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ABSTRACT

Despite the impressive success on many tasks, deep learning models are shown to
rely on spurious features, which will catastrophically fail when generalized to out-
of-distribution (OOD) data. To alleviate this issue, Invariant Risk Minimization
(IRM) is proposed to extract domain-invariant features for OOD generalization.
Nevertheless, recent work shows that IRM is only effective for a certain type of
distribution shift (e.g., correlation shift) while fails for other cases (e.g., diver-
sity shift). Meanwhile, another thread of method, Adversarial Training (AT), has
shown better domain transfer performance, suggesting that it is potential to be
an effective candidate for extracting domain-invariant features. In this paper, we
investigate this possibility by exploring the similarity between the IRM and AT ob-
jectives. Inspired by this connection, we propose Domain-wise Adversarial Train-
ing (DAT), an AT-inspired method for alleviating distribution shift by domain-
specific perturbations. Extensive experiments show that our proposed DAT can
effectively remove the domain-varying features and improve OOD generalization
under both correlation shift and diversity shift.

1 INTRODUCTION

Modern deep learning techniques have achieved remarkable success on many tasks (He et al., 2016
Brown et al., 2020). Yet, under some scenarios, deep models will suffer a catastrophic performance
degradation since they tend to seize on spurious correlations in the training data (Beery et al.,[2018).
One of those representative scenarios is the Out-of-Distribution (OOD) generalization, where one
expects the trained model to perform well at the test time even when the training and testing data
come from different distribution Another representative scenario under which deep models are
unstable is the adversarial example. Researchers have found that deep models are quite brittle since
one can inject imperceptible perturbations into the input and cause the model to make wrong pre-
dictions with extremely high confidence (Szegedy et al., 2014).

These two issues have some similarities to each other. They both arise because deep networks do
not learn the essential causal associations (or intrinsic features). Nevertheless, in their corresponding
fields, different approaches have been proposed. For OOD generalization, a large class of methods
called Invariant Causal Prediction (ICP) (Peters et al., [2016)) are proposed. Among them, Invariant
Risk Minimization (IRM) (Arjovsky et al.,[2019) attracts significant attention, which intends to ex-
tract features that are invariant across different data distributions and expects the model to ignore
information related to the environment. While for adversarial robustness against adversarial exam-
ples, Adversarial Training (AT) (Madry et al., 2018)) is the most effective approach at the current
stage (Athalye et al., 2018). It trains a model on adversarial examples that are generated by in-
jecting perturbations optimized for each image into natural examples. These two fields seem to be
independent, and their connections are rarely studied. That is exactly what we are exploring in this

paper.

Although IRM and its variants have shown promise on certain tasks, e.g., CMNIST (Arjovsky et al.,
2019), recent studies (Gulrajani & Lopez-Paz, [2021) show that on a large-scale controlled experi-
ment on OOD generalization, all these methods fail to exceed the simplest i.i.d. baseline, i.e., Em-
pirical Risk Minimization (ERM). Through a dissection of the benchmark datasets, Ye et al.|(2021)

'In current literature, the terminologies of “domain”, “environment” and “distribution” are often used inter-
changeably, so we do the same in the whole paper.
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notice that there are actually two types of distribution shifts: correlation shift (same support, dif-
ferent correlation) and diversity shift (different support, same correlation). IRM variants can only
perform well under (some) correlation shift while performing poorly under diversity shift. Thus, we
need to seek better alternatives for OOD generalization, while AT seems to be a promising candidate
from both theoretical and empirical aspects. Theoretically, by learning invariance w.rt. local input
perturbations, AT can be regarded as Distributionally Robust Optimization (DRO) (Sinha et al.|
2018} Volpi et al.,[2018; Rahimian & Mehrotra), 2019; Duchi et al.,[2021) over £,-bounded distribu-
tional shift. Thus, AT could reliably extract robust features, e.g., the object shape, from the input.
Empirically, several recent works show that AT has better domain transferability than ERM (Salman
et al.| 2020). These findings naturally leads to the questions:

Will AT perform better than IRM ? Will AT be helpful for OOD generalization?

In this paper, we take a further step to answering these intriguing questions. We first reveal the
connections between IRM and AT, and find that IRM can be regarded as an instance-reweighted
version of Domain-wise Adversarial Training (DAT), a new version of adversarial training that we
propose for generalizing Universal Adversarial Training (Moosavi-Dezfooli et al.,|2017) to multiple
domains. Inspired by this connection, we further explore how DAT performs for OOD data. We first
notice that DAT is suitable for solving domain generalization problems as it can effectively remove
the relatively static background information with domain-wise perturbations. We further verify this
intuition on both synthetic tasks (Xiao et al., 2021)) and real-world datasets, where we show clear
advantages over ERM. At last, we conduct extensive experiments on benchmark datasets and show
our DAT can outperform ERM consistently on tasks dominated by both correlation shift and diversity
shift, and as a result, achieve state-of-the-art performance (in average) on these datasets.

We summarize our contributions as follows:

* We develop a new kind of adversarial training, Domain-wise Adversarial Training (DAT),
for domain generalization, and we establish the intrinsic similarity between IRM and
domain-wise AT objectives.

* We analyze how DAT will benefit learning invariant features and verify our hypothesis
through both synthetic data and real-world datasets.

» Extensive experiments on benchmark datasets show that DAT does not only perform better
than ERM under correlation shift like IRM but also outperforms ERM under diversity shift
like (sample-wise) AT. Therefore, our methods achieve state-of-the-art results by surpass-
ing ERM at both kinds of distribution shifts.

2 RELATED WORKS

IRM and Its Variants Invariant Risk Minimization (IRM) (Arjovsky et al.| (2019)) develops a
paradigm to extract causal (invariant) features and find the optimal invariant classifier on top over
several given training environments. The work of [Kamath et al.|(2021) reveals the gap between IRM
and IRMvl1, show that even in a simple model that echos the idea of the original IRM objective,
IRMvl1 can fail catastrophically. Rosenfeld et al.| (2021) prove that when the number of training
environments is not large enough, IRM can face the risk of using environmental features. There also
exists a predictor feasible for IRMv1 that is very similar to the ERM solution.

AT and Its Variants [Szegedy et al.|(2014) report one can inject imperceptible perturbations to fool
deep models. |Athalye et al.|(2018)) reveal that among the proposed defenses, adversarial training was
the only effective one. Adversarial Training (AT) (Goodfellow et al., 2014; Madry et al., 2018) is
the representative approach to train robust models. Recently, [Kamath et al.| (2021) show adversari-
ally learned features can transfer better than standardly trained models, while various works (Volpi
et al.l 2018} |Sinha et al., 2018}; [Ford et al., [2019; |Q1a0 et al.L [2020; |Y1 et al.| 2021} |Gokhale et al.,
2021)) adopt sample-wise adversarial training or adversarial data augmentation to improve OOD ro-
bustness. However, most of the discussions are limited to distributional robustness w.r.z. Wasserstein
distance, making it less practical for accounting real-world OOD scenarios as discussed in this work.

Evaluating OOD Robustness |Gulrajani & Lopez-Paz (2021) recently noticed that the evalu-
ation criteria are crucial for fair comparison of OOD robustness, where under fair settings, no



Under review as a conference paper at ICLR 2022

algorithm has performed consistently better than vanilla ERM. [Ye et al.| (2021) further iden-
tifies two kinds of distribution shifts in current benchmark datasets: diversity shift and cor-
relation shift. Diversity shift refers to the shift of the distribution support of spurious fea-
ture z, while correlation shift refers to the change of conditional probability of label y given
spurious feature z on the same support. We present an illustrative example in Figure
In particular, they show that there seems to be a trade-

off between the two tasks as an algorithm that performs ()

Domain 1
well at one task tends to perform poorly on the other. ] Domain 2
. . l
Instead, in this work, we show that our DAT can |
achieve superior performance on both correlation shift I
and diversity shift tasks.
Universal Adversarial Training Universal adver- — ——z py=0ln pH=1l2)

sarial perturbation proposed by [Moosavi-Dezfooli (a) (b)

et al. (2017) is a type of adversarial attack that adoptsa . .

universal perturbation for all images. Universal adver- 18Ure 1: An illustrative example of the
sarial training (UAT) (Shafahi et al}, 2020) is then pro- WO kinds of distribution shifts. (a) Di-
posed to defend against this attack by training against Versity shift (b) Correlation shift. = stands
universally perturbed data. Instead, in our work, we for spurious feature, and y stands for label
firstly show that we can adapt UAT for solving domain ~ €1a5s-

generalization problems.

3 ON THE RELATIONSHIP BETWEEN IRM AND AT

3.1 PRELIMINARY

Notation Let® : X C R® — R denotes the representation of a #-parameterized piecewise linear
classifier, i.e., ®(-) = oL (WEpE=1(...) + bL=1) + bl, where ¢* is the activation function, and
WL, b" denote the layer-wise weight matrix and bias vector, collectively denoted by #. Additionally,
let 3 be the linear classifier on top, and the output of the network is 3 - ®(z) = B ®(x). Let
£(y,y) = —logo(yy) be the sample logistic loss. We consider a two-class (y = £1) classification
setting with output dimension d = 1, and our discussion can be easily extended to the general cases.

ERM The traditional Empirical Risk Minimization (ERM) algorithm optimizes over the loss on
i.i.d. data, i.e.,

In OOD generalization problem, one faces a set of (training) environments £, where each environ-
ment e € & corresponds to a unique data distribution D.. When facing multiple environments, the
ERM objective simply mixes the data together and takes the form

(ERM) min 3 RY(3 - ®), where R*(8 - ®) = Ey.y)~p, L5 @(x), 1), @)

IRM and IRMvl Instead of simply mixing the data together, IRM seeks to learn an invariant
representation ® such that it can be minimizing with the same classifier 5. Formally we have
. (3.
mind_ R(8- @)
(IRM) e€f B 3)
s.t. 8 € argmin R°(5 - ®),Ve € £.
B

Since this bi-level optimization problem is difficult to solve, the practical version IRMv1 as regular-
ized ERM, where the gradient penalty is calculated w.xt. a dummy variable w:

. . ) )
(IRMv1) Ha 2 [R(B@) + A+ [[Vauju—r.oR (w - (8- )] ]. @

Penaltyrrm
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AT Adversarial Training (Madry et al.|[2018)) instead replaces ERM with a minimax objective,

AT in RAT(8-®) = minE, , 0BT D(x + 0,),y), 5
(AT) min (B-@) WinBey)~p WX (B @z )>Y) (5)

where one maximizes the inner loss by injecting sample-wise perturbations J, and solve the outer
minimization w.r.t. parameters 3, ® on the perturbed sample (z + d,, y). Typically, the perturbation
is constrained within an ¢, ball with radius . In this way, AT can learn models that are robust to £,
perturbations.

UAT Instead of injecting sample-wise perturbations, Moosavi-Dezfooli et al.|(2017) notice that we
can also adopt a universal perturbation § for all samples, which results in the Unversarial Adversarial
Training (UAT) objective as follows:

. UAT : T
(UAT) I;;{glR (B~<1>)=ré{gl||gﬁl‘§>§<sE(z,y)~Def(ﬁ O(z +9),y), (6)

3.2 RELATING ADVERSARIAL TRAINING TO IRM

Motivation As shown above, it seems that IRM and AT are two distinct learning paradigms, while
in fact, we can show that IRM is closely related to a certain kind of adversarial training. To see this,
we first notice that AT can be rephrased into a regularized ERM loss with a penalty on sample-wise
robustness through linearization:

RAT(B-®) = E(yy)~p Hglﬁgj(@ﬂﬂf +68.),9)

=Ey~p (BT 0(x),y) + max (L(BT®(z + 6,),y) — £(BT ®(2),y)) ] -

Penalty aT

)

which resembles the gradient penalty adopted in IRMv1. One main difference is that AT’s penalty
is calculated w.r.t. sample-wise gradients, while IRM’s penalty w.r.t. the population loss. This dif-
ference motivates us to adopt a population-level perturbation ¢ instead, which, in the literature of
adversarial learning, corresponds to Universal AT (Eq.[6) that could be rephrased as follows:

RUAT(B : q)) = HI?HELXEE(LQL/)NDE(ET(D(‘T =+ 5)3 y)

Penaltyuar

DAT Inspired by the connection above between UAT with IRM, we adapt UAT to the OOD set-
ting with multiple domains and propose Domain-wise Adversarial Training (DAT), which adopts a
domain-wise perturbation d. for each training domain e € £. Formally, we have

min ZE(r»y%De[ (B ®(x+4c)).y)
T eeg

9
s.t. 6, € arg maXE(x’y)Nch(ﬁTq>($ +9),y),Ve € €.
Io]I<e

The objective could be interpreted as the loss function of universal training in a domain-wise fash-
ion, which lead to solving for the perturbation vector individually for each domain. We name this
method as Domain-wise Adversarial Training (DAT), a generalization of UAT for learning invari-
ance from multiple domains. In practice, we solve the problem above with alternating update of
model parameters /3, ® and perturbations d.. Specifically, for each mini-batch B, sampled from do-
main D, we update . with B, using gradient ascent to find the best adversarial perturbations. Then
the adversarial samples are used to train the model. A detailed description is shown in Algorithm [I]
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Algorithm 1 Domain-wise Adversarial Training

Input: Dataset of multiple environments D, e € &£, desired [, norm of the perturbation €, pertur-
bation step size a
Output: Model (P, 3)
Randomly initiate 6, perturbation d., Ve € £
for iterations = 1,2, 3,... do
for each environment e do
1. Sample batch B, from environment e
2. Update the perturbation . using one-step gradient ascent with step size «
3. Project the perturbation J. to the £, ball of radius €
4. Generate adversarial examples x4, < = + d¢, Vo € B;
5. Update ® and 3 with gradient descent (Adam) on 44,
end for
end for

3.3 CONNECTION BETWEEN IRM AND DAT

Here, we establish a formal connection between IRM and DAT. To begin with, we note that DAT
can also be reformulated as a regularized ERM in the multi-domain scenario.

RPAT(8. ®) = max E(z.y)~p (BT ®(x + 6e), y)
cg 10ell=2
= Z (z,y)~De 14 BT(I)( ) )+ Hgnﬁ)é E(:c y)~D. ( (BTCI)(J; +66)?y) - E(ﬁT(I)(,T)’y))]
ecé&
~ Y [R(B-®) +¢||VaEoynn LB 2(x).y)]|]-
ees Penaltypar

(10)

Based on this reformulation, we can show that there exists an intrinsic relationship between DAT
and IRM as in the following proposition:

Proposition 1 Consider each D. as the corresponding distribution of a particular training do-
main e. For any B - ® as a deep network with any activation function, the penalty term of IRMvl,
Penaltyirm (Eq. d)), could be expressed as the square of a reweighted version of the penalty term of
the above approximate target, Penaltypar(Eq. [I0), on each environment e with coefficients related
to the distribution D., which could be stated as follows:

Penaltyma = |Ep, [Loa]|”, and Penaltypar = [Ep, Ls| (1D
where L, = (1 — o(yB' ®,2))y3' @,.
The proposition above shows that IRM can be regarded as an instance-reweighted version of DAT,

which indicates that DAT can also be applied to improve out-of-distribution generalization perfor-
mance. We explore this possibility in the next section.

Besides, assume that each domain only contains one sample, we can further obtain a stronger result,
that is, the equivalence between IRM and (linearized) DAT as follows.

Remark 1 (Equivalence under Single-sample Environments) When the environments degener-
ate into a single data point, we have the following relationship: If € is sufficiently small, then for
B - @ as a deep network with any activation function, the penalty term of IRMvI (Eq. H)) on each
sample and the square of the maximization term of Linearized version of Eq.[9)(LDAT, obtained by
first-order approximation of DAT)

Penaltyppar = <VI€ (ﬂTé(x),y) ,:tgm> (12)

on each sample with perturbation by = tex only differ by a fixed multiple €. Which is formally
stated as

Penalty? pap = €2 - Penaltyiru. (13)
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cat on grass cat on snow dog on beach elephant in forest

Figure 2: Images in different domains from NICO dataset and corresponding attention heatmaps of
a model trained by ERM. The model has a strong focus on background information.

Proofs of Proposition [I]and Remark [T] can be found in Appendix [C}

4 UNDERSTANDING DOMAIN-WISE ADVERSARIAL TRAINING

The above connection between DAT and IRM highlights that our DAT is potentially helpful for
addressing OOD problems. In this section, we further explore how domain-wise perturbations could
help alleviate distribution shift in real-world scenarios. In particular, we notice that the domain-wise
perturbations could successfully remove the domain-varying background information, which usually
corresponds to the spurious features for image classification tasks. And we empirically verify this
property by applying DAT to a well-designed OOD task based on background shift.

4.1 COMPARING ERM TO DAT FOR BACKGROUND REMOVAL

ERM Learns Spurious Background Features Our understanding of DAT hinges on the insight
that an image is composed of a foreground object and the corresponding background, and typically,
the object is the invariant feature while the background is only spuriously correlated with the labels.
However, models relying on the spurious background information will easily fail when encountering
images from a different domain. This phenomenon is also empirically verified by Xiao et al.| (2021),
who find that models trained on an ImageNet-like dataset with ERM require image backgrounds for
correctly classifying large portions of test sets. These findings point out the limitations of ERM and
motivate us to find a solution that could effectively learn background-invariant classifier.

Removing Background Information with DAT Comparing to the failure of ERM above, we
notice that Domain-wise Adversarial Training (DAT) can be applied to eliminate the domain-wise
background information with its domain-specific perturbations.

Take the NICO images in Figure 2] for an example, where samples from the environment “on grass”
have a common background dominated by the green grass with low frequency, while the foreground
object (e.g., the cats) has complex and instance-specific shape and texture with much higher fre-
quency. In fact, Moosavi-Dezfooli et al.| (2017) show that a universal perturbation vector lies in a
low dimensional subspace, which fits the background statistics and could be used to eliminate the
low-frequency background factor. Therefore, when applying our DAT to these samples, the domain-
wise perturbation will capture the common domain-specific background. And consequently, the
domain-wise AT will help remove the dependence on these spurious background features.

4.2 EMPIRICAL VERIFICATION WITH CONTROLLED EXPERIMENTS

To verify the above analysis, we construct a synthetic OOD task to evaluate a classifier’s depen-
dence on background information. It is based on two datasets introduced by (2021),
Mixed-Same and Mixed-Rand, which are constructed from a subset of ImageNet images with the
background of each image replaced by another background that is either from the same class (Mixed-
Same) or a random class (Mixed-Rand). As they are perfect candidates for evaluating a classifier
in terms of its background dependence, we construct a new OOD task by using Mixed-Same as the
training domain and evaluating the learned classifier on Mixed-Rand as the test domain. If the clas-



Under review as a conference paper at ICLR 2022

Original

ERM

DAT

Mixed-Same Mixed-Rand

Figure 3: Images from Mixed-Same and Mixed-Rand and corresponding attention heatmaps of ERM
and DAT, DAT effectively fixed the problem of excessive attention on uncorrelated background
information.

sifier relies too much on background information, it will perform poorly in the test domain where
objects and backgrounds are disentangled. In particular, experiment results show that ERM achieves
a test accuracy of 71.9%, while DAT achieved 72.6% on the test domain with random background,
which means that DAT has better generalization ability by effectively removing background infor-
mation. Sample images from the dataset and corresponding attention heatmaps are shown in Figure
[l which demonstrate that ERM may lose its focus when background correlation is broken while
DAT doesn’t. Details for the experiment are shown in Appendix [AT]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

For the experiments, we follow the setting in and evaluate OOD generalization on
both the two types of distribution shift, diversity shift and correlation shift. In particular, we select
four representative tasks. For correlation shift, we use CMNIST (Arjovsky et al, 2019), a synthetic
dataset on digit classification which has color as the spurious feature, and NICO (He et al.} , a
real-world dataset on object classification with context as the spurious feature. As for diversity shift,
we use PACS and Terra Incognita (Beery et al., [2018), which are both real-world
datasets with four domains. To ensure fair evaluation, we conduct all our experiments following the
evaluation pipeline of DomainBed (Gulrajani & Lopez-Paz| [2021)). Specifically, we use the same
strategy for dataset splitting and model selection as in|Ye et al. for each of these tasks. For
datasets except for NICO, one of the domains is used as the test domain. We train the models in
each run treating one of the domains as the test domain with the rest of the domains as training
domains. Then report the average accuracy of all domains. For NICO, the training, test, evaluation,
and test domains are predefined. We train the models on training domains, evaluate them on the
evaluation domain for model selection, and report their accuracy on the test domain. More details
of the experimental settings could be found in Appendix [A2]

When training models using DAT, we first perform standard data augmentation (Gulrajani & Lopez-|
(2021), then proceed with the update on perturbation and model parameters as shown in[I] where
the perturbed samples are clipped to the legal range after data augmentation.

As discussed in Section[d] DAT can reduce the influence of background even when no domain labels
are given, which corresponds to the single-source domain generalization setting. To see how this
could help in this setting, we conduct experiments which strengthen this claim. Experimental setting
and results can be found in Appendix B}

5.2 EVALUATION ON BENCHMARK DATASETS
We compare our results with previous works, including vanilla ERM, invariance-based methods
including IRM (Ahuja et al, 2020), robust optimization methods including GroupDRO (Sagawa

et al] 2020), distribution matching methods including MMD 2018b) and CORAL (Sun
& Saenko| 2016)), a method based on domain classifier (DANN, (Ganin et al., [2016)) and various
other algorithms. The results for the CMNIST dataset are adopted from |Gulrajani & Lopez-Paz|
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Table 1: Test accuracy (%) on four representative tasks for OOD Robustness. According to OOD-
Bench (Ye et al.| [2021)), two are dominated by correlation shift, CMNIST and NICO, and two are
dominated by diversity shift, PACS and Terralnc. We highlight the top two results on each task.

Correlation shift

Diversity shift

Algorithm Avg
CMNIST NICO PACS Terralnc
ERM (Baseline) 5854+0.3 714+13 81.5+0.0 426+0.9 63.5
VREXx (Krueger et al.|[2021) 56.3+1.9 71.0+1.3 81.8+0.1 40.7+0.7 62.5
GroupDRO (Sagawa et al.|[2020) 61.24+0.6 71.8+08 804+03 368+1.1 62.6
IRM (Ahuja et al.[[2020) 70.2+0.2 676+14 81.14+0.3 420+1.8 65.2
ARM (Zhang et al.|[2020) 63.24+0.7 639+1.8 &81.0+04 394+0.7 619
RSC (Huang et al.[|2020) 585+0.5 69.7+0.3 828+04 43.6 0.5 63.7
DANN (Ganin et al./[2016) 583+0.2 686+1.1 81.1+04 395+0.2 619
MMD (Li et al.|[2018b) 63.44+0.7 683+1.0 81.7+0.2 383+04 62.9
MTL (Blanchard et al.|[2021) 576+0.3 70.24+0.6 81.2+04 389+0.6 62.0
MLDG (L1 et al.|[2018a) 5844+0.2 51.6+6.1 73.0+04 27.3+2.0 526
SagNet (Nam et al.|[2021) 5824+0.3 693+1.0 81.6+04 423+0.7 62.9
CORAL (Sun & Saenko|[2016) 576+0.5 683+14 81.6+0.6 383+0.7 61.5
Mixup (Yan et al.|2020) 5844+0.2 666+09 79.84+0.6 39.8+0.3 61.2
AT (sample-wise) (Goodfellow et al.|2014) 57.9+04 70.5+0.7 82.0+0.2 42.6+0.3 63.3
UAT (Shafahi et al.|[2020) 587+23 69.1+1.2 80.7+04 41.9+1.8 62.6
WRM (Sinha et al.|[2018) 579433 682+1.0 804+0.0 26.1+1.5 58.2
ADA (Volpi et al.|[2018) 56.3+0.4 695+1.9 802+0.2 41.2+0.7 61.8
DAT (our work) 684+20 726+1.7 820+£0.1 42.7+0.7 664

(2021)), which is the average of three domains, while the results of the other datasets are adopted
from [Ye et al.|(2021). Apart from that, we implement and test four AT based algorithms including
sample-wise adversarial training (AT (Goodfellow et al.,|2014))), universal adversarial training (UAT
(Shafahi et al., [2020) (which do not distinguish between different training domains), WRM (Sinha
et al.l 2018)), and Adversarial Data Augmentation (ADA (Volpi et al.| 2018})).

From Table [II we observe that on a variety of
OOD benchmark datasets, DAT has a performance
consistently better than ERM. In particular, DAT
achieves state-of-the-art performance under both di-

Table 2: Comparison of test accuracy of dif-
ferent perturbation radius ¢ and step size o of
{5-norm bounded DAT on the NICO dataset.

versity and correlation shift. In comparison, IRM Radius ¢ Step Size a Acc (%)

only outperforms DAT on CMNIST and sample- T R—

wise AT fails on three of the four datasets. Com- _ _ [1077,107%)  72.6 + 1.7

pared to other AT-based algorithms (e.g., sample- [1072,107"] [107%,107%] 72.0+21
15 -2 191

wise AT, UAT, WRM, and ADA), DAT has superior [107%,1071] 68.9+15

performance by considering a domain-wise pertur- [1073,1072] 712404

bation that removes domain-varying spurious fea- [10-1,10°  [1072,107'] 66.6+ 1.7

tures. The results demonstrate DAT’s effectiveness [10-1,10°]  69.4+0.4

in dealing with domain discrepancy. RSC Huang

et al.| (2020) has the most superior performance un- 07%,107%]  64.6£0.3

der diversity shift, this may due to that RSC masks [10°,10"] [1072,10""]  67.9+2.0

large gradients, which prevents the model from be- (107,10 674404

coming over-confident by only capturing a few dom-
inant features that are not invariant. However, RSC does not use domain labels, which makes it fail
to consider the change of correlation between features and label class when generalizing to a new
domain and leads to poor performance under correlation shift. In comparison, DAT solves the
same problem in a reversed way, by perturbing inputs to reduce dominant features, and results in
a “weaker” augmentation compared to RSC under diversity shift. But DAT considers domain dif-
ference explicitly, thus having better performance than RSC under correlation shift. We also note
that DAT performs slightly worse than IRM on CMNIST, which could be due to the data genera-
tion process of CMNIST. As a synthetic dataset, CMNIST uses colored digits instead of colored
background as the spurious features. In contrast, in real-world datasets like NICO (Figure [2), the
spurious features mainly lie in the background instead of the object. This suggests that our method
is more suitable for alleviating real-world distribution shifts.
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5.3 ANALYSIS

We conduct experiments to understand better what our algorithm learns and how the magnitude of
hyperparameters affects its performance.

Qualitative Analysis through Semantic Graphs We use GradCam (Selvaraju et all 2017}
[Gildenblat & contributors| [2021)) to visualize the attention heatmaps of models trained by ERM,
sample-wise AT, and DAT on the NICO dataset. The results are shown in Figure F_fl, where
we can see that DAT puts more attention on the object itself instead of the strongly corre-
lated background, while ERM and sample-wise AT tend to use environmental features instead.

Perturbation Radius and Step Size We investi-
gate the effect of perturbation radius € and perturba-
tion step size o on the NICO dataset. The results are Forest
shown in Table [2| From the results, we find that the
perturbation radius € has a huge impact on the OOD
accuracy. When ¢ is too large (> 1071), it begins Beach
to hurt the invariant feature and causes performance
degradation (from 72.9% to 67.9%). The step size «
has a smaller influence, and choosing a value about Snow
1/100 to 1/10 times the size of € would be appropri-
ate.

Grass

Norm of Perturbations We also investigate the ef- §
fect of the norm used in DAT. We perform experi- Original  ERM AT DAT
ments on the NICO dataset using ¢,-norm bounded

DAT. The results are shown in Table 3] Although Figure 4: Attention heatmaps of ERM,
there are slight differences, DAT bounded by both (sample-wise) AT, and our DAT on the
p = 2 and p = oo can achieve state-of-the-art per- NICO dataset. Compared to ERM and AT,
formance (72.6% and 72.5%) on the NICO dataset. DAT has a more precise focus on the object

itself.

6 DISCUSSIONS

Comparison with Sample-wise AT Previous Taple 3: Test accuracy of £o-norm bounded

works (Yi et al) 2021}, [Hendrycks et al, 2021) try DAT on the NICO dataset.

to exploit sample-wise AT as a data augmentation

strategy to get higher OOD performance. However, - -
the performance only improves when the distribu- Radius & Step Size a Acc (%)

tion shift is dominated by diversity shift, e.g., noise, ~ [1073,1072] [107%,107%] 68.5+0.2
and blurring. Otherwise, the performance might be ~ [1072,107%] [1073,1072] 67.94+2.4
degraded, as shown in Table[T] One possible expla-  [107%,10°]  [1073,1072] 725+ 1.6

nation is that because sample-wise AT fails to cap-
ture the domain-level variations as DAT. As a result,
it could possibly add perturbations to the invariant features and lead to inferior performance, espe-
cially under correlation shift.

Comparison with Invariant Causal Prediction A thread of methods including ICP
2016), IRM (Arjovsky et al[2019), and IGA (Koyama & Yamaguchi, 2020) try to find the invariant
data representations that could induce an invariant classifier. They have superior performance on
synthetic datasets like CMNIST but fail to outperform ERM on real-world datasets (tasks dominated
by both correlation shift and diversity shift). We believe their failures might be attributed to the
lack of prior information in their invariant learning principles. While in our DAT, we effectively
exploit the foreground-background difference in image classification tasks through domain-wise
perturbations.

7 CONCLUSION

In this work, we carefully analyze the similarity between IRM and adversarial training in a domain-
wise fashion and establish a formal connection between OOD and adversarial robustness. Based on
this connection, we propose a new adversarial training method for domain generalization, namely
Domain-wise Adversarial Training (DAT). We show that it could effectively remove the spurious
background features in image classification and obtain superior performance on benchmark datasets.
Notably, our DAT could outperform ERM consistently on tasks dominated by both correlation shift
and diversity shift, while previous methods typically fail in one of the two cases.
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A EXPERIMENT SETTINGS AND MORE DETAILED RESULTS

We train all the models based on the DomainBed benchmark presented in (Gulrajani & Lopez-Paz
(2021)).

A.1 MIXED-SAME AND MIXED-RAND

To construct the dataset, we use the validation set of Mixed-Same (4185 images) provided by |Xiao
et al.|(2021) as the training environment and use the validation set of Mixed-Rand (4185 images) as
the testing (OOD) environment.

For training, we use pretrained ResNet-18 as backbone and train it for 5000 iterations. The hyperpa-
rameters are same to those proposed in |Gulrajani & Lopez-Paz| (2021])), except that the learning rate
searching interval is altered to [1075-%,10~%-5], while we set hyperparameters search space of DAT
ase € [1079°,10%, a € [10715,1071].

A.2 TypPiCAL OOD DATASETS

We conduct experiments on four typical OOD datasets, including CMNIST, NICO, Terra Incog-
nita, and PACS. We split the NICO dataset using the same strategy in |Ye et al.| (2021) for a fair
comparison.

For network architecture, models trained on CMNIST adopt the four-layer convolution network
MNIST-CNN provided in DomainBed benchmark (Gulrajani & Lopez-Paz, 2021), while other
datasets use ResNet-18 as the backbone. For Terra Incognita and PACS, pretrained ResNet-18 is
used. While on NICO, we use unpretrained ResNet-18 as the pretraining dataset contains photos
that are largely overlapped with ImageNet classes.

For model selection, models trained on PACS and Terra Incognita are selected by training-domain
validation, which selects the model with highest training accuracy averaged across all training do-
mains. For NICO, an extra OOD validation set is used. CMNIST, due to the large correlation shift,
uses test-domain validation as its model selection criteria.

DAT, AT, and UAT models are trained for an appropriate number of iterations to ensure convergence,
that is, 5000 for Terra Incognita, 8000 for NICO, 10000 for CMNIST and PACS.

When training NICO using DAT, we clamp the single sample adversarial loss to (0,2) to obtain a
better domain-wise perturbation as suggested in|Shafahi et al.| (2020).

We use the same hyperparameters as those proposed in |Ye et al. (2021) whenever possible while
setting the hyperparameters search space for DAT, sample-wise AT and UAT as in Table [6] and [3]
We use DAT with perturbation bounded by ¢>-norm in our experiments. For sample-wise AT, we
use a 10-step /5 PGD (Madry et al., 2018).

For WRM, we set the step number to 10 in the inner maximization, while searching for the learning
rate in the inner maximization in the range [10~2, 10~ '] and  in the range [107%-%,10°-°]. We train
the models for 5000 iterations to ensure convergence.

For ADA, we set the step number to 10 in the inner maximization, while searching for the adversarial
learning rate in the range [10~*, 10°-5], ~y in the range [0.5, 1.5], the number of steps in the min-phase
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in the range [10%-5, 10%%], and the number of whole adversarial phases in the range [10°-5, 10%]. We
train the models for 5000 iterations to ensure convergence.

Table 4: Hyperparameter Search Space for DAT on Typical OOD Datasets.

Dataset Radius Step Size o
CMNIST  [1071,107] [1072,101]
NICO [1072,107Y]  [107%,1073]
PACS (101,107 [1072,10']

Terralnc ~ [1079-5,10%7]  [1072,107}]

Table 5: Hyperparameter Search Space for (sample-wise) AT on Typical OOD Datasets.

Dataset Radius Step Size o

CMNIST  [1071,10%]  [1072,10°]
NICO [1071,10°]  [1072,1071]
PACS  [1072,107'] [1073,1072]

Terralnc ~ [1071,10°]  [1072,1071]

Table 6: Hyperparameter Search Space for UAT on Typical OOD Datasets.

Dataset Radius Step Size «

CMNIST  [1071,10%]  [1072,10%]
NICO  [1072,107'] [107%,1073]
PACS [1071,10%]  [1072,10]

Terralnc ~ [10°,10%°]  [1072,1071]

The domain split results for ERM, UAT, and DAT are shown in Table[7} [8] and[9] where the results
of ERM on CMNIST are from |Gulrajani & Lopez-Paz|(2021)) and all other results come from our
experiments.

Table 7: Test accuracy of ERM, UAT, and DAT on CMNIST.

(a) Training domain vaidation.

Algorithm 0.1 0.2 0.9 Average

ERM 72.7+02 732£03 10.0+£0.0 52.0+£0.1
UAT 721+£01 737+£01 10.0+£0.1 52.0=£0.1
DAT 7244+02 73.7+£01 102+02 521+0.1

(b) Test domain vaidation (Oracle).

Algorithm 0.1 0.2 0.9 Average

ERM 723+06 73.14+£03 30.0+£03 58.5+0.3
UAT 75.3+£64 719+07 29.0+0.2 58.7+£23
DAT 785+48 793+02 475+26 684120
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Table 8: Test accuracy of ERM, UAT, and DAT on PACS.

(a) Training domain vaidation.

Algorithm  Artpaint Cartoon Photo Sketch Average
ERM 80.5+08 742405 94.7+05 729+21 80.6+0.6
UAT 79.9+06 T74.7+08 926+04 T755+£2.1 80.7£04
DAT 80.0+03 T776+08 926+09 T776+05 820+0.1

(b) Test domain vaidation (Oracle).

Algorithm  Artpaint Cartoon Photo Sketch Average
ERM 79.7+10 769+03 942+04 783+15 823+04
UAT 804+21 75.04+04 935+05 79.3+04 82.0+0.6
DAT 79.74+0.1 749407 939+06 78.1+04 81.7£0.2

Table 9: Test accuracy of ERM, UAT, and DAT on Terralnc.
(a) Training domain vaidation.

Algorithm L100 L38 L43 L46 Average
ERM 53.2+14 319403 50.2+09 33.64+03 422+04
UAT 472433 369+16 503+03 32.8+03 41.84+1.2
DAT 53.8+1.6 35.14+23 503+03 31.7+£0.6 42.7+0.7

(b) Test domain vaidation (Oracle).

Algorithm L100 L38 L43 L46 Average
ERM 55.8+1.1 408420 498+13 350+0.2 453+0.3
UAT 50.5+2.6 40.34+0.2 50.7+03 343+£05 44.0£0.6
DAT 54.14+23 425+21 527+08 351+1.0 46.1+0.6

B ON SINGLE-DOMAIN DOMAIN GENERALIZATION

It can be seen that our proposed DAT can also work with a single domain. In this case, DAT reduces
to UAT as a special case. In this section, we present a deeper understanding on the effectiveness
of DAT on single-domain generalization, as well as the comparison between DAT and ensembled
UAT. Specifically, in Section [B-I] we perform experiments under single-source domain generaliza-
tion setting, which show that DAT is still effective under this scenario by removing the common
background in the domain. In Section[B.2] we compare DAT with the ensemble of UAT, the results
suggest that DAT has extra benefits by training a single model on multiple domains.

B.1 SINGLE-SOURCE DOMAIN GENERALIZATION

To show that our method can also be applied to single-domain generalization scenarios, we conduct
experiments with similar settings to Appendix [A.2]on the four benchmark datasets, except that we
train on one of the domains and report its test accuracy on all other domains. For the NICO dataset,

as it comes with a validation domain, we train the models on one of the training domains, using the
validation domain for model selection, then report its accuracy on the test domain.

We train all models using ERM/DAT for 5000 iterations to ensure convergence and set the hyper-
parameter searching space of DAT as shown in Table [T0] All other settings are the same as those
shown in Appendix [A2]
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Table 10: Hyperparameter searching space for DAT on typical OOD datasets (single-source domain
generalization)

Dataset Radius Step Size o

CMNIST  [1071,107] [1072,101]
NICO [1072,107!]  [107%,1073)
PACS [1072,107Y]  [1073,1072]
Terralnc ~ [107%-5,10%7]  [1072,107]

We list the domain-average results in Table [TT}

Table 11: Average test accuracy of ERM, DAT on four representative tasks (single-source domain
generalization)

Algorithm  CMNIST NICO PACS Terralnc Avg

ERM 45.8 63.2 99.8 27.3 49.0
DAT 46.0 64.4 59.9 281 49.6

We can see that our DAT enjoys superior performance on all four datasets compared to ERM, either
under correlation shift or diversity shift. Although the difference is not as significant as in the
multiple domain setting, it shows that our DAT works for both single-domain and multi-domain
generalization scenarios. In particular, its advantages are more significant with multiple domains,
where the domain-wise perturbation mechanism is more effective.

The domain split results for ERM and DAT under single-source domain generalization setting are
shown in Table 124 to T2l

B.2 COMPARISON WITH THE ENSEMBLE OF UAT

To show that models trained using DAT on multi-domains are not a trivial ensemble of models
trained on single domains, we train voting classifiers on CMNIST and NICO using UAT. The models
are trained separately on each domain and then perform an equal weight voting to get prediction
results. The results are shown in Table[I3]

Table 13: Results of Ensemble UAT and DAT on CMNIST and NICO

Algorithm CMNIST NICO

Ensemble UAT 58.2+2.3 60.8£0.2
DAT 684+20 726+1.7

From the results, we can see that invariance learned by DAT indeed performs much better than a triv-
ial ensemble of independent UAT models. We believe that training DAT on multiple domains can
help extract the domain-invariant features through sharing the same model across domains while
removing domain-varying features with domain-specific perturbations. Spurious background infor-
mation from multiple domains can help the classifier to identify the truly domain-invariant features.
In comparison, single-domain UAT only has access to a single domain and can only learn invariance
of a single domain, which leads to inferior performance.

C PROOFS

We give a proof of Remark [] first, then use a similar technique to prove Proposition T}
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Table 12: Test accuracy (single-source domain generalization)

(2) ERM on CMNIST
Training Domain 0.1 0.2 0.9 Avg
0.1 \ 79.8+£0.2 21.2+£0.2 50.5
0.2 88.7+0.4 \ 35.2+£13 62.0
0.9 21.04+£0.9 29.1+£0.7 \ 25.1

(b) DAT on CMNIST
Training Domain 0.1 0.2 0.9 Avg
0.1 \ 80.0£0.1 279+4.7 54.0
0.2 90.0+0.1 \ 324+10 61.2
0.9 183+1.1 271+1.1 \ 22.7

(c) ERM on NICO

Training Domain  Test Accuracy

1 56.8 £3.5

2 69.6 + 2.0
Avg 63.2
(d) DAT on NICO

Training Domain  Test Accuracy

1 61.7+0.9
2 67.1+£0.3
Avg 64.4
(e) Test accuracy of ERM on PACS (single-source domain generalization)
Training Domain  Artpaint Cartoon Photo Sketch Avg
Artpaint \ 64.94+0.7 942401 61.54+4.1 73.5
Cartoon 61.9+2.7 \ 76.6 £1.6 69.5+1.1 69.3
Photo 66.9+0.3 269401 \ 35.5+0.7 43.1
Sketch 473+0.1 6574+0.9 46.6+08 \ 53.2
(f) Test accuracy of DAT on PACS (single-source domain generalization)
Training Domain  Artpaint Cartoon Photo Sketch Avg
Artpaint \ 59.6 £0.0 94.24+0.8 48.7+2.3 67.5
Cartoon 68.1+0.1 \ 83.9+1.0 69.1+13 73.7
Photo 64.5+1.4 276+58 \ 30.94+4.5 41.0
Sketch 522+0.2 634+14 564+1.1 \ 57.3
(g) Test accuracy of ERM on Terralnc (single-source domain generalization)
Training Domain  L100 L38 L43 L46 Avg
L100 \ 2494+4.1 26.8+0.5 271445 26.3
L38 42.3+0.6 \ 125+1.2 13.2+15 227
L43 3424+9.8 31.94+09 \ 30.1+0.5 32.1
L46 249+6.2 13.0+28 46.6+2.0 \ 28.3
(h) DAT on Terralnc
Training Domain  L100 L38 L43 L46 Avg
L100 \ 23.3+14 243+£0.7 16.7+£1.2 214
L38 446 +74 \ 17.3+1.0 16.3+04 26.1
L43 352+74 320+£76 \ 329+15 334
L46 2434+4.0 232+£02 475+02 \ 31.7
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Remark 1 (Equivalence under Single-sample Environments) When the environments degener-
ate into a single data point, we have the following relationship: If € is sufficiently small, then for
B - @ as a deep network with any activation function, the penalty term of IRMvI (Eq. H) on each
sample and the square of the maximization term of Linearized version of DAT (LDAT, obtained by
first-order approximation of DAT)

Penaltyppar = <Vm€ (BTé(m),y) ,:|:5E> (14)

on each sample with by = tex only differ by a fixed multiple 2. Which is formally stated as

PenaltyLD AT = 2 - Penaltyruy. (15)

Proof of Remark[I] Note that we presume @ is piece-wise linear. We represent the output logit of
the given deep network as 31 ®(z) = 3T ®,2 where @, is the matrix related to sample z due to the
fact of different activation patterns.

We first derive the form of Penaltyy,par by first-order approximation of Eq. [9]

UBT®(x +0e),y) — UBTD(x),y) ~ (VBT ®(2),y),b) (16)
Letting §. = +ex, we have that

Penaltyr,par = <VI€ (BTtb(m),y) ,:|:5E> (17)

The penalty term of IRMv1 on each sample is as follows:

[Vaujw=1.0 = log(o(w - (y3" (x))))

I

! T
6'O(x
_ ’ BT gy
o(w- (yp' ®(x))) (18)
= -1 = o(yBT ®(2))yB" @ ()|
=(1-o(ys ®(z) 2Wﬂ¢ﬂu
For LDAT, note that the gradient w.r.t. x is equal to
Val[~log(o(yB" @(@)] = (1~ o(yB ®(x)))ys" @,
So the square of the penalty term of LDAT on each sample with perturbation +ez is:
(Ve — log(o(yBT ®(x))), £e2)]? = e2(1 — 0(8T ®(2)))? ||8T @] (19)
which is identical to Eq. 4] with a difference of multiple £2.
]

Proposition 1 Consider each D, as the corresponding distribution of a particular training do-
main e. For any 3 - ® as a deep network with any activation function, the penalty term of IRMvl,
Penaltyrm (Eq.H), could be expressed as the square of a reweighted version of the penalty term of
the above approximate target, Penaltypar(Eq. [[0), on each environment e with coefficients related
to the distribution D., which could be stated as follows:

Penaltyiry = |Ep, [Laoz]||”, and Penaltypar = ||Ep, Ly || (20)
where L, = (1 — o(yBT ®,2))yB " ®,.

Proof of Proposition[I] For IRMv1, from the proof of Remark 1 we know
vw|w:1.0‘€(w : (ﬁ : (D)?y) = _(1 - U(yBTq)xx))yﬂT(I)zx 2D

So that Penaltyira (suppose derivation and integration are commutable)

va|w:1.ORe(w ' (ﬁ : (I)))H2 = HEDe(l - U(yﬁTq)wx))yﬁTq)mxwz (22)
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For DAT, on each environment

max Ep, [((37 0w +0.),y) — (5" 0(x).y) |
~ max Ep, [<V 14 ﬁTCI) ), 56>]

l1dell<e (23)
= max (Ep, [V.4(8"®(z),y)],d)

ll6cll<e

Va8 (), )]

So Penaltypar is

|Ep, [Vot(B"®(x),y)]|| = ||[Ep, [-(1 —o(yB ®(x))yB" & ]| (24)

So we know Penaltyry can be regarded as the square of a reweighted version of Penaltypa with
coefficient on each sample inside the expectation x.

O
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