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Abstract

Spatio-temporal knowledge graphs (STKGs)
extend the concept of knowledge graphs (KGs)
by incorporating time and location informa-
tion. While the research community’s fo-
cus on Knowledge Graph Question Answering
(KGQA), the field of answering questions in-
corporating both spatio-temporal information
based on STKGs remains largely unexplored.
Furthermore, a lack of comprehensive datasets
also has hindered progress in this area. To ad-
dress this issue, we present STQAD, a dataset
comprising 10,000 natural language questions
for spatio-temporal knowledge graph question
answering (STKGQA). Unfortunately, various
state-of-the-art KGQA approaches fall far short
of achieving satisfactory performance on our
dataset. In response, we propose STCQA, a
new spatio-temporal KGQA approach that uti-
lizes a novel STKG embedding method named
STComplEx. By extracting temporal and spa-
tial information from a question, our QA model
can better comprehend the question and retrieve
accurate answers from the STKG. Through ex-
tensive experiments, we demonstrate the qual-
ity of our dataset and the effectiveness of our
STKGQA method.

1 Introduction

In traditional KGs, facts are represented in the
format of triplets, such as (subject, relation, ob-
ject). Temporal knowledge graphs(TKGs) extend
the KG by incorporating timestamps or time inter-
vals (Gottschalk and Demidova, 2018), adding start
and end time to the representation of facts, as (sub-
Ject, relation, object, start_time, end_time). TKG
promotes the research on temporal inference (Sax-
ena et al., 2021; Mavromatis et al., 2022). In many
scenarios, not only time information but also geo-
graphic information is an important attribute for de-
scribing entities or events (Hoffart et al., 2013),the
integration of temporal and spatial information
takes KGs to a new level (Zhang et al., 2021;

Ji et al., 2023). Currently, STKG assist in many
fields by providing a more precise representation
of facts in both temporal and geographical dimen-
sions (Wang et al., 2021; Chen et al., 2022a; Ge
et al., 2022a,b). The fact in STKG is represented
as (subject, relation, object, start_time, end_time,
geographic_location).
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Figure 1: In STKGQA, it is necessary to extract spatio-
temporal constraints and clues for answer retrieval. The
spatio-temporal information marked with * satisfies the
constraints of all clues in the question.

Currently, numerous works have already been
conducted on temporal knowledge graph question
answering (TKGQA) (Saxena et al., 2021; Mavro-
matis et al., 2022; Chen et al., 2022b; Shang et al.,
2022), with a focus on extracting temporal infor-
mation from natural language questions. Unfor-
tunately, despite the long-standing availability of
extending TKG to STKG, there is still a lack of fur-
ther research on question answering using STKG.

Although some works have briefly discussed
the methods of question answering (QA) based on
STKG (Hoffart et al., 2013; Stringhini et al., 2019),
these discussions only addressed questions involv-
ing either temporal or spatial features separately
using expert-designed templates. They overlooked
the situation where both time and space informa-
tion occur in a single question. Additionally, the
traditional query method uses the belonging rela-



Question Types

Dataset KG Multi-Entity Multi-Relation - Temporal Spatial
SimpleQuestions FreeBase X X X X
GraphQ FreeBase X v X X
ComplexQuestions FreeBase X v v X
QALD-7 DBpedia X X X X
LC-QuAD 2.0 Wikidata X X X X
TempQuestions FreeBase v v v X
CronQuestions Wikidata v v v X
STQAD(ours) YAGO v v v v

Table 1: QA dataset comparison. There is currently no dataset that contains both temporal and spatial information

in one question.

tion of locations for reasoning (eg, "isCityOf™"),
which is difficult to query the orientation or dis-
tance constraints in a question.

As shown in Figure 1, QA system needs to ex-
tract the potential temporal and geographical infor-
mation from a question and search for the correct
answers. From the STKG, we can obtain the ge-
ographical information related to "Munich" and
the temporal information related to "World War
I'". Then we need to search all answers associated
with the central entity "Albert Einstein" by consid-
ering spatio-temporal constraints. Unfortunately,
as shown in Table 1, no further discussions have
been conducted on this specific issue at present.
Furthermore, there is a lack of large-scale datasets
available for evaluating the QA task on STKG.

Motivated by the aforementioned situations, we
create a spatio-temporal question answering dataset
(STQAD) specifically designed for STKGQA, uti-
lizing YAGO2(Hoffart et al., 2013) as the underly-
ing STKG. In order to enhance the quality of the
questions, we initially select entities as answers
from spatio-temporal subgraphs, then we formu-
late queries and generate constraints that closely
resemble real-world scenarios, incorporating them
into the questions.

Many existing KGQA systems fail to consider
situations where spatio-temporal constraints coex-
ist within a question, leading to poor performance
on our QA tasks. To address this limitation, we pro-
pose a spatio-temporal ComplEx embedding-based
question answering (STCQA) method for effec-
tively answering spatio-temporal questions. While
the KG embedding method has demonstrated suc-
cess in KGQA models (Saxena et al., 2020; Sun
et al., 2020; Saxena et al., 2021), our approach
extends the ComplEx (Trouillon et al., 2016) to
STKG and introduces a new STKG embedding
model called STComplEx. Additionally, we uti-

lize the spatio-temporal constraint fragment of the
question and implicit spatio-temporal clues to infer
the final answers. The contributions of our work
are summarized below:

1. We introduce the STQAD dataset, consisting
of 10,000 questions specifically designed for
the STKGQA task. To the best of our knowl-
edge, this is the first comprehensive STKGQA
dataset that encompasses spatial and temporal
constraints in each question.

2. We propose the STCQA framework to ad-
dress the STKGQA task. This method extends
the normal KG embedding method to STKG,
enabling the framework to integrate spatio-
temporal constraints and KG embedding, and
facilitating question answering.

3. Our experiments demonstrate the quality of
our dataset and the effectiveness of our KGQA
approach. Furthermore, although we have ob-
tained promising initial results, our dataset
still offers ample opportunities for enhancing
the STKGQA.

2 Related Works
2.1 QA Datasets

Datasets are crucial for advancing KGQA models
with robust generalization. SimpleQ (Bordes et al.,
2015) explores multi-task and transfer learning’s
impact on simple QA. GraphQ (Su et al., 2016)
enables fine-grained QA system analysis. Com-
plexQuestions (Bao et al., 2016) measures QA sys-
tem quality on multi-constraint questions. QALD-
7 (Usbeck et al., 2017) offers question-answer
pairs for evaluating RDF and linked data QA sys-
tems. LC-QuAD 2.0 (Dubey et al., 2019) provides
a dataset to study converting natural language ques-
tions into formal queries.



To address temporal reasoning, TORQUE (Ning
et al., 2020) poses multiple-choice temporal ques-
tions with context. TempQuestions (Jia et al., 2018)
defines temporal questions using trigger words
to filter out irrelevant QA datasets. CronQues-
tions (Saxena et al., 2021) is a large TKGQA
dataset with temporal KG and natural language
questions. However, there’s no large-scale evalu-
ation dataset for the STKGQA task, leading most
spatial QA frameworks to rely on geographic infor-
mation systems (GIS) for geographic analysis.

22 KGQA

Numerous studies have explored KGQA. Query
graph extraction has been proposed to address
KBQA task (Yih et al., 2015; Bao et al., 2016).
Embedding-based methods have also been proven
to solve the KBQA (Dai et al., 2016; Hao et al.,
2017; Lukovnikov et al., 2017; Févry et al., 2020).
Neural network methods rely on learning a scor-
ing function to rank candidate answers (Dai et al.,
2016; Hao et al., 2017; Lukovnikov et al., 2017;
Févry et al., 2020).

Temporal graph representation-based QA ap-
proaches (Saxena et al., 2021; Mavromatis et al.,
2022; Chen et al., 2022b) use the TKG embedding
method to learn entity, relation, and timestamp em-
beddings. The answer is determined by scoring
the distance between the TKG embedding and the
question embedding.

In previous research on STKGQA, studies have
explored spatio-temporal question answering sys-
tems that utilize RDF KGs (Stringhini et al., 2019;
Yin et al., 2019). Additionally, certain studies have
focused on domain-specific STKGQA and have em-
ployed rule-based approaches for answer retrieval
in STKGs (Del Mondo et al., 2021; Dopler and
Scholz, 2021). However, these methods mainly
present frameworks and lack extensive evaluations
on large-scale datasets.

3 Dataset Generation

This section is divided into two parts: initially, we
expand a TKG embedding dataset (Garcia-Duran
et al., 2018) to the spatial dimension, creating a
dataset for our embedding model; then we gener-
ate a dataset for STKGQA leveraging this dataset
along with STKG information.

3.1 STKG Embedding Dataset Generation

YAGO15k (Garcia-Duran et al., 2018) serves as
a TKG embedding dataset, it is based on FREE-

BASEI15K (Bordes et al., 2013) (FB15K), with
entities aligned to FB15K using the sameAs rela-
tion from YAGO?2 (Hoffart et al., 2013). To enrich
the spatial information in YAGO15K, we identify
the "happenedIn" relation, which signifies the lo-
cation of the facts. However, some KG facts lack
geographical information, we utilize the coordinate
information of the object and determine its rela-
tion type to supplement the facts’ locations. For
instance, consider the fact (Albert_Einstein, work-
sAt, Humboldt_University_of_Berlin, 1914, 1917),
which lacks a "happenedIn" relation in YAGO2
for location labeling. We can assign the location
coordinates of "Humboldt_University_of_Berlin"
as (52.52,13.39) to complete the fact.

Table 2: Statistics of the STKG embedding dataset

Statistics type Quantity
Entities 15,403
Relations 113

Facts 138,056
Distinct timestamp 572
Distinct location 2,235
Time span 2-3150
Train 110,851 [33,799]
Validation 13,858 [4,165]
Test 13,853 [4,221]

The storage format of a complete spatio-
temporal fact is (subject, relation, object, occursS-
ince, start_time, occursln, coordinate) and (sub-
Jject, relation, object, occursUntil, end_time, oc-
cursln, coordinate). To provide a more accu-
rate representation, we add spatio-temporal an-
notation to each relation. For instance, we
use "worksAt_occursSince_occursIn" and "work-
sAt_occursUntil_occursin" to denote the origin
relation "worksAt". Table 2 shows the statistical
overview of our dataset, where the facts with spatio-
temporal information are in brackets.

3.2 STKGQA Dataset Generation

Based on the STKG embedding dataset, we utilize
its facts to create a QA dataset. We specifically
choose facts that encompass spatio-temporal de-
tails as potential candidates. We first generate the
spatio-temporal constraints and clues required in
the question, and then integrate these elements to
generate the final question.



3.2.1 Spatio-temporal Constraint and Clue
Generation

To answer natural language questions using STKG,
we must begin with the question’s central entity
and utilize spatio-temporal constraints to locate
answers on the KG. Therefore, question genera-
tion can be seen as the reverse of question answer-
ing, where the answer is used to derive all con-
straints and clues of the question. Furthermore,
there should be a stronger correlation between en-
tities and spatio-temporal constraints in the ques-
tion, which would make the question more closely
aligned with real-world scenarios.
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Figure 2: An example of constraint and clue generation.

The process of generating question con-
straints is shown in Figure 2. We uti-
lize the fact (Albert FEinstein, worksAt, Hum-
boldt_University_of_Berlin, occursSince, 1914, oc-
cursUntil, 1917, occursin, 52.52, 13.39) as an an-
swer fact, with Albert_Einstein being the central
entity and Humboldt_University_of_Berlin as the
answer.

To facilitate the generation of spatio-temporal
constraints, we search for facts related to Al-
bert_FEinstein that contain both time and loca-
tion information. Examples of such facts include
(Albert_Einstein, wasBornIn, Ulm, occursSince,
1879, occursin, 48.43, 10.01) and (Albert_FEinstein,
graduatedFrom, University_of_Zurich, occurssS-
ince, 1905, occursin, 47.38, 8.55). We consider
these facts as highly relevant candidates alongside
the central entity. Some KG relations, such as
"influence" and "linksTo", are ambiguous and chal-
lenging to convert into constraints, so we filter them
out. Consequently, we obtain a set of high-quality
candidate facts associated with the central entity.
However, this strict approach may result in an insuf-
ficient number of candidate facts. To address this
issue, we conduct a KG search involving entities,
times, and places related to the central entity "Al-

Table 3: Statistics of the STQAD.

Train Dev  Test
Single Timestamp Constraint | 7729 970 978
Double Timestamp Constraint | 271 30 22
Single Direction Constraint 4711 597 603
Double Direction Constraint 32890 403 397
Average Sentence Length 1634 1633 16.38
Overall Number 8000 1000 1000

bert_Einstein", thereby acquiring additional facts
to complement our fact set.

Our fact set is divided into two subsets: the can-
didate time clue set and the candidate location clue
set. We randomly select one clue from each of
these two clue sets to generate the constraints of
the question. By comparing the spatio-temporal
clues with the answer fact, we derive constraints
such as the time constraint "before the end of " and
the location constraint "northeast" as illustrated in
Figure 2.

3.2.2 Question Generation

After obtaining all necessary elements for sentence
generation, we input the central entities relations,
and spatio-temporal constraints into sentence tem-
plates to generate questions. To ensure variety, we
have devised multiple templates for each fact, with
several possible replacements for words within the
templates. For example, in the question "What
{academic institutions} {northeast of} { Munich} did
{Albert Einstein} work at {before the end of} { World
War I} ?", the term academic institutions in the tem-
plate can be replaced with academies or academic
organizations. Appendix A.3 shows the specific
format of the generated question. Additionally,
the questions generated by the template are para-
phrased using the ChatGPT (Wu et al., 2023). In
this way, we expand the diversity of sentences and
also ensures the quality of our dataset. Finally, we
construct the STQAD containing 10,000 complex
questions.

Table 3 presents the statistical information of the
dataset. The "single time constraint” refers to the
limitations imposed by a single timestamp, such as
"before" and "after", the "double time constraint"
pertains to limitations that must fall within a time
interval, such as "during". It is worth noting that
due to the small number of time interval type facts
in YAGO15k and our strict constraint generation
rules, the total number of "double time constraint"
type questions in our dataset is limited. The "sin-
gle direction constraint” involves a restriction to a



single direction, such as "east", whereas the "dou-
ble direction constraint” involves a constraint that
encompasses two directions, such as "northeast".

4 STKGQA method

4.1 Overview

In this section, we initially introduce an embedding
method called STComplex to the STKG. Build-
ing upon this method, we further develop a QA
framework named STCQA. The architecture of the
framework is depicted in Figure 3.

4.2 STKG Embedding

A STKG K := (§,R, T, L, F) contains a set of
entities &, a set of relations R, a set of timestamps
T, a set of locations £, and a set of facts F. Each
fact (s,r,0,t,1) € F is a tuple where s,0 € &
denote the subject and object entities, respectively,
r € R denotes the relation between them, ¢ € T is
the timestamp of the fact, and [ € L is the location
of the fact.

ComplEx (Trouillon et al., 2016) represents each
entity e as a complex vector e. Each relation r is
represented as a complex vector r as well. The
score ¢¢ of a fact (s, r,0) is

¢C (esv r7éo) = Re (<esa rvéO>)

where Re(.) denotes the real part, (.) is the complex
conjugate of the embedding vector.

TComplEx (Lacroix et al., 2020) is an extension
of the ComplEx KG embedding method designed
for TKGs. TComplEx represents each timestamp
t as a complex vector t and the score ¢ of a fact
(s,7,0,t) is

¢T (9571'7@0713) =Re (<es’r O] taéo>)

where © is the element-wise product.

In this work, we propose an extension of TCom-
plEx that incorporates location information. We
introduce STComplEx, where the location coordi-
nate [ is represented as a complex vector 1. The
scoring function for STComplEx is defined as

(z)ST (esa I‘,éo,t) = Re (<657 rotoe lyéo>)

All embedding vectors are learned such that the
scoring function ¢ g7 assigns higher scores to valid
facts (s,7,0,t,1) € F compared to invalid facts
(s',7",0,t',l') ¢ F. Formally, we have

d)ST (esa r, €, t7 1) > d)ST (e{m rlaé/ov t,a 1/)

The embedding learning procedure employed by
STComplEx enables the inference of missing facts
such as (s, 7,7, t,1) over an incomplete STKG.

4.3 Constraint Fragment Generation

The incorporation of spatio-temporal constraints is
crucial for STKGQA. To capture these constraints,
we employ a keyword-based approach. Initially, we
identify specific spatio-temporal keywords within
a given question, such as "after" and "northeast."
We then extract the phrases situated between these
spatial or temporal keywords and the associated
entities, utilizing them as fragments for constraint
modeling. To differentiate between the two types of
constraints, we utilize distinctive tokens: [TC] for
timestamp constraints and [GC] for geo constraints.
Figure 3 illustrates this process, where the com-
bined phrase "[TC] before the end of [GC] north-
east" is encoded as v, using BERT (Devlin et al.,
2018). This vector enhances the spatio-temporal
representation of the question, enabling improved
answer retrieval by the system.

4.4 Entity Type Annotation

Entities have three types in a question involving
spatio-temporal information: regular entities, en-
tities implying time information, and entities im-
plying geographic information. The determination
of entity type relies on constraint keywords, such
as "after" and "northeast", which appear before
the entity. To label different types of entities in
the original question, we use special tokens [ENT],
[TS], and [GEO]. These labels serve the purpose
of mitigating the impact of different entities on
sentence meaning, enabling the encoder to focus
solely on the semantics of the question. Each token
in the sentence is encoded by BERT into a vec-
tor space. Figure 3 illustrates the masking of the
original question as "What academic institutions
northeast of [GEO] did [ENT] work at before the
end of [TS]?"

4.5 Question Embedding Generation

The generation of question embeddings involves
three main stages. Firstly, relevant entities are sub-
stituted with their corresponding implicit informa-
tion based on spatio-temporal constraints and spe-
cial tokens. For instance, in Figure 3, the implicit
time information "/918" for the entity "World War
I" is searched in the STKG using "[TS]" and "be-
fore the end of ". When an entity possesses implicit
time information, its time value denoted as ¢ is
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Figure 3: Our framework comprises three modules: constraint fragment generation, entity type annotation, and
question embedding generation. (i) Constraint fragment generation: identifies spatio-temporal constraints within
the question and encodes relevant clues. (ii) Entity type annotation: identifies entity types inferred from the spatio-
temporal constraints in the question. (iii) Question embedding generation module: integrate entity representation
and spatio-temporal embedding in STKG into question vector q.

encoded into a vector representation v; using the
STComplEx model. Similarly, for entities with im-
plicit geographic location, the entity’s geographic
coordinates denoted as [ are encoded into a vector
representation v;. For central entities denoted as e,
all facts related to the entity in the STKG are re-
trieved, and the earliest time ¢1 and the latest time
t2 in all facts are selected as the time dimension
representation. We combine the temporal represen-
tation u; and wuyo, the spatial representation v;, and
the central entity representation u, to form an entity
representation v/, that incorporates spatio-temporal
information.

Next, we replace the embedding of special to-
kens with the STKG embedding of the entities re-
spectively, considering their positions within the
entity and token. For example, the special token
[GEO] is replaced with the embedding representa-
tion v; of the geographical coordinates 48.14, 11.58
in STKG.

Finally, after replacing all embeddings of special
tokens, an information fusion layer is utilized. This
layer incorporates a dedicated learnable encoder
called T'ransformer(.), which consists of two
transformer encoding layers (Vaswani et al., 2017).
The encoder enables the tokens in the question to
attend to each other, thus effectively combining
context, entity, location-aware information, and
time-aware information. The question representa-

tion vector, denoted as vgyestion, 1 then combined
with the spatio-temporal constraint fragment repre-
sentation, denoted as vp, to obtain the final question
representation, denoted as gq.

4.6 Answer Prediction

We employ the scoring function based on the
STComplEx model to determine the final answer.
The final score of an entity € € £ being the answer
is given by

max (¢ST (uea WE'qv €¢, Vi, Vl))

where u., v, v; are the annotated general entity,
timestamp and location. We regard the semantic
representation of the question as a relation, and
Wgisa D x D learnable matrix specific for answer
prediction.

S5 Experiments

5.1 Experimental Setup

We evaluate our model using hit ratios (HR) as the
primary evaluation metric. Additionally, we utilize
the mean reciprocal rank (MRR) to evaluate the
effectiveness of the STKG embedding. We assess
several KGQA models on STQAD, using their per-
formance as baselines. Appendix A.l introduces
the implementation of training and the setting of
hyper-parameters.



5.2 Main Results and Analysis
5.2.1 STKG Embedding Results

The results of the STKG embeddings are pre-
sented in Table 4. Our model demonstrates a sig-
nificant enhancement in the HR compared to ex-
isting embedding models. This emphasizes the
indispensability of incorporating spatio-temporal
information into the scoring function for STKG
embedding. Notably, the disparity between the
ComplEx (Trouillon et al., 2016) and TCom-
plEx (Lacroix et al., 2020) is negligible, suggesting
that the mere addition of temporal knowledge does
not effectively improve the HR in the STKG em-
bedding method. This observation emphasizes the
crucial role of spatial relations in the context of
STKG.

Table 4: Results for STKG embedding.

Hit@l Hit@3 Hit@l0 MRR

ComplEx 21.72 3430 4996  30.80
TComplEx  21.68  34.75 50.15 31.01
STComplEx 40.71 4845 5841 46.56

5.2.2 STKGQA Results

The results of STKGQA are presented in Ta-
ble 5. Our findings indicate that KG embedding-
augmented methods outperform those based on
large pre-trained LMs. Our experiments demon-
strate that incorporating specific STKG embed-
dings enhances the model’s ability to capture tem-
poral and spatial clues.

Table 5: Results for STKGQA.

Hit@l Hit@3 Hit@10
BERT 39.10 5370  66.87
RoBERTa 3237 4677  60.83
EmbedKGQA 38.00 53.03  56.00
CronKGQA  34.60 4933  62.17
TempoQR 5497  66.03 76.23
SubGTR 58.23 6873 7850
STCQA 61.63 76.67  84.17

By incorporating spatio-temporal information
and using the STComplEx embedding model, our
method outperforms traditional embedding-based
QA approaches. Transformer-based models for
STKGQA task typically necessitate a substantial
and varied dataset for successful training, mak-
ing them more costly compared to our approach.
EmbedKGQA (Hu et al., 2017), which employs

the ComplEx (Trouillon et al., 2016) embedding
model, lacks the ability to perform inference on
STKG. Due to the poor performance of the TCom-
plEx (Lacroix et al., 2020) embedding model on
our dataset, the QA methods CronKGQA (Saxena
et al., 2021), TempoQR (Mavromatis et al., 2022),
and SubGTR (Chen et al., 2022b), which rely on
this embedding model, fell short of achieving the
expected results. Although SubGTR incorporates
a subgraph reasoning module that effectively han-
dles complex zero-shot questions, it still requires
enhancements in location inference capabilities for
our STKGQA datasets. Appendix A.2 provides
an introduction to the implementations of all base-
lines. Our model significantly surpasses existing
baselines, establishing itself as the state-of-the-art
solution.

5.3 Ablation Study

Table 6 presents the results of the ablation experi-
ments, which investigate the contributions of each
module in STCQA. We compare the performance
of the following settings:

w/o constraint fragment generation Instead of
utilizing the constraint fragment generation mod-
ule, we use the transformer output as the final ques-
tion representation.

w/o entity annotation The entity type is not an-
notated, and the spatio-temporal clues do not re-
place the entity token in the question. We solely
employ the embedding model to encode and sub-
stitute the entities in the question.

w/o search entity information The final en-
tity representation solely relies on the original en-
coded representation of the entity in the embedding
model, and does not incorporate time and location
embeddings in STKG.

Table 6: Ablation study for STCQA.

Hit@1 Hit@3 Hit@10
STCQA 61.63 76.67 84.17
w/o prompt generation 60.47 7493 83.27
w/o entity annotation 59.73 7373  83.10
w/o search entity information 57.97 71.83  81.30

5.4 Effect of Dataset Size

Larger datasets typically offer a greater number of
training samples, a crucial factor in training accu-
rate and generalizable models. Figure 4 illustrates
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Figure 4: Model performance (hits@ 10) vs. dataset size (percentage) for STCQA, TempoQR and SubGTR.

the impact of dataset size on model performance.
Increasing the training dataset size from 10% to
100% leads to a steady improvement in model per-
formance. This trend remains consistent across
different models, validating the effectiveness of a
large-scale dataset for training STKGQA models.

Similarly, a larger test dataset can yield more re-
liable and statistically significant evaluation results.
With a fixed training dataset size, we progressively
enlarge the validation set and test set from 10% to
100%. The results obtained from the test dataset
demonstrate that employing a larger amount of eval-
uation data is advantageous for ascertaining a more
stable performance across various QA methods im-
plemented on STQAD.

5.5 Effect of Spatio-temporal Constraint
Relevance

The correlation between spatio-temporal con-
straints and central entities is a significant indicator
for evaluating dataset quality. Using irrelevant enti-
ties in the question does not reflect real-world sce-
narios. For instance, consider the following ques-
tions: "Which university in the northeast of Mu-
nich did Einstein work at after World War [?" and
"Which university in the northwest of Beijing did
Einstein work at after the 25th Academy Awards?"
Clearly, the former question is more representative
of the real situation because the entities mentioned
in it are more closely related to the central entity
(as discussed in Section 3.2.1).

Table 7: Model performance on different spatio-
temporal constraint relevance dataset.

Low Spatio-temporal

30% STCQA Dataset Relevance Dataset

STCQA 44.00 32.67
TempoQR 37.20 30.93
SubGTR 39.87 30.80

We replaced the original facts in the question
with facts that satisfy the constraints but have low
relevance. This process allowed us to construct
a dataset consisting of low co-occurrence entities
(such as Einstein and the 25th Academy Awards).
Due to the constraint on the number of facts, the
size of the dataset is 30% of the STQAD dataset.
For the sake of fairness, we used equally sized
datasets for evaluation. As indicated in Table 7,
the model performs better on datasets with a higher
spatio-temporal constraint correlations, thereby val-
idating our hypothesis.

6 Conclusion

In this paper, we introduce STQAD, a new dataset
for STKGQA. While there have been numerous
KGs based on spatio-temporal information, the
existing KGQA datasets lack discussions regard-
ing scenarios involving spatio-temporal informa-
tion for reasoning. To the best of our knowledge,
STQAD is the first dataset that comprises a sub-
stantial number of questions that necessitate both
temporal and spatial inference. To ensure the re-
alistic situation of the questions in the dataset, we
employ strict constraints during question genera-
tion. The availability of large datasets not only
enables model evaluation but also presents an op-
portunity for model training. Through experiments,
we demonstrate that the performance of certain
methods on the STKGQA task steadily improves
with an increase in the training dataset size. Ad-
ditionally, we propose a novel method, STCQA,
which leverages STKG embeddings for the QA
task. In our experiments, STCQA outperforms
all baseline methods. These results indicate that
STKG embeddings can be effectively utilized for
STKGQA, although there is still considerable room
for improvement.
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A Appendix

A.1 Reproducibility Configuration

For STKG embedding, the dimension is set to D
= 512. The model’s parameters are updated using
Adagrad (Duchi et al., 2011) with a learning rate
of 0.1. The batch size is set to 1,000. STComplEx
undergoes training for a maximum of 50 epochs,
and the final parameters are determined based on
the best validation performance.

During STKGQA, the parameters of the pre-
trained language model and the STKG embed-
dings remain unchanged. The encoder is config-
ured with 6 transformer layers, each consisting of
8 heads. The model’s parameters are updated us-
ing Adam (Kingma and Ba, 2014) with a learning
rate of 0.0002. The batch size is set to 150, and



the number of epochs is 60. We employ the soft-
max function to transform the answer representa-
tion into probabilities. The model then updates its
parameters by minimizing the cross-entropy loss
function, aiming to assign a higher probability to
the correct answer.

A.2 Baselines

A.2.1 STKG Embedding Baselines

ComplEx ComplEx (Trouillon et al., 2016) uti-
lizes complex-valued embeddings and employs the
Hermitian dot product, which is the complex coun-
terpart of the standard dot product between real
vectors. ComplEx does not incorporate spatio-
temporal information during training and solely
relies on basic triples.

TComplEx TComplEx (Lacroix et al., 2020) is
a solution inspired by the canonical decomposition
of tensors of order 4. It introduces novel regu-
larization schemes and extends the capabilities of
ComplEx. TComplEx is trained using facts that
incorporate temporal information.

A.2.2 STKGQA Baselines

Pre-trained LMs BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) are pre-trained
language models. We concatenate the question
embedding and spatio-temporal information em-
bedding, followed by learnable projections. The
resulting embedding is scored using the dot product
over all entities.

EmbedKGQA EmbedKGQA (Hu et al., 2017)
is a framework for QA over regular KG. During
training, we disregard question spatio-temporal an-
notations.

CronKGQA CronKGQA (Saxena et al., 2021) is
a method based on TKGQA embedding. It first em-
ploys a language model model to obtain question
embeddings and subsequently utilizes the scoring
function of TKG embedding for answer prediction.
In the experiment, we annotated time-related enti-
ties and utilized the model to predict answers.

TempoQR TempoQR (Mavromatis et al., 2022)
utilizes a TKG embedding-based scoring function
for answer prediction and incorporates additional
temporal information. According to its method, we
solely incorporate time information into the central
entity, excluding spatial information. We find that
incorporating spatial information diminishes the
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model’s performance, given that it is trained based
on TKG.

SubGTR Based on TempoQR, SubGTR (Chen
et al., 2022b) extracts implicit information from
temporal questions. It incorporates a semantic-
aware and temporal inference module into the scor-
ing function, so we also provide time clues and
time constraints for the model.

A.3 Examples

Table 8 and Table 9 give two examples from the
STQAD validation set. To facilitate potential
follow-up work, we have annotated the entities
within the model.

Table 8: The question contains three entities. The en-
tity <Stockholm> implies location information, the en-
tity <Stockport_County_F.C.> implies time informa-
tion, and the entity <George_Moncur> serves as the
central entity.

Southwest of <Stockholm>, which
team did <George_Moncur>play for

Question . L.
posterior to the termination of
<Stockport_County_F.C.>?
Paraphrased Aft'er leaving .Stockport County FC,,
Question which team did George Moncur play
for located southwest of Stockholm?
Answers <Partick_Thistle_ F.C.>
<Stockholm>
Entities <George_Moncur>
<Stockport_County_F.C.>
Question Type <playsFor>

Table 9: The question contains two entities. The en-
tity <Trinity_College_(Connecticut)> contains time in-
formation, and the entity <Algeria> contains location
information and is also a central entity.

Name all countries created after

Question <Trinity_College_(Connecticut)>
and southeast of <Algeria>.
Can you provide a list of countries
Paraphrased that were established after Trinity
Question College (Connecticut) and are located
to the southeast of Algeria?
Answers <N‘iger>
<Libya>
Entities <Trinit?/_College_(Connecticut)>
<Algeria>
Question Type <hasNeighbor>
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