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Abstract

Our study highlights the use of spatial entropy as a means to characterize the1

difficulty of learning tasks. We show how the mutual information of class co-2

occurrences with regions in the feature space provides an informative curve profile3

to estimate the degree of difficulty in classification tasks. Empirical results demon-4

strate the feasibility of employing spatial entropy to quantify the quality of new5

representations in deep neural networks; results show how spatial entropy can act6

as a powerful meta-feature to enrich the current family of dataset characterizations.7

1 Introduction8

Understanding the relation between dataset properties and model performance is a central topic in9

meta-learning [1,2]; a key topic is the quantification of the difficulty of a learning task to understand10

the relation between model performance, model complexity, and data distributions. While there have11

been multiple studies advancing quantitative approaches to capture task difficulty [3-7], few studies12

have used such metrics in a meta-learning setting, to understand model performance, or to incorporate13

such metrics as meta-features.14

In this paper, we follow an information-theoretical approach to task difficulty and show how incor-15

porating the notion of space when computing class entropy sheds more light on the difficulty (or16

simplicity) of a learning task. The use of spatial entropy enables us to differentiate tasks with marked17

differences in difficulty that otherwise would have remained alike. Our study shows how computing18

entropy on a joint space that combines spatial and class-distribution information leads to a powerful19

tool to assess the quality of new representations.20

Our experiments show how each layer in a deep neural network evolves as a function of our task-21

difficulty metric. Results point to utilizing spatial entropy as a measure of task complexity over22

the training period of a neural network. In section 3 we introduce spatial entropy as a measure of23

task difficulty. In section 4 we describe our experimental design and report our results. Finally, we24

conclude with our conclusions and offer future directions to explore spatial entropy in-depth.25

2 Preliminaries26

We assume a training set, T = {(Xi, Yi)}Ni=1, where X = (x1, x2, · · · , xP ) is a an instance (vector)27

of the input space X , and Y ∈ {y1, y2, ..., yK} is an instance (nominal or categorical value) of the28

output space Y . We assume T contains i.i.d. examples from a fixed but unknown joint probability29

distribution, P (X,Y ), in X × Y . The output of the learning algorithm is a function fθ(X), fθ :30

X → Y , and fθ ∈ F . The goal is to search for the function that minimizes the expectation of a loss31

L(Y, f(X|θ)), a.k.a. the risk, R(θ, P (X,Y )) = E∼P [L(Y, f(X|θ)). Here we employ the zero-one32

loss function: L(Y, f(X|θ)) = I(Y 6= f(X|θ)), where I(·) is an indicator function, and Y is the33

class of X .34
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We are primarily interested in the computation of class entropy H(Y ); we advocate the use of35

spatial information (Section 3) to provide a more clear picture of the role of neighborhoods in36

the instance space. We follow Shannon’s definition of entropy over a probability mass function37

[p(y1), p(y2), ..., p(yK)]T : H(Y ) =
∑K
k=1 p(yk) log

(
1

p(yk)

)
.38

3 Spatial Entropy and Task Difficulty39

Initial studies characterized task difficulty as a function of the number of alternating peaks in the class40

distribution across the input space [3]. Other approaches include computing the cross-entropy between41

the output labels and a "trivial" output that always shows a constant value [4]; and defining task42

difficulty as a function of meta-features capturing the geometrical complexity of the class boundary43

[5]. Besides the design of task-difficulty metrics, other studies have tried to explain theoretically the44

complexity of learning conditioned on properties of the learning algorithm [6,7].45

In contrast to previous work, our metric for task difficulty approximates the entropy of Y over46

different neighborhoods, following closely the definition of spatial entropy proposed by Altieri [8,9].47

Specifically, for a neighborhood N (X∗) centered on point X∗, we are interested in the entropy of48

the distribution of Y , H(Y ), in N (X∗).49

To introduce the notion of space, we define concentric hyperspheres around X∗ of varying width.50

Each hypersphere refers to a region in the input space with some associated probability density. We51

refer to the space variable as W and to the space between hyperspheres as w1, w2, ..., wM . Each52

region wm has an associated probability P (wm), estimated as the fraction of training examples falling53

in that region. Figure 1 illustrates these ideas. Note that, for the first hypersphere, such region is the54

entire space filled by the sphere; the second region is the space between the border of the second55

hypersphere and the border of the first hypersphere; regions are then mutually exclusive.56

Rather than working with Y directly, and for efficiency, we define a new variable Z referring to the57

possible combination of values of Y for a pair of neighbor examples lying close to each other in58

the input space (within a hypersphere). For example, in the two-class problem where Y ∈ {0, 1},59

the new variable Z is defined as Z ∈ {(0, 0), (0, 1), (1, 1)}, with an associated probability mass60

[p(z1), p(z2), ..., p(zL)]
T .61

Our focus has now been redirected to the entropy of Z, H(Z), with space, W , playing an important62

role. Spatial entropy is defined as63

H(Z) = I(Z;W ) + E[H(Z|W )] (1)

The first term, I(Z;W), is the mutual information between Z and W . Since, P (W,Z) =64

P (W )P (Z|W ), mutual information can be defined defined as65

I(Z;W ) =

M∑
m=1

P (wm)DKL(P (Z|W )||P (Z)) =
M∑
m=1

P (wm)

[
L∑
l=1

P (zl|wm) log

(
P (zl|wm)

P (zl)

)]
(2)

The right term in brackets is the relative entropy (Kullback-Leibler divergence) of P (Z|W ) and66

P (Z), named spatial partial information.67

The second term in equation 1, E[H(Z|W )] is named spatial global residual entropy;68

E[H(Z|W )] =

M∑
m=1

P (wm)H(Z|wm) =

M∑
m=1

P (wm)

[
L∑
l=1

P (zl|wm) log

(
1

P (zl|wm)

)]
(3)

where the term in brackets is named spatial partial residual entropies; it quantifies the contribution69

of each neighborhood to the residual entropy of Z.70

Equation 1 can be rewritten as an expectation of the sum of spatial partial information and spatial71

global residual entropies:72
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Figure 1: Left: Average loss recorded during training and testing phases over 200 epochs. Right:
Classification accuracy of the neural network over 200 epochs.

H(Z) =

M∑
m=1

P (wm)
[
DKL(P (Z|W )||P (Z)) +H(Z|wm)

]
(4)

The formulation above separates the entropy of class co-occurrences between two nearest neighbors73

within a specific region (space between two concentric hyperspheres) across all neighborhoods. The74

first term shows the contribution of space; the second term shows the residual entropy after the effect75

of space is removed. Although other definitions for spatial entropy exist [10], the definition above has76

the advantage of decoupling the contribution of space and residual entropy both globally and locally77

(per window).78

4 Spatial Entropy and Metalearning79

We propose using spatial entropy as a direct measure of task difficulty. In the context of meta-learning,80

the idea is twofold: spatial entropy can be used as a meta-feature to characterize datasets as a prelude81

to the construction of a meta-model [1,2]. In addition, spatial entropy can be used as meta-knowledge82

in transfer learning, to improve learning performance across tasks. Here we simply point to the value83

of spatial entropy to capture the information contained in the class distribution over the input space.84

An example of previous work connecting spatial entropy with supervised learning tools lies in image85

analysis: rather than relying on histograms alone, spatial entropy brings into the analysis spatial86

information associated with pixels; this can drastically change the amount of image information. An87

example is hyperspectral image analysis, where spatial entropy captures the role of space along with88

multiple hyperspectral bands [11]. A similar study incorporates spatial entropy for the analysis of89

geographical data [12], specifically on agricultural data. In both studies, the definition of entropy90

is modified by adding weights to the additive class-entropy terms based on the ratio of the intra-91

and extra-distance among training examples of similar and different classes respectively; the ratio is92

computed based on spatial coordinates associated to each example. Different from previous work, we93

explore the use of spatial entropy in the context of dataset characterization, as a tool for meta-learning.94

4.1 Experiments95

To demonstrate the behavior of spatial entropy during learning, we designed a set of experiments on96

artificial datasets that vary in complexity. To to better understand the relationship between learning97

and the complexity of a task, we compute various spatial metrics that will help us better understand98

this relationship.99

We train a 3-hidden layer neural network on synthetically generated binary classification dataset100

T = {(Xi, Yi)}Ni=1 consisting of N = 10, 000 data points and P = 10 numerical features. To to101

mimic a real-world problem, we introduce label noise ε = 0.02. The neural network is trained using102

stochastic gradient descent over 200 epochs with a batch size of 128. Loss is computed using the103
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binary cross-entropy loss. Non-linear transformations are achieved by employing the ReLU activation.104

A sigmoid function is applied to the final layer to produce logits for the binary cross-entropy.105

Before training, we reduce the dimensionality of our data from 10 dimensions to 2 learned t-SNE106

components and compute the initial spatial entropy. Next, at each epoch, we transform our input using107

the learned representation at the penultimate hidden layer `3 and compute spatial entropy H(Z) on108

the new representation ζ(Xi). To better understand the learning process and the dynamics of spatial109

entropy, we extract the decomposed spatial metrics such as partial mutual information P (Z;W ) and110

partial residual entropy H(Z|W ), proportional spatial mutual information Iprop(Z;W ), and relative111

mutual information Irel(Z;W ) and relative residual entropy Hrel(Z|W ). Each of these spatial metrics112

will help us understand the learning process and the complexity of the task at hand.113

Spatial entropy requires a set of distance classes wi ∈W over the data. We define our own range of114

distance classes to be w1 = [0, 1], w2 =]1, 2], w3 =]2, 3], w4 =]3, 4], w5 =]4, 5]. In order to make115

sure our data points fall into these distances, we scale our data appropriately. Distance classes w1 and116

w2 correspond to 4-nearst neighborhood and 8-nearest neighborhood classes [13].117

After training our neural network for 200 epochs, we report all the metrics and demonstrate how118

spatial entropy can assist in better understanding the learning process as well as understand the119

complexity of the task.120

Figure 2: Left: Average loss recorded during training and testing phases over 200 epochs. Right:
Classification accuracy of the neural network over 200 epochs.

4.2 Results121

Spatial entropy metrics extracted from the original dataset and the learned representation are shown122

in Figure 3. The inverse relationship between spatial global residual entropy and spatial global mutual123

information can be seen on the left plot. Due to the additivity property, summing those quantities124

(orange and red) together produce the spatial entropy quantity (blue). As the neural network learns a125

better representation of the classification problem, spatial global mutual information increases while126

spatial global residual entropy decreases. This trend confirms the role of space in the final learned127

representation and the complexity of the problem decreases as the separation between the two classes128

becomes more evident.129

To better understand the impact of the two components onto the entropy we convert partial mutual130

information and partial residual entropy, to sum up to one. We can identify what component131

contributed most in entropy. At each distance class wi, we can see whether the heterogeneity is132

explained by the role of space (mutual information) or some other sources (residual entropy). Figure133

3 highlights the decomposed values at each distance class wi for the original data and the final learned134

representation. As evident by the bar chart for the original dataset (left), space plays no role in135

explaining the heterogeneity in the entropy. Conversely, for smaller distance classes w1, w2, and w3,136

space contributes almost a majority towards the heterogeneity on the learned representation of the137

neural network.138
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Figure 3: Relative mutual information (blue) and relative residual entropy (red). Left: relative metrics
per distance class on original dataset. Right: relative metrics per distance class on learned representa-
tion after 200 epochs. Partial mutual information plays a larger role in the learned representation.

Figure 4 shows the visual representation of our dataset at two stages: original data and final learned139

representation. The neural network learns a representation that allows for a clean separation of the140

two classes.141

The effect that space has on spatial entropy is highlighted by the proportional mutual information142

plot in Figure 2. Proportional mutual information is defined as143

Iprop(Z;W ) =
I(Z;W )

H(Z)
(5)

and it states that the contribution of space in the entropy of Z is a proportion of the marginal entropy144

bounded on [0, 1]. Datasets with different spatial contributions but with different probability mass pZ145

of co-occurrences share the same spatial entropy H(Z) but will have different contributions from the146

two components.147

As our neural network continues learning, the role that space plays in the new representation of spatial148

entropy increases which translates to a decreased task complexity. Figure 1 highlights the performance149

of the neural network over 200 epochs. Figure 1 and Figure 2 can be compared side-by-side that150

further support our findings.151

Figure 4: Left: t-SNE projection of the original dataset. Right: t-SNE projection of the learned
representation after 200 epochs. The neural network learns a representation that allows for a simple
decision boundary.
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5 Conclusions152

In this paper, we study the use of spatial entropy as a novel meta-feature to evaluate the complexity of153

a task. We closely follow how the spatial characteristics of a classification problem change throughout154

the learning process of a neural network. Decomposing the spatial entropy into its components allows155

us to better understand the role of space as a source of heterogeneity on entropy. Our preliminary156

experiments demonstrate that heterogeneity from other sources other than space is highly prevalent157

in farther distance classes wi while mutual information is highest in closer distance classes. This158

highlights the role of space in entropy. We conclude that as the neural network learns a better159

representation of the input, space contributes in entropy.160

5.1 Future Work161

Spatial entropy provides a novel insight into measuring task complexity and understanding how162

learning and task complexity interact throughout the process. Future work could see exploring spatial163

entropy over image data as it can offer interesting insights on pixel density and learning features of a164

convolutional neural network. It can prove to be one of the new groups of meta-features specifically165

for image data. Another extension would see spatial entropy measured during learning of a multi-class166

task where overlap of classes is prominent. It can help understand how a neural network decomposes167

a difficult multi-class problem and what role spatial entropy plays. Perhaps maximizing proportional168

mutual information as an objective function can offer new insights and improved performance on169

certain tasks.170
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