holder’s inequality and Lemma D.3 (with ℓ = 2d). The claimed spectral bound follows. To prove (a), observe that

∥Ex∼pθ
T (x)∥22 ≤ Ex∼pθ

∥T (x)∥22 = TrEx∼pθ
T (x)T (x)⊤ ≤ Mλmax(Ex∼pθ

T (x)T (x)⊤)

To prove (b), observe that I(θ) ⪯ Ex∼pθ
T (x)T (x)⊤. To prove (c), observe that for any i ∈ [n],

Pr
x∼pθ

[|xi| > 2d+3nBM ] ≤ Ex∼pθ
x2d
i

(2d+3nBM)2d
≤ 1

2n
.

A union bound over i ∈ [n] completes the proof.

Lemma D.5 (Smoothness bounds). For every θ ∈ ΘB , it holds that

Ex∼pθ
∥∆T (x)∥22 :=

M∑
j=1

Ex∼pθ
(∆Tj(x))

2 ≤ d4B2dM2d+122d(d+1)+1

and
Ex∼pθ

∥(JT )(x)∥2op ≤ nd2B2dM2d+122d(d+1)+1.

Proof. Fix any j ∈ [M ]; then there is a degree function d with 1 ≤ |d| ≤ d so that Tj(x) = xd =
∏n

i=1 x
d(i)
i . Therefore

∆Tj(x) =
∑

k∈[n]:d(k)≥2

d(k)(d(k)− 1)xd−2{k} =: ⟨w, T (x)⟩

for some w ∈ RM with ∥w∥22 =
∑

k∈[n]:d(k)≥2 d(k)
2(d(k)− 1)2 ≤ d4. By Corollary D.4, we conclude that

Ex∼pθ
(∆Tj(x))

2 = Ex∼pθ
⟨w, T (x)⟩2 ≤ n2d4B4dM4d+224d(d+2)+1.

Summing over j ∈ [M ] gives the first claimed bound. For the second bound, observe that

Ex∼pθ
∥(JT )(x)∥4op ≤ Ex∼pθ

∥(JT )(x)∥4F = Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

.

For any j ∈ [M ] and i ∈ [n], there is some degree function d with |d| ≤ d and ∂
∂xi

Tj(x) = |d| · xd−{i}. Thus, by Holder’s
inequality and Lemma D.3 (with ℓ = 4d), we get

Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

=
∑

j,j′∈[M ]

∑
i,i′∈[n]

Ex∼pθ

(
∂

∂xi
Tj(x)

)2(
∂

∂xi′
Tj′(x)

)2

≤ M2n2d4B4dM4d24d(d+2)+1

which proves the second bound.
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The following regularity conditions are sufficient for consistency and asymptotic normality of score matching, assuming that
the Restricted Poincaré constant is finite and λmin(I(θ∗)) > 0 (see Proposition 2 in (Forbes & Lauritzen, 2015) together
with Lemma 1 in (Koehler et al., 2022)). We show that these conditions hold for our chosen exponential family.

Lemma D.6 (Regularity conditions). For any θ ∈ RM , the quantities Ex∼pθ
∥∇h(x)∥42, Ex∼pθ

∥∆T (x)∥22, and
Ex∼pθ

∥(JT )(x)∥4op are all finite. Moreover, pθ(x) → 0 and ∥∇xpθ(x)∥2 → 0 as ∥x∥2 → ∞.

Proof. Both of the quantities ∥∇h(x)∥42 and ∥∆T (x)∥22 can be written as a polynomial in x. Finiteness of the expectation un-
der pθ follows from Holder’s inequality and Lemma D.3 (with parameter B set to ∥θ∥∞). Finiteness of Ex∼pθ

∥(JT )(x)∥4op
is shown in Lemma D.5 (again, with B := ∥θ∥∞). The decay condition pθ(x) → 0 holds because log pθ(x) + logZθ =

−
∑n

i=1 x
d+1
i + ⟨θ, T (x)⟩. For x ∈ Rn with L ≤ ∥x∥∞ ≤ 2L, the RHS is at most −Ld+1 +M ∥θ∥∞ (2L)d, which goes

to −∞ as L → ∞. A similar bound shows that ∥∇xpθ(x)∥2 → 0.


