
BEAVER: An Enterprise Benchmark for Text-to-SQL

Anonymous ACL submission

Abstract001

Existing text-to-SQL benchmarks have largely002
been constructed from web tables with human-003
generated question-SQL pairs. LLMs typically004
show strong results on these benchmarks, lead-005
ing to a belief that LLMs are effective at text-to-006
SQL tasks. However, how these results transfer007
to enterprise settings is unclear because tables008
in enterprise databases might differ substan-009
tially from web tables in structure and content.010
To contend with this problem, we introduce a011
new dataset BEAVER, the first enterprise text-012
to-SQL benchmark sourced from real private013
enterprise data warehouses. This dataset in-014
cludes natural language queries and their cor-015
rect SQL statements, which we collected from016
actual query logs. We then benchmark off-the-017
shelf LLMs on this dataset. LLMs perform018
poorly, even when augmented with standard019
prompt engineering and RAG techniques. We020
identify three main reasons for the poor per-021
formance: (1) schemas of enterprise tables are022
more complex than the schemas in public data,023
resulting in SQL-generation tasks intrinsically024
harder; (2) business-oriented questions are of-025
ten more complex, requiring joins over multi-026
ple tables, aggregations, and nested queries; (3)027
public LLMs cannot train on private enterprise028
data warehouses that are not publicly accessi-029
ble, and therefore it is difficult for the model to030
learn to solve (1) and (2). We believe BEAVER031
will facilitate future research in building text-to-032
SQL systems that perform better in enterprise033
settings.034

1 Introduction035

LLMs have shown potential for solving text-to-036

SQL tasks on existing datasets, such as Spider,037

KaggleDBQA, and Bird (Li et al., 2024; Sen et al.,038

2019; Yu et al., 2018; Lee et al., 2021). For ex-039

ample, on Spider, GPT-4 can achieve an execution040

accuracy above 85% (Gao et al., 2024). However,041

these datasets focus on tables collected from public042

sources and question-SQL pairs written by crowd- 043

sourced annotators. As such, they do not represent 044

real-world enterprise settings for the following rea- 045

sons. 046

First, enterprise databases, typically designed 047

for internal business use, often utilize more in- 048

tricate schemas than tables from public datasets. 049

Hence, understanding them may require database 050

or business-specific knowledge. Public LLMs are 051

mainly trained on public data. In contrast, enter- 052

prise data is private, which makes public LLMs 053

lack access to such knowledge. Recent work (Kand- 054

pal et al., 2023) has shown that LLMs do not per- 055

form well on data domains they have never seen 056

before. Consequently, public LLMs may not per- 057

form well on enterprise text-to-SQL tasks. As 058

we will show later in this paper, they often gen- 059

erate queries that contain either incorrect or insuffi- 060

cient columns, and invalid values, in particular, in 061

WHERE clauses. 062

Second, questions posed to enterprise databases 063

are generally more complex than questions from 064

public datasets. Public datasets are usually small 065

and typically general-purpose. Questions from 066

these datasets are often collected from annotators 067

who are not enterprise users, database admins, or 068

business analysts from specific data domains. For 069

instance, the Spider dataset (Yu et al., 2018) was 070

annotated by 11 computer science undergraduates. 071

Therefore, the questions posed tend to be simple 072

and may only involve one or two tables. In contrast, 073

queries on enterprise databases typically involve 074

joins and aggregates over multiple tables. 075

Third, enterprise databases often contain a large 076

number of tables, rows, and columns. The scale of 077

enterprise tables makes selecting the relevant tables 078

for text-to-SQL even more challenging (Chen et al., 079

2024). These size issues are often absent from the 080

public databases used for benchmarking text-to- 081

SQL. 082

To study the above issues, we have curated a 083

1

dataset BEAVER derived by anonymizing a subset084

of two real-world data warehouses. SQL state-085

ments were gathered from actual user query logs086

and reports, and corresponding natural language087

questions were formulated in collaboration with ex-088

perienced database administrators. Specifically, we089

benchmarked recent off-the-shelf LLMs (including090

GPT-4o and Llama3.1-70B-Instruct) on BEAVER.091

These models achieved close to 0 end-to-end ex-092

ecution accuracy, demonstrating the challenging093

nature of our dataset. This illustrates that off-the-094

shelf LLMs trained on public datasets are unable095

to generalize to the same text-to-SQL tasks when096

presented with real data warehouse data.097

In summary, our contributions are as follows:098

(1) We introduce BEAVER, the first enterprise099

text-to-SQL benchmark, for benchmarking text-100

to-SQL models under enterprise settings. This101

dataset includes tables from private and real en-102

terprise data warehouses, annotated question-SQL103

pairs, and column mapping annotation for each104

question. LLMs powering current text-to-SQL sys-105

tems are not trained on them. (2) We evaluate106

LLM-based text-to-SQL approaches on BEAVER107

and show their dramatically degraded performance,108

demonstrating the value of our benchmark for eval-109

uation. (3) We provide an extensive error analysis110

that reveals why enterprise data and queries are111

challenging for LLMs. We then propose steps to112

address these challenges, informing future text-to-113

SQL systems that can perform better on enterprise114

data and queries.115

2 Dataset116

As described in Section 1, existing public datasets117

do not reflect enterprise data warehouses with high118

schema and query complexity. To study this issue,119

we have gathered datasets from two enterprise data120

warehouses and annotated them with real-world121

question-SQL pairs. We describe the text-to-SQL122

task and then provide details on the datasets and123

annotation.124

2.1 Task Formulation125

Following the standard problem setup of text-to-126

SQL, the input to an LLM includes a natural lan-127

guage question and a database of tables, and the128

output is a SQL statement whose execution an-129

swers the user’s question. A database includes a130

set of tables. Each table includes a schema (that131

describes the names of columns and data types of132

each column) and instances of each table column. 133

2.2 Sources 134

The first data warehouse, called DW, contains 99 135

tables and 1544 columns from an existing Oracle 136

data warehouse. These tables contain information 137

on the physical administration of plants in a major 138

university, including buildings, rooms, and their 139

use, as well as age information and maintenance 140

records. We collected 103 pairs of natural language 141

questions and real-user SQL queries from this ware- 142

house. An example user question is “What are the 143

building names, department names, building street 144

addresses, total number of rooms, and total area of 145

all rooms for the electrical engineering and com- 146

puter science department and the material science 147

and engineering department?”. 148

The second data warehouse, called NW, includes 149

366 tables and 2708 columns from five separate 150

MySQL databases. These tables hold information 151

on virtual machines and networking in an enterprise 152

computing infrastructure and describe networking 153

policies, virtual machine status, IP addresses, and 154

virtual machine migrations. We gathered 100 pairs 155

of real-user natural language questions and SQL 156

queries from this warehouse. A sample question 157

is “Provide information (including security groups, 158

system metadata, info caches, and metadata) about 159

the instance [instance id] under project [project 160

id].”. 161

2.3 Annotation 162

Databases. We retrieved table information di- 163

rectly from each database, including column names, 164

column types, and rows. 165

SQL statements. To reflect the true complexity 166

of queries posed on enterprise databases, we first 167

collected real user query logs and reports from 168

source organizations. We then extracted SQL state- 169

ments from these real logs and reports. 170

Natural language questions. Four graduate stu- 171

dents and two professional database administrators 172

from the data warehouse support group collectively 173

constructed natural language questions for the col- 174

lected SQL statements. The students first collab- 175

oratively generated the natural language question 176

for the corresponding SQL statement. Then, they 177

passed these questions to the two database adminis- 178

trators for review. If some questions lacked clarity, 179

they were sent back to the students for editing af- 180

ter discussion with the administrators. The above 181

2

process repeated until both database administrators182

approved all questions.183

Column mapping. To generate a correct SQL184

statement from a natural language question, mod-185

els need to identify information mentioned in the186

user question (e.g., “building names” and “ma-187

terial science and engineering department”) and188

map them to either table columns (e.g., column189

BUILDING_NAME in table BUILDINGS) or table in-190

stances (‘Materials Science and Eng’ in col-191

umn DEPARTMENT_NAME in table ORGANIZATION).192

The former is called column mapping and the latter193

is instance mapping. As hinted in Section 1, high194

schema complexity makes column mapping and195

instance mapping challenging. Therefore, the stu-196

dents and administrators collectively annotated the197

column mapping. For each topic phrase (e.g., build-198

ing names) mentioned in a user question, mappings199

to some appropriate table columns were annotated200

as a pair of (topic phrase, columns names). This an-201

notation serves two purposes: (1) it can benchmark202

the ability of models to perform the task of column203

mapping, which is crucial to the quality of text-to-204

SQL, and (2) it can be provided to models to help205

improve their chance of generating correct SQL,206

as we will show in Section 3.4. However, instance207

mappings were not annotated due to considerable208

complexity (details can be found in Appendix C).209

2.4 Statistics210

Table 1 summarizes the domain, dataset size, table211

statistics, and query complexity of our dataset (DW212

and NW combined) as well as two popular open-213

source datasets: Spider (Yu et al., 2018) and Bird214

(Li et al., 2024). Similar to (Lan et al., 2023; Li215

et al., 2024), we measure query complexity along216

three dimensions: the average number of joins per217

query, which indicates the number of tables that218

need to be joined to include sufficient information219

to answer the user question; the average number of220

aggregations per query, which indicates the num-221

ber of aggregation keywords such as max, count,222

group by that appear in a SQL statement; and223

the nesting depth which indicates how deep sub-224

queries appear (e.g., SELECT ... FROM (SELECT225

...) has a nesting depth of two). Compared to all226

existing datasets, BEAVER has the largest number227

of tables per database and the highest query com-228

plexity. Figure 1 visualizes the query complexity229

across all datasets and complexity dimensions.230

Figure 1: The mean values for the number of joins,
aggregations, and nesting depth for Spider, Bird, and
BEAVER.

3 Benchmark 231

In this section, we evaluate recent retrievers and 232

LLMs on our dataset and existing public text-to- 233

SQL datasets on table retrieval, column mapping, 234

and SQL generation tasks. We then propose evalu- 235

ation metrics for each task and analyze the results, 236

linking them to the characteristics of an enterprise 237

database mentioned in Section 1. 238

3.1 Experimental setup 239

Datasets. We evaluated our dataset separately on 240

each database. However, doing so for Spider and 241

Bird make them too simple compared with our 242

dataset. As seen in Table 1, the average number of 243

tables per database is significantly smaller on Spi- 244

der and Bird compared to BEAVER. Therefore, we 245

aggregated tables from all databases to construct 246

a centralized database, resulting in 81 tables for 247

Spider and 75 for Bird. This step ensures the table 248

corpus sizes of Spider and Bird are comparable 249

with our dataset (77.5 tables per database). For Spi- 250

der and Bird, we still track the original databases 251

of each table to evaluate SQL statements. 252

Retrieval-augmented Generation (RAG). 253

Table Retrieval. As seen in Table 1, the average 254

number of tables and columns per database in pre- 255

vious datasets (Yu et al., 2018; Li et al., 2024) is 256

small, averaging 4.05 tables per database and 5.44 257

columns per table in Spider and 6.82 tables per 258

database and 10.6 columns per table in Bird. This 259

makes it feasible to provide the schema information 260

3

Table 1: Domains, dataset size, table statistics, and query statistics of text-to-SQL datasets.

Dataset Domain #Queries #DB Avg. #Table/DB Avg. #Cols/Table Avg. #Joins/query Avg. #Aggregation/query Avg. Nesting depth/query

Spider (Dev) Misc. 1034 20 4.05 5.44 0.506 0.854 1.09
Bird (Dev) Misc. 1534 11 6.82 10.6 0.918 0.663 1.09

BEAVER
Facilities,
computing

infrastructure
203 6 77.5 9.14 4.01 2.15 2.0

for all tables in a database without exceeding the261

maximum context length of an input prompt. How-262

ever, a key characteristic of enterprise databases is263

that they typically contain a large number of tables264

and a large number of columns per table, which265

makes it much more challenging to fit all this infor-266

mation into LLM’s input prompt. Moreover, recent267

work shows that models might overlook some infor-268

mation in long prompts (Liu et al., 2024) and pro-269

viding the schema information for fewer relevant270

tables can improve the performance in text-to-SQL271

tasks due to decreased noise (Chen et al., 2024).272

A common method to enhance LLMs with273

knowledge from a large external data source is274

retrieval-augmented generation (Lewis et al., 2020).275

Following this approach, given the input of a user276

question and a database, instead of feeding the277

user question and the full schema information of278

the database directly to LLMs for SQL genera-279

tion, an embedding-based retrieval system is first280

used to retrieve the top-k tables based on the se-281

mantic relatedness between the user question and282

the table schema. Relatedness is considered as283

the cosine similarity between the embedding of284

the user question and the table schema1. Embed-285

dings are computed using recent retriever mod-286

els, including UAE-Large-V1 (Li and Li, 2023),287

Stella_en_400M_v5 2, and GTE-large-en-v1.5 (Li288

et al., 2023). Then, the schema of the top-k most289

relevant tables, along with the user question, are290

provided as input to the LLM to generate a SQL291

query answering the question.292

SQL Generation. A SQL statement is gener-293

ated given a user question and a set of tables. In294

particular, a table is represented as a string consist-295

ing of the table name, columns, and column types.296

As mentioned in Section 2.3, column mappings of297

each question-SQL pair were also annotated, which298

can be provided as input to models to test models’299

ability to generate SQL statements when provided300

with more hints. We adopted 1-shot prompting301

1Table schema are serialized as space-separated strings of
table names and column names.

2https://huggingface.co/dunzhang/stella_en_400M_v5

and performed this task on GPT-4o (Achiam et al., 302

2023) and Llama-3.1-Instruct (70B and 8B) (Tou- 303

vron et al., 2023). Temperature (a random seed) 304

was set to 0 to minimize randomness. Detailed 305

prompts for SQL generation can be found in Ap- 306

pendix A.1. 307

Column mapping prediction. As discussed in 308

Section 2.3, accurate column mappings are crucial 309

for high-quality SQL generation, but they are diffi- 310

cult to achieve on enterprise databases. To quantify 311

the difficulty, we benchmark the performance of 312

models on the task of column mapping prediction. 313

For a question-SQL pair, a column mapping is a 314

list of (topic phrases, column names) pairs. We 315

provided LLMs with the exact topic phrases from 316

the gold column mappings to evaluate the models’ 317

ability to predict relevant columns based on topic 318

phrases. Furthermore, we provided the tables used 319

in the gold SQL statement and tasked the models 320

with predicting a list of columns most relevant to 321

each topic phrase. We adopted 1-shot prompting 322

and evaluated this task on GPT-4o and Llama-3.1- 323

Instruct (70B and 8B). Because Spider and Bird 324

datasets do not provide column mappings, we ran- 325

domly sampled 50 queries from each dataset and 326

annotated the column mappings manually to serve 327

as a comparison. 328

3.2 Evaluation metrics 329

Table retrieval. In a RAG setup, the quality of 330

the retrieved tables significantly impacts the perfor- 331

mance of SQL generation. To measure the retrieval 332

performance, we compare the retrieved tables with 333

the tables in the corresponding gold SQL statement 334

(gold tables). The standard method for evaluat- 335

ing retrieval performance is computing precision, 336

recall, and F1 @ top-k. However, these metrics 337

may be insufficient. We notice that a SQL state- 338

ment is unlikely to be generated correctly without 339

all gold tables provided in the input. Therefore, 340

in addition to the above metrics, we also measure 341

the percentage of questions for which the top-k 342

retrieved tables include all gold tables (denoted as 343

PR). 344

4

Table 2: Precision, Recall, F1 and Perfect-recall (PR) @
top-k across all datasets and recent embedding models.

Top-5 Top-10

P R F1 PR P R F1 PR

UAE-Large-V1

Spider 29.1 96.4 43.5 94.6 14.9 98.6 25.4 97.9
Bird 34.8 91.3 49.1 82.6 18.9 97.5 31.1 94.5

BEAVER 28.1 36.0 30.3 7.9 19.7 48.3 26.9 12.3

Stella_en_400M_v5

Spider 30.1 99.6 44.9 99.3 15.1 100 25.8 99.9
Bird 35.4 93.0 50.0 85.6 18.9 97.8 31.2 95.1

BEAVER 32.0 39.6 33.9 7.4 22.5 54.4 30.5 15.3

GTE-large-en-v1.5

Spider 29.0 96.6 43.3 94.1 14.9 99.0 25.5 98.1
Bird 33.2 87.8 47.0 76.7 18.5 96.0 30.5 91.7

BEAVER 29.0 36.7 30.8 9.4 19.8 48.8 27.1 14.3

Table 3: 1-shot column mapping performance. Results
are sampled on 50 queries from each dataset except
BEAVER (full) which includes the performance on the
entire dataset.

Spider Bird BEAVER BEAVER (full)

F1 Exact F1 Exact F1 Exact F1 Exact

GPT-4o 80.8 64.0 75.9 50.0 59.6 6.0 55.4 6.8
Llama3.1-70B-It 80.7 66.0 74.0 48.0 61.0 6.0 60.7 5.8
Llama3.1-8B-It 72.1 56.0 63.8 34.0 42.8 4.0 42.6 2.9

SQL generation. Execution accuracy (Yu et al.,345

2018; Li et al., 2024) is used to evaluate the end-to-346

end performance of a predicted SQL statement. To347

calculate it, the predicted SQL statement s and the348

corresponding gold SQL statement s∗ are executed,349

producing outputs o and o∗, respectively. The ex-350

ecution accuracy is 1 if o is the same as o∗ and 0351

otherwise.352

Column mapping. We adopted two metrics to353

compare predicted column mappings and the gold354

mappings, exact score and F1 score. The exact355

score is 1 if the predicted column mapping is iden-356

tical to the gold mapping and 0 otherwise. To357

give credit to partial matches, we further treat each358

pair of (topic phrase, column names) as a basic359

unit, which can then be used to compute F1 perfor-360

mance.361

3.3 Overall performance362

Table retrieval performance. From Table 2, we363

observe that precision, recall, F1 and PR @ top-k364

on BEAVER are the worst across all models and365

datasets. Average recall @ top-10 is 48.7 points366

lower on BEAVER compared to Spider and 46.6367

points lower than Bird, across all retriever mod-368

els. Average PR @ top-10 is 84.7 points lower369

Table 4: 1-shot end-to-end execution accuracy across
all datasets. Top-10 tables from the best-performing
retriever model (Stella_en_400M_v5) were provided to
the models.

Spider Bird BEAVER

GPT-4o 69.5 30.9 0.0
Llama3.1-70B-It 60.3 25.8 0.0
Llama3.1-8B-It 51.1 13.8 0.0

Table 5: 1-shot execution accuracy on BEAVER when
different hints are provided, across different models.

Baseline With gold tables With gold tables and column mappings

GPT-4o 0.0 4.2 8.4
Llama3.1-70B-It 0.0 0.0 0.0
Llama3.1-8B-It 0.0 0.0 0.0

on BEAVER compared to Spider and 79.8 points 370

lower than Bird, across all retriever models. This in- 371

dicates that accurately identifying the set of tables 372

that contain the necessary information to answer a 373

user question is significantly more challenging in 374

the context of an enterprise database. 375

Column mapping performance. Table 3 shows 376

the performance on column mapping. The first six 377

columns show the performance of different mod- 378

els on 50 sampled queries from each of the three 379

datasets. The last two columns show the perfor- 380

mance of different models on the entire BEAVER 381

dataset. Focusing on performance on the 50 sam- 382

pled queries, average F1 on BEAVER is 23.4 points 383

lower than Spider and 16.8 points lower than Bird 384

and the average exact score on BEAVER is 56.7 385

points lower than Spider and 38.7 points lower than 386

Bird. This quantitatively shows that identifying the 387

set of correct columns is challenging on BEAVER, 388

and much more difficult compared to both Spider 389

and Bird. The low performance in terms of exact 390

score (up to 6.0%) on BEAVER indicates that mod- 391

els, while capable of correctly mapping some key- 392

words, struggle to accurately map all keywords in a 393

question. The performance on the entire BEAVER 394

dataset is also similar to the performance on the 395

random sample, indicating the challenging nature 396

of column mappings across the entire dataset. 397

End-to-end execution accuracy. As seen from 398

Table 4, the end-to-end execution accuracy on 399

BEAVER is the lowest across all datasets and mod- 400

els. None of the off-the-shelf LLMs can answer 401

any question correctly, compared to an average 402

performance of 60.3 on Spider and 23.5 on Bird, 403

5

highlighting the challenging nature of BEAVER.404

The low accuracy can be due to poor table retrieval405

and column mapping performance as seen in Table406

2 and 3. As we mentioned earlier, it is unlikely407

that a model can generate SQL correctly without408

all gold tables provided in the input. Not having409

the relevant table information in context also pre-410

vents the model from associating information in411

user questions with the correct columns needed to412

answer the question.413

3.4 Analysis414

As mentioned in Section 1, BEAVER differs from415

public text-to-SQL datasets in terms of (1) larger416

database size (2) higher schema complexity, and (3)417

higher query complexity. In this section, we want418

to show how each of these aspects affects LLM419

performance. Results after providing different gold420

information as hints are summarized in Table 5.421

Providing gold tables increases performance.422

As seen in Table 5, providing models with the gold423

tables can significantly improve performance on424

the GPT-4o model compared to feeding it with ta-425

bles from retriever models, which can include both426

noise (due to the presence of irrelevant tables) and427

insufficient information (due to lack of gold tables).428

This indicates that the large database size indeed429

makes the task more challenging.430

Providing column mapping increases perfor-431

mance. We note that in Table 5, providing col-432

umn mappings further improved performance, as433

seen in the 4.2% increase for GPT-4o (from col-434

umn 2 to column 3). This indicates that a complex435

schema makes it challenging for models to perform436

column mapping. Therefore, providing gold in-437

formation about such mapping can partially close438

this gap. However, we also note that providing col-439

umn mapping cannot fully address the problem of440

schema mapping because instance mapping is not441

covered by column mapping.442

Increased query complexity reduces perfor-443

mance. To understand how query complexity af-444

fects query performance, the number of correctly445

predicted SQL statements from GPT-4o (provided446

with both gold tables and column mappings) are447

shown against different buckets of query complex-448

ity (defined in Section 2.4), as shown in Table 6.449

We observe that as query complexity increases, the450

number of correctly predicted SQL statements de-451

creases. This effectively shows that as complexity452

increases, fewer questions can be answered cor- 453

rectly, which means that high query complexity 454

leads to a performance decrease in our dataset. 455

Table 6: Number of correctly answered questions over
three buckets (0-4, 5-9, 9+) of each dimension of com-
plexity.

Average number 0-4 5-9 9+

Join

total queries 84 17 1
correct predictions 8 0 0

Aggregation

total queries 67 29 6
correct predictions 4 3 1

Nesting depth

total queries 93 9 0
correct predictions 7 1 0

4 Error analysis 456

In the above, we provided an overview of the per- 457

formance of off-the-shelf LLMs on BEAVER, indi- 458

cating their limited capabilities of performing text- 459

to-SQL in a real-world enterprise setting. Here, 460

we discuss in detail the error sources during both 461

table retrieval and SQL generation phases by ex- 462

amining randomly sampled 50 questions from our 463

dataset. For table retrieval, we examined the per- 464

formance of the best-performing retriever model 465

(Stella_en_400M_v5). For SQL generation, we 466

inspected the performance of the best-performing 467

LLM (GPT-4o). 468

Table 7: Common error types encountered in table re-
trieval and SQL generation tasks for retriever and LLM
models, respectively.

Error types % questions

Table retrieval (Stella_en_400M_v5)

Not retrieving sufficient information 89.1
Misses connecting tables 6.52

Cannot handle domain-specific information 4.38

SQL generation (GPT-4o)

Incorrect column mapping 59.1
Incorrect instance mapping 22.7

Unable to handle complex queries 27.3
Misses implicit assumptions 50.0

6

4.1 Table retrieval analysis469

As seen in the top half of Table 7, the retriever470

model made three major mistakes during table re-471

trieval. Firstly, the retrieval model may not retrieve472

the set of tables with sufficient information to an-473

swer the user question. For instance, given the user474

question “What is the name of the building and475

fee of the shortest sessions?” and a table corpus476

including the three tables shown in Figure 2, the477

retriever model retrieved table SUBJECT_SESSION478

to cover “shortest and longest sessions”, and ta-479

ble SUBJECT_DETAIL to cover “fee”. However, the480

model did not retrieve table BUILDINGS to cover481

“name of the building”.482

Secondly, the retrieval model can miss connect-483

ing tables. This occurs when models retrieved484

a set of tables that can cover information in the485

user question, but they might not be connected486

through join relationships, so other tables need to487

be used to connect these tables. For instance, given488

the user question “What is the building name that489

accommodates the most students?” and a table490

corpus including the three tables shown in Figure491

3, the retriever model retrieved FCLT_BUILDING492

and STUDENT_DIRECTORY to cover “building name”493

and “students” respectively. However, these two ta-494

bles can only be joined via FCLT_ROOMS, which was495

not retrieved. This shows that models are not nec-496

essarily aware of join relationships during retrieval,497

which leads to information not being connected.498

Lastly, retrieval models may not be able499

to retrieve correct tables if domain-specific in-500

formation is involved. For example, given501

the user question “List the name of mailing502

lists, and name of the faculty who teaches503

in 2023 fall.” that requires information from504

tables MOIRA_LIST, MOIRA_LIST_DETAIL, and505

SUBJECT_OFFERED, the retriever model only re-506

trieved the table SUBJECT_OFFERED, but was un-507

able to retrieve the other two tables that are related508

to “moira list”, potentially because it does not know509

that “moira” is the name of the system used to man-510

age mailing lists.511

These behaviors suggest that existing retriever512

models struggle to retrieve relevant tables for a user513

question in the enterprise setting.514

4.2 SQL generation analysis515

As seen in the bottom half of Table 7, models made516

four major mistakes in SQL generation. Firstly,517

models can map topics mentioned in user ques-518

tions to incorrect columns (i.e., incorrect column 519

mapping). For instance, given the user question 520

“What are the building names and building street 521

addresses for the computer science department?”, 522

GPT-4o mapped “building street address” to the 523

column BUILDING_ADDRESS. However, GPT-4o is 524

not aware that the same building can have multi- 525

ple addresses for different purposes (e.g., street, 526

mail, package), and thus failed to also map this 527

topic to the column ADDRESS_PURPOSE and in- 528

stance ‘STREET’. Column mapping also fails when 529

user questions are vague. For instance, when net- 530

work administrators pose questions like “Provide 531

information (including info on caches and secu- 532

rity groups) for the virtual machine with ID [id].”, 533

they would like to gather as much information 534

as possible to perform diagnosis and monitoring. 535

Therefore, the gold SQL statement is very com- 536

prehensive, whereas GPT-4o only predicted a few 537

columns. The full example can be found in Ap- 538

pendix B.1. 539

Secondly, models can map literals mentioned in 540

user questions to incorrect instances (i.e., incorrect 541

instance mapping). For example, given a user ques- 542

tion “What is the total fee for all virtual sessions?”, 543

GPT-4o associated the literal “virtual” with col- 544

umn SESSION_LOCATION and instance ‘Virtual’. 545

While the column mapping is correct, the instance 546

mapping is incorrect because SESSION_LOCATION 547

includes multiple instances that represent virtual lo- 548

cations (e.g., ‘online’, ‘webinar’, ‘remote’, 549

‘online via zoom’), so the model would need 550

to associate “virtual” with all these different in- 551

stances or explore a more efficient filter for virtual 552

locations. 553

Thirdly, models can fail to derive the correct 554

SQL syntax when queries are complex. For in- 555

stance, given the user question “For each course, 556

list the cumulative number of courses held in 557

the same year or preceding years.”, the correct 558

approach is to partition courses by year, sort 559

courses by year, and restrict courses to those that 560

have the same year or before using the function 561

range between unbounded preceding and 562

current row. However, GPT-4o was not able 563

to use the window function in its predicted SQL 564

statement. 565

Finally, models cannot reflect implicit assump- 566

tions in SQL statements. For instance, when 567

users pose questions like “Provide information 568

about virtual machines with ID [id].”, by de- 569

fault, they only want to know the information 570

7

Figure 2: Schema of tables to illustrate retriever models did not retrieve sufficient information. A green tick
means the table was retrieved, and a red cross means the table was not retrieved. Green dotted lines represent join
relationships.

Figure 3: Schema of tables to illustrate retriever model did not retrieve connecting tables.

about active instances (i.e., not deleted). As such,571

the gold SQL statement includes the predicate572

instances.deleted = 0. However, GPT-4o was573

not able to recover this implicit assumption (and574

thus the predicate) in its SQL statement.575

Overall, the error analysis highlights that re-576

trieving relevant tables from a large corpus, per-577

forming schema mapping (both column mapping578

and instance mapping), and understanding com-579

plex queries are big challenges for models to solve580

enterprise-level text-to-SQL in an end-to-end fash-581

ion. Moreover, models might also need to deal582

with ambiguity and implicit assumptions in user583

questions.584

5 Discussion and future directions585

5.1 Column semantics586

As seen in Section 4, LLMs perform poorly on587

tasks that require a holistic understanding of each588

column and its instances, such as schema mapping589

(including both column mapping and instance map-590

ping). A straightforward approach involves feeding591

all table rows to LLMs to handle schema mapping.592

While feasible for small tables, handling large ta-593

bles with billions of rows and terabytes of data594

presents significant challenges due to LLMs’ input595

context size limit. Moreover, processing a large596

number of rows can introduce significant efficiency597

issues.598

5.2 Verbosity level of user questions599

Questions in public text-to-SQL datasets tend to600

be very verbose, containing information about ev-601

ery column that needs to be in the SQL statement.602

This makes an automatic and standardized eval-603

uation based on the outputs of SQL statements604

possible. However, in the enterprise setting, dif-605

ferent users have different standards of verbosity606

level, which encourages us to think about the next 607

appropriate task formulation of text-to-SQL. As 608

seen in Section 4, network administrators manag- 609

ing computing databases are highly knowledgeable 610

about the underlying database systems. As a re- 611

sult, their queries often take the form of “Show 612

me information about an instance with ID [id],” 613

without explicitly defining the exact information 614

required. These queries can also include implicit 615

assumptions. For instance, users may assume that 616

only active instances are of interest and thus ex- 617

clude terminated or deleted cases, even if this is not 618

explicitly stated in their user questions. This en- 619

courages human-in-the-loop iterative solutions that 620

can propose clarifying questions and refine their 621

outputs based on continuous human feedback. 622

6 Conclusion 623

Text-to-SQL is essential to bridging the gap be- 624

tween natural language question answering and 625

table querying. The performance of off-the-shelf 626

LLMs on existing text-to-SQL benchmarks seems 627

to suggest strong performance. However, these 628

benchmarks do not reflect real-world enterprise 629

settings and thus do not reflect the performance 630

of LLMs on enterprise queries over enterprise 631

databases. The enterprise setting differs from ex- 632

isting public settings as it includes unseen domain- 633

specific knowledge, a large number of tables that 634

require an intermediate retrieval stage, and higher 635

levels of query and schema complexity. Our re- 636

sults show that enterprise queries bring significant 637

challenges to off-the-shelf models regarding table 638

retrieval and SQL generation. We hope this pa- 639

per serves as the foundation for future work that 640

examines large-scale and complex text-to-SQL. 641

8

7 Ethics642

As mentioned in Section 2.3, we recruited four643

graduate students and two professional database ad-644

ministrators to perform the annotations. We ensure645

fair compensation for each volunteer, considering646

the minimum salary of the region these volunteers647

are in. Because this dataset involves only factual648

annotations, no subjective opinions or personal in-649

formation were collected, and thus, it should pose650

minimal risks to annotators and the general pub-651

lic. All database contents and questions will be652

anonymized according to rules set by the private653

organizations before releasing them to the public.654

8 Limitations655

Privacy and legal considerations restricted our ac-656

cess to private databases, limiting the diversity of657

domains represented in our dataset. Furthermore,658

in order to collect real SQL statements, we focused659

on query logs and reports. However, interpreting660

the intent of the SQL queries was difficult, making661

the generation of precise natural language ques-662

tions a slow process. We plan to continue expand663

number of queries in our dataset in the future.664

References665

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama666
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,667
Diogo Almeida, Janko Altenschmidt, Sam Altman,668
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.669
arXiv preprint arXiv:2303.08774.670

Peter Baile Chen, Yi Zhang, and Dan Roth. 2024. Is ta-671
ble retrieval a solved problem? exploring join-aware672
multi-table retrieval. In Proceedings of the 62nd An-673
nual Meeting of the Association for Computational674
Linguistics (Volume 1: Long Papers), pages 2687–675
2699, Bangkok, Thailand. Association for Computa-676
tional Linguistics.677

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,678
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.679
Text-to-sql empowered by large language models:680
A benchmark evaluation. Proc. VLDB Endow.,681
17(5):1132–1145.682

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric683
Wallace, and Colin Raffel. 2023. Large language684
models struggle to learn long-tail knowledge. In In-685
ternational Conference on Machine Learning, pages686
15696–15707. PMLR.687

Wuwei Lan, Zhiguo Wang, Anuj Chauhan, Henghui688
Zhu, Alexander Li, Jiang Guo, Sheng Zhang, Chung-689
Wei Hang, Joseph Lilien, Yiqun Hu, Lin Pan, Ming-690
wen Dong, Jun Wang, Jiarong Jiang, Stephen Ash,691

Vittorio Castelli, Patrick Ng, and Bing Xiang. 2023. 692
Unite: A unified benchmark for text-to-sql evaluation. 693
Preprint, arXiv:2305.16265. 694

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew 695
Richardson. 2021. KaggleDBQA: Realistic evalu- 696
ation of text-to-SQL parsers. In Proceedings of the 697
59th Annual Meeting of the Association for Compu- 698
tational Linguistics and the 11th International Joint 699
Conference on Natural Language Processing (Vol- 700
ume 1: Long Papers), pages 2261–2273, Online. As- 701
sociation for Computational Linguistics. 702

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 703
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 704
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 705
täschel, et al. 2020. Retrieval-augmented generation 706
for knowledge-intensive nlp tasks. Advances in Neu- 707
ral Information Processing Systems, 33:9459–9474. 708

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 709
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 710
Geng, Nan Huo, et al. 2024. Can llm already serve 711
as a database interface? a big bench for large-scale 712
database grounded text-to-sqls. Advances in Neural 713
Information Processing Systems, 36. 714

Xianming Li and Jing Li. 2023. Angle-optimized text 715
embeddings. arXiv preprint arXiv:2309.12871. 716

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 717
Pengjun Xie, and Meishan Zhang. 2023. Towards 718
general text embeddings with multi-stage contrastive 719
learning. arXiv preprint arXiv:2308.03281. 720

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 721
jape, Michele Bevilacqua, Fabio Petroni, and Percy 722
Liang. 2024. Lost in the middle: How language mod- 723
els use long contexts. Transactions of the Association 724
for Computational Linguistics, 12:157–173. 725

Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, 726
Ashish Mittal, Manasa Jammi, Chuan Lei, Dip- 727
tikalyan Saha, and Karthik Sankaranarayanan. 2019. 728
Natural language querying of complex business in- 729
telligence queries. In Proceedings of the 2019 Inter- 730
national Conference on Management of Data, pages 731
1997–2000. 732

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 733
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 734
Baptiste Rozière, Naman Goyal, Eric Hambro, 735
Faisal Azhar, et al. 2023. Llama: Open and effi- 736
cient foundation language models. arXiv preprint 737
arXiv:2302.13971. 738

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 739
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 740
ing Yao, Shanelle Roman, et al. 2018. Spider: A 741
large-scale human-labeled dataset for complex and 742
cross-domain semantic parsing and text-to-sql task. 743
arXiv preprint arXiv:1809.08887. 744

9

https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://aclanthology.org/2024.acl-long.148
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2305.16265
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176

A Prompts745

A.1 1-shot prompt for SQL generation746

We use the following 1-shot prompt for end-to-end747

SQL generation.748

B Examples for error analysis749

B.1 Column mapping for vague questions750

User question: “Provide information (including751

info caches, and security groups) for these752

VMs f5a08397-5aac-44b4-b359-f03ff6ce228a,753

e7c1acd1-6a47-4a08-8601-5022d4d50aa7.”754

Gold SQL statement:755

SELECT instances.created_at AS
instances_created_at,
instances.updated_at AS
instances_updated_at,
instances.deleted_at AS
instances_deleted_at, instances.deleted
AS instances_deleted, instances.id AS
instances_id, instances.user_id AS
instances_user_id, instances.project_id
AS instances_project_id,
instances.image_ref AS
instances_image_ref, instances.kernel_id
AS instances_kernel_id,
...
security_groups_1.project_id AS
security_groups_1_project_id
FROM instances LEFT OUTER JOIN
instance_info_caches AS
instance_info_caches_1 ON
instance_info_caches_1.instance_uuid =
instances.uuid LEFT OUTER JOIN
(security_group_instance_association AS
security_group_instance_association_1
INNER JOIN security_groups AS
security_groups_1 ON

security_groups_1.id =
security_group_instance_association_1.security_group_id
AND
security_group_instance_association_1.deleted
= 0 AND security_groups_1.deleted = 0)
ON
security_group_instance_association_1.instance_uuid
= instances.uuid AND instances.deleted =
0

WHERE instances.uuid IN
('f5a08397-5aac-44b4-b359-f03ff6ce228a',
'e7c1acd1-6a47-4a08-8601-5022d4d50aa7')
ORDER BY instances.created_at DESC,
instances.id DESC

Predicted SQL statement by GPT-4o 756

SELECT
instances.uuid AS instance_uuid,
instances.display_name,
instances.vm_state,
instances.host,
instance_info_caches.network_info,
security_groups.name AS
security_group_name,
security_groups.description AS
security_group_description

FROM
instances

LEFT JOIN
instance_info_caches ON
instances.uuid =
instance_info_caches.instance_uuid

LEFT JOIN
security_group_instance_association
ON instances.uuid =
security_group_instance_association.instance_uuid

LEFT JOIN
security_groups ON
security_group_instance_association.security_group_id
= security_groups.id

WHERE
instances.uuid IN (

'f5a08397-5aac-44b4-b359-f03ff6ce228a',

'e7c1acd1-6a47-4a08-8601-5022d4d50aa7'
)

C Complexity of instance mapping 757

Consider the user question “List the long building 758

names constructed before 1950 that have more than 759

100 employees and the built year and number of 760

employees.” which has a gold SQL statement of 761

10

SELECT * FROM (SELECT DISTINCT
a.BUILDING_NAME_LONG, a.year_built,
COUNT(distinct
employee_directory.ID) OVER
(PARTITION BY a.BUILDING_NAME_LONG,
a.year_built) as num_employees

FROM (SELECT * FROM (SELECT DISTINCT
FCLT_BUILDING_KEY,
BUILDING_NAME_LONG, extract(year
FROM TO_DATE(date_built,
'MM/DD/YYYY')) as year_built FROM
wareuser.fclt_building_hist) WHERE
year_built < 1950) a JOIN fclt_rooms
ON fclt_rooms.FCLT_BUILDING_KEY =
a.FCLT_BUILDING_KEY JOIN
employee_directory ON
employee_directory.OFFICE_LOCATION =
fclt_rooms.BUILDING_ROOM) WHERE
num_employees > 100;

In this case, the literal “100 employees” should762

be mapped to763

COUNT(distinct employee_directory.ID)
OVER (PARTITION BY
a.BUILDING_NAME_LONG, a.year_built)
> 100

which involves one grouping and aggregation.764

The literal “before 1950” should be mapped to765

extract(year FROM TO_DATE(date_built,
'MM/DD/YYYY')) < 1950

which involves one custom function call.766

As seen above, compared to column mappings,767

instance mapping is considerably more complex768

and much harder to evaluate. Therefore, instance769

mappings were not annotated.770

11

Table 8: 1-shot prompt for generating SQL. <tables> and <question> refer to the new set of tables and the new user
question given at inference time. LLMs should leverage both the 1-shot example and the new input to complete the
SQL statement after “SQL:”.

Given the question and tables, output the SQL statement that can answer the question correctly. You should only output the SQL
statement.

CREATE TABLE SUBJECT_OFFERED(
SUBJECT_KEY VARCHAR2,
SUBJECT_OFFERED_SUMMARY_KEY VARCHAR2,
MASTER_SUBJECT_KEY VARCHAR2,
COMPOSITE_SUBJECT_KEY VARCHAR2,
TERM_CODE VARCHAR2,
MASTER_COURSE_NUMBER VARCHAR2,
MASTER_COURSE_NUMBER_SORT VARCHAR2,
MASTER_COURSE_NUMBER_DESC VARCHAR2,
MASTER_SUBJECT_ID VARCHAR2,
MASTER_SUBJECT_ID_SORT VARCHAR2,
COURSE_NUMBER VARCHAR2,
COURSE_NUMBER_SORT VARCHAR2,
COURSE_NUMBER_DESC VARCHAR2,
SUBJECT_ID VARCHAR2,
SUBJECT_ID_SORT VARCHAR2,
SUBJECT_TITLE VARCHAR2,
SECTION_ID VARCHAR2,
IS_MASTER_SECTION VARCHAR2,
IS_LECTURE_SECTION VARCHAR2,
IS_LAB_SECTION VARCHAR2,
IS_RECITATION_SECTION VARCHAR2,
IS_DESIGN_SECTION VARCHAR2,
OFFER_DEPT_CODE VARCHAR2,
OFFER_DEPT_NAME VARCHAR2,
OFFER_SCHOOL_NAME VARCHAR2,
RESPONSIBLE_FACULTY_NAME VARCHAR2,
RESPONSIBLE_FACULTY_ID VARCHAR2,
MEET_TIME VARCHAR2,
MEET_PLACE VARCHAR2,
CLUSTER_TYPE VARCHAR2,
CLUSTER_TYPE_DESC VARCHAR2,
CLUSTER_LIST VARCHAR2,
HGN_CODE VARCHAR2,
HGN_CODE_DESC VARCHAR2,
FORM_TYPE VARCHAR2,
FORM_TYPE_DESC VARCHAR2,
SUBJECT_ENROLLMENT_NUMBER NUMBER,
SECTION_ENROLLMENT_NUMBER VARCHAR2,
CLUSTER_ENROLLMENT_NUMBER NUMBER,
EVALUATE_THIS_SUBJECT VARCHAR2,
IS_OSE_SUBJECT VARCHAR2,
IS_CREATED_BY_DATA_WAREHOUSE VARCHAR2,
SUBJECT_GROUPING_KEY VARCHAR2,
WAREHOUSE_LOAD_DATE DATE,
NUM_ENROLLED_STUDENTS NUMBER,
SUBJECT_SUMMARY_KEY VARCHAR2,
IS_REPEATABLE_SUBJECT VARCHAR2,
PRIMARY KEY (SUBJECT_KEY),
FOREIGN KEY (SUBJECT_OFFERED_SUMMARY_KEY) REFERENCES SUBJECT_OFFERED_SUMMARY (SUB-

JECT_OFFERED_SUMMARY_KEY),
FOREIGN KEY (SUBJECT_ID) REFERENCES COURSE_CATALOG_SUBJECT_OFFERED (SUBJECT_ID)

)
Question: How many distinct subjects are being offered?
SQL: SELECT COUNT(DISTINCT SUBJECT_KEY) FROM SUBJECT_OFFERED;

<tables>
Question: <question>
SQL:

12

	Introduction
	Dataset
	Task Formulation
	Sources
	Annotation
	Statistics

	Benchmark
	Experimental setup
	Evaluation metrics
	Overall performance
	Analysis

	Error analysis
	Table retrieval analysis
	SQL generation analysis

	Discussion and future directions
	Column semantics
	Verbosity level of user questions

	Conclusion
	Ethics
	Limitations
	Prompts
	1-shot prompt for SQL generation

	Examples for error analysis
	Column mapping for vague questions

	Complexity of instance mapping

