PromptTrans: Eliciting In-Context Learning from Smaller Language
Models by Translating Demonstrations to Prompts

Anonymous ACL submission

Abstract

Large language models (LMs) like GPT-3 have
shown remarkable in-context learning ability:
by concatenating demonstration examples as
the input context, the model is able infer on
an unseen task without further training. For
smaller LMs like T5-large, however, in-context
learning performance is abysmally poor. This
poses a question on the design of the in-context
learning framework - Is there a better way to
condition on demonstrations, rather than simply
concatenating them in text? Towards this, we
propose PROMPTTRANS!, a parameter-efficient
tuning framework (3.4% of backbone LM pa-
rameters) to translate demonstrations to soft
prompts and augment the input context with the
translated soft prompts. We meta-train PROMPT-
TRANS on 120 tasks and evaluate on 40 unseen
tasks from the CrossFit dataset, with few-shot
(£ 16) demonstrations per task. Through our
experiments, we show that PROMPTTRANS is in-
deed instrumental in eliciting in-context learn-
ing ability in smaller LMs (T5-large), without
updating any parameter of the backbone. A
particularly interesting finding is that across
our extensive experiments PROMPTTRANS con-
sistently outperforms baselines that meta-train
the whole backbone LM for in-context learning
and even large off-the-shelf LMs (with 16.8x
parameters). Our promising results and analy-
sis throw light on how even smaller LMs can
learn in-context and alludes towards a more
effective in-context learning paradigm.

1 Introduction

In recent years, we have witnessed a trend of scal-
ing up language models (LMs) in size (Brown et al.,
2020; Chowdbhery et al., 2022; Shoeybi et al., 2019;
Hoffmann et al., 2022). These large LMs demon-
strate an emergent ability of in-context learning:
they can perform a new task simply by condition-
ing on few demonstration examples in the input
context (Wei et al., 2022b; Brown et al., 2020). For

'We will make the source code public upon acceptance

example, to predict the sentiment of “It’s so dumb
it’s brilliant!”, we only need to concatenate some
demonstration examples to the original input like
“I really enjoyed this movie! Positive. The plot was
boring. Negative. It’s so dumb it’s brilliant!”, and
prompt the large LM with the concatenated prompt
to get the expected prediction “Positive”.

Such in-context learning ability can be game
changing compared to the predominant finetun-
ing paradigm (Devlin et al., 2019) with two key
advantages (Dong et al., 2023). First, in-context
learning eliminates the need to train the model on
each downstream task, which is highly resource
consuming for large LMs. Second, such ability
makes LM-as-a-service possible (Sun et al., 2022),
powering wide range of real world applications.

However, it appears that in-context learning abil-
ity is severely compromised as model size reduces:
while GPT-3 175B model achieves over 60% accu-
racy on the synthesized task of removing a symbol
from a word, GPT-3 1.3B model can only achieve
around 5% accuracy (Brown et al., 2020). Such
phenomenon compels the research question (Ques-
tion A): “Are smaller LMs not capable of in-context
learning? Why?”

To answer the above question, we first look
into how in-context learning works for large LMs.
Intuitively, in-context learning is about learning
through analogies drawn from the given demon-
stration examples and applying that to infer on the
query example (Dong et al., 2023). However, Lu
et al. (2022) and Zhao et al. (2021) have empiri-
cally shown that LMs are sensitive to the order and
format of demonstration context. In addition, Min
et al. (2022c) show that randomizing the outputs
in demonstration examples, which should break
input-output mapping in each example, does not
hinder in-context learning. These counter-intuitive
evidences suggest that the way large LMs use
demonstrations might be different from how hu-
mans would use them. These findings pose ques-

augmented
context C

[tweet_ga] question: who did Daniel Bryan
speak with this weekend? context: ... makes s
it all the more heartbreaking. The Ultimate
Warrior was my favorite as a kid... [Answer]:

The Ultimate Warrior |

[tweet_ga] question: who didn't like
Chris' blog? context: Rihanna fans
did not like my blog calling her fat

and now I'm being ... [Answer]: \

[samsum] summarize: Owen: What beer do)

you want? @ Jenna: Coors. But what's PROMPTTRANS [T PP [samsum] Ca}rter: I dont wanna nag Frozen Grace spilled
available? Owen: Stella, coors, ... [Answer]: 1:]163 _you honey® Carter: But today I =/ LM \\ something on the
Owen is buying beer. J'enna v'vants Coors, [\ RS slipped on t!;\:eﬁf»l?or '*'AGrace: Are yeu ’ \‘ floor and Carter
Noah Peroni. ‘w‘ “ okay?®'® ... [Answer]: | | slipped on it.
(

H / \\ H
| =

[financial_phrasebank] The number
of class A shares remains unchanged

[financial_phrasebank] EBITDA for the year
2009 improved to EUR484m, as compared
with EUR472m in 2008 . [Answer]: positive

at 9,526,089 shares. [Answer]:

Figure 1: Overview of PROMPTTRANs framework. Step 1 (left): PROMPTTRANS receives task demonstrations as
input and generates an augmented context C for each task. Step 2 (right): augmented context C concatenated
with the actual query of each task is fed as input to the backbone LM (frozen) to produce the final prediction.
PROMPTTRANS is parameter-efficient (26M, 3.4% of T5-large). The overall framework enjoys the same in-batch
multi-task inference capability as soft-prompt tuning (Lester et al., 2021) or LM-as-a-service (Sun et al., 2022).

tions on whether concatenating the demonstration
examples as the input context, though intuitive to
humans, is the best representation for LMs to con-
dition on them. Is there a better way to condition
on these examples? (Question B)

To this end, in this work we propose a data
driven framework, PRoMPTTRANS (Figure 1), which
(i) translates the demonstration examples to a fixed-
length soft prompt — a sequence of soft tokens (Qin
and Eisner, 2021) (i) learns a global (not generated
from demonstrations) soft prompt (Lester et al.,
2021). PromPTTRANS then combines the global
prompt, the translated prompts and the original
context to create an augmented context which is
given as final input for the backbone LM to use.

To facilitate PROMPTTRANS’s ability to translate
demonstration examples to better meet the needs
of the backbone LM without being exposed to
test tasks, we meta-train it on a collection of up
to 120 training tasks (with no overlap with the
test tasks). During each iteration in meta-training,
PROMPTTRANS receives a pair of demonstration set
and a query input, and learns to adapt its translation
mechanism to help the underlying LM make more
accurate predictions when conditioned on the aug-
mented context. Through such meta-training, we
believe PRoMPTTRANS (With only 3.4% parameters
of the backbone LM) learns to effectively encode
the kind of knowledge that is required by the back-
bone LM to learn in-context without requiring any
parameter update.

We evaluate PRoMPTTRANS on a collection of test
tasks (up to 40), with few-shot (< 16) demon-
strations per task. From extensive experiments,
we find that it can elicit in-context learning from

smaller LMs like T5-large, without updating any
parameter of the backbone LM (answer to Ques-
tion A). With ProMpPTTRANS, T5-large can consis-
tently outperform baselines, including (i) Metal CL-
Finetune (Min et al., 2022b), which finetunes the
whole T5-large model during meta-training stage.
(ii) INF-FT, which finetunes the whole T5-large
model on demonstration examples at test time,
(iii) Metal CL-PT, which tunes only a global soft
prompt (Lester et al., 2021) during meta-training
stage, and (iv) large off-the-shelf LMs such as OPT-
13B (Zhang et al., 2022a) with 16.8x parameters.

Furthermore, we perform test analysis on
ProMPTTRANS and find it is (i) robust to variation
in the number of demonstrations provided during
inference (a useful feature for in-context learning
application in reality) and (ii) more sensitive to
input-output mapping of demonstrations than (Min
et al., 2022c) observed for Large LMs.

Since PRoMPTTRANS only changes the input con-
text without changing any parameters of the back-
bone LM or altering its forward propagation step
like Adapters (Houlsby et al., 2019), its strong per-
formance suggests that smaller LMs are infact in-
herently capable of learning in-context but the con-
ventional context is not a good representation to
elicit its in-context learning ability. As PROMPT-
TrANs verifies that a better representation of con-
text is beneficial, we hope this can be the stepping
stone for future research to study better context
representations for in-context learning.

2 Related Work

In-context Learning Brown et al. (2020) show
that large LMs can learn an unseen task, by con-

catenating few-shot demonstration examples in-
context without any parameter update. Subsequent
studies (Zhao et al., 2021; Lu et al., 2022; Rubin
et al., 2022; Zhang et al., 2022b) further improve
in-context learning by proposing techniques to find
the best order and selection of demonstration exam-
ples. This work explores a direction orthogonal to
example selection or ordering - that of improving
the design of the in-context learning framework
itself; by investigating into better representations
of the input context. Unlike (Min et al., 2022a,b),
where the model prediction is selected as the candi-
date option with the highest likelihood, we consider
text-to-text generative prediction as it is more gen-
eralizable and does not require candidate options.

Meta-training for In-context Learning While
LMs acquire in-context learning ability implic-
itly (Brown et al., 2020) through training on lan-
guage modeling loss, Min et al. (2022b); Chen
et al. (2022b) propose to explicitly finetune the
model to learn in-context learning through a meta-
training stage. During meta-training, the model
learns to predict the output of a given query, by
conditioning on the input context obtained by con-
catenating some demonstration data with the query
input. Min et al. (2022b) show such meta-training
can significantly boost in-context learning perfor-
mance of GPT2-large. While PRoMPTTRANS also
goes through meta-training stage to learn its pa-
rameters, it does not change any parameter of the
backbone LM. In this work, we show that PRompT-
TRANS can significantly boost in-context learning
ability of smaller LMs like T5-large to the extent
that they even outperform meta-trained counter-
parts that finetune the backbone LM.

Meta-training for Instruction Tuning More re-
cently, there has been a trend of explicitly finetun-
ing colossal-sized LMs on large instruction-tuning
corpus (Sanh et al., 2022; Wei et al., 2022a; Wang
et al., 2022; Ouyang et al., 2022). Some task in-
structions contain demonstration examples (Wang
et al., 2022) while others only include general task
descriptions (Sanh et al., 2022; Wei et al., 2022a).
To human’s intuition, task descriptions reveal a
different aspect of the task knowledge compared
to demonstrations. While it is possible to extend
PrROMPTTRANS to include task descriptions, in this
pioneer study we stay focused on learning better
representation for demonstrations.

Prompt Tuning and Generation Lester et al.
(2021) propose soft prompt tuning (PT), which only
tunes a sequence of soft tokens appended to the in-
put and keeps the backbone LM frozen. Levine
et al. (2022); Zhang et al. (2022c) propose to gen-
erate an input-dependent soft prompt instead of
learning a global task-level soft prompt. These
studies generate prompts based on the actual query
input and can be seen as advanced PT methods.
Although the translation model in PROMPTTRANS
has similar architecture as (Levine et al., 2022),
our work is distinct in that we condition not on
the actual query input but on demonstration exam-
ples. Thus, PRoMPTTRANS learns to generate better
in-context learning representation for the backbone
LM, rather than to solve specific tasks better.

3 Method

3.1 In-context Learning

The general setting of in-context learning on a
given task assumes, that for every evaluation in-
stance or query z9, some (e.g., n for n-shot) an-
notated data D° = {di = (zf,y;)}}'_, are pro-
vided as demonstrations (a.k.a. support set) . The
task of in-context learning is to predict y9, the
output, conditioned on D* and x9. Formally,
§¢ = argmax, Py(y|z?, D*) where ¢ is the back-
bone model. D? is usually few-shot, with n < 16.
The conventional way to condition on x¢ and D°
is to first concatenate the examples in D° to form
the input context C as: C < df @ ... @ d;,, then
concatenate C with 9: C @9, as the final input to
the model (Min et al., 2022b).

3.2 ProMpTTRANS Framework

Is the input context C defined in §3.1 the best con-
text representation for the backbone model to make
use of the support set? In PRoMPTTRANS framework,
we seek a better context representation than simply
concatenating examples in plain text.

Figure 1 illustrates the overall framework. Given
the few-shot demonstrations of a new task, PRompPT-
TraNs converts them to an augmented context C,
which is then concatenated with actual query in-
put of that task and fed as input to the backbone
LM for prediction. PROMPTTRANS is a parameter
efficient framework, with only 3.4% parameters of
the backbone LM (T5-large) and thus can be easily
deployed to multiple accelerators (GPUs, TPUs)
for multi-task inference. Since the backbone LM
is kept frozen, the overall framework enjoys the

augmented context C

@)
Caaml Emel non
@0

Figure 2: Generating augmented context by PROMPT-
TRANS. 0 denotes the translation model, d; denotes i-th
support example and p, denotes a learnable soft prompt.

same in-batch multi-task inference capability as
soft prompt tuning (Lester et al., 2021) and LM-as-
a-service (Sun et al., 2022).

Translation Pipeline As illustrated in Figure 2,
we use a translation model 6 to convert the sup-
port examples to soft prompts that can be better
understood by the backbone LM ¢ and also guide
it better to solve a new task. We then augment the
input context C with the translated prompt.

Formally, the translation model first converts
each support example df = z; @ y; to a soft
prompt p;. Then the translated soft prompts P* =
{p;} are concatenated with the support exam-
ples {d7}"_,. Additionally, a learnable soft prompt
Dy 18 left—appended to it to construct the final input
contextC: C <~ py®pi®...Op, ®di ... Dd;,

Unlike p; which is dependent on the support
data, p, is a global soft prompt similar to (Lester
etal., 2021) and is generated from the support set.
Py gives a general context for in-context learning
while p; help the backbone LM better understand
each support example.

Translation Model Architecture The transla-
tion model essentially converts the support set

® = {dj}7_, into a set of soft tokens P* =
{pi}?~,. One way to model this would be to
adopt a seq2seq architecture like the Transformer
(Vaswani et al., 2017) to generate P° autoregres-
sively from D?®. However, that would assume the
demonstration samples (and the soft tokens) to
be sequentially dependent. In reality, the demon-
stration samples are independent and the probabil-
ity of them appearing together is low in natural
text (Xie et al., 2022). Therefore, instead of us-
ing an auto-regressive model which is also time-
consuming (non-parallelizable), we follow (Jaegle
et al., 2022; Levine et al., 2022) to construct a non-
autoregressive model which independently accepts
the demonstration examples and generates the cor-
responding soft tokens.

translated prompt

m

Self- attent|on]

OO0 DD

(T5-encoder

Cross- attentlon]

[p. i

Figure 3: Translation model architecture. p.: soft
prompt to encoder, pg: soft prompt to decoder (cross-
attention layer + self-attention layer). All tunable pa-
rameters are colored in blue.

Figure 3 illustrates the architecture of the trans-
lation model. Given an input d; of variable length,
we concatenate it with a learnable soft prompt p,
and pass it into a frozen TS5 encoder. The vari-
able length output of the T5 encoder is then passed
through a simple 1-step decoder model to get a
fixed-length output vector. The decoder takes a
learnable soft prompt p; € IR as input and first
attends it on T5 encoded features through a cross at-
tention layer to get a contextualised representation.
This is further passed through another self-attention
layer to get the final soft token p; € IR*. Since
each pj is only dependent on its corresponding d;,
the process of translating di — p; fori =1...n
can be parallelized.

3.3 Meta Training and Inference

We meta train PROMPTTRANS With a collection of
tasks Tyain. For every training iteration, a task 7,
is first sampled from T.i,. Then the support data
D;,. and one query df. = (x} yl) are sampled
from 7T,. We use PROMPTTRANS to convert Dt,, to
input context C and feed C with query input =}, to
predict the output y{ . We compute cross entropy
on the final prediction as the training loss:
Emeta(al) =Ep; a2)~Ter [— log Py (yi,| C @‘T?r):l M
We update the PROMPTTRANs parameters 6’ =
{0, py} while keeping the backbone model ¢ fixed.
We evaluate PRoMPTTRANS With a collection of
unseen tasks T\.q. Each target task T € Tyeg con-
sists of multiple support and query data pairs. For
each pair (D?,d?), we provide D° as input to the
ProMPTTRANS module to get the output C, which
is then concatenated to x9 (i.e. C ®x?) and passed
to the backbone model to get the final prediction:
99 « argmax, Py(y|C ®x9)

4 Experimental Setup

4.1 Datasets

We use the CROSSFIT (Ye et al., 2021) dataset for
meta training and evaluation. Primarily, we experi-
ment with three partitions: Random, cls-to-cls and
half-to-cls. As shown in Table 1, each partition
contains a collection of meta-training and evalua-
tion tasks. Each task has its own training set D"
and development set D%, There are 80 exam-
ples per class in D" or DYV for classification
and regression tasks, and 160 examples for other
tasks®. During meta training, support data D5, is
sampled from DY and query data dY. is sampled
from DY'. We construct the evaluation data by
sampling 50 pairs of (D?, d?) for each evaluation
task 7 € Ties on Random partition and 100 pairs
for each task in other two partitions, resulting in 2k
in-context learning test instances for each partition.

4.2 Baselines

We use T5-large (Raffel et al., 2020) as our
backbone LM across all experiments. We consider
the following baselines to compare with:

MetalCL-Finetune finetunes the backbone LM
during the meta-training stage, following Min et al.
(2022b).

MetalCL-PT does soft prompt tuning (Lester
et al., 2021) during meta-training stage. It appends
a global soft to input context and tunes only on
that soft prompt while keeping the backbone LM
frozen.

INF-Finetune optimizes the LM during testing
with D?®, without involving any meta-training.
This falls back to conventional finetuning on
annotated data D° instead of in-context learning.
Specifically, given (D?, d?) pair during inference,
we finetune the backbone LM for 100 steps
on D? and use the finetuned model to infer on
dq. This process is repeated for each test data point.

Off-the-shelf LM uses the off-the-shelf backbone
LM for inference on in-context learning data. For
this baseline, we report on different LM backbones
including T5-{large, xxl} (Raffel et al., 2020) and
OPT-{13B,30B,66B} (Zhang et al., 2022a).

To summarise, amongst all models, only MetalCL
and PROMPTTRANS perform meta-training. The

we combine 5 seeds data splits in CROSSFIT

demonstration context is appended to input for all
models other than INF-FT which instead uses it to
finetune the LM parameters during inference.

4.3 Evaluation Metrics

There are 7 task-specific evaluation metrics in
CROSSFIT: Classification-F1, Accuracy, QA-F1,
Exact Match(EM), Rouge-L., Mattew correlation
and Pearson correlation. To evaluate a model on a
collection of tasks, we use the following metrics:

* Average of task-specific performances (Avg)

* Weighted Geometric Mean of Relative Gain
per task group (WGMRG)

For wGMRG, we construct task groups out of tasks
having the same evaluation metric. Computing av-
erage relative gain per task group allows a more
stable evaluation than average relative gain per spe-
cific task.

Suppose the relative performance ratio per task
group is: r = (71, ...,Ty), the size ratio for each
task group is: w = (wy, ..., w,). Then wGMRG
is computed by ([[;", ;"") — 1. For example, say
Modell performs 1.2x better than Model2 in QA-
F1 category and achieves only 0.9x of Model2’s
scores in Rouge-L tasks, then the then supposing
there are 2 QA-F1 tasks and 1 Rouge-L task, then
the WGMRG is (1.2%/3 x 0.9'/3) — 1 ~ +9%

4.4 Implementation Details

We use a learning rate of le-5 for Metal CL-PT
baseline following (Lester et al., 2021) and 5e-
5 for MetalCL-Finetune and INF-Finetune base-
lines following (Chen et al., 2022a). For PrRomPT-
TrANS, we set 1e-5 learning rate for tunable soft
prompts {p.,pq,py} and 5e-5 for parameters in
1-layer decoder. All experiments use Adam op-
timizer (Kingma and Ba, 2015) with batch size
8, weight decay of 1le-5 and 150 warm-up steps.
For each partition, we train 400 epochs for 16-shot
support setting and 200 epochs for 8-shot support.
For each epoch, we sample a single data point (i.e.
support set and a query) from each training task.
The numbers of soft tokens for {pe,pq.py} are set
to {100,30,100}. The number of soft tokens for
MetalCL-PT is 200°. To ensure a fair comparison
with comparable inference costs, we set the max
context length of concatenated support examples to
1024 tokens for MetalCL-{Finetune,PT} and 512
tokens for PRoMPTTRANS. The max output length is
set to 64 for all models. All experiments are carried

3More tokens do not improve performance

Methods | _ #iparams | Inf-Time Random cls-to-cls half-to-cls

! ! 120 Train — 40 Test tasks 45 cls. — 20 cls. tasks 23 cls. + 22 non-cls. — 20 cls.

]Fiwaicl;biorilei 71;111721{)1; *‘ (minutes) | 8-shot 16-shot 8-shot 16-shot 8-shot 16-shot
MetalCL-Finetune ! 770M 770M ! 8.2 33.5(-14.1%) 37.0(-9.7%) | 38.4(-20.2%) 38.3(-19.6%) | 39.2(-12.0%) 40.7(-13.8%)
MetalCL-PT | 770M 0.13M 5.7 28.2(-27.7%) 32.3(-18.8%) | 27.1(-44.6%) 25.6(-47.2%) | 29.2(-35.1%) 39.9(-15.2%)
INF-FT | 770M 770M | 2638 349(-72%) 39.2(-0.1%) | 31.7(-34.8%) 38.4(-18.8%) | 31.7(-29.4%) 38.4(-18.4%)
OPT-66B ! 66B ! 312.5 39.8(+9.3%) 41.0(+7.3%) | 46.3(-3.7%) 47.0(- 0.7%) | 46.3(+ 4.1%) 47.0(- 0.2%)
OPT-30B ! 30B ! 189.6 38.0(+4.5%) 39.2(+2.8%) | 44.3(-7.8%) 44.3(-6.4%) | 44.3(-03%) 44.3(-5.9%)
OPT-13B : 13B : 151.4 36.1(- 0.8%) 36.8(-3.3%) | 42.0(-12.8%) 41.5(-12.4%) | 42.0(- 5.7%) 41.5(-12.0%)
T5-xx1 ! 11B ! 206.4 1.0(-99.0%) 3.0(-99.8%) | 0.4(-99.6%) 0.0(-100.0%) | 0.4(-99.6%) 0.0(-100.0%)
T5-large | 770M 1221 1.8(-99.9%) 1.8(-99.9%) | 0.0(-100.0%) 0.0(-100.0%) | 0.0(-100.0%) 0.0(-100.0%)
PROMPTTRANS | 770M 26M | 8.0 37.7(+ 0.0%) 40.0(+ 0.0%) | 48.2(+ 0.0%) 47.6(+ 0.0%) | 44.5(+ 0.0%) 47.1(+ 0.0%)

Table 1: Performance on unseen test data for various data partition. Each cell shows points(percentage), where
points is Avg and percentage is WGMRG compared to PROMPTTRANS. #params shows the parameter size of the
backbone LM (backbone) and the size of trainable parameters (tunable). Inf-Time denotes the average time required
to inference on 2k test data. Best and 1st runner-up results are highlighted.

out on eight 40GB A100 GPUs and 400 epochs of
training with PROMPTTRANS on Random partition
takes around 3.3 hours.

5 Experimental Results

5.1 Main Results

Table 1 shows the main results of PROMPTTRANS
compared with baselines, under 3 partitions. Over-
all, we observe similar trend over compared models
across all settings. (see Appendix B for more de-
tailed results)

T5-large off-the-shelf cannot learn in-context
T5-large and T5-xx1 off-the-shelf baselines (row
7-8) shows nearly zero performance on all three
partitions, which indicates that T5 is not amenable
to in-context learning. However, we observe that
PROMPTTRANS, even without changing T5-large pa-
rameters, is able to elicit in-context learning and
achieve either best results (in cls-to-cls / half-to-
cls partition) or close to best results (in Random
partition), out of all the baselines. Such empirical
results strongly suggest that LMs considered not
suitable for in-context learning (like T5-large) are
inherently capable of it. The key factor to elicit
its in-context ability is to use PROMPTTRANS tO con-
struct better context representation.

PROMPTTRANS consistently outperforms
MetalCL methods The first row block shows
our MetalCL baselines. MetalCL-Finetune
demonstrates effective in-context learning abil-
ity, inline with Min et al. (2022b). Although
MetalCL-Finetune trains the whole T5-large
(770M parameters), PROMPTTRANS consistently
outperforms it in all settings while only tuning

Methods PROMPTTRANS Random
[pg| |pal |pe| | 8-shot 16-shot
PrROMPTTRANS 100 20 100 | 37.7(+ 0.0%) 40.0(+ 0.0%)
MetalCL-Finetune \ \ \ 33.5(-14.1%) 37.0(- 9.7%)
PROMPTTRANS 50 = = 37.1(- 1.4%) 39.0(- 2.0%)
PROMPTTRANS 0 = = | 29.5(-34.7%) 32.7(-17.5%)
PROMPTTRANS = 10 = 38.1(+ 0.3%) 40.1(- 0.3%)
PROMPTTRANS = 30 = 36.5(-4.4%) 36.9(- 7.8%)
PROMPTTRANS = = 50 | 38.1(- 0.6%) 38.6(- 3.2%)
PROMPTTRANS = = 0 359(-4.9%) 37.5(- 5.5%)

Table 2: Ablation on the number of tokens for p, , ps
and p.. "=" indicates same as default setting (first row)

3.4% of T5-large parameters and keeping the
backbone LM fixed. This shows that finetuning
the LM parameters for explicit meta-training is
neither necessary nor optimal. On the other hand,
MetalCL-PT keeps the backbone LM frozen like
PROMPTTRANS, but its performance is significantly
compromised: 7-22 points below PROMPTTRANS
across 3 partitions. Such performance gap suggests
that translating the demonstration examples to soft
prompts is indeed crucial to elicit strong in-context
learning of backbone LMs.

PrROMPTTRANS is better than INF-FT Finetuning
the backbone LM used to be the default paradigm to
adapt LMs to downstream tasks. Here we observe
that PRoMPTTRANS consistently outperforms INF-
FT, with up to 16 points advantage. In other words,
with PRoMPTTRANS, T5-large is better at in-context
learning on few-shot data than finetuning itself.

PrROMPTTRANS is not far behind large LMs We
observe strong in-context learning performance
from large LMs like OPT-{66B,30B,13B}, inline

with (Brown et al., 2020; Chowdhery et al., 2022;
Wei et al., 2022b). Remarkably, PROMPTTRANS ON
T5-large is able to outperform OPT-66B model
in cls-to-cls, surpass OPT-30B in half-to-cls and
achieve performance comparable to OPT-30B in
Random. Contrary to Wei et al. (2022b)’s finding
that in-context learning ability can only emerge
with large LMs (typically > 10B), we observe
that with better context representation from PROMPT-
TraNs, small LMs like T5-large can consistently
outperform OPT-13B having 16.8 x parameters.

Inference is fast for PRompTTRANS Finally, we
investigate if PROMPTTRANS can perform fast infer-
ence, a crucial property for in-context learning. We
record the average time to predict on 2k test data
across 6 settings (3 partitions x {8-shot,16-shot}),
on eight 40GB GPUs with batch size 1 per GPU.
Firstly, we observe that PRoMpPTTRANS has one of
the lowest inference time of 8 minutes, which is
roughly 0.24 seconds per test query. On the con-
trary, INF-FT is 32x slower than PROMPTTRANS,
as it needs to train the LM for 100 steps on each
demonstration D? data during inference. Large
LMs (OPT-{66B,30B,13B}) are also time consum-
ing (19x-39x slower than PROMPTTRANS), as the
model is too large to be loaded into a single GPU
thus we have to split the model over multiple GPUs
using Accelerate library (Sylvain Gugger, 2022).
Besides, T5-large is slower than PROMPTTRANS as
it is not amenable to in-context learning and hence
typically generate longer outputs.

5.2 Ablation on PROMPTTRANS

Number of prompt tokens To understand the
role of each learnable soft prompt in PROMPTTRANS,
we conduct an ablation on the size of soft prompts
Py, Pq and p.. From Table 2, we can see while
reducing the length of p, to 50 slightly degrades
performance, entirely removing it severely hurts
the effectiveness of PRoMPTTRANS. This shows that
Py 1s a necessary component and it is important
to provide a global context to the backbone LM.
Next, we observe that longer length for p, actu-
ally decreases performance while shortening its
length keeps the performance comparable. This
shows that 10-20 tokens might be a sweet spot
for pgy. In other words, it is optimal to translate
each demonstration example to 10-20 soft tokens.
Note that reducing the length of p; to O token will
reduce PrRoMPTTRANS to MetalCL-PT. Finally, the
size of p. affects the representation capacity of the

Methods (- ----- Random
8-shot 16-shot
PROMPTTRANS 37.7(+ 0.0%) 40.0(+ 0.0%)
Metal CL-Finetune 33.5(-14.1%) 37.0(- 9.7%)
ProMPTTRANs-replace-input | 37.2(- 5.7%) 38.5(- 7.7%)
PROMPTTRANS-Teplace-all 20.0(-50.4%) 13.8(-72.9%)

Table 3: Ablation on removing text context.

translation model and reducing its length naturally
comprises the overall performance.

Remove original context The PROMPTTRANS
pipeline in Figure 2 primarily augment original
text context with translated soft prompts. As soft
prompts show strong results in eliciting in-context
learning ability, we wonder if they can replace the
text context altogether. In Table 3, we compare
PROMPTTRANS With two variations: (i) replace-input
variation will remove only the inputs of demon-
stration examples and concatenate translated soft
prompts and demonstration outputs in an inter-
leaved manner: C <+ p, @ pf © yi...p;, D Y.
(ii) replace-all variation will remove all demon-
stration context and only use translated prompts:
C < py @ pi...p,. We find that while replace-
input variation hurts PROMPTTRANS performance to
some extent, it still outperforms MetalCL-Finetune.
Whereas, the replace-all variation leads to a drastic
performance degradation. Such results suggest a
different role of the demonstration input and output
data during in-context learning. While the inputs
can be replaced by translated soft prompts, the
demonstration outputs are more critical and should
be explicitly retained in context. This observa-
tion provides an insight on how in-context learning
works for LMs, inline with Min et al. (2022c).

5.3 Further Analysis on PROMPTTRANS

Performance Break-down per Task Group Fig-
ure 4 shows the weighted relative gain per task
group (r;"* — 1) of baselines compared to PROMPT-
TraNS. We observe that 1) MetalCL-{Finetune,PT}
models perform worser than PRoMPTTRANS in 4 out
of 5 task groups. 2) large OPT models fall behind
PrROMPTTRANS on natural language understanding
tasks but are better at generative tasks (Rouge-L,
Exact-Match). We conjecture this is because larger
LMs trained with causal LM objective on larger-
scale data are better at text generation than smaller
LMs like T5-large, which was primarily trained
with masked span prediction (Raffel et al., 2020).

Classification-F1 ACC QA-F1
0.08

Rouge-L EM

0.04

’ Ll r
-0.04 I

OPT-30B OPT-13B

¥ MetalCL-Finetune ® MetalCL-PT

012 INF-FT

Figure 4: Weighted relative gain per task group w.r.t
PROMPTTRANS, under Random partition 16-shot.

40
35

30

——PromptTrans
MetalCL-Finetune
—-MetalCL-PT

25

20 °
1 2 4 8 16

Figure 5: Ablation on different support size at inference.
Models are trained on 16-shot under Random partition
but tested with different number of support examples.

Different Support Size at Inference In realis-
tic scenarios, there might be different number of
demonstration examples available, especially dur-
ing inference on an unseen test task. To under-
stand how PrRoMPTTRANS adapts to lesser number of
demonstrations at inference, after being trained on
16-shot demonstrations, figure 5 shows the perfor-
mance with regard to different support sizes. We
observe that PRoMPTTRANS is indeed more robust to
variable number of demonstrations, compared to
MetalCL-Finetune and MetalCL-PT.

Intervention on Demonstrations As Min et al.
(2022c) point out, randomizing the labels of demon-
stration examples "barely hurts performance"”. To
verify if PRoMPTTRANS shows similar idiosyncrasies,
we perform an intervention on demonstrations
which permutes the outputs of examples among
themselves. This will break the input-output map-
ping while ensuring that the output space stays
intact. Table 4 shows the empirical results, where
we can observe that while for 8-shot MetalCL-
Finetune is not much affected by such interven-
tion, PROMPTTRANS is more sensitive to it and drops
15.3% in performance. In 16-shot case, both mod-
els are significantly hurt by such intervention.

Methods Permute | Random
Output 8-shot 16-shot
PROMPTTRANS No 377+ 0.0%) 40.0(+ 0.0%)
Yes 32.9(-15.3%) 35.2(-15.5%)

No 33.5(-14.1%)
Yes 33.1(-16.6%)

37.0(- 9.7%)
32.7(-22.6%)

MetalCL-Finetune

Table 4: Test Analysis by permuting demonstration
outputs

Comparison to Instruction-tuned Models We
additionally compare PromPTTRANS Wwith two
instruction-tuned models TO++ (11B) (Sanh et al.,
2022) and FLAN-T5-xx1 (11B) (Chung et al.,
2022). We use a reduced test set of 31 tasks in
Random partition, after removing the overlapped
tasks that are used in TO’s training*. The re-
sults show FLAN-T5-xx1 is 3.1 points (or 2.8%
in wGMRG) behind PrompTTRANS and TO++ is
20.7 points (68.7% in wGMRG) below PromPT-
TraNs. We believe FLAN-T5-xx1 is much better
than TO++ because it is trained with instructions
containing demonstrations while TO++ is trained
on pure task descriptions. Nevertheless, PROMPT-
Trans outperforms FLAN-T5-xx1 which is trained
on much larger corpus (1.8K tasks) with 14 x pa-
rameters. Given its effectiveness of eliciting in-
context learning on demonstrations, it is appeal-
ing to extend PROMPTTRANS to elicit LMs to learn
instructions(with or without demonstrations) in-
context as a future work.

6 Conclusion

In this work, we investigate into better represen-
tations of the input context to make in-context
learning more effective especially for smaller LMs.
Towards this end, we propose PROMPTTRANS, a
parameter-efficient framework to translate demon-
strations to soft prompts and augment the input
context with the translated prompts. Our extensive
experiments show that without changing the back-
bone LM parameters, PROMPTTRANS is able to elicit
strong in-context learning ability in smaller LMs
like T5-large and outperform even large off-the-
shelf LMs and models that finetune the backbone
LM. As a pioneer study, we hope this work spurs
more research towards learning better context rep-
resentation for in-context learning.

*FLAN-T5-xxl training tasks contain TO training tasks

Limitations

In this section, we discuss the limitation of PRoMPT-
TrANs and potential future directions to make it
more valuable.

On Backbone LM In this work, we use T5-large
as the backbone LM for PRoMPTTRANS. As we show
PROMPTTRANSs can improve T5-large from nearly
zero in-context learning performance to a level out-
performing OPT-13B (16.8x parameters), it is thus
appealing to extend PROMPTTRANS to large LMs
which are already good at in-context learning. It
will be interesting to see how much PROMPTTRANS
can further improve on top of those large LMs.
In other words, how much potential of in-context
learning ability is unexplored in large LMs due to
conventional non-optimal representation of context
(by concatenating demonstration examples).

On Scalability of In-context Learning In-
context learning has the issue of long input as
all demonstrations are concatenated to the context.
PROMPTTRANS does not solve this problem as it need
to augment the context (although we truncate the
text to ensure total context length is comparable
§4.4). However, it would be appealing to study
how ProMPTTRANS can make the context represen-
tation more compact and thus accommodate more
demonstration samples. One possible solution is to
replace lengthy demonstrations with compact trans-
lated prompts. However, as §5.2 shows that simply
removing text context hurts performance, more ad-
vanced techniques such as adding reconstruction
loss for translated prompts or curriculum learn-
ing to gradually replace more demonstrations with
prompts could be explored. Alternatively, another
promising direction can be to combine PROMPT-
TraNs with grouped context encoding (Hao et al.,
2022) i.e. improving representation of each demon-
stration with PrRoMPTTRANS While using grouped
context encoding to accommodate up to 1k demon-
strations.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurlIPS.

Hailin Chen, Amrita Saha, Shafiq R. Joty, and
Steven C. H. Hoi. 2022a. Learning label modular
prompts for text classification in the wild. CoRR,
abs/2211.17142.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022b. Meta-learning via language
model in-context tuning. In ACL (1), pages 719-730.
Association for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171-4186. As-
sociation for Computational Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
CoRR, abs/2301.00234.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian
Gu, and Furu Wei. 2022. Structured prompting: Scal-
ing in-context learning to 1, 000 examples. CoRR,
abs/2212.06713.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. CoRR, abs/2203.15556.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste
Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan
Shelhamer, Olivier J. Hénaff, Matthew M. Botvinick,
Andrew Zisserman, Oriol Vinyals, and Jodo Carreira.
2022. Perceiver 10: A general architecture for struc-
tured inputs & outputs. In JCLR. OpenReview.net.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP (1), pages 3045-3059. Associa-
tion for Computational Linguistics.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Standing on the shoulders of giant frozen lan-
guage models. CoRR, abs/2204.10019.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In ACL (1), pages 8086—
8098. Association for Computational Linguistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022a. Noisy channel language
model prompting for few-shot text classification. In
ACL (1), pages 5316-5330. Association for Compu-
tational Linguistics.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022b. Metaicl: Learning to learn
in context. In NAACL-HLT, pages 2791-2809. Asso-
ciation for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022c. Rethinking the role of demonstra-
tions: What makes in-context learning work? CoRR,
abs/2202.12837.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John

10

Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts.
In NAACL-HLT, pages 5203-5212. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In NAACL-HLT, pages 2655-2671. Associ-
ation for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish ThakKker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In ICLR. OpenReview.net.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning for
language-model-as-a-service. In ICML, volume 162
of Proceedings of Machine Learning Research, pages
20841-20855. PMLR.

Thomas Wolf Philipp Schmid Zachary Mueller
Sourab Mangrulkar Sylvain Gugger, Lysandre De-
but. 2022. Accelerate: Training and inference at
scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998—-6008.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Super-naturalinstructions:generalization via declara-
tive instructions on 1600+ tasks. In EMNLP.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In ICLR.
OpenReview.net.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models. CoRR,
abs/2206.07682.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In /CLR.
OpenReview.net.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
Crossfit: A few-shot learning challenge for cross-task
generalization in NLP. In EMNLP (1), pages 7163—
7189. Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022a.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b. Ac-
tive example selection for in-context learning. CoRR,
abs/2211.04486.

Yue Zhang, Hongliang Fei, Dingcheng Li, and Ping Li.
2022c. Promptgen: Automatically generate prompts
using generative models. In NAACL-HLT (Findings),
pages 30-37. Association for Computational Linguis-
tics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML, volume 139 of Proceedings of Machine Learn-
ing Research, pages 12697-12706. PMLR.

A Detailed Partition

The training tasks of partitions {Random, cls-to-
cls, half-to-cls} are the same as partition {1, 2.1,
2.2} in CrossFit (Ye et al., 2021). The test tasks in
our partition are the combinations of dev and test
tasks (7 gew U T test) of the corresponding partition
in CrossFit.

11

B Detailed Results

In this section, we show more detailed results on
three partitions. Figure 6 and Figure 7 show task-
level performance on Random partition with 16-
shot demonstrations. Figure 8 shows the task-level
performance on cls-to-cls partition with 16-shot
demonstrations. Finally, Figure 9 shows the task-
level performance on half-to-cls partition with 16-
shot demonstrations.

C Potential Risks

PROMPTTRANS elicits in-context learning from back-
bone language models, which are pretrained with
web-crawled corpus (Raffel et al., 2020). Although
Raffel et al. (2020) has made efforts to remove
bad words in pretrain corpus, it still potentially
includes toxic or biased content. Thus we empha-
size that PRoMPTTRANS should be considered as a
research prototype rather than a released product
for real world users. Further efforts in reducing the
risks is needed to deploy PRoMPTTRANS for LM-as-
a-service (Sun et al., 2022).

OPT-13B mOPT-30B mOPT-66B mPromptTrans m MetalCL-Finetune m MetalCL-PT INF-FT

Y e & «© & & N
L A g & LA A

o8

07
06
0s
04
03
02
01
. I
+ <
£

-

al

3 & < & N & &
’ S A O Iy Py & o
& & o o & & 5 o5 « I o7 S &
o & b & T & B
& i & & o« < o5
&S 54 B «
& & ¥
&
@ff
< L J L J
Y Y
ACC Classification-F1

Figure 6: Detailed task-specific performance on Random 16-shot (a).

OPT-13B ®mOPT-30B mOPT-66B mPromptTrans m MetalCL-Finetune m MetalCL-PT INF-FT

07
06
04
03
02
o [T Il IIIII] I
S @ & & ® & & g & S ¥ &
& & & y’& & & & & o N & £

& s

S & & o
& & & B o E
&
EM QA-F1 Rouge-L

Figure 7: Detailed task-specific performance on Random 16-shot (b).

OPT-13B mOPT-30B mOPT-66B mPromptTrans m MetalCL-Finetune m MetalCL-PT INF-FT

o6
os
o4
03
02
o1

© & & & + & & N & & 3

& & & « o & & $ C <

o ,{6 v; ‘jd’ & o o & “,’# 9"3‘ & 5 & &

r o+ o & & e & & 5
>) e € & &
& s « o ¢
& &
L J L J
T U

ACC Classification-F1

05

& &
& @Q;’

F.e‘ \f"\ &
& &

Figure 8: Detailed task-specific performance on cls-to-cls 16-shot

12

OPT-13B m OPT-30B mOPT-66B mPromptTrans m MetalCL-Finetune m MetalCL-PT INF-FT

,@"‘ & ‘fb ’ ,&“’a

o

o

o

7

o5
04

2

"

o

o
$
&

°

°

o

o

o & o & & & 9 & & of &
fgy Ed féf ff'/@‘ o f; @‘f & V-f’; g &.\,‘p ¥ s‘f

e ! o P < e
.) .)
T T
ACC Classification-F1

Figure 9: Detailed task-specific performance on half-to-cls 16-shot

13

