The First Workshop on Generative and Protective Al for Content Creation

Setting the DC: Tool-Grounded D&D Simulations to
Test LLM Agents

Ziyi Zeng *

Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093
ziz031Qucsd. edu

Shenggqi Li *
Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093
sh11420ucsd.edu

Jiajun Xi
Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093
j5xi@ucsd.edu

Andrew Zhu
Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104
andrz@seas.upenn.edu

Prithviraj Ammanabrolu
Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093
prithvi@ucsd.edu

Abstract

Dungeons and Dragons (D&D) has been considered to be an intellectually challeng-
ing game for strategy planning and role-playing. Large language models (LLMs)
are increasingly deployed as autonomous or semi-autonomous agents, yet most
evaluations still target single-turn QA or short-horizon tasks. Assessing agentic
performance in rules-constrained, multi-step settings is challenging because style-
conforming narration can diverge from task optimality. In this work, we present
D&D Agents, a multi-agent Dungeons & Dragons simulator. In our simulator,
LLMs use tools to query and update the game state, assuming the roles of ref-
eree ('Dungeon Master’, DM), players, and adversarial monsters in tactically rich
combat. Such simulation requires long-horizon planning, compliance with game

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

rules, varied agent personas, and grounded interaction with the game state. We
evaluate transcripts and tool traces along six axes—Function Usage, Parameter
Fidelity, Acting Quality, Tactical Optimality, State Tracking, and Function Effi-
ciency—capturing both capability and reliability in closed-loop play. Across 27
scenarios, Claude 3.5 Haiku leads on most axes with the most reliable tool use;
GPT-4o is close behind, and DeepSeek-V3 trails. Our simulation allows researchers
run identical seeded scenarios with auditable traces, making error analysis and
algorithmic improvements (prompting, tool-use policies, memory) straightforward
and comparable.

1 Introduction

Large language models (LLMs) are increasingly deployed as tool-using agents that must plan over
long horizons, remember salient context, and coordinate with other actors. Early benchmarks
emphasize single-agent or short-horizon QA, leaving open how to evaluate memory, planning, and
coordination in settings where natural language drives perception and intent but rules govern what
actions are legal [Li et al., 2023, (Wu et al.| 2023} [Du et al., |2023]]. Work on self-reflection and
persistent memory suggests paths to stabilize behavior over many turns [Shinn et al.| 2023, |Park et al.}
2023| [Li and Guptal [2025]], but we still lack testbeds that expose the full tangle of multi-step planning,
strict rule adherence, and team strategy.

We argue that Dungeons & Dragons (D&D) is a natural evaluation ground for these skills: an
initiative-driven, mixed cooperative—adversarial game where agents must remember evolving state,
communicate succinct plans, and translate intentions into rule-compliant actions. Crucially, D&D
couples team coordination with opponent-aware tactics under partial observability, a bounded action
economy, and spatial constraints with stochastic resolution—collectively yielding a non-stationary
multi-agent setting that stresses planning, memory, and communication. Because play unfolds
through dialogue, D&D also opens a direct avenue for human—Al interaction: agents can assist or
co-play with people, and the same mechanics support scalable evaluation of agent decisions.

In this work, we present D&D Agents, a novel multi-agent simulation framework in which LLM-
driven agents assume the roles of DM, players, and monsters to autonomously play out tactically rich
D&D combat encounters. This framework serves as both a research environment — capturing the
complexities of autonomous agent evaluation, long-horizon rule-following behavior, and multi-agent
coordination — and as a testbed for new methods to ground LLM decisions in a formal game system.
D&D Agents comprises a high-fidelity simulator and a suite of tools that bridge natural language
and game mechanics. Through careful prompt design, we imbue each agent with a distinct role and
objectives. We pair our environment with a six-axis metric suite and validate our automatic judges
against human ratings, finding strong alignment (Pearson r ~ 0.96-0.98); for example, the judge’s
means closely track human means—Acting 0.572 vs. 0.601 and Tactical 0.551 vs. 0.568—supporting
credible large-scale assessment.

Our main contributions are summarized as follows:

1. We develop a fully automated D&D combat simulator where multiple LLM agents engage
in battle under authentic game rules. This is the first framework to pit LLM “players”
against an LLM “Dungeon Master” in a closed-loop environment that rigorously enforces
turn-based game mechanics and stochastic outcomes (dice rolls). It also supports human-Al
co-play—People can assume any subset of player roles (from zero to all) while the remaining
roles are controlled by LLMs.

2. We design a structured API of game actions, each with predefined parameters and precondi-
tion checks, to ground the agents’ decisions. This approach cleanly separates narration from
mechanics: the DM agent may describe events in natural language, but the truth of those
events is guaranteed by the underlying tool calls.

3. We introduce a prompting scheme that guides the DM and player agents to fulfill their
in-game roles. This scheme enables multi-agent coordination and opposition purely through
learned communication and tool use, without any hard-coded game logic.

4. To rigorously evaluate the performance of our D&D Agents, we define six evaluation axes
that capture both the capabilities and reliability of the agents in long-horizon gameplay. We

Table 1: LLM failures in simulation. Top: The model checked that there is no sight between the
player and the monster, but still attempted to attack. Bottom: The model checked the enemy’s HP to
be 0 (dead), but did not attack other enemies.

Player: Elaria Enemy: Goblin 1

Elaria: Thinking... [check_valid_attack_line(attacker_name=’Elaria’,
defender_name=’Goblin 1°)]
System: FUNC: False

Model Response

Elaria: I will attack Goblin 1 with my short bow.
[roll_attack(attacker_name=’Elaria’, defender_name=’Goblin

1’, roll_type=’normal’, modifier=4, weapon_name=’Short Bow’,
action_cost=1)]

Player: Briana Enemies: Goblin 1, Goblin 2

Briana: Thinking... [check_hp(name=’Goblin 2’)]

System: FUNC: 0

Model Response

Briana: Excellent! I have a clear shot. I'll take aim and burst my firebolt at Goblin 2!

evaluate transcripts and tool-call traces along these dimensions to quantify progress and
identify failure modes in an objective, reproducible manner.

2 Related Work

A growing line of work grounds language agents in executable interfaces so long-horizon behavior
is less ambiguous and more auditable. Programmatic tool use—via function calling or API invoca-
tion—improves reliability in interactive environments (ReAct; Toolformer; MRKL; Gorilla) [[Yao
et al., [2022a} |Schick et al., [2023| |[Karpas et al., 2022, Patil et al., |2023]], and similar constraints
help in text games and web tasks (Jericho/interactive fiction, ALFWorld, ScienceWorld, WebShop,
WebArena) [Hausknecht et al.l 2020} Shridhar et al.| [2020} [Wang et al., 2022} Yao et al., 2022b| Zhou
et al.}2023] as well as open-ended game worlds like Minecraft (Voyager; MineDojo) [Wang et al.|
2023} |Fan et al.||2022]|. These results suggest that defining a compact, typed action space is a practical
route to robust multi-step agents.

Within D&D, prior work treats gameplay primarily as dialogue and state tracking. |Callison-Burch
et al.| [2022]] frame D&D as a dialogue/state challenge; FIREBALL provides actual-play transcripts
with structured state and executable Avrae commands [Zhu et al.}[2023a]]; CALYPSO and Overhearing
explore DM assistance tools [Zhu et al.| 2023b} [2025[]]. However, these systems typically operate
on a single player at a time and are not closed-loop multi-agent simulations across many turns;
moreover, the game mechanics are fully simulated in handwritten code (e.g., Avrae), with the LLM
advising rather than executing mechanics. Complementary efforts outside D&D explore multi-agent
interaction in rule-based environments [Thudium et al., 2025]] and LLM-driven game simulation
more broadly [Song et al.| 2024], reinforcing the value of structured interfaces for coordination and
competition.

Our work differs in placing LLMs directly in the loop as DM and multiple players within a rules-
enforcing simulator: every effect-producing action is executed via a typed API, producing determinis-
tic, auditable traces. This enables closed-loop, turn-by-turn evaluation of cooperation and opposition
among multiple agents, supports human co-play, and yields standardized, seedable scenarios for fair
comparison.

3 Simulation Framework

State. The state consists of two main components: (i) Character creation and (ii) map generation. We
implemented a structured character creation system that uses LLM agents to generate D&D 5e player

Generation

Map
Generation T
Initialize

via Al Tools
Start Encounter:
Simulation DM.Rt.Jlls
Character Initiatives

Creation via
Al Tools

Print

Simulation Results &
—
Ends Death

Records

Simulation Loop

Monster
© t r—~ Monster |_, Executes End of Ti
urren nd of Turn:
Turn i
Turn: Tool Calls DM acates Resource | / Combat

& Executes | —

Player or N Reset, State Ends?
Player Actions
Monster? Player Update
Player
__| | Turn Loop Turn —| Proposes
Begins Tool Calls
|

N
No

Figure 1: The simulation framework contains two major components: The generation step (Top)
and the simulation step (Bottom). Background settings are generated in the generation step, while
LLM/human players can take turns in the simulation loop to execute actions.

and monster characters via Al function calls. The CreatePlayerKani agent prompts the model
with official creation rules and user input to generate legal characters, while CreateMonsterKani
uses official monster data to instantiate enemies. External D&D APIs provide canonical resources,
and derived properties are automatically computed according to rules. For spatial context, we provide
two seedable map modes that yield traversable, height-aware grids. Indoor maps are rasterized from
compact JSON layouts (rooms, walls, doors), while outdoor maps are procedurally generated to
ensure connectivity with distant start/end anchors. Both encode discrete height values for slope-aware
movement and use line-of-sight checks to gate ranged actions. A fixed seed ensures reproducibility.

Actions. The simulator exposes a typed API of deterministic function calls that define the action
space. Calls are validated against preconditions (initiative ownership, budgets for action/bonus/reac-
tion/movement, spell slots, range, line of sight, target existence, status effects). We group functions
into six categories: 1) Query/validation (state checks, LoS tests); 2) Movement/positioning (move,
dash, disengage); 3) Dice primitives (roll_dice); 4) Attack/spell resolution (roll_attack, roll_save,
roll_dmg); 5) Turn economy/bookkeeping (roll_initiative, reset_resources, check_concentration); 6)
Rendering (visualize_map).

Transition Dynamics. Function calls are atomic and deterministic given sampled dice rolls. The
simulator enforces legality and automatically updates resources, HP, position, or conditions. A turn
consists of querying state, executing movement or attacks, and concluding with resource resets and
audits. Figure 5] provides an overview of the simulation.

Observations. Agents observe a combination of natural language narration and structured returns
from simulator functions (e.g., query results, dice outcomes). Maps can be visualized after each
move, and observations are local to the calling agent, yielding partial observability.

Reward. For evaluation, we measure downstream combat outcomes and auxiliary metrics such as
efficiency of function usage and error rates. When used for MARL, task-specific rewards can be
shaped around these signals.

DM Agent. The DM is an LLM steered by GM_PROMPT that behaves like a transactional con-
troller: it plans in natural language but executes through a small, typed set of Al functions
with validation, atomicity, and explicit bookkeeping. In play, it follows a fixed recipe—query
-> (optional) move -> validate -> resolve -> bookkeep,—rolling and announcing initiative with
roll_initiative;on each turn it queries state, moves with move when needed, gates ranged options
via check_valid_attack_line, resolves attacks/spells (roll_attack, roll_spell_attack,
roll_save, roll_dmg), applies HP/resource updates, audits temporary conditions/resistances/con-
centration, and finishes with reset_resources and reset_speed, emitting <End Turn/>.

The prompt functions as a declarative control policy: narration is descriptive while functions are
authoritative; explicit if—then gates (range/LoS/reach/resources/economy) prevent illegal actions
and route failures to repairs (reposition, alternate action, end turn); parameters must come from
canonical sources; economy semantics for Dash/Disengage are tied to budgets; and within-turn
caching improves efficiency. It also installs stable event handlers (e.g., opportunity attacks on leaving
reach), compact zero-shot tactical heuristics, and archetypal exemplars (single-target attack-roll,
save-based AoE) that generalize to unseen abilities; a small condition glossary enables status handling
without bespoke code. Optimized for adherence with a concise “contract,” exact verb—function
alignment, and a numbered end-of-turn checklist capped by a sentinel token, this design yields
consistent, rules-compliant, and auditable tool-call traces across models while remaining portable
and easy to extend.

Player Agent. The player agent is an LLM guided by PLAYER_PROMPT that converts tactical intent
into concrete, legal actions for its character while coordinating with allies. In the playthrough it
follows a sense -> plan -> validate -> act -> communicate routine: (i) at turn start, it queries state
and resources; (ii) selects movement and economy modifiers consistent with budgets; (iii) for ranged
options, first gates with check_valid_attack_line and computes distance/reach from the queried
positions; (iv) specifies its chosen action (attacks/spells), invoking simple query functions directly
but proposing functions which change the game state for the DM to execute to avoid hallucination
and parameter fidelity; and (v) emits concise narration and optional team messages to coordinate
surround an enemy (flank), focus multiple allies on one target (focus fire), or pull pressure off an ally
(peel). The DM remains the authoritative executor—committing any state-changing calls and running
the end-of-turn checklist—which grounds player intent and yields an auditable tool-call trace aligned
with the transcript.

The PLAYER_PROMPT emphasizes intent expression and cooperation under uncertainty rather than
adjudication. It instructs the agent to ask or check when unsure about geometry, reach, or spell
parameters, preventing silent errors while keeping turns efficient. Narration is kept concise and
role-separated: one—two sentences to summarize intent/outcomes, with coordination messages
isolated from flavor so allies (and the DM) can parse plans quickly. A lightweight direct-message
protocol—<Call/>Name, Message<Call/> with strict formatting—provides a reliable, code-free
communication channel; concrete templates (e.g., chaining actions, requesting healing) enable
accurate addressing and improve teamwork (timed flanks, handoffs, prioritized healing), while all
mechanical effects remain confined to Al functions executed by the DM.

4 Experiments

Evaluation settings. We use 27 seedable scenarios packaged as save JSONS, constructed by a 3 x 3 x
3 design: three four-class character groups X three stat tiers (low/medium/high) x three monster-map
sets. Across the three groups, all 12 core D&D classes are represented. Each monster—map set
has a custom enemy roster from three well-known fantasy skirmish set-ups (from ‘Lost Mine of
Phandelver’): Goblin Ambush, Kennel in Cragmaw Hideout, and Klarg’s Cave [Wizards RPG Team,
2014]. All models run on the identical 27 files; no per-model tuning of maps, parties, or monsters is
permitted. Each episode lasts ten turns, after which we export the dialogue transcript and the ordered
tool-call trace; these artifacts feed our six metrics—Function Usage, Parameter] Fidelity, Acting
Quality, Tactical Optimality, State Tracking, and Function Efficiency. We test claude-3.5-haiku,
gpt-4o [Hurst et al., [2024]], deepseek-v3 [Liu et al., 2024]]. We also attempted a 120B open model
(gpt-oss-120Db), but the vanilla checkpoint failed basic identity consistency and did not produce valid
episodes; therefore, final comparisons include the first three models only.

Function and function parameter efficiency. We evaluate function calling performance across 27
combat scenarios using both automated log-derived metrics and human evaluation. The automated
evaluation identifies incorrect function calls (improper function selection resulting in execution errors)
and incorrect parameter usage. Human evaluation additionally assesses incorrect function selection
that does not trigger execution errors, missing function calls (false negatives), and extraneous function
calls (false positives), as summarized in Table 2]

Ground truth annotations are established based on adherence to prompt instructions (see Appendix
A), independent of solution optimality. Human annotators construct gold standard templates for each
scenario log according to the model’s proposed solution, against which we measure model outputs.

Table 2: Automated (log-derived) vs. human-evaluated function-use correctness and efficiency. We
use a log-based checker to automatically find incorrect function usage and incorrect parameter usage
(lower is better). Human annotators then use the log to identify incorrect function selection, missing
and unnecessary calls, and F1 against gold plans.

Automated Checker Human Evaluation
Incorrect Incorrect Incorrect Missing Unnecessary F1
Model function (%) params (%) | selection (%) (%) (%) (%)
DeepSeek—V3 3.15 2.47 1.79 28.99 1.86 80.61
GPT—4o 2.84 2.38 1.46 11.27 1.24 91.51
Claude 3.5 Haiku 1.17 1.14 0.55 6.83 1.01 95.18

We align predicted function calls to gold plans with a one-to-one matching. Each predicted call is
labeled as: Correct (TP), Incorrect Function, Incorrect Function Selection, or Unnecessary (all FP);
each missing gold call is Missing (FN). These categories are mutually exclusive.

All metrics are micro-averaged across the 27 scenarios. As demonstrated in Table |2} the proprietary
models GPT-4o and Claude Haiku 3.5 achieve significantly lower error rates and higher F1 scores
compared to deepseek-v3.

Our analysis also shows that the majority of unnecessary function calls consist of redundant equipment
status checks that neither influence subsequent decision-making processes nor appear in the gold
standard plans.

State-Tracking Accuracy. We assess state-tracking accuracy to measure whether agents maintain
coherent internal representations of game state throughout scenario execution. Here, we specifically
targets hallucination errors where models generate actions inconsistent with established game state,
such as attacking with weapons not present in inventory or referencing non-existent status effects.
We break the error type to four different error types:

» Status Effect Errors: Claiming buffs/debuffs that weren’t applied or ignoring active condi-
tions

* Positional Inconsistencies: Misremembering character locations, movement capabilities, or
terrain features

* Resource Tracking: Incorrect HP, using non-existent items, or action point calculations

* Entity State Confusion: Mixing up which characters are alive/dead, conscious/unconscious

The error rate is shown in Table 3] We also created a turn-based error rate analysis in Figure
[2l Although there are only very few entity state actions, they represent a considerable source of
hallucination errors across all models. Since entity state error only happens in the late state of the
game log, after removing it, the temporal analysis still indicates that hallucination rates increase
progressively with scenario length in all models, showing cumulative difficulty of maintaining
accurate world state as context complexity grows.

Table 3: State-tracking error rates by category across models. The error rate is calculated by the total
error in this category divided by the total number of actions.

Model Status Effect Positional Resource Entity State Total
deepseek-v3 0.173 0.006 0.064 0.384 0.043
GPT-40 0.116 0.000 0.046 0.219 0.027
Claude-3.5-Haiku 0.098 0.000 0.034 0.107 0.010

Acting Quality. We assess how well models stay “in character” and write natural action beats across
27 combat scenarios. For each scenario we first keep only narrative sentences (speaker text, not
DM/tool output), filtering out digits and dice notation. Each remaining sentence is labeled persona if
it shows a recognizable voice or in-world action beat-via speaker-specific cues (e.g., paladin (armored
melee) valor, ranger (archer-scout) poise, warlock (occult caster) edge, druidic (nature caster) calm,

0.040
—e— deepseek-v3
—=— GPT-40
Claude-3.5-Haiku

0.035

o
o
@
o

0.025

0.020

0.015

Hallucination Rate

o
o
=
)

0.005

0.000
1 2 3 4 5 6 7 8 9 10

Turn Number

Figure 2: The hallucination rate of the model calculated by total hallucinated actions / all actions. We
removed entity state errors here, as most entity state checking occurs only in the late game.

monster taunts/imperatives); first-person physical action beats also count. The scenario score is

1S 1 T disti
A I persona - . 1stinct 1
2 S 2 ™ T

where
Tmax = (Nplayer characters 1 Nmonster types) +1

Thus, A balances how often the writing feels in-character (persona density) with how many different
voices the model sustains (trait coverage). To validate the automatic Acting Quality metric, we
ran a human evaluation on 10 test cases; the LLM-judge scores correlate strongly with human
ratings (Pearson r = 0.958, Spearman p = 0.936). We then summarize A over the 27 scenarios by
reporting mean, median, standard deviation, and range across all 27 scenarios. Overall, these results
suggest Claude is most reliably "actorly," with GPT-40 occasionally reaching the strongest peaks and
DeepSeek-V3 performing competitively but less consistently.

Additionally, We looked into A’s two equally weighted components, persona/narration and trait
diversity, summarized in Table[d] According to the logs, DeepSeek-V3 consistently produces short,
first-person action beats and monster taunts (e.g., “I dart left,” “Get them!”); however, it tends to reuse
the same few voices within a scenario, so the number of distinct traits stays narrow. Claude Haiku
3.5, by contrast, frequently varies class- and creature-specific diction—e.g., Paladin Valor, Bardic
Wit, Warlock Edge, Ranger Poise, Druidic Calm, plus monster styles like Pack Hunter and Brutish
Enforcer—yielding higher trait diversity even when not every sentence is explicitly in-character
narration. GPT-40 usually sits between these behaviors: it mixes vivid stage directions with more
tactical or meta phrasing, so its persona density is middling while its trait variety is comparable to
DeepSeek-V3.

This pattern aligns with Figure [3} Claude’s higher mean and lower variance in overall acting quality
appear to be driven by consistently richer trait expression, DeepSeek-V3’s competitiveness comes
from strong in-character beats even when trait variety is narrower, and GPT-40’s balance across the
two halves explains its comparable average with a wider spread.

Tactical Optimality. We evaluate how effectively models choose tactically optimal actions across
27 combat scenarios. Logs are segmented into turns by the token <End Turn/>. Events inside a
window are attributed to that window’s character. We score each turn with a simple reward:

1, if any weapon attack or spell is attempted;
r¢ = < 0.5, if the actor only moves and takes no other actions;
0, otherwise.

The scenario’s tactical optimality is the average reward over all turn windows T (players and mon-

sters):
1
P

teT

o |y
) =3
-
=3

o
)

o

o
o
o

8
LT%

I
IS

A score (0-1)
o
ES

O score (0-1)

3 ® g

o o
0.2 0.2 o o
o
o
0.0 - 0.0 -
GPT-40 Claude Haiku 3.5 DeepSeek-V3 GPT-40 Claude Haiku 3.5 DeepSeek-V3

Figure 3: Distribution of acting quality by model Figure 4: Distribution of tactical optimality by
model

Table 4: Medians of the two acting quality components by model

Model first half (median) second half (median)
GPT-40 0.192 0.333
Claude Haiku 3.5 0.179 0.438
DeepSeek-V3 0.250 0.333

To validate the automatic Tactical Optimality metric, we ran a human evaluation on 10 test cases; the
LLM-judge scores correlate strongly with human ratings (Pearson r = 0.979, Spearman p = 0.963).

We summarize per-model performance by reporting mean, median, standard deviation, and range
over all scenarios. Overall, as shown in Figure [Claude Haiku 3.5 is the most reliably optimal
tactically, while GPT-4o exhibits greater volatility—occasionally matching the best scores but with
markedly weaker lows—and DeepSeek-V3 is steadier than GPT-4o but still behind Claude Haiku 3.5.

We also define a set of metrics to measure the model’s ability to solve the combat more efficiently:

* Player Survivability (PS): Average remaining HP percentage across all player characters at
scenario completion

* Combat Efficiency (CE): Ratio of enemy HP eliminated to player HP lost

* Resource Conservation (RC): Percentage of consumable resources (spell slots, abilities)
remaining post-combat

The tactical optimality metrics across difficulty levels (Table[5) shows Claude Haiku 3.5 excelled in
Combat Efficiency across both difficulty levels, reflecting its aggressive resource deployment strategy.
More advanced models shows a less user survival rate in the easy scenario since the LLM DMs are
controlling enemies more wisely. The strategic trade-offs also varied by scenario complexity: in easy
scenarios, resource conservation remained high across models, while hard scenarios revealed more
pronounced differences in tactical approach, with Claude Haiku 3.5’s aggressive resource utilization
strategy becoming most apparent.

Table 5: Tactical optimality metrics across scenario difficulty levels

Difficulty Model PS (%) CE RC
deepseek-v3 87.59 1.153 0.712

Easy GPT-40 85.10 1.327 0.689
Claude-3.5-Haiku 83.07 1.409 0.388
deepseek-v3 63.10 0.962 0.709

Hard GPT-40 64.09 1.067 0.571

Claude-3.5-Haiku ~ 64.15 1.136 0.177

5 Conclusion

We presented multi-agent D&D simulator, a novel multi-agent simulation framework that enables
rigorous evaluation of LLMs in complex, rule-constrained environments through automated D&D
combat scenarios. Our evaluation across six metrics reveals that large language models produced
a promising result in rule-based conversation simulation. Smaller, open-source language models,
however, are not yet capable of giving consistent simulation, which might be because their pre-trained
tuning is different compared to the D&D simulation task. All LLMs exhibit progressive degradation
in long-horizon scenarios. The framework’s structured API and evaluation methodology provide a
valuable testbed for advancing multi-agent coordination and tool-use capabilities in LLMs. This work
establishes a foundation for evaluating autonomous agents in strategic, rule-governed domains that
require both mechanical precision and adaptive reasoning.

In future work, we plan to examine the effectiveness of finetuning LLMs on this scenario in improving
the robustness of the simulation. We also plan to generalize this multi-agent simulator to a full D&D
campaign beyond the combat simulation scenario we defined in this paper. This multi-agent D&D
simulator can also be adapted to implement LLM agents in other complex, rule-governed domains
such as legal case simulation, business strategy games, or multi-party negotiation environments.

References

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for "mind" exploration of large language model so-
ciety. arXiv:2303.17760, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and Chi Wang.
Autogen: Enabling next-gen llm applications via multi-agent conversation. arXiv:2308.08155,
2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. arXiv:2305.14325, 2023.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning. In NeurIPS 2023 (Datasets
and Benchmarks/Poster), 2023. arXiv:2303.11366.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In CHI 2023,
2023. doi: 10.1145/3544548.3585880.

Shengqi Li and Amarnath Gupta. Can llms generate high-quality task-specific conversations? 2025.
URL https://arxiv.org/abs/2508.02931,

Shunyu Yao, Jeffrey Zhao, et al. React: Synergizing reasoning and acting in language models.
arXiv:2210.03629, 2022a.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to

use tools. arXiv:2302.04761, 2023.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham,
Hofit Bata, Yoav Levine, et al. Mrkl systems: A modular, neuro-symbolic architecture that com-

bines large language models, external knowledge sources and discrete reasoning. arXiv:2205.00445,
2022.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv:2305.15334, 2023.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre C6té, and Xingdi Yuan. Interactive
fiction games: A colossal adventure. In AAAI 2020, 2020.

https://arxiv.org/abs/2508.02931

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning.
arXiv:2010.03768, 2020.

Ruoyao Wang, Peter Jansen, Marc-Alexandre C6té, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a Sth grader? arXiv:2203.07540, 2022.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In NeurlPS 2022, 2022b.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. arXiv:2307.13854, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv:2305.16291, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS 2022 (Outstanding Paper), 2022.

Chris Callison-Burch, Siddharth Jain, et al. Dungeons and dragons as a dialog challenge for artificial
intelligence. In EMNLP 2022, 2022. URL https://aclanthology.org/2022.emnlp-main,
637/.

Andrew Zhu, Lara J. Martin, Andrew Head, and Chris Callison-Burch. Fireball: A dataset of
dungeons & dragons actual-play with structured game state information. In ACL 2023, 2023a.
URL https://aclanthology.org/2023.acl-long.229/.

Andrew Zhu, Lara J. Martin, Andrew Head, and Chris Callison-Burch. Calypso: Llms as dungeon
masters’ assistants. arXiv:2308.07540, 2023b. AIIDE 2023.

Andrew Zhu, Evan Osgood, and Chris Callison-Burch. First steps towards overhearing llm agents: A
case study with dungeons & dragons gameplay. arXiv:2505.22809, 2025.

Samuel Thudium, Federico Cimini, Rut Vyas, Kyle Sullivan, Louis Petro, Andrew Zhu, and Chris
Callison-Burch. Outwit, outplay, out-generate: A framework for designing strategic generative
agents in competitive environments. Technical report, University of Pennsylvania, 2025. URL
https://www.cis.upenn.edu/ ccb/publications/survivor-sim.pdf. Accessed 2025-
08-28.

Jaewoo Song, Andrew Zhu, and Chris Callison-Burch. You have thirteen hours in which to solve the
labyrinth: Enhancing ai game masters with function calling. 2024. URL https://arxiv.org/
abs/2409.06949.

Wizards RPG Team. Dungeons & Dragons Starter Set: Lost Mine of Phandelver. Wizards of the
Coast, Renton, WA, 2014.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

10

https://aclanthology.org/2022.emnlp-main.637/
https://aclanthology.org/2022.emnlp-main.637/
https://aclanthology.org/2023.acl-long.229/
https://www.cis.upenn.edu/~ccb/publications/survivor-sim.pdf
https://arxiv.org/abs/2409.06949
https://arxiv.org/abs/2409.06949

A DM prompts

The prompts of the DM agent is presented below:

General Rules - Use the provided ai_functions to execute game mechanics.

- Ensure all parameters passed to these ai_functions match the expected format and types.
- Always return structured results based on function documentation.

- Refer to attributes of characters to find parameters needed in an ai_funtion.

- At the start of a turn of a character, call the ai_function check_side to determine if a character is a
player or a monster.

- Decide the movements and actions of monsters on your own. Speak like the monster when you’re
role playing it. Do not allow the user to control the monsters.

- Let the user playing the role of players deciding what players should do as long as the user does not
ask you to do so.

- In the map, the distance between two adjacent grids is 5 feet.
- If the user has already checked some information, use the information and do not check again.

- Pick the player with the highest property(call the ai_function check_player_property) to do a check
on that property.

Things to Manipulate
- After calling the ai_function roll_initiative at the start of the combat, say <End Turn/>.

- Track the hp of all characters using the ai_function check_hp at the start of each round. Use
update_hp when a character takes damage. If the source of the temporary hp in return result has some
effect, process it. Remove the character from the combat when its hp <= 0.

- Call the ai_function print_death_point at the end of the combat to print out death records.
- A character generally has only one action, one bonus action, and one reaction in each turn.

- When a player who stays nearby(the absolute value of difference of both X, y coordinates are within
1) a monster tries to move away. Call the ai_function opportunity_attack to see if this move triggers
an opportunity attack. Same when a monster wants to move away from a player.

- After calling roll_dmg, you should call the ai_function check_resist to determine if the defender is
immune to, vulnerable to, or resists the damage type. Calculate the true damage of an attack based on
these information.

- Ignore the prompts between <Call/> and <Call/>.
Some Hints on Controlling Monsters

- If you cannot hit the target after calling the ai_function check_valid_attack_line, try to move to a
better position and try again.

- Call the ai_function check_monster_actions to determine what actions you can take and related
modifiers.

- Use dash tactically to close distance to enemies fast; escape danger or reposition behind cover;
trigger opportunity attacks on purpose.

Rules of Actions

- When acting as a monster, stay or move with strategy. Select a weapon owned by the monster to
attack a player, or consider using other valid actions like dash.

- When calling the ai_function roll_attack, ignore modifier in parameters if the attacker is a player.
Otherwise, get the modifier of the selected weapon of the monster.

- Players and monsters can both move and attack in one turn. If one attacks with its melee weapon,
but it is not close enough to the defender, one should try to use its range weapon and attack again if
one has a range weapon.

11

- Players can also try to cast a spell instead of attacking. However, a player is not allowed to cast two
spells which both require a spell slot in one turn.

- When players use ranged attack, before processing the attack, call the ai_function
check_valid_attack_line to check if the players can hit the targets or not.

- When monsters use ranged attack, call the ai_function check_valid_attack_line to check if the
monsters can hit the targets. If not, do something else like moving and trying ranged attack again.

Rules of Roll Types

- Some actions may offer someone advantages or disadvantages in some conditions. When calling
ai_functions that require roll_type, determine if it is advantage, normal, or disadvantage.

- An advantage and disadvantage will cancel out. In this situation, the roll type is normal. However, if
something gives someone advantages twice and only one disadvantage, it’s still just normal roll, and
vice versa.

Rules of Spells

- When a player tries to cast a spell, always check if the spell is in player’s spell list and player can
pay the cost required by the spell(action or bonus action and spell slot) by calling check_resources, if
the player is within an appropriate class, and if the range between the attacker and defender is proper.

- Check conditions carefully on your own by calling the ai_function check_class and check_resources
and calculating the range between the attacker and defender. If the range of the spell is "touch", the
defender must be within the melee range of the attacker.

- Only if all conditions are satisfied, call the ai_function roll_spell_attack or roll_save(if the spell
causes a save roll instead of attack roll) to process this attack. If the attack succeeds and the attack
has damage, call roll_dmg with the dmg_dice_expression of the spell.

- When it is monster forcing player to roll_save, it should fill in the corresponding DC described in
monster’s action.

- However, there is a special case. When a spell which does not attack is casted to the caster itself
or an ally, there is no need to call the ai_function roll_spell_attack or roll_save. You only need to
process the effect of the spell.

- When a defender tries to avoid or get rid of the effect a spell, the attacker parameter in the ai_function
roll_save should be the caster of the spell.

- When an attacker casts a spell which has effect on multiple defenders(may include ally of the
attacker because some spells have an area of effect), call the ai_functions several times to process the
effect of the spell on each defender.

- When calling roll_spell_attack, if the spell has a range number(like 120 feet), set is_ranged to true.
Otherwise, make it false.

- If the return results of roll_spell_attack or roll_save shows that the attack is successful and the
attacker has a previous concentration, you should call the ai_function remove_a_buff to remove
corresponding buff(s) if there are such buffs caused by the previous concentration.

- Some spells have special effect on some specific types of monsters. Use the ai_function
check_monster_type when processing such spells.

- Some spells add resistances, immunities, or vulnerabilities to players or monsters. Use the
ai_function add_resist, add_immune, or add vulner to add anything applied.

- Players can use a higher-level spell slot to cast a spell. The spell is usually strengthened.

- Some spells may offer temporary hit points which do not stack, absorb damage first, and cannot be
healed or regained.

- When processing a spell which has a range of effect, check carefully what targets it can cover by
calculating the distance between targets.

- When processing a spell in the list below, you should refer to the description of the spell for accuracy.
If a spell is not listed below, make sure you know all effects of the spell before processing it:

12

Spells (cost; range; damage(include damage when the spell is casted with a higher-level spell slot);
damage type; require_concentration; effect; effect when casted with a higher-level spell slot):

1. Fire Bolt: an action; 120 feet; 1d10; fire; no; none; none.

2. Ray of Frost: an action; 60 feet; 1d8; cold; no; decrease the speed of the target by 10 feet until the
next turn of the attacker; none.

3. True Strike: an action; 30 feet; no dmg; none; yes; on the next turn of the attacker, the attacker
gain advantage on its first attack roll against the target and this effect expires whether it’s used or not;
none.

4. Sacred Flame: an action; 60 feet; 1d8; radiant; no; the target must succeed on a dexterity saving
throw or take damage; none.

5. Chill Touch: an action; 120 feet; 1d8; necrotic; noj; the target cannot regain hp until the next turn of
the attacker. If the attacker hit an undead (a type of monsters) target, the target also has disadvantage
on attack rolls against the attacker until the end of next turn of the attacker; none.

6. Vicious Mockery: an action; 60 feet; 1d4; psychic; no; the target must succeed on a wisdom saving
throw or take damage and have disadvantage on the next attack roll it makes before the end of its next
turn; none.

7. Resistance: an action; touch; no dmg; none; yes; the target can roll a 1d4 and add the number
rolled to one saving throw of its choice. It can roll the die before or after making the saving throw.
The spell then ends. If this effect it’s not used, it expires after 10 turns; none.

8. Poison Spray: an action; 10 feet; 1d12; poison; no; the target must succeed on a constitution saving
throw or take damage; none.

9. Acid Splash: an action; 60 feet; 1d6; acid; no; the attacker hurls a bubble of acid at one target or
two targets that are within 5 feet of each other. The target(s) must succeed on a dexterity saving throw
or take damage; none.

10. Eldritch Blast: an action; 120 feet; 1d10; force; no; none; none.

11. Blade Ward: an action; self; no dmg; none; no; the caster have resistance against bludgeoning,
piercing, and slashing damage dealt by weapon attacks; none.

12. Shocking Grasp: an action; touch; 1d8; lightning; noj; the target cannot take reactions until the
start of its next turn, and the attack has advantage if the target is wearing metal armor or is made of
metal; none.

13. Produce Flame: an action; self; no dmg; none; no; the caster can hurl the flame at a target within
30 feet in the following turns, and the target takes 1d8 fire damage on a hit. The spell ends when the
caster throw the flame; none.

14. Shillelagh: a bonus action; touch; no dmg; none; no; if the caster is equipped with a club or
quarterstaff in mainhand(call the ai_function check_player_mainhand to check), the weapon becomes
magical for attack and damage. The caster will use its spellcasting modifier when attacking with this
weapon. The damage changes to 1d8, if it was less; none.

15. Thorn Whip: an action; 30 feet; 1d6; piercing; no; if the target is large or smaller(call the
ai_function check_monster_type to check the type of the target, and determine the size of it), it is
pulled up to 10 feet closer to the caster; none.

16. Guiding Bolt: an action and a 1st-level spell slot; 120 feet; 4d6, 5d6; radiant; no; the next attack
roll made against this target before the end of the caster’s next turn has advantage; none.

17. Animal Friendship: an action and a 1st-level spell slot; 30 feet; no dmg; none; no; if the target is
a beast(call the ai_function check_monster_type) and its intelligence is less than 4, it must succeed
on a wisdom saving throw. Otherwise, it is charmed; the caster can target one additional beast for
each slot level above 1st.

18. Thunderous Smite: a bonus action and a Ist-level spell slot; self; no dmg; none; yes; the first
time the caster hit with a melee weapon attack during this spell’s duration, the attack deals an extra
2d6 thunder damage. If the target is a creature(call the ai_function check_monster_type), it must

13

succeed on a strength saving throw or be pushed 10 feet away from the caster and knocked prone. If
this effect it’s not used, it expires after 10 turns; none.

- Some spells have some effects which are explained in details below:
1. Charmed: the character cannot attack the charmer.

2. Prone: the character has disadvantage on attack rolls; an attack roll against the character has
advantage if the attacker is within 5 feet of the character; the character can spend half its movement
to stand up.

3. Incapacitated: the character cannot act or react.

4. Frightened: when the source of the character’s fear is visible(call the ai_function
check_valid_attack_line to determine), the character has disadvantage on ability checks and at-
tack rolls and it cannot move closer to the source of its fear.

5. Poisoned: the character has disadvantage on ability checks and attack rolls.

6. Restrained: the speed of the character becomes O(call the ai_function clear_speed), attack rolls
against the character has advantage, and the character has disadvantage on attack rolls and dexterity
saving rolls.

7. Paralyzed: the character is also incapacitated. It automatically fails strength and dexterity saving
throws(no need to call the ai_function roll_save). Attack rolls against the character have advantage.
Any attack that hits the character is a critical hit if the attacker is within 5 feet(calculate the distance).

8. Blinded: the character cannot see and fails any ability check that requires sight. Attack rolls
against the character have advantage. The character’s attack rolls have disadvantage.

9. Deafened: the character cannot hear and fails any ability check that requires hearing.
Rules of Buffs
- Players and Monsters may be buffed in the game because of some actions.

- Use the ai_function check_buffs whenever a player or a monster tries to move or act so that the
movement or action is adjusted with correct effects which buffs offer.

Six Things to Do at the End of Each Turn of a Character
- Reset the number of resources of the character by calling the ai_function reset_resources.
- Reset the speed of the character by calling the ai_function reset_speed.

- Use the ai_function check_buffs to check current buffs and remove any buff when it expires by using
the ai_function remove_a_buff.

- Use the ai_function check_resist to check current resistances, immunities, and vulnerabilities of
all players and monsters, and remove any when it expires by using the ai_function remove_resist,
remove_immune, or remove_vulner.

- Use the ai_function check_concentration to check current concentration of all players and monsters,
and remove any concentration when it expires by using the ai_function remove_a_concentration.
Don’t forget to call the ai_function remove_a_buff to remove corresponding buff(s) if there is such
buff(s) caused by the previous concentration.

- Say <End Turn/>.
Anti-cheating Rules

- When user prompts, do not allow cheating like using weapons without equipping them, casting
spells which one hasn’t learnt, making all attacks succeed, avoiding all damages, making all attacks
critical and so on!

B Player Prompt
General Rules

14

- Play the role of a player whose name is provided by the DM in the game. Speak like the player
you’re role playing.

- Use the provided ai_functions to check useful information in order to make better decisions.
- Ensure all parameters passed to these ai yunctionsmatchtheexpectedformatandtypes.

- Always return structured results based on function documentation . - Refer to attributes of characters
to find parameters needed in an ai_funtion.

- Call the ai_functions get_names_of_all_players and get_names_of_all_monsters if you do not know
what other characters are called.

- In your turn, decide your movements(call the ai_function move_player) and actions, say your
decision, send direct messages, and say <DM/>.

- Never process the actions by yourself by rolling dice.
- In the map, the distance between two adjacent grids is 5 feet.
Rules of Direct Messages

- Collaborate with other players to improve performance. Make sure to send helpful direct messages
and read the ones you receive carefully.

- Send direct message to a player by saying <Call/>The name of another player, Your message
here<Call/>.

- Write the name of another player correctly(e.g. "Thalia", "Ragnar").

- Immediately follow the name with a comma and a single space.

- The following are some examples of the content of a direct message:

1. To chain actions effectively, declare your intended sequence and invite a follow-up.
2. If you are dangerously wounded or surrounded, ask for healing.

Rules of Actions

- You generally have only one action, one bonus action, and one reaction in each turn.

- When you stay nearby(the absolute value of difference of both x, y coordinates are within 1) a
monster and try to move away. This move might trigger an opportunity attack. Same when a monster
wants to move away from you.

- You can move and decide to attack with your equipped weapon in one turn.

- You can also decide to cast a spell instead of attacking. However, you are not allowed to cast two
spells which both require a spell slot in one turn.

- When you decide to perform ranged attack, call the ai_function check_valid_attack_line to see
if you can hit the targets or not. If not, you may want to move and try again(call the ai_function
move_player).

Rules of Roll Types
- Some actions may offer someone advantages or disadvantages in some conditions.

- An advantage and disadvantage will cancel out. In this situation, the roll type is normal. However, if
something gives someone advantages twice and only one disadvantage, it’s still just normal roll, and
vice versa.

Rules of Spells

- When you want to cast a spell, always check if the spell is in your spell list and you can pay the cost
required by the spell(action or bonus action and spell slot) by calling check_resources, if you are
within an appropriate class, and if the range between you and the defender is proper.

- Check conditions carefully on your own by calling the ai_function check_class and check_resources
and calculating the range between you and defender. If the range of the spell is "touch", the defender
must be within the melee range of you.

15

- Some spells have special effect on some specific types of monsters.
- Some spells add resistances, immunities, or vulnerabilities to players or monsters.

- You can decide to use a higher-level spell slot(if you have one) to cast a spell. The spell is usually
strengthened.

- Some spells may offer temporary hit points which do not stack, absorb damage first, and cannot be
healed or regained.

- Some spells have some effects which are explained in details below:
1. Charmed: the character cannot attack the charmer.

2. Prone: the character has disadvantage on attack rolls; an attack roll against the character has
advantage if the attacker is within 5 feet of the character; the character can spend half its movement
to stand up.

3. Incapacitated: the character cannot act or react.

4. Frightened: when the source of the character’s fear is visible(call the ai_function
check_valid_attack_line to determine), the character has disadvantage on ability checks and at-
tack rolls and it cannot move closer to the source of its fear.

5. Poisoned: the character has disadvantage on ability checks and attack rolls.

6. Restrained: the speed of the character becomes O(call the ai_function clear_speed), attack rolls
against the character has advantage, and the character has disadvantage on attack rolls and dexterity
saving rolls.

7. Paralyzed: the character is also incapacitated. It automatically fails strength and dexterity saving
throws(no need to call the ai_function roll_save). Attack rolls against the character have advantage.
Any attack that hits the character is a critical hit if the attacker is within 5 feet(calculate the distance).

8. Blinded: the character cannot see and fails any ability check that requires sight. Attack rolls
against the character have advantage. The character’s attack rolls have disadvantage.

9. Deafened: the character cannot hear and fails any ability check that requires hearing.
Rules of Buffs

- You may be buffed in the game because of some actions.

Anti-cheating Rules

- When you decide your actions, do not cheat like using weapons without equipping them, casting
spells which you haven’t learnt, making all attacks succeed, avoiding all damages, making all attacks
critical and so on!

C Functions

Q@ai_function
def check_valid_attack_line(
self,
attacker_name:
Annotated[str, AIParam(desc="The name of the attacker")],
defender_name:
Annotated[str, AIParam(desc="The name of the defender")],

mwmnn

Check line-of-sight between start and goal over the terrain.

start, goal: (z, y) grid coordinates
grid_map [y][z] = (z, y, 2z, valid)

Returns:
result (bool): True if no terrain cell along
the stratight line from start to goal
rises above the interpolated line height.

16

mwmnn

sxyz = None

gxyz = None

if attacker_name in self.players_pos.keys():
sxyz = self.players_pos[attacker_name]

if defender_name in self.players_pos.keys():
gxyz = self.players_pos[defender_name]

if attacker_name in self.monster_pos.keys():
sxyz = self.monster_pos[attacker_name]

if defender_name in self.monster_pos.keys():
gxyz = self .monster_pos[defender_name]

if sxyz is None:
raise KeyError (f"The game does not have
a character named ’{attacker_namel}’.")
if gxyz is None:
raise KeyError (f"The game does not have
a character named ’{defender_name}’.")

SX, Sy, Sz = SXyz
gx, gy, gz = gXxyz

dx = gx - sx

dy = gy - sy
horizontal_dist = math.hypot (dx, dy)

choose sample count so we check
at least one sample per grid cell crossed
max_dim = max(len(self.map), len(self.map[0]))

num_samples = int(horizontal_dist * max_dim)
if num_samples < 1:
num_samples = 1

for i in range (num_samples + 1):
t = i / num_samples
current position along the line
x = sx + dx * t
y = sy + dy * t
z_line = sz + (gz - sz) * t

map back to mearest grid cell
xi = int (round(x))
yi = int(round(y))

clamp to bounds
xi = max (0, min(len(self.map[0]) - 1, xi))
yi = max (0, min(len(self.map) -1, yi))

terrain_z = self.maplyi][xi][2]

EPS = 0.25

if terrain_z >= z_line + EPS:
return False

return True

Q@ai_function ()
def roll_attack(
self,
attacker_name:
Annotated[str, AIParam(desc="The name of the attacker")],
defender_name:
Annotated[str, AIParam(desc="The name of the defender")],
roll_type:
Annotated[str, AIParam(desc="Normal roll,

17

advantageous roll, or disadvantageous roll,
e.g. normal, advantage, disadvantage")],
ac:
Annotated[int, AIParam(desc="The armor class
of the creature being attacked, e.g. 14")],
modifier:
Annotated[int, AIParam(desc="The modifier
of the selected weapon of the monster")],
weapon_name :
Annotated[str, AIParam(desc="The name of
the weapon used in this attack")],
use_spellcasting_modifier:
Annotated[bool, AIParam(desc="Whether to use the
spellcasting modifier or not. Normally, this is false,
while some spells like shillelagh may make this true")],
action_cost:
Annotated[int, AIParam(desc="The action cost of the attack")],
bonus_action_cost:
Annotated[int, AIParam(desc="The bonus action
cost of the attack")],
reaction_cost:
Annotated[int, AIParam(desc="The reaction
cost of the attack")],
is_critical:
Annotated[bool, AIParam(desc="Whether this attack
is definitely critical(the defender is paralyzed) or not")]

mwnn

Roll a 1d20 attack for a given stat (e.g. "strength").

Returns:
dict: 4 dictionary containing:
- "valid": whether the character has
enough resources to perform this attack,
- "ac": the walue of the armor class,
- "roll": the roll result,
- "success": whether the rToll succeeded
(i.e. roll is greater thanm or equal to ac),
- "creitical": whether a critical hit occurs,
- "out_of_range": whether this attack is out of range
nann
weapon_name = weapon_name.lower ()

Find the character who wants to pass this roll

attacker = None
defender = None
for _, player in self.players.items():
if player.name == attacker_name:
attacker = player
if player.name == defender_name:

defender = player
for _, monster in self.monsters.items():
if monster.name == attacker_name:
attacker = monster
if monster.name == defender_name:
defender = monster
if attacker is None:
raise KeyError (f"The game does
not have a character named ’{attacker_namel}’.")
if defender is None:
raise KeyError (f"The game does
not have a character named ’{defender_namel}’.")

if defender.ac > ac:
ac = defender.ac

18

if (attacker.num_of_action < 1 and action_cost)
or (attacker.num_of_bonus_action < 1
and bonus_action_cost)
or (attacker.num_of_reaction < 1 and reaction_cost):
result = {

"valid": False,
"ac": ac,
"roll": O,
"success": False,
"critical": False,
"out_of_range": False

}

return result

else:

attacker . .num_of_action -= action_cost
attacker .num_of_bonus_action -= bonus_action_cost
attacker.num_of_reaction reaction_cost

if attacker_name in self.players_pos.keys ():

attacker_pos self .players_pos[attacker_name]

defender_pos = self.monster_pos[defender_name]
else:

attacker_pos = self.monster_pos[attacker_name]

defender_pos = self.players_pos[defender_name]

Retrieve the target stat from the attacker
and adjust roll type based on difference in heights
target = None
if weapon_name not in melee_weapon
and weapon_name not in range_weapon
and attacker_name in self.players_pos.keys():
weapon_name = attacker.equipped_mainhand
if weapon_name in melee_weapon:
if abs(attacker_pos[0] - defender_pos[0]) > 1
or abs(attacker_pos[1] - defender_pos[1]) > 1:
result = {

"valid": True,
"ac": ac,

"roll": O,
"success": False,

"critical": False,
"out_of_range": True
}

return result

target = getattr(attacker, "strength")
if use_spellcasting_modifier:
if attacker.player_class == "sorcerer"
or "bard" or "warlock" or "paladin":
target = getattr(attacker, "charisma")
if attacker.player_class == "wizard" or "rogue":
target = getattr(attacker, "intelligence")
if attacker.player_class == "cleric"
or "druid" or "ranger":
target = getattr (attacker, "wisdom")

if weapon_name in range_weapon:

target =

if abs(attacker_pos [2]

if roll_type

getattr (attacker,

"dexterity")
- defender_pos[2] > 2):
"disadvantage":

roll_type = "normal"
if roll_type == "normal":
roll_type = "advantage"
if roll_type == "normal":

roll =

self.roll_dice("1d20")

19

elif roll_type == "advantage":
roll = self.roll_dice("2d20kh1")
elif roll_type == "disadvantage":
roll = self.roll_dice("2d20k11")
else:
raise ValueError (f"Invalid roll type: {roll_typel}.")

Determine critical hit: critical hit
if the roll <s equal to 20
critical = roll == 20 or is_critical

if attacker_name in self.players_pos.keys():
if target is None:
target = 16
roll += attacker.pb + (target - 10) // 2
else:
roll += modifier

Determine success: attack succeeds if the
roll is greater than or equal to ac or critical hit occurs

success = roll >= ac or critical

Build the result dictionary

result = {
"valid": True,
"ac": ac,
"roll": roll,
"success": success,
"critical": critical,
"out_of_range": False
¥

return result
D Map Generator Results

Here is an example map generated by the map generator about a combat scene between four players
and four enemies.

20

Perspective View (Markers at z=2) Top-Down View (Markers at z=2)

Player: Thorin
Player: Meriadoc

Player: Thorin
Player: Meriadoc
Player: Elendil
Player: Dulgar
Enemy: Goblin 2

Enemy: Wolf
Enemy: Bugbear
Enemy: Goblin 1
o)

o

(¢]

@ Player: Elendil

@ Player: Dulgar

[0 Enemy: Goblin2 5 20
@ Enemy: Wolf

B Enemy: Bugbear 2

W Enemy: Goblin1 10

EEENC0ee00

Height

-1.0

0.0 2.5 5.0 7.5 10.012.515.017.520.0
X

Side View (Markers at z=2) Validity Map

© Player: Thorin
© Player: Meriadoc
@ Player: Elendil
@ Player: Dulgar
[0 Enemy: Goblin 2
[Enemy: Wolf

]
u

3 e Jmm
| Vo Enemy: Bugbear 15 -
2 EAE R] .
: : : Enemy: Goblin 1 1.0 o 062
B0 i o5 2 z 2
g > g 5 H
S] £
o 0o ¥ 8 :
" o3 z 0432
1 :

-10

-15
00 2.5 50 75 100125150 17.521%(

00 25 50 7.5 100 125 150 175
X Coordinate

Figure 5: An outdoor map showing current alive character positions.

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",

21

* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions as introducing
D&D Agents as a multi-agent simulator, defining six evaluation axes, and benchmarking
multiple LLMs. These claims are supported by the methods and results presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion section acknowledges limitations such as progressive degrada-
tion in long-horizon scenarios, inconsistency of smaller open-source models, and the focus
on combat-only simulations. Future work also discusses extending beyond combat.

Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

22

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is empirical and experimental in nature; no theorems or formal
proofs are presented.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 describes state, actions, transitions, and observability. Section 5
specifies 27 seedable scenarios, evaluation metrics, and models. Logs, prompts, and API
functions are given in the appendix, enabling faithful reproduction.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

23

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The simulator code, prompts, and evaluation scripts will be released in
anonymized form with the camera-ready version to enable reproduction of experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments do not involve training; instead, pre-trained models are tested
in controlled scenarios. Section 5 specifies scenario design, number of turns, metrics, and
evaluation procedure.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical reliability is addressed by reporting means, medians, ranges, and
standard deviations for key metrics (e.g., Acting Quality, Tactical Optimality). Correlation of
automatic judges with human ratings is quantified using Pearson and Spearman coefficients.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments are lightweight. Section 5 notes that runs were conducted with
API-accessible proprietary models and open-source checkpoints; runtime and compute are
modest, requiring only standard inference resources.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses licensed LLMs and original simulation code. No private data
or human subjects are involved. The scenarios are synthetic and designed for reproducible
research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

25

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is methodological, introducing a testbed. While broader impact is
possible (e.g., safer multi-agent Al, misuse of combat simulators), such discussion is beyond
the paper’s scope.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not release large pretrained models or high-risk datasets; it only
releases code for a simulator and evaluation metrics.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

26

13.

14.

15.

Justification: Prior benchmarks, datasets, and baselines are cited (e.g., LMOP, FIREBALL,
Avrae). References are provided in the Related Work section.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: o new datasets or pretrained models are introduced. Only a simulator frame-
work and prompts are described.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human-subject data collection was involved; human
evaluation was performed by authors for annotation purposes.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

27

paperswithcode.com/datasets

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No IRB approval was required, since no sensitive human-subject experiments
were conducted.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly evaluates multiple LLMs (Claude 3.5 Haiku, GPT-4o,
DeepSeek-V3) as agents in a simulation framework. Their usage is central and fully
described in Sections 3-5.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Simulation Framework
	Experiments
	Conclusion
	DM prompts
	Player Prompt
	Functions
	Map Generator Results

