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Abstract

Empirical risk minimization (ERM) of neural networks can cause over-reliance on
spurious correlations and poor generalization on minority groups. Deep feature
reweighting (DFR) [8] improves group robustness via last-layer retraining, but it
requires full group and class annotations for the reweighting dataset. To eliminate
this impractical requirement, we propose a one-shot active learning method which
constructs the reweighting dataset with the disagreement points between the ERM
model with and without dropout activated. Our experiments show our approach
achieves 94% of DFR performance on the Waterbirds and CelebA datasets despite
using no group annotations and up to 21× fewer class annotations.

1 Introduction

Classification datasets in machine learning often suffer from spurious correlations: patterns which
are predictive of the target label in the training dataset but irrelevant to the true labeling function.
Neural networks trained via the standard procedure of empirical risk minimization (ERM) tend to
overfit to spurious correlations and generalize poorly on minority groups [3, 18, 5]. This problem
is exacerbated under distribution shift, when minority groups are underrepresented in the training
distribution but well-represented in the test distribution [15, 9]. In such cases, often a desirable
objective is to maximize the model’s worst-group test accuracy instead of its mean accuracy over all
groups with respect to the training distribution.

Deep feature reweighting (DFR) [8] is a recent state-of-the-art technique for efficiently improving
worst-group accuracy. The key insight of DFR is that ERM models which overfit to spurious
correlations still learn core features of the data, but they perform poorly because they overweight the
spurious features in the last layer. Hence, retraining the last layer on a group-balanced reweighting
dataset can upweight the core features and significantly improve group robustness.

DFR is an efficient and effective algorithm, but its best version requires a held-out dataset with full
group and class annotations to achieve maximal performance. This strict requirement prevents its
practical application, as the groups are often unknown ahead of time or are difficult to annotate, and
holding out data with class annotations means less available data for training and validation.

We propose a simple modification to the DFR procedure which improves group robustness without
requiring any group annotations1 and fewer class annotations. Our key contribution is an approach
which requests class annotations for the disagreements between the original model and a resource-
constrained model to construct a nearly-group-balanced reweighting dataset. Our technique leverages
the disproportionate disagreement on minority group points; this phenomenon is intuitive and justified
for many common resource-constrained models. For example, early-stopped models tend to fit simple
patterns first [1, 11] including the majority group, and dropout models approximate a theoretically
justified uncertainty metric [4] which is likely to be higher for minority points. We study dropout

1Except on a small validation set for model selection, a common assumption in this setting [15, 11, 13, 8].
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in this work for its computational efficiency and high performance, but our method is extensible to
disagreements with any resource-constrained model (e.g., model size, memory, compute, etc.). Our
approach can also be viewed as a one-shot active learning method that selects samples for labeling
only once and then does last layer retraining with these samples.

Many recent approaches attempt to improve group robustness without group annotations by iden-
tifying or oversampling minority groups, and we continue this line of work. Especially relevant to
our setting are JTT [11], which is a two-stage training method that upweights the training points
misclassified by an early-stopped model; SSA [13], which pseudo-labels the spurious attributes of
held-out data; and DivDis [10], which maximizes the disagreement between multiple prediction
heads. Compared to these approaches, our method uses significantly less computation (only inference
on a dropout model followed by last-layer retraining of the already trained model) and requires
fewer class annotations to achieve the same level of minority group generalization performance. The
phenomenon that model agreement is closely linked to OOD generalization was first studied by
[2]; they focused on disagreement between model classes (e.g., CNNs vs Transformers), while we
leverage unique properties of the disagreement between an original and resource-constrained model.

2 Dropout Disagreement Deep Feature Reweighting

We propose dropout disagreement deep feature
reweighting (DD-DFR) which achieves 94% of the
performance of vanilla DFR despite using no group
annotations and up to 21× fewer class annotations.
The key insight of our method is that the original
and dropout models disagree disproportionately on
minority group datapoints, which allows us to con-
struct a nearly-group-balanced reweighting dataset
without knowing the groups a priori. Our DD-DFR
technique is detailed in Algorithm 1.

Algorithm 1 DD-DFR

Require: Trained model f , dropout model f ′,
held-out dataset X , and γ ≥ 0.

1: Let A = {x ∈ X : f(x) 6= f ′(x)}.
2: Sample B from X \A with |B| = γ|A|.
3: Let D = A ∪B.
4: Request class annotations for D.
5: Perform DFR with f onD sampling uniformly

over classes.

We first compute the disagreements between the original and dropout models and augment the
disagreement points with a γ proportion of agreement points to form a reweighting set D. We then
request class annotations for D, which is typically much smaller than X . Recent work has shown that
class balancing is effective for improving worst-group accuracy [7]; hence, while doing last-layer
retraining with f on D, we sample uniformly over the classes to construct the SGD minibatches.

To illustrate the benefits of our method, let us compare it with benchmark DFR techniques:

• Vanilla DFR [8]: Uses group and class annotations for every datapoint to construct a group-
balanced reweighting dataset, which can be difficult to obtain in many practical settings.

• Misclassification DFR (M-DFR): A simple modification to vanilla DFR which constructs the
reweighting dataset with the misclassified datapoints in the held-out dataset augmented by a γ
proportion of correctly classified points. This technique uses the property that the original model
does worse on the held-out samples in the minority group. M-DFR still requires class annotations
for all datapoints in the held-out dataset, but it does not require group annotations.

• Dropout disagreement DFR (DD-DFR): Our proposed technique constructs the reweighting dataset
with the datapoints on which the original and dropout model disagree. Hence, DD-DFR does not
require group annotations, and it only requires class annotations for the disagreement points. We
observe that DD-DFR outperforms the baseline M-DFR with fewer class annotations.

3 Experiments

3.1 Group Robustness Results

We evaluate our method on the Waterbirds [17, 16, 15] and CelebA [12] benchmark datasets. In
Waterbirds, the classification task is between waterbirds and landbirds, and the spurious feature is the
background. In CelebA, the classification task is between non-blond and blond celebrities, and the
spurious feature is gender. We detail the distributions of each dataset in Table 1.

We train a ResNet50 [6] via ERM for 100 epochs with batch size 32 on the Waterbirds dataset and 50
epochs with batch size 128 on the CelebA dataset. For both datasets, we utilize SGD with learning
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Table 1: Train, validation, and test distributions of the Waterbirds and CelebA datasets. For Waterbirds,
class label 0 is landbird and 1 is waterbird, while spurious feature 0 is land and 1 is water. For CelebA,
class label 0 is non-blond and 1 is blond, while spurious feature 0 is female and 1 is male. Groups G2

and G3 are minority groups in Waterbirds, while only group G4 is a minority group in CelebA.

Group Label Class Label Spurious Feature Waterbirds CelebA

Train Val Test Train Val Test

G1 0 0 3498 467 2225 71629 8535 9767
G2 0 1 184 466 2225 66874 8726 7535
G3 1 0 56 133 642 22880 2874 2480
G4 1 1 1057 133 642 1387 182 180

Table 2: Mean and worst-group accuracy of our DD-DFR method and baselines on the benchmark
datasets. DFR† is our implementation for a fair comparison. We report the mean±std over five
random seeds and bold the best among methods not using group annotations.

(a) Results on the Waterbirds dataset.

Method Minimum Additional Annotations Test Set Accuracy (%)

Group Class Worst-group Train Dist. Mean Test Dist. Mean

ERM 0 0 71.3±0.8 97.8±0.1 89.5±0.7

SSA [13] 0 599 89.0±0.6 92.2±0.9 −
DFR [8] 599 599 92.9±0.2 94.2±0.4 −
DFR† 599 599 91.8±0.3 95.0±0.2 94.4±0.3

M-DFR 0 599 89.7±1.3 92.6±1.6 93.7±0.8

DD-DFR 0 48 91.6±1.3 94.5±0.7 93.8±0.6

(b) Results on the CelebA dataset.

Method Minimum Additional Annotations Test Set Accuracy (%)

Group Class Worst-group Train Dist. Mean Test Dist. Mean

ERM 0 0 43.9±1.1 95.9±0.0 95.9±0.0

SSA [13] 0 9933 89.8±1.3 92.8±0.1 −
DFR [8] 9933 9933 88.3±1.1 91.3±0.3 −
DFR† 9933 9933 85.1±1.4 92.7±0.1 92.7±0.1

M-DFR 0 9933 82.1±1.4 88.8±1.6 88.4±1.6

DD-DFR 0 472 83.0±1.0 89.4±1.8 89.4±1.8

rate 10−3, weight decay 10−4, and momentum 0.9, with standard flip and crop data augmentation.
During DFR, we freeze the model up to the last layer, re-initialize the parameters, and train for 100
epochs with the same hyperparameters. Following [8], we use half the validation set for DFR and
half for model selection using group annotations. We search over γ ∈ (0, 0.5, 1, 2, 4) and dropout
probability p ∈ (0.1, 0.3, 0.5, 0.7, 0.9), and for CelebA we additionally search over class weights
∈ [1, 2, 5] similarly to [8]. We report the test metrics of the model with the greatest worst-group
validation accuracy in Table 2. Our implementation is in PyTorch [14].

For the sake of simplicity and a fair comparison, our DFR implementation is slightly different than
the original [8]. Specifically, we use `2 regularization instead of `1, we do class balanced sampling
instead of model averaging over repeated samples of majority group points, and we simply retrain the
last layer with minibatch SGD instead of full-batch logistic regression on the normalized embeddings.
We report results of both implementations and denote ours as DFR†.

Despite using no additional group annotations, our DD-DFR method matches DFR† performance
with 12× fewer class annotations on Waterbirds and achieves 94% of DFR performance with 21×
fewer class annotations on CelebA. Under distribution shift, such as in the Waterbirds dataset,
DD-DFR is also effective at improving mean accuracy on the test distribution.
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3.2 Ablation Study

We probe our DD-DFR method to quantify its de-
pendencies and variations. In Table 3, we study
how the performance of DD-DFR decreases upon
ablation of its major components. In Figure 1,
we show that dropout disagreement is an effective
method for oversampling minority group points
without group annotations. Finally, in Figure 2,
we study the effect of hyperparameter tuning on
worst-group accuracy for the Waterbirds dataset.

Table 3: Ablation study of DD-DFR. We re-
port the mean±std over five random seeds.

Method Worst-group Accuracy (%)

Waterbirds CelebA

DD-DFR 91.6±1.3 83.0±1.0

No Class Balancing 81.6±1.8 68.3±3.2

No Dropout 86.0±8.3 81.2±3.6

γ = 0 53.5±21.8 44.3±18.3

Figure 1 provides insight to why the performance of DD-DFR is slightly lower on the CelebA dataset;
while it oversamples the minority groupG4 by a factor of 5, it still takes most points from the majority
group G1 which is over 40× larger. Future work will attempt to further rectify this imbalance.

(a) Waterbirds dataset. (b) CelebA dataset.

Figure 1: Group proportions in the reweighting dataset for random sampling vs. our DD-DFR
technique with γ = 0. Dropout disagreement enables oversampling of minority group points (G2 and
G3 for Waterbirds and G4 for CelebA) without access to group annotations and efficiently constructs
a nearly-group-balanced reweighting dataset. We report the mean over five random seeds.

(a) Tuning dropout probability p. (b) Tuning agreement proportion γ.

Figure 2: Effect of tuning the agreement proportion γ and the dropout probability p on the Waterbirds
dataset. Larger values of both γ and p have better performance, with diminishing returns on γ. We
plot the mean over five random seeds and drop the worst seed from each configuration (since at low γ
it is possible to sample no majority group points in the reweighting dataset).

4 Conclusion

We propose a one-shot active learning method for improving group robustness which utilizes the
disagreement between the original and dropout models to construct the DFR reweighting dataset with
no group annotations and fewer class annotations. Future work may include disagreement strategies
in other resource-constrained settings such as perturbed, quantized, early-stopped, or distilled models.
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