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Abstract

Large language models (LMs) like GPT-3 have001
shown remarkable in-context learning ability:002
by concatenating demonstration examples as003
the input context, the model is able infer on004
an unseen task without further training. For005
smaller LMs like T5-large, however, in-context006
learning performance is abysmally poor. This007
poses a question on the design of the in-context008
learning framework - Is there a better way to009
condition on demonstrations, rather than simply010
concatenating them in text? Towards this, we011
propose PROMPTTRANS1, a parameter-efficient012
tuning framework (3.4% of backbone LM pa-013
rameters) to translate demonstrations to soft014
prompts and augment the input context with the015
translated soft prompts. We meta-train PROMPT-016
TRANS on 120 tasks and evaluate on 40 unseen017
tasks from the CrossFit dataset, with few-shot018
(≤ 16) demonstrations per task. Through our019
experiments, we show that PROMPTTRANS is in-020
deed instrumental in eliciting in-context learn-021
ing ability in smaller LMs (T5-large), without022
updating any parameter of the backbone. A023
particularly interesting finding is that across024
our extensive experiments PROMPTTRANS con-025
sistently outperforms baselines that meta-train026
the whole backbone LM for in-context learning027
and even large off-the-shelf LMs (with 16.8×028
parameters). Our promising results and analy-029
sis throw light on how even smaller LMs can030
learn in-context and alludes towards a more031
effective in-context learning paradigm.032

1 Introduction033

In recent years, we have witnessed a trend of scal-034

ing up language models (LMs) in size (Brown et al.,035

2020; Chowdhery et al., 2022; Shoeybi et al., 2019;036

Hoffmann et al., 2022). These large LMs demon-037

strate an emergent ability of in-context learning:038

they can perform a new task simply by condition-039

ing on few demonstration examples in the input040

context (Wei et al., 2022b; Brown et al., 2020). For041

1We will make the source code public upon acceptance

example, to predict the sentiment of “It’s so dumb 042

it’s brilliant!”, we only need to concatenate some 043

demonstration examples to the original input like 044

“I really enjoyed this movie! Positive. The plot was 045

boring. Negative. It’s so dumb it’s brilliant!”, and 046

prompt the large LM with the concatenated prompt 047

to get the expected prediction “Positive”. 048

Such in-context learning ability can be game 049

changing compared to the predominant finetun- 050

ing paradigm (Devlin et al., 2019) with two key 051

advantages (Dong et al., 2023). First, in-context 052

learning eliminates the need to train the model on 053

each downstream task, which is highly resource 054

consuming for large LMs. Second, such ability 055

makes LM-as-a-service possible (Sun et al., 2022), 056

powering wide range of real world applications. 057

However, it appears that in-context learning abil- 058

ity is severely compromised as model size reduces: 059

while GPT-3 175B model achieves over 60% accu- 060

racy on the synthesized task of removing a symbol 061

from a word, GPT-3 1.3B model can only achieve 062

around 5% accuracy (Brown et al., 2020). Such 063

phenomenon compels the research question (Ques- 064

tion A): “Are smaller LMs not capable of in-context 065

learning? Why?” 066

To answer the above question, we first look 067

into how in-context learning works for large LMs. 068

Intuitively, in-context learning is about learning 069

through analogies drawn from the given demon- 070

stration examples and applying that to infer on the 071

query example (Dong et al., 2023). However, Lu 072

et al. (2022) and Zhao et al. (2021) have empiri- 073

cally shown that LMs are sensitive to the order and 074

format of demonstration context. In addition, Min 075

et al. (2022c) show that randomizing the outputs 076

in demonstration examples, which should break 077

input-output mapping in each example, does not 078

hinder in-context learning. These counter-intuitive 079

evidences suggest that the way large LMs use 080

demonstrations might be different from how hu- 081

mans would use them. These findings pose ques- 082
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Figure 1: Overview of PROMPTTRANS framework. Step 1 (left): PROMPTTRANS receives task demonstrations as
input and generates an augmented context C for each task. Step 2 (right): augmented context C concatenated
with the actual query of each task is fed as input to the backbone LM (frozen) to produce the final prediction.
PROMPTTRANS is parameter-efficient (26M, 3.4% of T5-large). The overall framework enjoys the same in-batch
multi-task inference capability as soft-prompt tuning (Lester et al., 2021) or LM-as-a-service (Sun et al., 2022).

tions on whether concatenating the demonstration083

examples as the input context, though intuitive to084

humans, is the best representation for LMs to con-085

dition on them. Is there a better way to condition086

on these examples? (Question B)087

To this end, in this work we propose a data088

driven framework, PROMPTTRANS (Figure 1), which089

(i) translates the demonstration examples to a fixed-090

length soft prompt – a sequence of soft tokens (Qin091

and Eisner, 2021) (ii) learns a global (not generated092

from demonstrations) soft prompt (Lester et al.,093

2021). PROMPTTRANS then combines the global094

prompt, the translated prompts and the original095

context to create an augmented context which is096

given as final input for the backbone LM to use.097

To facilitate PROMPTTRANS’s ability to translate098

demonstration examples to better meet the needs099

of the backbone LM without being exposed to100

test tasks, we meta-train it on a collection of up101

to 120 training tasks (with no overlap with the102

test tasks). During each iteration in meta-training,103

PROMPTTRANS receives a pair of demonstration set104

and a query input, and learns to adapt its translation105

mechanism to help the underlying LM make more106

accurate predictions when conditioned on the aug-107

mented context. Through such meta-training, we108

believe PROMPTTRANS (with only 3.4% parameters109

of the backbone LM) learns to effectively encode110

the kind of knowledge that is required by the back-111

bone LM to learn in-context without requiring any112

parameter update.113

We evaluate PROMPTTRANS on a collection of test114

tasks (up to 40), with few-shot (≤ 16) demon-115

strations per task. From extensive experiments,116

we find that it can elicit in-context learning from117

smaller LMs like T5-large, without updating any 118

parameter of the backbone LM (answer to Ques- 119

tion A). With PROMPTTRANS, T5-large can consis- 120

tently outperform baselines, including (i) MetaICL- 121

Finetune (Min et al., 2022b), which finetunes the 122

whole T5-large model during meta-training stage. 123

(ii) INF-FT, which finetunes the whole T5-large 124

model on demonstration examples at test time, 125

(iii) MetaICL-PT, which tunes only a global soft 126

prompt (Lester et al., 2021) during meta-training 127

stage, and (iv) large off-the-shelf LMs such as OPT- 128

13B (Zhang et al., 2022a) with 16.8× parameters. 129

Furthermore, we perform test analysis on 130

PROMPTTRANS and find it is (i) robust to variation 131

in the number of demonstrations provided during 132

inference (a useful feature for in-context learning 133

application in reality) and (ii) more sensitive to 134

input-output mapping of demonstrations than (Min 135

et al., 2022c) observed for Large LMs. 136

Since PROMPTTRANS only changes the input con- 137

text without changing any parameters of the back- 138

bone LM or altering its forward propagation step 139

like Adapters (Houlsby et al., 2019), its strong per- 140

formance suggests that smaller LMs are infact in- 141

herently capable of learning in-context but the con- 142

ventional context is not a good representation to 143

elicit its in-context learning ability. As PROMPT- 144

TRANS verifies that a better representation of con- 145

text is beneficial, we hope this can be the stepping 146

stone for future research to study better context 147

representations for in-context learning. 148

2 Related Work 149

In-context Learning Brown et al. (2020) show 150

that large LMs can learn an unseen task, by con- 151
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catenating few-shot demonstration examples in-152

context without any parameter update. Subsequent153

studies (Zhao et al., 2021; Lu et al., 2022; Rubin154

et al., 2022; Zhang et al., 2022b) further improve155

in-context learning by proposing techniques to find156

the best order and selection of demonstration exam-157

ples. This work explores a direction orthogonal to158

example selection or ordering - that of improving159

the design of the in-context learning framework160

itself; by investigating into better representations161

of the input context. Unlike (Min et al., 2022a,b),162

where the model prediction is selected as the candi-163

date option with the highest likelihood, we consider164

text-to-text generative prediction as it is more gen-165

eralizable and does not require candidate options.166

Meta-training for In-context Learning While167

LMs acquire in-context learning ability implic-168

itly (Brown et al., 2020) through training on lan-169

guage modeling loss, Min et al. (2022b); Chen170

et al. (2022b) propose to explicitly finetune the171

model to learn in-context learning through a meta-172

training stage. During meta-training, the model173

learns to predict the output of a given query, by174

conditioning on the input context obtained by con-175

catenating some demonstration data with the query176

input. Min et al. (2022b) show such meta-training177

can significantly boost in-context learning perfor-178

mance of GPT2-large. While PROMPTTRANS also179

goes through meta-training stage to learn its pa-180

rameters, it does not change any parameter of the181

backbone LM. In this work, we show that PROMPT-182

TRANS can significantly boost in-context learning183

ability of smaller LMs like T5-large to the extent184

that they even outperform meta-trained counter-185

parts that finetune the backbone LM.186

Meta-training for Instruction Tuning More re-187

cently, there has been a trend of explicitly finetun-188

ing colossal-sized LMs on large instruction-tuning189

corpus (Sanh et al., 2022; Wei et al., 2022a; Wang190

et al., 2022; Ouyang et al., 2022). Some task in-191

structions contain demonstration examples (Wang192

et al., 2022) while others only include general task193

descriptions (Sanh et al., 2022; Wei et al., 2022a).194

To human’s intuition, task descriptions reveal a195

different aspect of the task knowledge compared196

to demonstrations. While it is possible to extend197

PROMPTTRANS to include task descriptions, in this198

pioneer study we stay focused on learning better199

representation for demonstrations.200

Prompt Tuning and Generation Lester et al. 201

(2021) propose soft prompt tuning (PT), which only 202

tunes a sequence of soft tokens appended to the in- 203

put and keeps the backbone LM frozen. Levine 204

et al. (2022); Zhang et al. (2022c) propose to gen- 205

erate an input-dependent soft prompt instead of 206

learning a global task-level soft prompt. These 207

studies generate prompts based on the actual query 208

input and can be seen as advanced PT methods. 209

Although the translation model in PROMPTTRANS 210

has similar architecture as (Levine et al., 2022), 211

our work is distinct in that we condition not on 212

the actual query input but on demonstration exam- 213

ples. Thus, PROMPTTRANS learns to generate better 214

in-context learning representation for the backbone 215

LM, rather than to solve specific tasks better. 216

3 Method 217

3.1 In-context Learning 218

The general setting of in-context learning on a 219

given task assumes, that for every evaluation in- 220

stance or query xq, some (e.g., n for n-shot) an- 221

notated data Ds = {dsi = (xsi , y
s
i )}ni=1 are pro- 222

vided as demonstrations (a.k.a. support set) . The 223

task of in-context learning is to predict yq, the 224

output, conditioned on Ds and xq. Formally, 225

ŷq = argmaxy Pϕ(y|xq,Ds) where ϕ is the back- 226

bone model. Ds is usually few-shot, with n ≤ 16. 227

The conventional way to condition on xq and Ds 228

is to first concatenate the examples in Ds to form 229

the input context C as: C ← ds1 ⊕ . . . ⊕ dsn, then 230

concatenate C with xq: C ⊕xq, as the final input to 231

the model (Min et al., 2022b). 232

3.2 PROMPTTRANS Framework 233

Is the input context C defined in §3.1 the best con- 234

text representation for the backbone model to make 235

use of the support set? In PROMPTTRANS framework, 236

we seek a better context representation than simply 237

concatenating examples in plain text. 238

Figure 1 illustrates the overall framework. Given 239

the few-shot demonstrations of a new task, PROMPT- 240

TRANS converts them to an augmented context C, 241

which is then concatenated with actual query in- 242

put of that task and fed as input to the backbone 243

LM for prediction. PROMPTTRANS is a parameter 244

efficient framework, with only 3.4% parameters of 245

the backbone LM (T5-large) and thus can be easily 246

deployed to multiple accelerators (GPUs, TPUs) 247

for multi-task inference. Since the backbone LM 248

is kept frozen, the overall framework enjoys the 249
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Figure 2: Generating augmented context by PROMPT-
TRANS. θ denotes the translation model, dsi denotes i-th
support example and pg denotes a learnable soft prompt.

same in-batch multi-task inference capability as250

soft prompt tuning (Lester et al., 2021) and LM-as-251

a-service (Sun et al., 2022).252

Translation Pipeline As illustrated in Figure 2,253

we use a translation model θ to convert the sup-254

port examples to soft prompts that can be better255

understood by the backbone LM ϕ and also guide256

it better to solve a new task. We then augment the257

input context C with the translated prompt.258

Formally, the translation model first converts259

each support example dsi = xsi ⊕ ysi to a soft260

prompt psi . Then the translated soft prompts P s =261

{psi}ni=1 are concatenated with the support exam-262

ples {dsi}ni=1. Additionally, a learnable soft prompt263

pg is left-appended to it to construct the final input264

context C: C ← pg⊕ps1⊕ . . .⊕psn⊕ds1⊕ . . .⊕dsn265

. Unlike psi which is dependent on the support266

data, pg is a global soft prompt similar to (Lester267

et al., 2021) and is generated from the support set.268

pg gives a general context for in-context learning269

while psi help the backbone LM better understand270

each support example.271

Translation Model Architecture The transla-272

tion model essentially converts the support set273

Ds = {dsi}ni=1 into a set of soft tokens P s =274

{psi}ni=1. One way to model this would be to275

adopt a seq2seq architecture like the Transformer276

(Vaswani et al., 2017) to generate P s autoregres-277

sively from Ds. However, that would assume the278

demonstration samples (and the soft tokens) to279

be sequentially dependent. In reality, the demon-280

stration samples are independent and the probabil-281

ity of them appearing together is low in natural282

text (Xie et al., 2022). Therefore, instead of us-283

ing an auto-regressive model which is also time-284

consuming (non-parallelizable), we follow (Jaegle285

et al., 2022; Levine et al., 2022) to construct a non-286

autoregressive model which independently accepts287

the demonstration examples and generates the cor-288

responding soft tokens.289

Figure 3: Translation model architecture. pe: soft
prompt to encoder, pd: soft prompt to decoder (cross-
attention layer + self-attention layer). All tunable pa-
rameters are colored in blue.

Figure 3 illustrates the architecture of the trans- 290

lation model. Given an input dsi of variable length, 291

we concatenate it with a learnable soft prompt pe 292

and pass it into a frozen T5 encoder. The vari- 293

able length output of the T5 encoder is then passed 294

through a simple 1-step decoder model to get a 295

fixed-length output vector. The decoder takes a 296

learnable soft prompt pd ∈ IRk as input and first 297

attends it on T5 encoded features through a cross at- 298

tention layer to get a contextualised representation. 299

This is further passed through another self-attention 300

layer to get the final soft token psi ∈ IRk. Since 301

each psi is only dependent on its corresponding dsi , 302

the process of translating dsi → psi for i = 1 . . . n 303

can be parallelized. 304

3.3 Meta Training and Inference 305

We meta train PROMPTTRANS with a collection of 306

tasks Ttrain. For every training iteration, a task T tr 307

is first sampled from Ttrain. Then the support data 308

Ds
tr and one query dqtr = (xqtr, y

q
tr) are sampled 309

from T tr. We use PROMPTTRANS to convert Ds
tr to 310

input context C and feed C with query input xqtr to 311

predict the output yqtr. We compute cross entropy 312

on the final prediction as the training loss: 313

Lmeta(θ′) = E(Ds
tr,d

q
tr)∼T tr

[
− logPϕ(y

q
tr| C ⊕xq

tr)
]

(1) 314

We update the PROMPTTRANS parameters θ′ = 315

{θ,pg} while keeping the backbone model ϕ fixed. 316

We evaluate PROMPTTRANS with a collection of 317

unseen tasks Ttest. Each target task T ∈ Ttest con- 318

sists of multiple support and query data pairs. For 319

each pair (Ds, dq), we provide Ds as input to the 320

PROMPTTRANS module to get the output C, which 321

is then concatenated to xq (i.e. C ⊕xq) and passed 322

to the backbone model to get the final prediction: 323

ŷq ← argmaxy Pϕ(y| C ⊕xq) 324
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4 Experimental Setup325

4.1 Datasets326

We use the CROSSFIT (Ye et al., 2021) dataset for327

meta training and evaluation. Primarily, we experi-328

ment with three partitions: Random, cls-to-cls and329

half-to-cls. As shown in Table 1, each partition330

contains a collection of meta-training and evalua-331

tion tasks. Each task has its own training set Dtrain332

and development set Ddev. There are 80 exam-333

ples per class in Dtrain or Ddev for classification334

and regression tasks, and 160 examples for other335

tasks2. During meta training, support data Ds
tr is336

sampled from Dtrain
tr and query data dqtr is sampled337

from Ddev
tr . We construct the evaluation data by338

sampling 50 pairs of (Ds, dq) for each evaluation339

task T ∈ Ttest on Random partition and 100 pairs340

for each task in other two partitions, resulting in 2k341

in-context learning test instances for each partition.342

4.2 Baselines343

We use T5-large (Raffel et al., 2020) as our344

backbone LM across all experiments. We consider345

the following baselines to compare with:346

347
MetaICL-Finetune finetunes the backbone LM348

during the meta-training stage, following Min et al.349

(2022b).350

351
MetaICL-PT does soft prompt tuning (Lester352

et al., 2021) during meta-training stage. It appends353

a global soft to input context and tunes only on354

that soft prompt while keeping the backbone LM355

frozen.356

357
INF-Finetune optimizes the LM during testing358

with Ds, without involving any meta-training.359

This falls back to conventional finetuning on360

annotated data Ds instead of in-context learning.361

Specifically, given (Ds, dq) pair during inference,362

we finetune the backbone LM for 100 steps363

on Ds and use the finetuned model to infer on364

dq. This process is repeated for each test data point.365

366
Off-the-shelf LM uses the off-the-shelf backbone367

LM for inference on in-context learning data. For368

this baseline, we report on different LM backbones369

including T5-{large, xxl} (Raffel et al., 2020) and370

OPT-{13B,30B,66B} (Zhang et al., 2022a).371

372
To summarise, amongst all models, only MetaICL373

and PROMPTTRANS perform meta-training. The374

2we combine 5 seeds data splits in CROSSFIT

demonstration context is appended to input for all 375

models other than INF-FT which instead uses it to 376

finetune the LM parameters during inference. 377

4.3 Evaluation Metrics 378

There are 7 task-specific evaluation metrics in 379

CROSSFIT: Classification-F1, Accuracy, QA-F1, 380

Exact Match(EM), Rouge-L, Mattew correlation 381

and Pearson correlation. To evaluate a model on a 382

collection of tasks, we use the following metrics: 383

• Average of task-specific performances (Avg) 384

• Weighted Geometric Mean of Relative Gain 385

per task group (wGMRG) 386

For wGMRG, we construct task groups out of tasks 387

having the same evaluation metric. Computing av- 388

erage relative gain per task group allows a more 389

stable evaluation than average relative gain per spe- 390

cific task. 391

Suppose the relative performance ratio per task 392

group is: r = (r1, . . . , rn), the size ratio for each 393

task group is: w = (w1, . . . , wn). Then wGMRG 394

is computed by (
∏n

i=1 r
wi
i )− 1. For example, say 395

Model1 performs 1.2× better than Model2 in QA- 396

F1 category and achieves only 0.9× of Model2’s 397

scores in Rouge-L tasks, then the then supposing 398

there are 2 QA-F1 tasks and 1 Rouge-L task, then 399

the wGMRG is (1.22/3 × 0.91/3)− 1 ≈ +9% 400

4.4 Implementation Details 401

We use a learning rate of 1e-5 for MetaICL-PT 402

baseline following (Lester et al., 2021) and 5e- 403

5 for MetaICL-Finetune and INF-Finetune base- 404

lines following (Chen et al., 2022a). For PROMPT- 405

TRANS, we set 1e-5 learning rate for tunable soft 406

prompts {pe,pd,pg} and 5e-5 for parameters in 407

1-layer decoder. All experiments use Adam op- 408

timizer (Kingma and Ba, 2015) with batch size 409

8, weight decay of 1e-5 and 150 warm-up steps. 410

For each partition, we train 400 epochs for 16-shot 411

support setting and 200 epochs for 8-shot support. 412

For each epoch, we sample a single data point (i.e. 413

support set and a query) from each training task. 414

The numbers of soft tokens for {pe,pd,pg} are set 415

to {100,30,100}. The number of soft tokens for 416

MetaICL-PT is 2003. To ensure a fair comparison 417

with comparable inference costs, we set the max 418

context length of concatenated support examples to 419

1024 tokens for MetaICL-{Finetune,PT} and 512 420

tokens for PROMPTTRANS. The max output length is 421

set to 64 for all models. All experiments are carried 422

3More tokens do not improve performance
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Methods #params Inf-Time Random cls-to-cls half-to-cls
120 Train→ 40 Test tasks 45 cls. → 20 cls. tasks 23 cls. + 22 non-cls. → 20 cls.

backbone tunable (minutes) 8-shot 16-shot 8-shot 16-shot 8-shot 16-shot

MetaICL-Finetune 770M 770M 8.2 33.5(-14.1%) 37.0(- 9.7%) 38.4(-20.2%) 38.3(-19.6%) 39.2(-12.0%) 40.7(-13.8%)

MetaICL-PT 770M 0.13M 5.7 28.2(-27.7%) 32.3(-18.8%) 27.1(-44.6%) 25.6(-47.2%) 29.2(-35.1%) 39.9(-15.2%)

INF-FT 770M 770M 263.8 34.9(- 7.2%) 39.2(- 0.1%) 31.7(-34.8%) 38.4(-18.8%) 31.7(-29.4%) 38.4(-18.4%)

OPT-66B 66B - 312.5 39.8(+ 9.3%) 41.0(+ 7.3%) 46.3(- 3.7%) 47.0(- 0.7%) 46.3(+ 4.1%) 47.0(- 0.2%)

OPT-30B 30B - 189.6 38.0(+ 4.5%) 39.2(+ 2.8%) 44.3(- 7.8%) 44.3(- 6.4%) 44.3(- 0.3%) 44.3(- 5.9%)

OPT-13B 13B - 151.4 36.1(- 0.8%) 36.8(- 3.3%) 42.0(-12.8%) 41.5(-12.4%) 42.0(- 5.7%) 41.5(-12.0%)

T5-xxl 11B - 206.4 1.0(-99.0%) 3.0(-99.8%) 0.4(-99.6%) 0.0(-100.0%) 0.4(-99.6%) 0.0(-100.0%)

T5-large 770M - 22.1 1.8(-99.9%) 1.8(-99.9%) 0.0(-100.0%) 0.0(-100.0%) 0.0(-100.0%) 0.0(-100.0%)

PROMPTTRANS 770M 26M 8.0 37.7(+ 0.0%) 40.0(+ 0.0%) 48.2(+ 0.0%) 47.6(+ 0.0%) 44.5(+ 0.0%) 47.1(+ 0.0%)

Table 1: Performance on unseen test data for various data partition. Each cell shows points(percentage), where
points is Avg and percentage is wGMRG compared to PROMPTTRANS. #params shows the parameter size of the
backbone LM (backbone) and the size of trainable parameters (tunable). Inf-Time denotes the average time required
to inference on 2k test data. Best and 1st runner-up results are highlighted.

out on eight 40GB A100 GPUs and 400 epochs of423

training with PROMPTTRANS on Random partition424

takes around 3.3 hours.425

5 Experimental Results426

5.1 Main Results427

Table 1 shows the main results of PROMPTTRANS428

compared with baselines, under 3 partitions. Over-429

all, we observe similar trend over compared models430

across all settings. (see Appendix B for more de-431

tailed results)432

T5-large off-the-shelf cannot learn in-context433

T5-large and T5-xxl off-the-shelf baselines (row434

7-8) shows nearly zero performance on all three435

partitions, which indicates that T5 is not amenable436

to in-context learning. However, we observe that437

PROMPTTRANS, even without changing T5-large pa-438

rameters, is able to elicit in-context learning and439

achieve either best results (in cls-to-cls / half-to-440

cls partition) or close to best results (in Random441

partition), out of all the baselines. Such empirical442

results strongly suggest that LMs considered not443

suitable for in-context learning (like T5-large) are444

inherently capable of it. The key factor to elicit445

its in-context ability is to use PROMPTTRANS to con-446

struct better context representation.447

PROMPTTRANS consistently outperforms448

MetaICL methods The first row block shows449

our MetaICL baselines. MetaICL-Finetune450

demonstrates effective in-context learning abil-451

ity, inline with Min et al. (2022b). Although452

MetaICL-Finetune trains the whole T5-large453

(770M parameters), PROMPTTRANS consistently454

outperforms it in all settings while only tuning455

Methods PROMPTTRANS Random

|pg| |pd| |pe| 8-shot 16-shot

PROMPTTRANS 100 20 100 37.7(+ 0.0%) 40.0(+ 0.0%)

MetaICL-Finetune \ \ \ 33.5(-14.1%) 37.0(- 9.7%)

PROMPTTRANS 50 = = 37.1(- 1.4%) 39.0(- 2.0%)

PROMPTTRANS 0 = = 29.5(-34.7%) 32.7(-17.5%)

PROMPTTRANS = 10 = 38.1(+ 0.3%) 40.1(- 0.3%)

PROMPTTRANS = 30 = 36.5(- 4.4%) 36.9(- 7.8%)

PROMPTTRANS = = 50 38.1(- 0.6%) 38.6(- 3.2%)

PROMPTTRANS = = 0 35.9(- 4.9%) 37.5(- 5.5%)

Table 2: Ablation on the number of tokens for pg , pd

and pe. "=" indicates same as default setting (first row)

3.4% of T5-large parameters and keeping the 456

backbone LM fixed. This shows that finetuning 457

the LM parameters for explicit meta-training is 458

neither necessary nor optimal. On the other hand, 459

MetaICL-PT keeps the backbone LM frozen like 460

PROMPTTRANS, but its performance is significantly 461

compromised: 7-22 points below PROMPTTRANS 462

across 3 partitions. Such performance gap suggests 463

that translating the demonstration examples to soft 464

prompts is indeed crucial to elicit strong in-context 465

learning of backbone LMs. 466

PROMPTTRANS is better than INF-FT Finetuning 467

the backbone LM used to be the default paradigm to 468

adapt LMs to downstream tasks. Here we observe 469

that PROMPTTRANS consistently outperforms INF- 470

FT, with up to 16 points advantage. In other words, 471

with PROMPTTRANS, T5-large is better at in-context 472

learning on few-shot data than finetuning itself. 473

PROMPTTRANS is not far behind large LMs We 474

observe strong in-context learning performance 475

from large LMs like OPT-{66B,30B,13B}, inline 476
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with (Brown et al., 2020; Chowdhery et al., 2022;477

Wei et al., 2022b). Remarkably, PROMPTTRANS on478

T5-large is able to outperform OPT-66B model479

in cls-to-cls, surpass OPT-30B in half-to-cls and480

achieve performance comparable to OPT-30B in481

Random. Contrary to Wei et al. (2022b)’s finding482

that in-context learning ability can only emerge483

with large LMs (typically ≥ 10B), we observe484

that with better context representation from PROMPT-485

TRANS, small LMs like T5-large can consistently486

outperform OPT-13B having 16.8× parameters.487

Inference is fast for PROMPTTRANS Finally, we488

investigate if PROMPTTRANS can perform fast infer-489

ence, a crucial property for in-context learning. We490

record the average time to predict on 2k test data491

across 6 settings (3 partitions × {8-shot,16-shot}),492

on eight 40GB GPUs with batch size 1 per GPU.493

Firstly, we observe that PROMPTTRANS has one of494

the lowest inference time of 8 minutes, which is495

roughly 0.24 seconds per test query. On the con-496

trary, INF-FT is 32× slower than PROMPTTRANS,497

as it needs to train the LM for 100 steps on each498

demonstration Ds data during inference. Large499

LMs (OPT-{66B,30B,13B}) are also time consum-500

ing (19×-39× slower than PROMPTTRANS), as the501

model is too large to be loaded into a single GPU502

thus we have to split the model over multiple GPUs503

using Accelerate library (Sylvain Gugger, 2022).504

Besides, T5-large is slower than PROMPTTRANS as505

it is not amenable to in-context learning and hence506

typically generate longer outputs.507

5.2 Ablation on PROMPTTRANS508

Number of prompt tokens To understand the509

role of each learnable soft prompt in PROMPTTRANS,510

we conduct an ablation on the size of soft prompts511

pg, pd and pe. From Table 2, we can see while512

reducing the length of pg to 50 slightly degrades513

performance, entirely removing it severely hurts514

the effectiveness of PROMPTTRANS. This shows that515

pg is a necessary component and it is important516

to provide a global context to the backbone LM.517

Next, we observe that longer length for pd actu-518

ally decreases performance while shortening its519

length keeps the performance comparable. This520

shows that 10-20 tokens might be a sweet spot521

for pd. In other words, it is optimal to translate522

each demonstration example to 10-20 soft tokens.523

Note that reducing the length of pd to 0 token will524

reduce PROMPTTRANS to MetaICL-PT. Finally, the525

size of pe affects the representation capacity of the526

Methods
Random

8-shot 16-shot

PROMPTTRANS 37.7(+ 0.0%) 40.0(+ 0.0%)

MetaICL-Finetune 33.5(-14.1%) 37.0(- 9.7%)

PROMPTTRANS-replace-input 37.2(- 5.7%) 38.5(- 7.7%)

PROMPTTRANS-replace-all 20.0(-50.4%) 13.8(-72.9%)

Table 3: Ablation on removing text context.

translation model and reducing its length naturally 527

comprises the overall performance. 528

Remove original context The PROMPTTRANS 529

pipeline in Figure 2 primarily augment original 530

text context with translated soft prompts. As soft 531

prompts show strong results in eliciting in-context 532

learning ability, we wonder if they can replace the 533

text context altogether. In Table 3, we compare 534

PROMPTTRANS with two variations: (i) replace-input 535

variation will remove only the inputs of demon- 536

stration examples and concatenate translated soft 537

prompts and demonstration outputs in an inter- 538

leaved manner: C ← pg ⊕ ps1 ⊕ ys1 . . . p
s
n ⊕ ysn. 539

(ii) replace-all variation will remove all demon- 540

stration context and only use translated prompts: 541

C ← pg ⊕ ps1 . . . p
s
n. We find that while replace- 542

input variation hurts PROMPTTRANS performance to 543

some extent, it still outperforms MetaICL-Finetune. 544

Whereas, the replace-all variation leads to a drastic 545

performance degradation. Such results suggest a 546

different role of the demonstration input and output 547

data during in-context learning. While the inputs 548

can be replaced by translated soft prompts, the 549

demonstration outputs are more critical and should 550

be explicitly retained in context. This observa- 551

tion provides an insight on how in-context learning 552

works for LMs, inline with Min et al. (2022c). 553

5.3 Further Analysis on PROMPTTRANS 554

Performance Break-down per Task Group Fig- 555

ure 4 shows the weighted relative gain per task 556

group (rwi
i − 1) of baselines compared to PROMPT- 557

TRANS. We observe that 1) MetaICL-{Finetune,PT} 558

models perform worser than PROMPTTRANS in 4 out 559

of 5 task groups. 2) large OPT models fall behind 560

PROMPTTRANS on natural language understanding 561

tasks but are better at generative tasks (Rouge-L, 562

Exact-Match). We conjecture this is because larger 563

LMs trained with causal LM objective on larger- 564

scale data are better at text generation than smaller 565

LMs like T5-large, which was primarily trained 566

with masked span prediction (Raffel et al., 2020). 567
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Figure 4: Weighted relative gain per task group w.r.t
PROMPTTRANS, under Random partition 16-shot.

Figure 5: Ablation on different support size at inference.
Models are trained on 16-shot under Random partition
but tested with different number of support examples.

Different Support Size at Inference In realis-568

tic scenarios, there might be different number of569

demonstration examples available, especially dur-570

ing inference on an unseen test task. To under-571

stand how PROMPTTRANS adapts to lesser number of572

demonstrations at inference, after being trained on573

16-shot demonstrations, figure 5 shows the perfor-574

mance with regard to different support sizes. We575

observe that PROMPTTRANS is indeed more robust to576

variable number of demonstrations, compared to577

MetaICL-Finetune and MetaICL-PT.578

Intervention on Demonstrations As Min et al.579

(2022c) point out, randomizing the labels of demon-580

stration examples "barely hurts performance". To581

verify if PROMPTTRANS shows similar idiosyncrasies,582

we perform an intervention on demonstrations583

which permutes the outputs of examples among584

themselves. This will break the input-output map-585

ping while ensuring that the output space stays586

intact. Table 4 shows the empirical results, where587

we can observe that while for 8-shot MetaICL-588

Finetune is not much affected by such interven-589

tion, PROMPTTRANS is more sensitive to it and drops590

15.3% in performance. In 16-shot case, both mod-591

els are significantly hurt by such intervention.592

Methods
Permute Random

Output 8-shot 16-shot

PROMPTTRANS
No 37.7(+ 0.0%) 40.0(+ 0.0%)

Yes 32.9(-15.3%) 35.2(-15.5%)

MetaICL-Finetune
No 33.5(-14.1%) 37.0(- 9.7%)

Yes 33.1(-16.6%) 32.7(-22.6%)

Table 4: Test Analysis by permuting demonstration
outputs

Comparison to Instruction-tuned Models We 593

additionally compare PROMPTTRANS with two 594

instruction-tuned models T0++ (11B) (Sanh et al., 595

2022) and FLAN-T5-xxl (11B) (Chung et al., 596

2022). We use a reduced test set of 31 tasks in 597

Random partition, after removing the overlapped 598

tasks that are used in T0’s training4. The re- 599

sults show FLAN-T5-xxl is 3.1 points (or 2.8% 600

in wGMRG) behind PROMPTTRANS and T0++ is 601

20.7 points (68.7% in wGMRG) below PROMPT- 602

TRANS. We believe FLAN-T5-xxl is much better 603

than T0++ because it is trained with instructions 604

containing demonstrations while T0++ is trained 605

on pure task descriptions. Nevertheless, PROMPT- 606

TRANS outperforms FLAN-T5-xxl which is trained 607

on much larger corpus (1.8K tasks) with 14× pa- 608

rameters. Given its effectiveness of eliciting in- 609

context learning on demonstrations, it is appeal- 610

ing to extend PROMPTTRANS to elicit LMs to learn 611

instructions(with or without demonstrations) in- 612

context as a future work. 613

6 Conclusion 614

In this work, we investigate into better represen- 615

tations of the input context to make in-context 616

learning more effective especially for smaller LMs. 617

Towards this end, we propose PROMPTTRANS, a 618

parameter-efficient framework to translate demon- 619

strations to soft prompts and augment the input 620

context with the translated prompts. Our extensive 621

experiments show that without changing the back- 622

bone LM parameters, PROMPTTRANS is able to elicit 623

strong in-context learning ability in smaller LMs 624

like T5-large and outperform even large off-the- 625

shelf LMs and models that finetune the backbone 626

LM. As a pioneer study, we hope this work spurs 627

more research towards learning better context rep- 628

resentation for in-context learning. 629

4FLAN-T5-xxl training tasks contain T0 training tasks
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Limitations630

In this section, we discuss the limitation of PROMPT-631

TRANS and potential future directions to make it632

more valuable.633

On Backbone LM In this work, we use T5-large634

as the backbone LM for PROMPTTRANS. As we show635

PROMPTTRANS can improve T5-large from nearly636

zero in-context learning performance to a level out-637

performing OPT-13B (16.8× parameters), it is thus638

appealing to extend PROMPTTRANS to large LMs639

which are already good at in-context learning. It640

will be interesting to see how much PROMPTTRANS641

can further improve on top of those large LMs.642

In other words, how much potential of in-context643

learning ability is unexplored in large LMs due to644

conventional non-optimal representation of context645

(by concatenating demonstration examples).646

On Scalability of In-context Learning In-647

context learning has the issue of long input as648

all demonstrations are concatenated to the context.649

PROMPTTRANS does not solve this problem as it need650

to augment the context (although we truncate the651

text to ensure total context length is comparable652

§4.4). However, it would be appealing to study653

how PROMPTTRANS can make the context represen-654

tation more compact and thus accommodate more655

demonstration samples. One possible solution is to656

replace lengthy demonstrations with compact trans-657

lated prompts. However, as §5.2 shows that simply658

removing text context hurts performance, more ad-659

vanced techniques such as adding reconstruction660

loss for translated prompts or curriculum learn-661

ing to gradually replace more demonstrations with662

prompts could be explored. Alternatively, another663

promising direction can be to combine PROMPT-664

TRANS with grouped context encoding (Hao et al.,665

2022) i.e. improving representation of each demon-666

stration with PROMPTTRANS while using grouped667

context encoding to accommodate up to 1k demon-668

strations.669
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A Detailed Partition893

The training tasks of partitions {Random, cls-to-894

cls, half-to-cls} are the same as partition {1, 2.1,895

2.2} in CrossFit (Ye et al., 2021). The test tasks in896

our partition are the combinations of dev and test897

tasks (T dev ∪T test) of the corresponding partition898

in CrossFit.899

B Detailed Results 900

In this section, we show more detailed results on 901

three partitions. Figure 6 and Figure 7 show task- 902

level performance on Random partition with 16- 903

shot demonstrations. Figure 8 shows the task-level 904

performance on cls-to-cls partition with 16-shot 905

demonstrations. Finally, Figure 9 shows the task- 906

level performance on half-to-cls partition with 16- 907

shot demonstrations. 908

C Potential Risks 909

PROMPTTRANS elicits in-context learning from back- 910

bone language models, which are pretrained with 911

web-crawled corpus (Raffel et al., 2020). Although 912

Raffel et al. (2020) has made efforts to remove 913

bad words in pretrain corpus, it still potentially 914

includes toxic or biased content. Thus we empha- 915

size that PROMPTTRANS should be considered as a 916

research prototype rather than a released product 917

for real world users. Further efforts in reducing the 918

risks is needed to deploy PROMPTTRANS for LM-as- 919

a-service (Sun et al., 2022). 920
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Figure 6: Detailed task-specific performance on Random 16-shot (a).

Figure 7: Detailed task-specific performance on Random 16-shot (b).

Figure 8: Detailed task-specific performance on cls-to-cls 16-shot
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Figure 9: Detailed task-specific performance on half-to-cls 16-shot
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