
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACT-IN-LLM: ADAPTIVELY COMPRESSION VISION
TOKENS IN LLM FOR HIGH-RESOLUTION MULTI-
MODAL LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

High-resolution inputs empower Multimodal Large Language Models (MLLMs)
to capture intricate visual details, thereby enhancing comprehension. However, the
self-attention mechanism’s quadratic complexity poses significant computational
and memory challenges as image resolution increases, particularly with long-vision
tokens. Existing approaches generally alleviate these issues by reducing vision
tokens before feeding them into LLMs. Although efficient, this Pre-LLM com-
pression strategy fails to match the performance of models utilizing all tokens,
particularly on high-resolution benchmarks. Our experiments reveal that the perfor-
mance gap arises from this strategy’s limitation in selecting important visual tokens
in early LLM layers, leading to the irretrievable loss of critical information. To
overcome these challenges, we propose a new strategy that Adaptively Compresses
vision Tokens within different LLM layers, named ACT-IN-LLM. Our innovative
approach retains all tokens throughout the layers to ensure no vital information
is lost while compressing key and value tokens in the self-attention mechanism,
to reduce computational costs. The layer-wise compression of ACT-IN-LLM is
guided by the interaction information between vision and text tokens, leading
to more accurate selections. Our theoretical analysis and extensive experiments
demonstrate the effectiveness of ACT-IN-LLM, showing a 6.3% improvement
over existing token compression techniques. It also achieves the competitive per-
formance with non-compression methods, while reducing training/inference time
by ∼ 20% and vision tokens by ∼ 60%.

1 INTRODUCTION

High-resolution token Low-resolution token Text token

LLM Layers

Compression

LLM Head
partial

LLM Layers

(a) Pre-LLM Compression (b) Ours

LLM Head
full

dynamicCompression
text-guided

Figure 1: (a) Pre-LLM Compression Strat-
egy reduces the number of visual tokens before
passing them into the LLM, inevitably leading
to information loss. (b) Our ACT-IN-LLM re-
serves full tokens for final auto-regressive predic-
tion, while adaptively compressing vision tokens
within the specific LLM layers.

In recent years, large language models
(LLMs) like GPT-4 (Achiam et al., 2023)
and LLaMA (Dubey et al., 2024) have driven
advancements in multimodal LLMs (MLLMs),
which integrate visual and textual data for better
cross-modal understanding (Li et al., 2023c;
2024a; Bai et al., 2023; Zhang et al., 2023; Cheng
et al., 2024; Ding et al., 2024). However, MLLMs
often process low-resolution visual inputs,
limiting fine-grained scene comprehension. While
efforts to support high-resolution inputs (Li et al.,
2024d; Xu et al., 2024; Li et al., 2024a) exist,
they face substantial computational and memory
challenges due to the quadratic complexity of
self-attention (Vaswani, 2017).

To tackle these challenges, existing methods primarily rely on Pre-LLM (Xu et al., 2024; Chen et al.,
2024a; Liu et al., 2024c; Huang et al., 2024; Cha et al., 2024) or Early-LLM (Chen et al., 2024a)
compression, where the number of visual tokens is reduced before being fed into the LLM or in the
early layers of the LLM. This strategy helps lower the computational load and offers competitive

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b)

Layer 1

hr lr txt hr lr txt
Layer 17

hr lr txt

High-resolution Benchmark

~ 15% gap

~ 3% gap

General Benchmark
Layer 9

hr lr txt

Layer 25

Figure 2: Drawbacks of the early compression. (a) Performance vs. Vision Token Dropping
Layers. The x-axis is the layer index dropping vision tokens, with 0 indicating before the LLM,
and the y-axis is the average performance across benchmarks. We observe that dropping tokens in
earlier layers significantly reduces performance on high-resolution tasks by up to 15%. (b) Attention
Scores Across Layers. ‘hr’, ‘lr’ and ‘txt’ mean the high-resolution, low-resolution and text tokens
respectively. We observe that early-stage token selection is challenging as low-attention tokens in
early layers may gain importance later (see red dotted boxes).

performance in general MLLM tasks. However, as shown in Table. 2, there is a notable performance
gap (∼ 9%) on high-resolution benchmarks when compared to models that retain all visual tokens.

To investigate this performance gap, we conduct experiments to compare the average performance
of compressing vision tokens at different LLM layers on high-resolution and general benchmarks
respectively (see Section F.1 for details). We compare four methods: full (all tokens retained), average
(dropped based on averaged attention scores), separate (current layer scores, i.e., FastV (Chen et al.,
2024a)), and last (final layer scores). In each method, once compression is applied in the specific
layer, only 50% of the visual tokens are retained in subsequent layers. Fig.2 (a) shows that the
performance gap widens when compression occurs in earlier layers. Additionally, the visualization
of the average attention weights of LLaVA-1.5-HD (Fig.2 (b)) shows that vision tokens receiving
low attention in early layers become critical in the latter, showing the risks of compressing tokens
prematurely. In summary, existing Pre-LLM approaches compress vision tokens too early, leading to
irreversible performance degradation, potentially due to: (1) early-layer’s insufficient interaction
between vision and text tokens, (2) varying token importance across layers, making it difficult to
decide which tokens to drop, and (3) the inability to recover lost information in latter layers.

To address the above drawbacks, we propose a novel compression strategy, ACT-IN-LLM, which
Adaptively Compresses vision Tokens within different LLM layers. Unlike existing methods that
discard tokens prematurely, ACT-IN-LLM retains all tokens across layers, ensuring an implicit
error correction mechanism that mitigates the loss of critical information (see Fig. 1 (b)). To reduce
computational and memory overhead, ACT-IN-LLM uniformly integrates an adaptive compression
module (ACM) into various transformer decoder layers, selectively compressing only the key and
value tokens within the self-attention mechanism. Specifically, ACM utilizes the final token in each
layer’s hidden states— which encodes the complete multimodal context— to guide visual token
compression, ensuring more accurate token selection, compared with early-layer selection.

We theoretically demonstrate that this key-value compression used in ACT-IN-LLM provides a
better low-rank approximation of the full-token self-attention mechanism compared to the query or
all compression used in existing vision token compression techniques. Extensive experiments on
high-resolution and general benchmarks, across LLMs of varying sizes (0.5B to 7B parameters), show
that ACT-IN-LLM achieves a 6.2% improvement over existing token compression techniques, and
competitive performance compared with non-compression models while reducing training/inference
time by ∼ 20% and vision tokens by ∼ 60%.

2 RELATED WORKS

Multimodal Large Language Models. Advanced Large Language Models (LLMs) like GPT-
4 (OpenAI, 2023), Mistral (Jiang et al., 2023), and Gemini (Team et al., 2023) excel in reasoning,
while Multimodal LLMs (MLLMs), such as LLaVA (Liu et al., 2023b), MiniGPT-4 (Zhu et al.,
2023), and QwenVL (Bai et al., 2023), extend this to images, though limited resolution hampers
fine-grained visual understanding. To address this, splitting images into patches (Bavishi et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2023; Li et al., 2023a) and up-resizing methods (Bai et al., 2023) improve resolution, though they
introduce issues like poor visual representation and positional encoding disruptions (Radford et al.,
2021). Dual-branch methods add high-resolution branches but increase complexity and training
data requirements (Hong et al., 2024; Ding et al., 2023). Cropping strategies offer a more efficient
approach by dividing high-resolution images into patches without increasing model parameters (Li
et al., 2024d; Xu et al., 2024; Huang et al., 2024). However, increasing image resolution leads to
higher computational costs due to the quadratic complexity of self-attention (Vaswani, 2017). This
paper is aimed at developing efficient high-resolution MLLMs.
Vision Token Compression in MLLMs. Vision Token Compression in MLLMs. Existing methods
for vision token compression can be categorized into interaction-based and pre-LLM strategies.
Interaction-based approaches (Hong et al., 2024; Li et al., 2024b; Tong et al., 2024) process low-
resolution tokens in the LLM while using a high-resolution branch with lightweight cross-attention
for feature interaction. However, these methods fail to fully align high-resolution visual inputs with
the LLM’s low-resolution and text representations, requiring additional parameters and training
data (Huang et al., 2024; Yao et al., 2024). Pre-LLM approaches, on the other hand, reduce tokens
before entering the LLM, employing either parameterized (Bai et al., 2023; Li et al., 2023c; Cha et al.,
2024; Xu et al., 2024) or non-parameterized (Liu et al., 2024a; Yao et al., 2024; Shang et al., 2024)
techniques. Recently, Early-LLM methods such as FastV (Chen et al., 2024a) discard tokens during
early LLM layers at inference but risk losing critical information due to suboptimal token selection.
In contrast, ACT-IN-LLM introduces adaptive token compression at multiple LLM layers, retaining
all tokens for final predictions to minimize information loss. Theoretical analysis and experiments
demonstrate that ACT-IN-LLM outperforms existing approaches in efficiency and effectiveness.
Efficient Attention in Transformer Models. To reduce the computation and memory costs associ-
ated with the self-attention mechanism in Transformers, various alternative attention mechanisms
have been proposed (Child et al., 2019; Zaheer et al., 2020; Wang et al., 2020; Choromanski et al.,
2020). For instance, Sparse Transformer (Child et al., 2019) employs fixed sparse attention pat-
terns to reduce complexity. BIGBIRD (Zaheer et al., 2020) extends this approach by combining
multiple attention patterns, including window, random, and global attention, for further efficiency.
Reformer (Kitaev et al., 2020) replaces traditional self-attention with locality-sensitive hashing (LSH)
to reduce computation costs. Similarly, Axial Transformer (Beltagy et al., 2020) applies attention
along single axes of input tensors, significantly lowering the computational burden. PvT-V2 (Wang
et al., 2022) leverages the average-pooling to reduce the tokens of the key and value. All of the above
methods primarily target single-modal tasks. In contrast, our work focuses on reducing vision tokens
based on the multi-modal information in MLLMs for high-resolution multimodal tasks.

3 METHOD

3.1 OVERALL FRAMEWORK

As illustrated in Fig. 3, ACT-IN-LLM comprises two components: (i) a vision/text tokenizer that
processes an image and a question to generate concatenated vision-text embeddings, and (ii) a large
language model (LLM) that utilizes these embeddings to predict responses.
Vision/Text Tokenizer. The input image is processed using a cropping strategy (Li et al., 2024a;d),
producing multiple slices and a low-resolution slice. The original image is resized and padded into a
low-resolution slice. To capture fine-grained details, the high-resolution image is dynamically split
into slices, with a maximum slice count determined by the base resolution. This allows the image to
automatically select an optimal bounding box by calculating the required rows and columns. These
slices, along with the low-resolution slice, are then processed through a shared vision tokenizer like
CLIP-ViT (Radford et al., 2021), to produce slice-wise vision embeddings. These embeddings are
concatenated, with a connector such as a linear layer (Li et al., 2024a) generating the aligned vision
representation Hvis

0 ∈ RN×D, where N is the total number of vision tokens and D is the embedding
dimension. Concurrently, we use the LLM’s tokenizer to convert the question into text embeddings,
denoted as Htxt

0 ∈ RL×D, with L representing the number of text tokens. Finally, the visual and text
embeddings are concatenated into H0 = [Hhr

0 ,H
lr
0,H

txt
0 ] ∈ R(N+L)×D for the LLM.

Large Language Model (LLM). Existing LLMs, such as Qwen2 (Yang et al., 2024),
LLaMA3 (Dubey et al., 2024) generally consist of several Transformer decoder layers, each of
which consists of the multi-head self-attention layer (MSA) and feed-forward network (FFN). The
MSA is the critical component of the decoder layer to learn the dense relation between tokens. For-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

×𝑳!Early Layer Middle Layer Latter Layer

LM
H
ead

R
esponse

Vision/Text Tokenizer

Reduce Ratio 𝒓!

Questions

Down-sample

C
onnector

M
H
A

FFN

𝐊" !

𝐕"!

A
C
M𝐇!

Reduce Ratio 𝒓"

M
H
A

FFN

𝐊" 𝒋

𝐕"𝒋

A
C
M𝐇𝒋

Reduce Ratio 𝒓#

M
H
A

FFN

𝐊"𝒑

𝐕"𝒑

A
C
M𝐇𝒑

𝐇𝟎

Large Language Model
×𝑳" ×𝑳#

High-resolution token MHA: Multi-head self-attentionLow-resolution token Text token FFN: Feedforward network

𝐐𝒊 𝐐𝒋 𝐐𝒑

Figure 3: Framework of ACT-IN-LLM. Our ACT-IN-LLM framework follows the general slicing-
based MLLMs (Liu et al., 2024b), while applying the adaptive compression module (ACM) at a series
of decoder layers of the LLM for computation efficiency, dynamically reducing key/value tokens
before the multi-head self-attention (MHA) block, while preserving all query tokens.

mally, given the hidden-states Hi ∈ R(N+L)×D from the i-th layer of the LLM, the single attention
head h ∈ {1, 2, ...,H} can be defined as following:

headi,h = Attention(Qi,h,Ki,h,Vi,h,Mi) = softmax

(
Qi,hK

⊤
i,h√

D
+Mi

)
︸ ︷︷ ︸

Ai,h

Vi,h, (1)

where Qi,h = WQ
i,hHi, Ki,h = WK

i,hHi and Vi,h = WV
i,hHi are the query, key and value matrices,

WQ
i,h/W

K
i,h ∈ RDk×D,WV

i,h ∈ RDv×D are the learnable projection matrices, Mi is the casual
mask for the i-th layer. Ai,h refers to the attention weight of the the h-th head in the i-th deocder
layer. For clarity, we will not differentiate between Dk, Dv and D, and just use D in the following.
Then the MSA can be represented as:

MSA(Q,K,V) = Concat(head1, head2, ..., headi,h)WO
i , (2)

where WO
i ∈ RHDv×D is the learnable projection matrix, Concat indicates the concatenation

operation. The computational complexity for processing all tokens is O((N + L)2 ×D).

Previous Pre-LLM approaches (Liu et al., 2024b) generally reduce the vision tokens before the LLM
(Fig. 1 (a)) leading to several drawbacks as shown in Fig. 2. Differently, our ACT-IN-LLM use the
adaptive token compression (ACM) to reduce vision tokens of the key and value within the MSA
layer of the LLM, shown as follows:

headi,h = Attention(Qi,h,Ki,h, {Vi,h), Ki,h,Vi,h} = ACM({Ki,h,Vi,h},Ai−1), (3)

where Ai−1 is the averaged attention weight from the i − 1-th layer, {Ki,h,Vi,h} ∈ R(M+L)×D,
where M is the number of compressed vision tokens, satisfying M << N . In this way, we
can reduce the computational complexity of MSA from O((N + L)2 × D) of the full tokens to
O((N + L)× (M + L)×D).

3.2 ADAPTIVE COMPRESSION MODULE

3. Compression

2. Top Selection

Last Token

𝐀!"#

1. Text-guide
information

𝐊!/𝐕!

𝐊$ !/𝐕$!
Attention Weight

(b) Casual Mask(a) ACM

High-resolution token Low-resolution token Text token

Figure 4: (a) Adaptive compression module (ACM)
leverages three steps to compress vision tokens of the
key and value at the i-th layer. (b) Sampled Casual
Mask for the self-attention layer after ACM.

As shown in Fig. 2, reducing tokens before
the LLM has significant drawbacks, includ-
ing the absence of text-guided compression,
challenges in selecting which tokens to re-
duce, and the risk of losing important infor-
mation. To address these issues, our Adap-
tive Compression Mechanism (ACM) fo-
cuses on two key objectives: (i) preserving
critical vision tokens to prevent informa-
tion loss, and (ii) dynamically compressing
tokens based on layer-wise vision-text re-
lations. To achieve the first objective, we
retain all query tokens Qi across layers,
ensuring an inherent error correction mechanism that mitigates the permanent loss of valuable
information. For the second objective, our ACM consists of three steps as shown in Fig. 4 (a).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Text-guided information extraction. We utilize attention weights from the previous layer to guide
vision token compression, since higher attention weights typically indicate greater importance in
the final output (Vaswani, 2017). To leverage the textual information to guide the compression, we
focus on the last row of the attention weight, Ai−1[N + L, :], which captures the significance of all
previous tokens in relation to the last token. We extract the relevant elements for high-resolution and
low-resolution visual tokens as follows:

ahr
i−1 = Ai−1[N + L, 0 : N hr], alr

i−1 = Ai−1[N + L,N hr : N lr], (4)

where N hr and N lr denote the counts of high-resolution and low-resolution tokens, satisfying N hr +
N lr = N .

Top Selection. To retain critical vision tokens, we select the top N hr/rhr
i and N lr/rlr

i values from
ahr
i−1 and alr

i−1, respectively:

shr = Top(ahr
i−1, r

hr
i ), slr = Top(alr

i−1, r
lr
i ), (5)

where shr = {s1, s2, ..., sN hr/rhr
i
} represents the indices of the top N hr/rhr

i values.
Vision token Compression. After obtaining the indices, we sampling the Ki/Vi and the casual
mask Mi based on s = [shr, slr], which can be formulated as:

Ki = Ki[s, :], Vi = Vi[s, :], Mi = Mi[:, s], (6)

where Ki/Vi ∈ R(M+L)×D, Mi ∈ R(N+L)×(M+L) is the sampled casual mask (see the example
in Fig. 4 (b)), M = N hr/rhr

i +N lr/rlr
i . Finally, the original self-attention in Eq. 1 can be performed

as Attention(Qi,h,Ki,h,Vi,h,Mi).

3.3 ARCHITECTURE CONFIGURATIONS

We incorporate the ACM into the decoder layers of the LLM at three stages in a hierarchical way, i.e.,
ri < rj < rp, where ri, rj and rp are the sampling ratios in the early, middle and latter layers, based
on the observation that the attention weights in the early layers are much dense than the latter ones
(see Fig. 2 (b)). Note that for efficiency, we keep the vision tokens index to be identical in each stage.
The analysis of different configurations for ri/rj/rp is provided in Table 4a. We uniformly select the
∼ 70% layers among the early, middle and latter layers within LLM decoder layers to apply ACM,
for the best performance and efficiency trade-off; see Table 4c and Table 5.

4 FORMULATION AND ANALYSIS OF VISION TOKEN COMPRESSION

In this section, we will theoretically show the superiority of our proposed ACM. To this end, we
first give a unified formulation of different vision token compression methods in the self-attention
mechanism in Section 4.1. Then, we show that ACM is one low-rank approximation of the original
self-attention with full tokens under the specific assumption in MLLMs in Section 4.2. Finally, we
prove that our ACM provides a better low-rank approximation of the full self-attention mechanism
compared to existing vision token compression techniques in Section 4.3.

4.1 UNIFIED FORMULATION

For clarity, we omit the layer index i and head index h of Eq. 1 in this section. Formally, the
hidden states can be denoted as H ∈ R(N+L)×D, where N and L are the number of the vision
tokens (including high-resolution and low-resolution) and the text tokens; see detailed formulation in
Section 3.1. Note we omit the system prompt for clarity in our paper. Then, we present a unified and
simplified formulation of these different approaches, i.e., presenting the vision compression process
as a compression matrix:

C ·H = C · [V; T], C ∈ R(M+L)×(N+L), (7)

where · is the matrix multiplication, M is the number of the vision tokens after compression, C is the
compression matrix, which is defined as:

C =

(
Cvis O1

O2 I

)
, (8)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b)
Figure 5: (a) Low-rank degree. The x-axis represents the layer index in the LLM and the y-axis
is the corresponding LDR (defined in Eq. 15). The high low-rank degree of vision tokens exists in
both Vicuna-7b (left) and Qwen2-0.5B (right), and high-resolution tokens show more low-rank than
low-resolution ones. (b) Average attention score. The x-axis represents the layer index in the LLM
and the y-axis is the average attention score. Vision tokens receive small attention on average and
high-resolution tokens present less attention than low-resolution ones.

where Cvis ∈ RM×N is the compression operation for vision tokens, I ∈ RN×N is the identity
matrix, O1 ∈ RM×L and O2 ∈ RL×N are zero matrices.

Then, the vision token compression in self-attention can be represented as:

Com(CQ,CK ,CV ) = softmax

(
(CQQ)(CKK)⊤√

D

)
·CV V = softmax

(
CQA(CK)⊤

)
·CV V,

(9)
where CQ, CK and CV are the compression matrices with the form of Eq. 8 for the query, key and
value respectively.

For simplicity, we omit the causal attention mask M as it does not affect the following analysis. A
complete formulation can be found in Eq. 14 of the Appendix.

Using this formulation, i.e., Eq. 9, our ACM can be expressed as Com(I,CK
i ,CV

i ), where i indi-
cates that performing compression in the i-th decoder layer of the LLMs. Similarly, the Pre-LLM
compression methods can be represented as Com(CQ

i ,C
K
i ,CV

i ).

4.2 LOW-RANK APPROXIMATION

In this section, we would prove that ACM is the low-rank approximation of the self-attention with
full tokens based on the formulation of Eq. 9. Note that all proofs of the theorems in this section can
be referred to the Appendix.

We first demonstrate that the attention weight of vision tokens, i.e., Avis, is low-rank:

Theorem 1. For matrix A, and any column vector v of matrix V, there there exists a matrix Ã, such
that:

Pr
(∥∥∥Ãv −Av

∥∥∥ ≤ ϵ ∥Av∥
)
> 1− o(1) and rank(Ã) = Θ(log(N)), (10)

where the sub-matrix Ãvis of Ã is low-rank.

We also conduct experiments to demonstrate that Avis show a higher degree of low-rankness than text
tokens in Fig. 5 (a). For more details of this experiment and proof of Eq. 19, refer to the Appendix.

Assumption 1. In the attention weight of MLLMs, vision tokens receive much less attention than text
tokens.

To verify this assumption, Fig. 5 (b) compares the average attention scores of vision and text tokens,
showing that text tokens receive significantly more attention (∼ 13×) than vision tokens.

Based on the above theorem and assumption, we show that ACM, i.e., Com(I,CK ,CV ), can
approximate the Av:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 2. For the attention weight A and the value V, there there exists matrices CK and CV in
the formulation of Eq. 8, such that:

Pr
(∥∥softmax

(
A(CK)⊤

)
CV V − softmax(A)V

∥∥ ≤ ϵ ∥softmax(A)V∥
)
> 1− 2e−(ϵ

2−ϵ3)M/4.
(11)

4.3 COMPARISON OF DIFFERENT VISION TOKEN STRATEGIES

Method Formulation Complexity per Layer

Full Token Com(I, I, I) O((N+L)2D)
Pre-LLM/Early-LLM Com(CQ

i ,C
K
i ,CV

i ) O((M+L)2D)
FlexAttention Com(CQ, I, I) O((M+L)(N+L)D)
Ours Com(I,CK

i ,CV
i ) O((N+L)(M+L)D)

Table 1: Comparison of formulation and computation
complexity of self-attention operation. N , M , L are the
number of the original vision tokens, vision tokens after
compression and text tokens, respectively. See formula-
tion definition in Eq. 9.

In this section, we show that our
vision token compression strategy
i.e., Com(I,CK ,CV ) is a better
approximation of full-token self-
attention Com(I, I, I) than existing
strategies, such as Pre-LLM or
Early-LLM (FastV) (Li et al., 2024a;
Chen et al., 2024a) compression
Com(CQ,CK ,CV ) and FlexAtten-
tion (Li et al., 2024b) Com(CQ, I, I):

Theorem 3. For any row vector a of A and any column vector v of matrix V, any matrices CQ, CK

and CV in the formulation of Eq. 8, if Theorem 2 holds, then we have:

Pr(∥Com(I,CK ,CV )︸ ︷︷ ︸
ACM

−Com(I, I, I)︸ ︷︷ ︸
Full

∥ < ∥Com(CQ,CK ,CV )︸ ︷︷ ︸
Pre-LLM/Early-LLM

−Com(I, I, I)︸ ︷︷ ︸
Full

∥) > 1−o(1) (12)

Pr(∥Com(I,CK ,CV )︸ ︷︷ ︸
ACM

−Com(I, I, I)︸ ︷︷ ︸
Full

∥ < ∥Com(CQ, I, I)︸ ︷︷ ︸
FlexAttention

−Com(I, I, I)︸ ︷︷ ︸
Full

∥) > 1− o(1) (13)

The detailed formulation and complexity comparison with different methods is shown in Table 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to prove the effectiveness of our proposed ACT-
IN-LLM. Specifically, we compare our methods with existing vision token approaches under the
same setting in Section 5.1. Then, we show that ACT-IN-LLM can be a plug-and-play method to be
applied to different LLMs with different scales in Section 5.2. After that, we demonstrate that our
scaling-up ACT-IN-LLM can achieve competitive performance compared with the SOTA MLLMs
in section 5.3. Finally, the ablation study of our proposed modules are presented in Section 5.4 for
further in-depth analysis.

5.1 COMPARISON WITH DIFFERENT COMPRESSION METHODS

OOM

672 pix 896 pix448 pix

Figure 6: Trade-off of different
methods. ’OOM’ indicates the out-
of-the-memory.

Experiment setting. To ensure a fair comparison with exist-
ing vision token compression methods, we maintain all other
settings (e.g., epochs, training dataset, learning rate, cropping
strategies, number of slices from high-resolution images, etc.)
constant, varying only the method of vision token compres-
sion to compare their respective performances. Specifically, we
utilize CLIP-ViT-L/14-224px as the vision encoder and Vicuna-
7B-v1.5 as the LLM. We adopt a two-stage training approach
comprising a pre-training stage and an instruction supervised
(SFT) fine-tuning stage, following the training parameters out-
lined in (Liu et al., 2023a). The number of slices is set to four,
consistent with LLaVA-1.5-HD (Liu et al., 2023a). All methods
ultimately compress visual tokens of high-resolution slices to
∼ 256 for fairness.
Training dataset. For pre-training, we follow (Liu et al.,
2023b) and use a 558K subset of the LAION-CC-SBU dataset with BLIP captions (Li et al.,
2023c). For supervised fine-tuning, in addition to the original 665K data from LLaVA, we gather

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Efficiency General High-ResolutionModel Times(ms) Memory(GB) SEED POPE MME VQA-text ChartQA DocVQA InfoVQAAverage

Full 621(100.0%) 19.9(100.0%) 64.2 85.3 1466.7 60.5 49.0 46.5 35.0 48.0

Q-former 507(81.6%) 18.6(93.0%) 61.4 84.2 1432.5 53.6 21.8 21.6 25.4 30.6
Avg-pooling 461(74.3%) 18.1(90.7%) 61.5 85.2 1402.7 56.5 37.8 34.9 27.4 39.1
FlexAttn 505(81.3%) 18.6(93.4%) 60.0 87.3 1442.9 53.6 27.3 24.3 24.6 32.5
LLaVA-UHD 470(75.7%) 18.3(91.9%) 60.5 85.8 1407.5 54.2 33.2 29.9 26.9 36.0
C-Abstractor 492(79.2%) 18.2(91.6%) 62.1 86.6 1448.1 56.7 36.4 31.3 26.2 37.6
FastV 499(80.3%) 18.3(94.0%) 61.9 86.7 1412.9 58.1 35.0 38.6 27.7 39.9
Ours 515(83.0%) 18.8(94.0%) 63.5 87.6 1480.3 58.5 46.1 45.2 31.6 45.4 +5.5

FastV w/o train 499(80.3%) 18.3(94.0%) 61.5 85.8 1412.9 57.8 33.5 37.3 26.2 38.7
Ours w/o train 515(83.0%) 18.8(94.0%) 63.2 87.1 1443.2 58.3 43.2 42.8 29.8 43.5

Table 2: Comparison with SOTA vision token compression methods. The ratios of time and
memory cost for different methods relative to the full method are highlighted in (green). All models
are trained in the same setting. Gray means the model without vision token compression. ‘w/o train’
means the direct using our method without training. Bold means the best value and Underline mean
the second-best value. The number in blue indicates the difference to the prior state of the art.

additional public datasets from high-resolution benchmarks, including ChartQA (Masry et al., 2022),
DocVQA (Mathew et al., 2021), and InfoVQA (Mathew et al., 2022), yielding a total of 774K data.
Evaluation dataset. We evaluate different methods on both high-resolution benchmarks including
VQA-text(Singh et al., 2019), ChartQA val set (Masry et al., 2022), DocVQA val set (Mathew
et al., 2021), InfoVQA val set (Mathew et al., 2022), and general multimodal benchmarks including
SEED (Li et al., 2023b), POPE (Li et al., 2023d), MME (Fu et al., 2023).
Results. We compare our method with state-of-the-art pre-LLM approaches (e.g., Q-former (Li et al.,
2023c), Avg-pooling (Li et al., 2024a), LLaVA-UHD (Xu et al., 2024), and C-Abstractor (Cha et al.,
2024)) and interaction approaches (e.g., FlexAttention (Li et al., 2024b)), as well as FastV (Chen
et al., 2024a). From Table 2, our method demonstrates a superior trade-off compared to existing
approaches, e.g., achieving 82.96% of the single-forward time of the full tokens while attaining
45.35% average performance on high-resolution benchmarks, outperforms 5.5% over the previous
SOTA. Without training, our method can also outperform other vision token compression approaches
even if they are trained.
Furthermore, we analyze the trade-offs of various vision token compression approaches by reporting
average performance on high-resolution benchmarks alongside the single-example forward pass time
at different input resolutions, executed on one V100 GPU. As shown in Fig. 6, our method demon-
strates a superior trade-off, particularly as image resolution increases, indicating its effectiveness
in balancing performance and efficiency, around 65% times compared with the full model while
achieving the competitive performance.

5.2 SCALING UP ACT-IN-LLM

1.2M
0.7M
0.5M

Data Size

Figure 7: Effect of different model
and data sizes.

Experiment setting. This section investigates whether
our ACT-IN-LLM performance improves with increasing
model size and SFT dataset size. We employ the pre-
trained InternViT-300M (Chen et al., 2024b) as our vision
encoder, evaluating various scale LLMs (Qwen2-0.5B (Yang
et al., 2024), Phi3-3B (Abdin et al., 2024), and IntermLM2-
7B (Cai et al., 2024)) alongside SFT data sizes of 0.5M ,
0.7M , and 1.2M . Average performance on high-resolution
benchmarks is reported in Fig. 7.

Impact of LLM Scale. As illustrated in Fig.7, our ACT-IN-
LLM shows consistent improvement with increasing model
size across different SFT data scales. For example, with
0.7M SFT data, ACT-IN-LLM(0.5B) achieves an average
score of 54.58%, while ACT-IN-LLM(3B) reaches 67.00%, resulting in a 6.23% gain when scaling
from 3B to 7B.

Impact of SFT Data Size. Fig.7 also indicates that training with larger SFT datasets enhances
ACT-IN-LLM performance across various LLM sizes. Specifically, increasing from 0.5M to 0.7M

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Max Data General High-ResolutionModel TokensV size SEED GAQ POPE MME VQA-text ChartQAtest DocVQAtest InfoVQAtest AVG
Without Vision Token Compression

LLaVA-Next 2880 760K 72.7 65.2 - 1519 64.9 69.5 72.6 -
Mini-Gemini-HD 2880 1.5M 73.2 64.5∗ 86.0∗ 1546 68.4 53.5∗ 56.1∗ 39.5∗ 53.4∗

LLaVA-Onevision 7290 4.8M - - - 1580 - 80.0 90.2 70.7 -
InternVL2 3072 >5M 70.7 63.2 86.9 1648 77.4 83.3 91.6 74.8 81.8

With Vision Token Compression or ≤ 1k tokens
LLaVA-FlexAttn ∼576 665K 62.8∗ 62.2 85.9 1479 48.9 - - - -
UReader ∼841 - - - - - 57.6 59.3 65.4 42.2 56.1
TextMonkey 768 409K - - - - 65.9 65.5 71.5 28.2 57.8
DOCOWL2 324 6.4M - - - - 66.7 70.0 80.7 46.4 65.9
Cambrian-1 576 10M - - - - 71.7 73.3 77.8 - -
ACT-IN-LLM (Ours) ∼1K 1.2M 71.3 64.4 86.1 1523 71.4 77.3 81.0 55.9 71.4

Table 3: Comparison with the stat-of-the-art MLLMs. ‘TokensV ’ means the vision token numbers.
The LLM size of all models is around 7B. Within each group, the best and the second-best values are
marked in Bold and Underline. ∗ means the results reproduced by ours using official checkpoints.

yields approximately 2% improvement, while moving to 1.2M data further boosts performance by
around 6% relative to 0.7M data.

In summary, as both model size and SFT data increase, our method consistently achieves significant
gains, indicating its potential applicability for training larger-scale models and datasets.

5.3 STATE-OF-THE-ART COMPARISON

Our ACT-IN-LLM utilizes the 7B LLM trained on 1.2M SFT data, achieving the best performance
as detailed in Section 5.2. We compare our model against state-of-the-art (SOTA) MLLMs, including:
(i) MLLMs without vision token compression: LLaVA-NeXT (Liu et al., 2024b), Mini-Gemini-
HD (Li et al., 2024c), LLaVA-Onevision (Li et al., 2024a), and InternVL2 (Chen et al., 2024b) and
(ii) MLLMs with vision token compression or the vision tokens ≤ 1K: LLaVA-FlexAttn (Li et al.,
2024b), UReader (Ye et al., 2023), Cambrian-1 (Tong et al., 2024), TextMonkey (Liu et al., 2024c)
and DOCOWL2 (Hu et al., 2024).

Table 3 summarizes the performance of different methods alongside the maximum number of vision
tokens and STF data sizes. From the table, we can observe that our ACT-IN-LLM obtains the
SOTA performance on both general and high-resolution benchmarks among the MLLMs in the
second group. Even compared with the MLLMs in the first group those using exceed 3K tokens,
our ACT-IN-LLM achieves 87.2% of InternVL2’s performance on high-resolution benchmarks
while utilizing only 32.8% of the vision tokens and less than 24% of the SFT data, highlighting its
efficiency.

5.4 ABLATION STUDY

In this section, we evaluate the effectiveness of the Adaptive Compression Module (ACM), a pivotal
component of ACT-IN-LLM. Using the baseline configuration outlined in Section 5.1, our ablation
study addresses three critical aspects: (i) compression ratios—quantifying vision token reduction,
(ii) compression implementation methods—strategies for token compression, and (iii) compression
layers—optimal layers for token reduction.

Compression Ratios. Compression ratios dictate the number of vision tokens reduced, specifically
characterized by rhr

i and rlr
i , which represent the reduction ratios for high-resolution and low-resolution

tokens at layer i. We categorize the LLM layers into three types: the early layers with compression
ratio of rhr

i /r
hr
i , the middle with compression ratio of rhr

j /r
hr
j and the latter layers with compression

ratio of rhr
k /r

hr
k . To explore the best configuration of the compression ratios, our ablation study consists

of two steps. First, we maintain equal compression ratios for he high-resolution and low-resolution
vision tokens (rhr = rlr) and change r across different layer groups, i.e., plain type (ri = rj = rp)
and hierarchical type (ri ̸= rj ̸= rp). Results (rows (a) to (e) in Table 4a) indicate that a hierarchical
approach (ri < rj < rp) outperforms the plain type, aligning with the observed trend of sparser
attention in deeper layers (Fig.2(b)). Subsequently, we investigate distinct ratios for high- and low-
resolution tokens within each layer. The results from row (f) to row (i) in Table 4a demonstrate that
rhr > rlr performs better than rhr ≤ rlr, likely due to the higher low-rank nature of high-resolution
tokens (Fig. 5).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

{rhr
l /r

lr
l }l=i,j,p time general hr

plain: ri = rj = rp identical: rhr = rlr

(a) {2/2, 2/2, 2/2} 563 74.25 45.89
(b) {4/4, 4/4, 4/4} 516 74.01 44.18
(c) {8/8, 8/8, 8/8} 506 74.12 43.25
hierarchical: ri ̸= rj ̸= rp identical: rhr = rlr

(d) {2/2, 4/4, 8/8} 513 74.86 44.95
(e) {8/8, 4/4, 2/2} 513 74.42 43.35

hierarchical: ri ̸= rj ̸= rp distinct: rhr ̸= rlr

(f) {2/1, 4/1, 8/1} 531 75.02 45.11
(g) {2/2, 4/2, 8/2} 515 74.98 45.12
(h) {2/1, 4/2, 8/4} 515 75.04 45.35
(i) {2/4, 4/4, 8/4} 513 74.23 44.51

(a) Compression ratios r. The detailed definition of
{rhr

i /r
lr
i , r

hr
j /r

lr
j , r

hr
p /r

lr
p} is presented in Section 3.2.

way general hr
Attention-weight 75.04 45.35
AvgPool-1D 75.06 45.08
AvgPool-2D 74.12 43.56
Learnable Projection 74.07 42.21
Pre-LLM 72.28 39.15

(b) Compression ways. ‘Pre-LLM’: the best
Pre-LLM approaches in Table 2.

layer postions general hr
early 73.51 42.33
middle 74.68 44.08
latter 7430 44.29
uniform 75.04 45.35

(c) Compression layer positions. There
are totally 20 layers to compress tokens for
fair compression.

Table 4: ACM module ablation experiments. time: single-forward pass time (ms). general:
the average performance on general benchmarks. hr: the average performance on high-resolution
benchmarks. Best results and default settings are reported in Bold and gray .

Compression Ways. In Section 3.2, we use the attention weight Ai−1 from the i − 1-th layer to
guide the vision token compression in the i-th layer. We compare the attention weight with three
alternative compression methods, including (i) average-pooling 1D: directly apply average-pooling
1D to the vision tokens of Ki/Vi. (ii) average-pooling 2D: reshape the vision-tokens in Ki/Vi to be
2D, and then apply average-pooling 2D to the reshaped 2D hidden states. (iii) Learnable projection:
use a learnable projection to reduce the length of Ki/Vi.
Table 4b reports the average performance1 of general and high-resolution benchmarks of different
implementations. Results show that all different ways of ACM can outperform Pre-LLM approaches,
confirming the effectiveness of our method. Non-parameter ways consistently yield better perfor-
mance than parameterized ones (e.g., learnable projection), possibly due to the learnable methods
requiring additional training complexity of learning effective mappings to compress vision tokens.

num times general high-resolution
50% 552 75.25 46.12
60% 538 75.02 45.68
70% 515 75.04 45.35
80% 512 74.19 44.61
90% 502 74.08 43.17

Table 5: Effect of the ratio of ACM layers
among all layers. Best results and default
settings are reported in Bold and gray .

Compression Layers. We compress vision tokens in a
uniform way as described in Section 3.3, i.e., uniformly
reducing tokens in early, middle and latter layers. To ab-
late where to reduce vision tokens, we further compare
the other three types of compression layers: (i) the first
70% layers, (ii) the middle 70% layers and (iii) the last
70% layers. From Table 4c, we can find that selecting
70% layers uniformly across all layers of the LLM to
apply ACM achieves the best performance. We also
experiment with different proportions of ACM layers
applied across all LLM layers in Table 5, showing that using more ACM layers would improve the
efficiency while degrading the performance. The detailed layer indexes of incorporating ACM can be
found in the Appendix.

6 CONCLUSION

In this paper, we introduce ACT-IN-LLM, which enhances the efficiency of multimodal large
language models (MLLMs) by adaptively compressing vision tokens across different LLM layers.
Unlike prior methods that reduce vision tokens before LLM processing, our approach retains all
tokens, providing an inherent error correction mechanism to prevent the loss of critical information.
Additionally, the layer-wise compression is guided by interactions between vision and text tokens,
ensuring precise token selection. Our theoretical analysis and extensive experiments demonstrate that
ACT-IN-LLM outperforms existing vision token compression techniques. Moreover, we reveal the
potential for scaling up ACT-IN-LLM to achieve competitive performance even with SOTA MLLMs
without vision token compression.

1The MME Perception score is scaled down by 20 to align with other datasets, as (Tong et al., 2024).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rosa I Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and
random projection. Machine learning, 63:161–182, 2006.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. Introducing our multimodal models, 2023. URL https://www.adept.ai/
blog/fuyu-8b.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297, 2024.

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
projector for multimodal llm. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13817–13827, 2024.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. arXiv preprint arXiv:2403.06764, 2024a.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164, 2019.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024b.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Xinpeng Ding, Jianhua Han, Hang Xu, Wei Zhang, and Xiaomeng Li. Hilm-d: Towards high-
resolution understanding in multimodal large language models for autonomous driving. arXiv
preprint arXiv:2309.05186, 2023.

11

https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinpeng Ding, Jinahua Han, Hang Xu, Xiaodan Liang, Wei Zhang, and Xiaomeng Li. Holistic
autonomous driving understanding by bird’s-eye-view injected multi-modal large models. arXiv
preprint arXiv:2401.00988, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. arXiv preprint arXiv:2306.13394, 2023.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Anwen Hu, Haiyang Xu, Liang Zhang, Jiabo Ye, Ming Yan, Ji Zhang, Qin Jin, Fei Huang, and
Jingren Zhou. mplug-docowl2: High-resolution compressing for ocr-free multi-page document
understanding. arXiv preprint arXiv:2409.03420, 2024.

Runhui Huang, Xinpeng Ding, Chunwei Wang, Jianhua Han, Yulong Liu, Hengshuang Zhao, Hang
Xu, Lu Hou, Wei Zhang, and Xiaodan Liang. Hires-llava: Restoring fragmentation input in
high-resolution large vision-language models. arXiv preprint arXiv:2407.08706, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Kushal Kafle, Scott Cohen, Brian Price, and Christopher Kanan. Dvqa: Understanding data visualiza-
tions via question answering. In CVPR, 2018.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
A diagram is worth a dozen images, 2016.

Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document
understanding transformer. In European Conference on Computer Vision, pp. 498–517. Springer,
2022.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
high-resolution multi-modality model. arXiv preprint arXiv:2311.04219, 2023a.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023c.

Junyan Li, Delin Chen, Tianle Cai, Peihao Chen, Yining Hong, Zhenfang Chen, Yikang Shen, and
Chuang Gan. Flexattention for efficient high-resolution vision-language models. arXiv preprint
arXiv:2407.20228, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv preprint arXiv:2403.18814, 2024c.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023d.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26763–26773, 2024d.

W Johnson J Lindenstrauss and J Johnson. Extensions of lipschitz maps into a hilbert space. Contemp.
Math, 26(189-206):2, 1984.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023c.

Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma, Shuo Zhang, and Xiang Bai. Textmonkey:
An ocr-free large multimodal model for understanding document. arXiv preprint arXiv:2403.04473,
2024c.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1697–1706, 2022.

Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In The IEEE Winter Conference on Applications of Computer Vision (WACV),
March 2020.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In ICDAR, 2019.

OpenAI OpenAI. Gpt-4 technical report. Mar 2023.

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
vision-centric exploration of multimodal llms. arXiv preprint arXiv:2406.16860, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 8(3):415–424, 2022.

Ruyi Xu, Yuan Yao, Zonghao Guo, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
Maosong Sun, and Gao Huang. Llava-uhd: an lmm perceiving any aspect ratio and high-resolution
images. arXiv preprint arXiv:2403.11703, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Linli Yao, Lei Li, Shuhuai Ren, Lean Wang, Yuanxin Liu, Xu Sun, and Lu Hou. Deco: Decoupling
token compression from semantic abstraction in multimodal large language models. arXiv preprint
arXiv:2405.20985, 2024.

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. Ureader: Universal ocr-free visually-situated language understanding
with multimodal large language model. arXiv preprint arXiv:2310.05126, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Hang Zhang, Xin Li, Lidong Bing, and at al. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A FORMULATION OF SELF-ATTENTION

We can transfer Eq. 1 to the following formulation:

Self-Attn(Q,K,V) = softmax

(
(Q⊙M)(KT ⊙M)√

D

)
V, (14)

where ⊙ indicates the element-wise multiplication. Here we omit the layer and head indexes.

B LOW-RANK ANALYSIS

Experiment Setting. We use a mainstream high-resolution MLLM, the LLaVA-1.6-7B with 2× 2
high-resolution slices (), as our baseline model. Then, we randomly sample 50 samples from three
common high-resolution benchmarks, i.e., ChartQA, DocVQA and InfoVQA, as input, and obtain
the average attention weight {Ai}32i=1 across different samples, where Ai is the attention weight
of the i-th LLM layer in LLaVA-1.6-7B. For better analysis of different types of tokens, we divide
the attention weight A into three different sub-matrices : Ahr ∈ RN hr×N hr

, Alr ∈ RN lr×N lr
and

Atxt ∈ RN txt×N txt
.

Low-Rank Degree Measurement. In high-resolution MLLMs, the disparity in the number of
different types of tokens is significant., e.g., N hr >> N lr/N txt. We introduce LRD to better measure
the low-rank degrees for matrices with different sizes. Formally, we can conduct the singular value
decomposition for one attention weight matrix A, obtain its corresponding singular values R. Then,
the low-rank degree can be computed as following:

LRD = sum(Top(r ∗N sv, R))/sum(R), (15)

where Top(a, b) indicates selecting the top a singular values from b, r ∈ (0, 1) is the ratio of sampling
singular values and N sv is the number of singular values in R. In this way, LDR reflects the proportion
of the sum of the top r% singular values to the total sum of all singular values. A larger LDR indicates
a higher degree of low-rankness in the matrix, and vice versa.

C PROOF OF THEOREM 1

Proof. We first write A and v as:

A =

(
Avis A1

A2 A3

)
, v = (vvis v1) (16)

Then, Av can be represented as: (
Avisvvis +A1v1

A2vvis +A3v1

)
(17)

Similarly, Ã can be formulated as: (
Ãvisvvis + Ã1v1

Ã2ṽvis + Ã3v1

)
(18)

We can let A1v1 = Ã1v1, A2vvis = Ã2ṽvis and A3v1 = Ã3v1, then the proof of Eq. 10 can be
equal to prove that there exists a low-rank matrix Ãvis such that:

Pr
(∥∥∥Ãvisvvis −Av

∥∥∥ ≤ ϵ ∥Av∥
)
> 1− o(1) and rank(Ã) = Θ(log(N)). (19)

The main idea of the proof follows (Lindenstrauss & Johnson, 1984; Arriaga & Vempala, 2006;
Wang et al., 2020). Based on the distributional Johnson–Lindenstrauss lemma (Arriaga & Vempala,
2006), for any x ∈ R1×N ,y ∈ RN×1, we have:

Pr
(∥∥xR⊤Ry − xy

∥∥ ≤ ϵ∥xy∥
)
> 1− 2e−(ϵ

2−ϵ3)M/4, (20)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where R ∈ RN×M . After constructing a low-rank matrix Ãvis = AvisR
⊤R, for any row vector

a ∈ Avis and any column vector v ∈ V, we have:

Pr
(∥∥aR⊤Rv − av

∥∥ ≤ ϵ∥av∥
)
> 1− 2e−(ϵ

2−ϵ3)M/4. (21)

Therefore, we have:

Pr
(∥∥∥Ãvisvvis −Av

∥∥∥ ≤ ϵ ∥Av∥
)
= Pr

(∥∥AvisR
⊤Rvvis −Av

∥∥ ≤ ϵ ∥Av∥
)

≥1−
∑
a∈P

Pr
(∥∥aR⊤Rv − av

∥∥ > ϵ ∥av∥
)

>1− 2Ne−(ϵ
2−ϵ3)M/4 = 1− o(1)

(22)

D PROOF OF THEOREM 2

Proof. Based on the definition of (CK)⊤/CV (see Eq. 8), softmax
(
a((CK)⊤)

)
CV v can be

represented as:

softmax
(
avis(C

K
vis)

⊤, a1
)(CV

visvvis
v1

)
. (23)

Similarly, softmax(a)v can be presented as:

softmax (avis, a1)

(
vvis
v1

)
. (24)

Let define:
D1 = sum(exp(avis(C

K
vis)

⊤) + exp(a1)) (25)

D2 = sum(exp(avis) + exp(a1)) (26)

Then, Eq. 23 and Eq. 24 can be formulated as:

exp(avis(C
K
vis)

⊤)CV
visvvis/D1 + exp(a)v1/D1. (27)

exp(avis)vvis/D2 + exp(a)v1/D2. (28)

Then, we have:∥∥softmax
(
a(CK)⊤

)
CV v − softmax(a)v

∥∥ = ∥exp(avis(C
K
vis)

⊤)CV
visvvis/D1 − exp(avis)vvis/D2

+ exp(a)v1/D1 − exp(a)v1/D2∥
(a)
≈ ∥exp(avis(C

K
vis)

⊤)CV
visvvis − exp(avis)vvis∥

(b)

≤ ∥exp(avis(C
K
vis)

⊤)CV
visvvis − exp(avis)R

⊤Rvvis∥+ ∥exp(avis)R
⊤Rvvis − exp(avis)vvis∥

(c)

≤ (1 + ϵ)∥v∥
∥∥exp (avisC

K
vis

)
− exp(avis)R

⊤∥∥+ ∥exp(avis)R
⊤Rvvis − exp(avis)vvis∥

(d)

≤
∥∥exp(avis)R

⊤Rvvis − exp(avis)vvis
∥∥+ o(∥ exp(avis)∥∥vvis∥)

(e)

≤ ϵ∥ exp(avis)∥∥vvis∥+ o(∥ exp(avis)∥∥vvis∥)
(29)

The above, step (a) is based on the Assumption 1, i.e., sum(exp(a1)) >> sum(exp(avis)) and
sum(exp(a1)) >> sum(exp(avis(C

K
vis)

⊤)). The step (b) is based on the triangle inequality, and the
step (c) leverages the Cauchy inequality and a version of JL Lemma from (Arriaga & Vempala,
2006). The step (d) utilizes the fact that exponential function is Lipchitz continuous in a compact
region (Wang et al., 2020). The step (e) is based on Eq. 22. Applying the results in Eq. 29 to any row
vector a of A and any column vector v of matrix V, we can prove the Theorem 2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E PROOF OF THEOREM 3

Proof. The main idea of the proof is based on the Theorem 2 and the triangle inequality.
Based on the definition of Eq. 9, the Pre-LLM compression strategy can be formulated as
Com(CQ, (CK),CV ) = softmax

(
CQA(CK)⊤

)
· CV V and our ACM can be presented as

Com(I, (CK)⊤,CV ) = softmax
(
A(CK)⊤

)
· CV V. In the following, we use Pre-LLM and

ACM to represent the detailed formulation for clarity. Then, for any CQ,CK , and CV , we have:
∥ACM− softmax(A)V∥
(a)

≤ ∥ACM−Pre-LLM∥+ ∥Pre-LLM− softmax(A)V∥
(b)
< ∥Pre-LLM− softmax(A)V∥

(30)

The step (a) is based on the the triangle inequality and the step (b) is based on the fact that
∥ softmax

(
CQA(CK)⊤

)
· CV V − softmax

(
A(CK)⊤

)
· CV V∥ > 0, since generally we have

CQA(CK)⊤ ̸= A(CK)⊤. The proof of Eq. 13 is similar to Eq. 30.

F MORE EXPERIMENTAL DETAILS AND RESULTS

F.1 DETAILS OF EARLY COMPRESSION LIMITATION EXPERIMENTS

Here, we give more details about the experiment settings for Fig. 2. Specifically, we utilize CLIP-ViT-
L/14-224px as the vision encoder and Vicuna-7B-v1.5 as the LLM. We adopt a two-stage training
approach comprising a pre-training stage and an instruction supervised (SFT) fine-tuning stage,
following the training parameters outlined in (Liu et al., 2023a). The number of slices is set to four,
consistent with LLaVA-1.5-HD (Liu et al., 2023a). We test the trained model on four high-resolution
benchmarks, i.e., VQA-text(Singh et al., 2019), ChartQA val set (Masry et al., 2022), DocVQA val
set (Mathew et al., 2021), InfoVQA val set (Mathew et al., 2022), and three general multimodal
benchmarks including SEED (Li et al., 2023b), MMBench (Liu et al., 2023c), POPE (Li et al., 2023d).
To explore the impact of dropping vision tokens at different layers within the LLM, we select a
specific layer from the pre-trained model, discard 50% of the original vision tokens at that layer, and
retain only these 50% in all subsequent layers. We sample a total of four layers at intervals from early
to latter across all 32 layers of the LLM, specifically the 5th, 15th, 25th, and 30th layers. Additionally,
we also include the 0th layer, which performs token dropping before the vision tokens are input into
the LLM. We select three types of token-dropping ways to compare with the non-compression model.
(i) average: dropping vision tokens based on averaged attention scores from all of 32 layers of the
Vicuna-7B-v1.5; (ii) separate: dropping vision tokens based on averaged attention scores from the
previous layer, and (iii) last: dropping vision tokens based on averaged attention scores from the last
layer.

F.2 STF DATASETS

Table 6 shows the detailed construction of the supervised instruction tuning dataset in Section 5.2.
Our SFT data consists of four types: (i) caption data sampled from ShareGPT4V (Chen et al., 2023);
(ii) Science data sampled from AI2D (Kembhavi et al., 2016) and ScienceQA (Lu et al., 2022);
(iii) doc-related data sampled from ChartQA (Masry et al., 2022), DVQA (Kafle et al., 2018),
PlotQA (Methani et al., 2020), OCRVQA (Mishra et al., 2019), DocVQA (Mathew et al., 2021),
InfoVQA (Mathew et al., 2022), synthdog-en (Kim et al., 2022) and TableFact (Chen et al., 2019);
(iv) general data sampled from LLaVA (Liu et al., 2023a) and sharegpt4v (Chen et al., 2023).

F.3 LAYER INDEX OF APPLYING ACM

In Section 5.4, we demonstrate that uniformly inserting ACM into different layers of the LLM yields
the best performance. Here, we investigate the specific layer indexes of the early, middle, and latter
layers within the LLM. We explore two different types: (i) continuous, i.e., inserting ACMs into
continuous layers of the LLM layers and (ii) interval, i.e., inserting ACMs into the LLM layers with
an interval. Results from Table 7 demonstrate that interval incorporation performs better in both 0.5B
and 3B LLMs.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Task Dataset # Sample

Captioning ShareGPT4V (Chen et al., 2023) 100K

Science
AI2D (Kembhavi et al., 2016) 12K
ScienceQA (Lu et al., 2022) 12K

Doc QA

ChartQA (Masry et al., 2022) 28K
DVQA (Kafle et al., 2018), 100K
PlotQA (Methani et al., 2020) 10K
OCRVQA (Mishra et al., 2019) 80K
DocVQA (Mathew et al., 2021) 49K
InfoVQA (Mathew et al., 2022) 14K
synthdog-en (Kim et al., 2022) 29K
TableFact (Chen et al., 2019) 14K

General QA
LLaVA (Liu et al., 2023a) 150k
sharegpt4v (Chen et al., 2023) 665K

Total - 1.2M

Table 6: Summary of datasets for SFT in Section 5.2.

LLM early middle latter average

Qwen2-0.5B { 3, 5, 7, 9} { 10-17 } { 18, 20, 22 } 61.08
Qwen2-0.5B { 3, 4, 8, 9} { 10-17 } { 20, 21, 22 } 64.32

Phi-3-3B { 3, 4, 5, 11, 12, 13} { 14-23 } { 27, 28, 29, 30 } 65.25
Phi-3-3B { 3, 5, 7, 9, 11, 13} { 14-23 } { 24, 26, 28, 30 } 69.12

Table 7: Layer index of incorporating ACM. average means the average performance on high-
resolution benchmarks. The rows in organe and blue represents applying ACM in the continuous
and interval layers of LLM respectively.

F.4 CASUAL MASK

In section 3.2, i.e., Fig. 4 (b), we sampling the original casual mask based on the indexes of the
selected vision tokens. Here, we also compare another implementation of the casual mask for the
vision tokens, i.e., setting high-resolution and low-resolution vision tokens to be non-causal, as shown
in Fig. 8. Results from Table 8 show that using casual masks for both vision and text tokens can
achieve better performance.

F.5 TOKEN SELECTION STRATEGIES FROM ATTENTION WEIGHT

To assess token importance, we use the average attention score across all heads, as it provides a stable
and comprehensive view of token importance by integrating multiple perspectives. In this section, we
conduct the ablation studies for more different token selection strategies.

F.5.1 MULTI-HEADS

In this section, we ablate the effect of attention scores from muli-heads: (i) Specific heads: Randomly
selecting one head. (ii) Separate: Performing token selection independently within each head. As
shown in Table 9, Average (Ours) achieves the highest and most consistent performance. Averaging

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: Non-Casual for
high-resolution and low-
resolution vision tokens.

General High-ResolutionModel SEED POPE MME VQA-text ChartQA DocVQA InfoVQA
Casual 63.5 87.6 1480.3 58.5 46.1 45.2 31.6
Non-Casual 62.7 86.5 1455.2 57.3 45.4 44.5 29.5

Table 8: Comparison with the casual or non-casual mask for vision
tokens

way general high-resolution
Average (Ours) 75.04 45.35
Specific-1 69.53 34.29
Specific-2 71.43 38.21
Specific-3 70.21 37.55
Separate 73.51 44.05

Table 9: Comparison of token selection strategies across different attention aggregation methods.
Specific-1’, ‘Specific-2’, and ‘Specific-3’ represent three specific heads randomly selected in our
experiments.

provides a comprehensive view, combining insights from multiple heads to capture both global and
local token importance. Specific shows variable performance across different heads, as each head
may focus on unique aspects of the data. Selecting heads suitable for all tasks proves challenging due
to this variability. Separate performs better than Specific but still falls short of our method. Since
each head typically captures local information, analyzing them separately limits the ability to assess
global token importance.

Method general high-resolution
Vision-to-Text (Ours) 75.04 45.35
Vision-to-Vision 72.47 42.86
Text-to-Vision Not Applied

Table 10: Performance comparison between vision-to-text and vision-to-vision token selection
strategies.

F.5.2 DIFFERENT TYPES OF TOKENS

In this section, we analyze the attention weight distributions across token types: vision-to-vision,
vision-to-text, and text-to-vision, providing insights into the token compression mechanism. From
Fig. 2 (b), we can have the follow observations: (i) Vision-to-Vision: Dense attention patterns focus
on local visual relationships but lack the ability to capture multimodal dependencies. (ii) Vision-to-
Text (Ours): Selectively attends to text-relevant vision tokens, effectively integrating multimodal cues
and enhancing task performance. (iii) Text-to-Vision: Current MLLMs concatenate vision and text
tokens in a fixed order, making direct analysis of text-to-vision distributions challenging. As shown
in Table 10, Vision-to-Text (Ours) Outperforms vision-to-vision attention weights, demonstrating
superior performance on both general and high-resolution benchmarks. The reason may due to that
Vision-to-Vision relies solely on single-modal visual information, which limits its effectiveness in
capturing multimodal dependencies required for complex tasks.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.6 TOKEN SELECTION WITH ENTROPY

To strengthen our analysis, we incorporated entropy measurements to quantitatively support our token
selection strategy. Entropy Computation:

Entropy measures the uncertainty of attention weights and is calculated as:

H = −
n∑

i=1

ai log(ai),

where ai is the normalized attention weight for token i, and n is the total number of tokens. High-
entropy tokens indicate diverse information, while low-entropy tokens reflect concentrated, less
complex relationships.

Experiment Design: We tested two settings: (i) High-entropy: Selecting top-K tokens with the
highest entropy values. (ii) Low-entropy: Selecting top-K tokens with the lowest entropy values. We
also computed the overlap percentage between entropy-based selections and our method to evaluate
alignment.

From Table 11, we can observe that: (i) High-entropy tokens outperform low-entropy tokens,
showing they capture richer features. (ii) Performance correlates with overlap: High-entropy
tokens (71.2% overlap) achieve comparable results to ours, while low-entropy tokens (40.1% overlap)
significantly underperform. (iii) Compared to Our Method: Our method outperforms high-entropy
selection, suggesting its token selection balances diversity (high entropy) and text-relevant information.
These results confirm that our strategy inherently selects high-information-content tokens as well as
the text-guided information.

way overlap (%) general high-resolution
Ours 100.0 75.04 45.35
High-Entropy 71.2 73.06 42.33
Low-Entropy 40.1 71.12 38.21

Table 11: Performance comparison between our method and entropy-based token selection strategies.
High-entropy tokens show closer alignment with our method and achieve superior results compared
to low-entropy tokens.

F.7 COMPARISON RESULTS ON V* BENCH

To further validate the effectiveness of our method, we also report the comparison results in Table 12.
All results are tested based on the models used in Table 2. Results demonstrate that our method
still outperforms the existing approaches, indicating that our method can work for various domains.

Model Attribute Spatial Overall
Full 46.8 63.2 53.1
FlexAttention 43.8 60.5 49.6
Avg-Pool 43.9 60.6 50.5
C-Abstractor 43.5 60.9 50.2
Ours 45.7 62.8 52.2

Table 12: Comparison with different methods on V* bench.

F.8 THE NUMBER OF COMPRESSION RATIOS

In this section, we analyze the number of compression ratios, i.e., {ri, rj , rp}, which determine how
much vision tokens are dropped. Table 13 demonstrates the performance and efficiency trade-offs
across different compression ratios. Excessive compression, such as {2, 8, 16}, significantly degrades

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

performance in high-resolution tasks despite marginally improving efficiency. Therefore, we selected
{2, 4, 8} as the optimal setting, providing a balance between efficiency and robust performance across
general and high-resolution tasks.

{ri, rj , rp} Time (ms) general high-resolution
{1, 2, 4 } 532 75.52 45.86
{2, 4, 8 } 515 75.04 45.35
{2, 8, 16 } 508 74.32 43.08

Table 13: Performance and efficiency with different compression ratios.

F.9 COMPARISON WITH PREVIOUS AND CURRENT LAYERS

In our approach, we use the attention map from the previous non-compression layer to guide vision
token compression, primarily to reduce computational and memory overhead. Using the current
layer’s attention map would require performing full attention between the query and key tokens
before compression, significantly increasing resource usage. As shown in Table 14, we compare the
performance and time efficiency of using the previous layer’s attention map (ours) versus the current
layer’s. Both methods achieve nearly identical performance, but the current layer incurs additional
computation time.

Method Time (ms) general high-resolution
Previous Layer (Ours) 515 75.04 45.35
Current Layer 524 75.05 45.39

Table 14: Performance and efficiency comparison between token selection using the previous layer’s
attention map (ours) and the current layer’s attention map.

F.10 TRAINING TIME

In Table 2, we report the single-forward pass time as an indicator of both training and inference
efficiency. In Table 15, we have now included total training time comparisons across models,
demonstrating that our model achieves approximately 82.9% of the training time required by the full
model.

Method Training time Inference time Avg performance
Full 32.2 h 621 ms 48.0
Q-former 25.1 h 507 ms 30.6
Avg-pooling 24.7 h 461 ms 39.1
FlexAttn 25.4 h 505 ms 32.5
LLaVA-UHD 24.9 h 470 ms 36.0
C-Abstractor 25.0 h 492 ms 27.6
FastV 25.2 h 499 ms 39.9
Ours 26.7 h 512 ms 45.4

Table 15: Comparison with the efficiency and performance. All models are trained in one epoch on
16 V100 GPUs.

F.11 TOKEN SELECTION BASED ON VISUAL INFORMATION

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We leverage the text-guided token selection for two reasons: (i) In the casual LLMs, the last text
token receives holistic information from the whole previous tokens; (ii) Text-guided selection can
efficiently filter the instruct-related tokens from noisy tokens.

In this section, to verify the potential benefits of incorporating visual information, we conducted
additional experiments with ToMe [1] and Dynamic ViT [2], which explicitly consider visual
complexity. Specifically:

• ToMe[1]: A similarity-based token merging method that preserves visual structure.

• Dynamic ViT[2]: A dynamic token pruning approach guided by visual importance.

• ToMe+Ours: We combined ToMe with our method by using our text-guided approach to
select key tokens and ToMe to merge remaining tokens.

From Table 16, we have the following observations: (i) ToMe performs slightly better (+0.11%) on
low-resolution tasks but is slower due to additional merging steps. (ii) Ours excels on high-resolution
tasks (+1.42%) by efficiently filtering relevant tokens and reducing noise. (iii) Combining ToMe with
our method improves performance slightly but adds significant computational cost.

In conclusion, while visual complexity-based methods like ToMe show certain advantages in specific
settings, our approach strikes a better balance between performance and efficiency, particularly for
high-resolution tasks. The additional experiments validate that text-guided selection remains an
effective and practical choice for diverse tasks.

way Times (ms) general high-resolution
Attention-weight (ours) 515 75.04 45.35
ToMe 564 75.15 43.93
Dynamic ViT 520 73.51 42.82
Ours + ToMe 571 75.21 45.44

Table 16: Comparison with different compression ways that use visual nuances in our ACT-In-MLLM.

F.12 COMPARISON WITH HIGHER COMPRESSION RATIO

Table 17 reports additional experiments with both FastV and our method to achieve approximately
60% compression, aiming for similar time efficiency. The results indicate that our method outperforms
FastV by 3.43% under comparable efficiency conditions.

Model Times (s) Memory (GB) high-resolution
Full 1.95 (100.0%) 26.8G (100.0%) 52.12
FastV [1] 1.21 (61.8%) 22.5G (83.9%) 44.82
Ours 1.27 (62.6%) 23.0G (86.0%) 48.25 (+3.43)

Table 17: Comparison of efficiency and performance between FastV and our method.

F.13 COMPARISON WITH FASTV AND OURS UNDER MORE VISION TOKENS

In Table 2, we deliberately used 512 tokens, as we believe thatretaining fewer vision tokens provides a
better comparison of how well different compression methods preserve critical information. Addition-
ally, as shown in Fig. 6, increasing the number of retained tokens improves performance consistently,
further highlighting the effect of the number of reserved vision tokens for the performance, i.e.,
retaining more vision tokens leads to higher performance.

We also conduct new experiments on LLaVA-NeXT-7B (Liu et al., 2024b) with both FastV and
our method retaining 1440 tokens. The results show that our method outperforms FastV by 2.2%

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Efficiency General High-ResolutionModel Times(ms) Memory(GB) SEED POPE MME VQA-text ChartQA DocVQA InfoVQA Average

Open-LLava-Next 926(100.0%) 24.3(100.0%) 70.3 85.8 1533.5 67.1 64.2 70.0 34.5 58.9

FastV w/o train 579 (62.5%) 21.5(88.4%) 69.6 85.5 1502.0 67.0 60.5 62.1 33.1 55.7
Ours w/o train 592 (63.9%) 22.1(90.9%) 70.1 86.1 1532.2 67.3 63.1 66.9 33.4 57.9

Table 18: Comparison with applying Fastv and ours as the inference-only strategy based on Open-
LLaVA-Next.

on high-resolution tasks while maintaining comparable inference times. These results confirm our
method’s superior ability to preserve information under different vision token settings.

F.14 COMPARISON WITH FASTV AND OURS BASED ON LLAVA-1.5 TRAINING DATA

We conduct additional experiments using the original training data from LLaVA-1.5-7B (Liu et al.,
2023a), applying both our method and FastV during training and inference. The results demonstrate
that our method consistently outperforms FastV and achieves performance comparable to Full on
both general and high-resolution benchmarks.

Notably, since LLaVA-1.5 lacks high-resolution training data, the performance gap between our
method and FastV is smaller compared to experiments with augmented high-resolution data. For
Open-LLaVA-NeXT2 (since the training data from LLaVA-Next (Liu et al., 2024b) is not released),
when trained on high-resolution data, our method exhibits a larger performance advantage over FastV,
highlighting its superior ability to leverage additional information.

General High-ResolutionModel Training/Inference Times SEED POPE MME VQA-text ChartQA DocVQA InfoVQA Average

LLava-1.5 334ms/20.5h 66.1 85.9 1510.7 58.2 18.2 21.2 20.6 29.6

FastV 273ms/17.4h 65.2 85.2 1470.5 57.1 17.2 19.1 19.3 28.2
Ours 286ms/18.1h 66.3 85.8 1510.2 58.0 18.3 21.0 20.2 29.4

Open-LLava-Next 926ms/63.2h 70.9 86.2 1535.4 67.3 64.6 69.5 33.4 58.7
FastV 579ms/45.8h 69.8 86.3 1489.6 66.5 60.1 62.8 32.8 55.6
Ours 592ms/48.5h 70.2 86.5 1530.4 67.4 63.8 67.5 33.2 58.0

Table 19: Comparison between FastV and our method on LLaVA-1.5 and Open-LLaVA-Next during
both training and inference.

F.15 VISUALIZATION

In Fig. 9, Fig. 10 and Fig. 11, we show visualization results to compare our method with existing
vision compression approaches, i.e., average-pooling from (Liu et al., 2024b) and FlexAttention (Li
et al., 2024b).

2https://github.com/xiaoachen98/Open-LLaVA-NeXT

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In which year National Research Council was organised ?

Ground-truth: 1916 Avg-Pool: 1955

FlexAtten: 1955 Ours: 1916

(a)

What is his citizenship?

Ground-truth: Canadian Avg-Pool: American

FlexAtten: Australian Ours: Canadian

(c)

What is the name of TPNA Consultant ?

Ground-truth: Pat Frank Avg-Pool : Jeri EI Hage

FlexAtten: Jeri EI-Hage Ours: Pat Frank

(b)
Figure 9: Qualitative results from DocVQA (Mathew et al., 2021). We compare ACT-IN-
LLM with Average-pooling from (Liu et al., 2024b) and FlexAttn (Li et al., 2024b)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

What professional social network ranked third in Italy in June 
2020?

Ground-truth: LinkedIn Avg-Pool: Fackbook

FlexAtten: Facbook Ours: LinkedIn

(a)
How many compression sock sales were there in the United 
States in 2010?

Ground-truth: 1.2 Avg-Pool : 2.3

FlexAtten: 2.7 Ours: 1.2

(c)

What was the female population of Madagascar in 2019 ?

Ground-truth: 13.52 Avg-Pool : 12.32

FlexAtten: 13.22 Ours: 13.52

(b)
What was Wyndham's American Customer Satisfaction 
Index score in 2016?

Ground-truth: 70 Avg-Pool : 72

FlexAtten: 73 Ours: 70

(d)
Figure 10: Qualitative results from ChartQA (Masry et al., 2022). We compare ACT-IN-
LLMwith Average-pooling from (Liu et al., 2024b) and FlexAttn (Li et al., 2024b)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

When was the Million Man March?

Ground-truth: 1995 Avg-Pool: 2011

FlexAtten: 1932 Ours: 1995

(c)

Which country in North America has a higher percentage of 
mortality rate?

Ground-truth: Canada Avg-Pool: United States

FlexAtten: American Ours: Canada

(a)

Out of the 18 DRS reviews, how many were lost by the 
England team while bowling?

Ground-truth: 14 Avg-Pool : 18

FlexAtten: 16 Ours: 14

(b)
Figure 11: Qualitative results from InfoVQA (Mathew et al., 2022). We compare ACT-IN-
LLM with Average-pooling from (Liu et al., 2024b) and FlexAttn (Li et al., 2024b)

26


