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ABSTRACT

Training on high-quality synthetic data from strong language models (LMs) is a
common strategy to improve the reasoning performance of LMs. In this work,
we revisit whether this strategy is compute-optimal under a fixed inference bud-
get (e.g., FLOPs). To do so, we investigate the trade-offs between generating
synthetic data using a stronger but more expensive (SE) model versus a weaker
but cheaper (WC) model. We evaluate the generated data across three key met-
rics: coverage, diversity, and false positive rate, and show that the data from WC
models may have higher coverage and diversity, but also exhibit higher false pos-
itive rates. We then finetune LMs on data from SE and WC models in different
settings: knowledge distillation, self-improvement, and a novel weak-to-strong
improvement setup where a weaker LM teaches reasoning to a stronger LM. Our
findings reveal that models finetuned on WC-generated data consistently outper-
form those trained on SE-generated data across multiple benchmarks and multiple
choices of WC and SE models. These results challenge the prevailing practice of
relying on SE models for synthetic data generation, suggesting that WC may be
the compute-optimal approach for training advanced LM reasoners.
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Figure 1: Summary of the results. (a) We finetune Gemma-7B, Gemma2-9B, and Gemma2-27B on
the synthetic data collected from a stronger but more expensive LM (Gemma2-27B) and a weaker
but cheaper LM (Gemma2-9B) in a compute-matched setup for the MATH dataset. We find that
training with Gemma2-9B data is more compute-optimal across diverse finetuning paradigms –
knowledge distillation, self-improvement, and weak-to-strong improvement (i.e. using a weaker
model to improve a stronger model). (b) We finetune Gemma models (7B/9B/27B) on synthetic
data generated by Gemini-1.5-Pro and Gemini-1.5-Flash in a price-matched setup. We find that
finetuning with Flash-generated data consistently outperforms Pro-generated data.

1 INTRODUCTION

Language models (LMs) have demonstrated impressive reasoning capabilities, but their success
heavily relies on being trained on vast amounts of (problem, solution) pairs. Collecting this data
from humans is costly and time-consuming. Recent studies have demonstrated the feasibility of
synthetically generating this data using LMs themselves, offering a more scalable and efficient ap-
proach to training data acquisition. One widely-adopted approach is to sample multiple candidate
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solutions for a problem from an LM, filters them for final answer correctness, and finetune models
on the correct solutions (Zelikman et al., 2022). Several works show that LMs trained with such
synthetic solutions outperform those trained with human-written solutions (Yuan et al., 2023; Yu
et al., 2023; Yue et al., 2023; Singh et al., 2023; Pang et al., 2024). Practitioners often sample solu-
tions from strong LMs to ensure high quality (Teknium, 2023; Roziere et al., 2023; Mukherjee et al.,
2023; Xu et al., 2023). However, sampling from strong LMs is expensive and resource-intensive,
and limits the number of solutions that can be generated for practical sampling budgets.

# samples = K

Weaker and Cheap
LM (PWC params)

Stronger and Expensive 
LM (PSE params)

# samples
= N x K

N = PSE/PWC

Finetuned LM (FSE)

Finetuned LM (FWC)

Accuracy of FWC > FSE

Figure 2: Illustration of the approach. Given a fixed
sampling budget, one can either generate fewer samples
from a stronger but more expensive (SE) model or more
samples from a weaker but cheaper (WC) model. The
latter may lead to solving a wider range of problems and
also more correct solutions per question. We compare
the utility of these two synthetically generated datasets
for training LM reasoners in various supervised fine-
tuning setups and show that training with the data from
WC consistently outperforms training on data from SE.

In this paper, we explore an alternative sam-
pling approach. Given a fixed compute bud-
get, we investigate sampling from a weaker
but cheaper (WC) model as opposed to the
commonly-used approach of sampling from a
stronger but more expensive (SE) model. We
start by comparing data from WC vs SE across
three axes that play crucial roles in the utility
of such synthetic data: 1- coverage, the number
of unique problems that are solved, 2- diver-
sity, the average number of unique solutions we
obtain per problem, and 3- false positive rate
(FPR), the percentage of problems that arrive
at the correct final answer but with a wrong
reasoning. We find that since we can generate
more samples from the WC model compared
to the SE model under a fixed budget, the data
from WC may exhibit higher coverage and di-
versity. However, due to the lower quality of the
WC model, it may also have a higher FPR. As a
particular example for the Gemma2 family (Team et al., 2024a;b) on the MATH dataset (Hendrycks
et al., 2021), Gemma2-9B achieves 11% higher coverage and 86% higher diversity, but also with
7% higher FPR compared to Gemma2-27B.

We then fine-tune models on data from SE and WC (see Figure 2) across diverse setups correspond-
ing to three paradigms: 1) knowledge distillation, where a student LM learns from a teacher LM
(Hinton et al., 2015); 2) self-improvement, where an LM learns from self-generated data (Huang
et al., 2022); and 3) a new paradigm we introduce called Weak-to-Strong Improvement, where a
strong student LM improves using synthetic data from a weaker teacher LM. Using two (WC, SE)
model pairs, one from the Gemma2 family and another from the Gemini 1.5 family (Reid et al.,
2024), we show on multiple benchmarks that training on WC-generated data consistently outper-
forms training on SE-generated data under the three setups, with relative gains of up to 31.6% per-
cent (see Figure 1 for a summary of the results). Our results indicate that it is more compute-optimal
to sample from a WC model as opposed to the common-practice of sampling from a SE model. With
the performance gap between small and large LMs getting narrower over time (especially at larger
scales), our results establish a solid foundation for training the next generation of LM reasoners.

2 PRELIMINARIES

Let D = {qi, ai}i=n
i=1 be a training dataset of size n with reasoning questions qi and final answers

(aka labels) ai. A successful approach to leverage such data to improve models for reasoning is as
follows. We sample multiple solutions for each qi at a non-zero temperature and create the synthetic
data DG = {qi, {(r̂ij , âij)j=k

j=1}}, where k is the number of samples, r̂ij is the j-th reasoning chain
(i.e. solution) generated by the model for qi, and âij is the model’s final answer for qi in the j-th
sample. Then, we filter the incorrect solutions by comparing âij to ai and removing the solutions
whose final answer do not match that of the gold answer1. Finally, we supervise finetuned a model
on the remaining data D̃G to maximize J(θ) = E(q,r,a)∼D̃G

[log(pθ(r, a|q))], i.e. the probability of

1While it is possible to use more sophisticated approaches for filtering (e.g., process-based or outcome-
based reward model (Uesato et al., 2022)), in this work we focus on final answer correctness for filtering as it
has shown to be strong.
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generating the reasoning r and final answer a given the question q. This approach was first proposed
in (Zelikman et al., 2022) and was then extended in multiple works including (Zelikman et al., 2024;
Singh et al., 2023).

For a dataset DG, we compute coverage@k (aka pass@k) (Chen et al., 2021) as
EDG

[
1−

(
M−c
k

)
/
(
M
k

)]
where c is the number of solutions, out of M , with correct answers and

EDG
[.] denotes the expectation over the problems and solutions in the generated dataset. Conceptu-

ally, coverage@k measures the fraction of unique questions that have at least one correct solution,
assuming that we sample k solutions per question from the model. We also define diversity@k as
the average number of unique correct solutions we obtain per question when we sample k solutions
per question. Finally, we define false positive rate (FPR) as the percentage of solutions in D̃G where
the reasoning is incorrect, despite the final answer being correct.

Different choices of the LM to sample solutions from and the LM to finetune lead to different setups.
Knowledge Distillation (Hinton et al., 2015) corresponds to training a student LM on the synthetic
data sampled from a stronger and larger LM. Self-Improvement (Huang et al., 2022) corresponds to
training an LM on samples generated from itself.

3 COMPUTE-MATCHED SAMPLING AND TRAINING

To generate a dataset DG with synthetic solutions from D, one can leverage different models for
generating solutions. Specifically, at a fixed sampling budget (FLOPs), one can generate more
samples from a weaker but cheaper (WC) model or fewer samples from a stronger but more ex-
pensive (SE) model. Given a WC model with PWC parameters and SE with PSE parameters, we
compute the sampling ratio at a fix budget for the two models, focusing on decoder-only trans-
former models (Vaswani, 2017). Following (Kaplan et al., 2020), we note that the FLOPs per
inference token is 2P , for a model with P parameters. As a result, the FLOPs for T inference
tokens is 2PT . Further, we assume that generating each solution requires an average of W infer-
ence tokens for both models2. Let SWC and SSE represent the number of samples we generate per
question for the two models. The total cost of generating samples for the dataset D will then be
CostWC = n× SWC ×W × (2PWC) and CostSE = n× SSE ×W × (2PSE) for the cheap and
expensive models, respectively. At a fixed sampling budget, we have:

n× SWC ×W × (2PWC) = n× SSE ×W × (2PSE) ⇒ SWC =
PSE

PWC
SSE (1)

Equation 1 indicates that at a fixed sampling budget, for each question we can generate PSE/PWC

more samples from WC; the ratio scales linearly with the model parameters ratio3. Sampling more
solutions from WC may increase the likelihood of correctly solving a larger subset of the problems
(high coverage) and obtaining more correct solutions per question (high diversity).

Given a fixed budget, we can either generate fewer samples from a SE model or more samples from
a WC model, and then finetune models for a fixed number of steps on the data from each of these
models to measure and compare the utility of the data from each model. Specifically, we generate
PSE/PWC more samples from the WC model compared to the SE model. We consider three fine-
tuning setups that consists of diverse finetuning paradigms. The paradigms include the widely used
knowledge distillation, the emerging framework of self-improvement, and a novel weak-to-strong
improvement paradigm we introduce in this work. We define weak-to-strong improvement (W2S-I)
as enhancing the reasoning capabilities of a strong model using samples generated from a weaker
model. The three setups are as follows (a summary of the three setups and the finetuning paradigms
that each case corresponds to can be found in Table 1).

Student-LM finetuning: Conventionally, the supervised finetuning data for training student LM is
acquired from SE models to ensure high-quality (Teknium, 2023). However, we aim to understand

2This is a reasonable assumption given that the solution to a question is expected to be model-agnostic. We
note, however, that it is possible for some questions that one model solves a question using a more optimal way
compared to the other model thus producing a smaller solution.

3Note that this may also depend on the available hardware, which we ignore in this work.
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Data (↓) / Finetuning setup (→) Student-LM WC-LM SE-LM
WC (Compute-matched) Knowledge distillation Self-improvement Weak-to-strong improvement
SE Knowledge distillation Knowledge distillation Self-improvement

Table 1: Summary of the supervised finetuning setups. We finetuned the language models under three
setups: (a) Student LM, (b) Weak-Cheap (WC) LM, and (c) Strong-Expensive (SE) LM. For each setup, we
employed different finetuning paradigms based on the source of the synthetic data. For example, training a
separate student LM with data from both WC and SE models falls under the knowledge distillation paradigm.
In contrast, training a WC model with its own samples is self-improvement. Finally, we also introduce a
new paradigm, weak-to-strong improvement, where the samples from the WC model is used to improve the
reasoning capabilities of the SE model at the fixed compute budget.

whether WC models can replace SE models for distillation at the fixed sampling budget. To do so,
we finetune a student LM separate from the WC and SE models on the WC and SE data, which
corresponds to distillation in both the cases.

WC-LM finetuning: Prior work (Singh et al., 2023) has shown that finetuning a WC model through
self-generated data lags behind distillation from SE data. However, their setup spends a higher
sampling budget on collecting data from SE than WC. In this work, we revisit this finetuning setup
under the fixed sampling budget and finetune the WC model on the WC and SE data at a fixed
budget for both. Note that training the WC model on its own data corresponds to self-improvement
whereas training WC on the data from SE corresponds to distillation. Hence, this setup compares
self-improvement on WC data with distillation from SE data.

SE-LM finetuning: It is commonly believed that to improve a SE model, we either need synthetic
data from the SE model itself or from an even stronger (and perhaps more expensive) model. Here,
we test an alternative approach to understand whether the synthetic data from the WC model can
improve the SE model. To this end, we finetune the SE model on the WC and SE data. Training
SE on data from WC corresponds to W2S-I and training SE on data from SE corresponds to self-
improvement. Overall, this setup compares W2S-I by WC data with self-improvement by SE data.

4 EXPERIMENTAL SETUP

Datasets: We mainly experiment with MATH (Hendrycks et al., 2021) and GSM-8K (Cobbe et al.,
2021) datasets, which are widely adopted in the literature. We generate the solutions for the prob-
lems in the MATH using a 4-shot prompt and for GSM-8K using an 8-shot prompt. We generated
the candidate solutions in the synthetic dataset using TopK (K= 3) strategy with a temperature 0.7.

Data Generation: We use Gemma2 models for synthetic data generation, with pretrained Gemma2-
9B and Gemma2-27B acting as the WC and SE models respectively. Since the 9B model is roughly
3 times smaller than the 27B model, at a fixed sampling compute budget we can sample 3× more
sample solutions per problem for Gemma2-9B. For our experiments, we consider two sampling
budgets: a low budget, where we generate 1 and 3 candidate solutions per problem from Gemma2-
27B and Gemma2-9B, respectively, and a high budget, where we generate 10 and 30 candidate
solutions per problem. Further, we study the transfer of the reasoning capabilities for the models
trained on MATH at the high sampling budget on the Functional MATH dataset.

Model Finetuning: We summarize the details for our finetuning setups in the Table 1. In the
Student-LM finetuning setup, we finetune the Gemma-7B model (Team et al., 2024a), for WC-LM
we finetune Gemma2-9B, and for SE-LM we finetune Gemma2-27B. Further, we train the LMs
across different setups with the human-written solutions as a ground-truth baseline. We finetuned
the Gemma2-9B and Gemma2-27B models with a batch size of 32 for 600 and 6000 steps under
the low and high sampling budget, respectively. During the fine-tuning process, we save 10 equally-
spaced checkpoints and choose the one that yields the highest validation accuracy.4

Synthetic Data Evaluation: To assess the quality of the synthetic data from the SE and WC models,
we measure the coverage, diversity and fpr at a fixed cost. From Equation 1, we know that sampling
one solution from SE takes the same FLOPs as sampling PSE/PWC solutions from WC. Therefore,

4We provide more details in Appendix J.
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Figure 3: Synthetic data analysis for MATH dataset. The (a) coverage, (b) diversity, and (c) false
positive rates for Gemma2-27B and Gemma2-9B on the MATH dataset, at two sampling budgets.

we compare coverage@k for SE to coverage@( PSE

PWC
k) for WC to allow a similar budget to both

models. Specifically, we compare coverage@k and coverage@3k for our SE and WC models.
Similarly we compare diversity@k and diversity@3k for our SE and WC models. Since FPR
cannot be computed automatically, we compute it using two proxies: 1- a human evaluation on
a subset of the data, where 50 solutions from each model were selected randomly and rated for
reasoning correctness by the authors, and 2- automatic evaluation where we sampled 500 solutions
and prompted Gemini-Pro-1.5 (Reid et al., 2024) to rate the correctness of the reasoning paths. To
sample solutions, for the MATH dataset we selected uniformly from each diversity level. In our
experiments, we find that the FPR estimates are close to each other for the human and automatic
evaluation. We provide a few qualitative examples for the false positive instances in Appendix F.

Evaluating Finetuned Models: We use pass@1 accuracy to evaluate the performance of the fine-
tuned LMs. Specifically, we generate a single solution for the problem (zero-shot) from the test
split, using a sampling temperature of 0.0 (greedy decoding) for the fine-tuned LM and measure the
percentage of problems that where the final answer matches the golden final answer. We also report
maj@k (k = 1, 4, 8, 16) for part of our experiments, where we generate k solutions per problem at
a sampling temperature of 0.7 and select the final answer that appears most among the k samples.

5 EXPERIMENTS AND RESULTS

We compare data from WC and SE models along several axes. First, we analyze the data along
various quality metrics (§5.1). Subsequently, we present the supervised finetuning results for the
different setups (§5.2). Finally, we perform ablation studies to study the impact of dataset size,
sampling strategy, and the role of quality dimensions in the model performance (§E.1).

5.1 SYNTHETIC DATA ANALYSIS

We compare WC and SE data across three key quality metrics (coverage, diversity, and FPR) at a
fixed sampling budget. We present the results for MATH at the low and high sampling budgets in
Figure 3 and for GSM-8K in the Appendix – Figure 20.

Coverage: We find that the data from Gemma2-9B (WC) outperforms Gemma2-27B (SE) by 11%
and 6% (absolute) at the low and high sampling budgets, respectively, for the MATH dataset, and
8% and 1% (absolute) for GSM-8K. This highlights that the higher number of samples for the WC
model aids in solving more unique problems for both the reasoning datasets. We provide the cov-
erage trends for diverse sampling budgets in Appendix G. In addition, we observe that the coverage
of the WC model increases across various difficulty levels in the MATH dataset for the high sam-
pling budget (see Appendix – Figure 21). This highlights that synthetic data from the WC model
can solve more unique questions at various difficulty levels compare to the SE model, at a fixed
sampling budget (Tong et al., 2024). Further, we provide a qualitative example that gets solved
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Figure 4: Supervised-finetuning results (MATH). The results for finetuning various LMs on the
MATH synthetic data from the WC (Gemma2-9B) and SE (Gemma2-27B) models, at a fixed sam-
pling budget. We observe that training with the samples from the WC model consistently outper-
forms training with SE data.

by repeated sampling from Gemma2-9B but remains unsolved by Gemma2-27B at the fixed high
sampling budget (Table 6).

Diversity: The diversity for the data from Gemma2-9B is higher than Gemma2-27B by 86% and
125% (relative) at the low and high sampling budgets for the MATH dataset, and 134% and 158%
(relative) at for the GSM-8K dataset. This implies that many unique reasoning chains in the synthetic
data from the WC model lead to the correct solutions. We also observe that the absolute diversity
scores are lower for MATH compared to GSM-8K at high sampling budget, indicating that models
generate fewer correct solutions for the more challenging datasets when using repeated sampling.

FPR: Since we utilize the final answer correctness for filtering the synthetic data, it does not remove
the solutions with incorrect intermediate reasoning steps. Our human evaluations suggest that the
FPR for the WC-generated solutions is 7% and 2% (absolute) higher than SE-generated solutions
on the MATH and GSM-8K, respectively. The trends from the automatic evaluation are similar to
that of human evaluation. Due to the differences in the difficulty of the problems, we note that the
absolute FPRs are much lower for GSM-8K compared to MATH. We also note that the development
of high-quality verifiers will be essential to filter bad chain-of-thoughts from the synthetic data
(Lightman et al., 2023).

Given the mixed signals of high coverage and diversity coupled with a high FPR, it remains unclear
whether it is compute-optimal to sample from the WC model or the SE model for training strong
reasoners. We study this in the next section.

5.2 COMPUTE-OPTIMALITY RESULTS FOR TRAINING

We compare the utility of the synthetic data generated from the Gemma2-9B (WC) and Gemma2-
27B (SE) model for the MATH and GSM-8K dataset across the diverse finetuning paradigms in
Figure 4 and Figure 5, respectively. In addition, we present the results for training with human-
written chain-of-thoughts from the original training sets as a baseline.

Student-LM Finetuning. The Gemma-7B finetuned with the synthetic data from WC consistently
outperforms the one finetuned on data from SC with a relative gain of 6% and 5.8% at the low
and high sampling budgets, respectively, for the MATH dataset and 4.2% and 1.3% for GSM-8K.
Contrary to the common belief of stronger models being better for knowledge distillation, our results
indicate that finetuning on data from WC is more compute-optimal than data from SE.

WC-LM Finetuning. We compare the performance of Gemma2-9B finetuned with the WC data
(i.e. self-generated data) and SE data (i.e. data from Gemma2-27B). The results for MATH and
GSM-8K are reported in Figures 4b and 5b. We observe that the self-generated data (WC data)
improves over knowledge distillation from a strong model (SE data), achieving relative gains of
3.8% and 2% at the low and high sampling budgets, respectively, for the MATH dataset, and 1.5%
at the low sampling budget for the GSM-8K dataset. However, we find that the WC model finetuned
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Figure 5: Supervised-finetuning results (GSM-8K). The results for finetuning various LMs on
the GSM-8K synthetic data from the WC (Gemma2-9B) and SE (Gemma2-27B) models, at a fixed
sampling budget. We observe that training with samples from the WC model leads to stronger
reasoners than training with SE data.

1 4 8 16
k

28

31

34

37

40

43

M
aj

@
k 

(%
)

Student-LM Finetuning (Functional MATH)
27B
9B (compute-matched)

(a) Gemma-7B evaluation.

1 4 8 16
k

38

41

44

47

50

53

M
aj

@
k 

(%
)

WC-LM Finetuning (Functional MATH)
27B
9B (compute-matched)

(b) Gemma2-9B evaluation.

1 4 8 16
k

44

47

50

53

56

M
aj

@
k 

(%
)

SE-LM Finetuning (Functional MATH)
27B
9B (compute-matched)

(c) Gemma2-27B evaluation.

Figure 6: Generalization Results (Functional MATH). The performance of the models trained
with the synthetic data from the MATH data at high sampling budget on the Functional MATH
dataset. The results suggest that training with WC data enhances the generalization capabilities over
the SE data, at a fixed sampling budget.

with WC data matches the SE data for the GSM-8K dataset at a high sampling budget. This is mainly
due to the lower difficulty of the GSM-8k dataset, where it becomes saturated at higher sampling
budgets (see Figure 20a). Interestingly, our empirical findings suggest that training a WC model on
synthetic data from its own is more compute-optimal than distillation from a stronger model.

SE-LM finetuning. We present the results for finetuning Gemma2-27B with the Gemma2-9B
generated data and self-generated data. The results for MATH and GSM-8K are reported in Fig-
ure 4c and 5c. Surprisingly, we observe that the model finetuned with the WC data outperforms the
SE data, achieving relative gains of 5.8% and 4.3% at the low and high sampling budget, respec-
tively, for the MATH dataset and 1.2% and 1.5% for the GSM-8K dataset. This result is even more
surprising given that the Gemma2-27B data is expected to be more in-distribution than the Gemma2-
9B data. Contrary to the common belief of self-generated data or data from a stronger model being
better, our empirical findings show that training a model in a W2S-I setup from a WC data may be
more compute-optimal than training it in a self-improvement setup on its own data. This result also
establishes a new paradigm for improving frontier models in a compute-efficient way, by generating
synthetic data from much smaller models. We also perform the experiments on the Llama models in
Appendix D. In this case too, we observe that WC data outperforms the SE data across Student-LM,
WC-LM, and SE-LM finetuning, highlighting at the robustness of our conclusions.

FPR of Finetuned Models: We showed that models finetuned on WC data achieve higher final
answer accuracy. However, since WC data had a higher FPR compared to SE data, a question that
may arise is whether the WC finetuned models mainly learn to arrive at the correct final answer
but with wrong reasoning chains. To study this, similar to the experiment in Figure 3c, we use
Gemini-1.5-Pro as a judge to estimate the FPR of the finetuned models. To reduce noise, we do this
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three times and average the results. We report the results for finetuned models with (Gemma-27B,
Gemma-9B) and (Gemini-Pro, Gemini-Flash) as the (SE, WC) data in Figure 7. Despite the larger
FPR of the WC data, we observe that the FPR of the WC finetuned models is as good as the FPR of
the SE finetuned models across different finetuning setups and choices of SE/WC data.
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Figure 7: False positive rates of finetuned models. The false positive rates (FPR) of finetuned
models on MATH assessed by Gemini-1.5-Pro, for (Left) models finetuned with Gemma2-27B and
Gemma2-9B data (compute-matched) and (right) models finetuned with Gemini-Pro and Gemini-
Flash data (price-matched).

Generalization. Here, we aim to study the transfer capabilities of the models trained with the WC
and SE data. Specifically, we evaluate the models finetuned with the synthetic solutions for the
MATH datasets at the high sampling budget on the Functional MATH dataset. The results in Figure
6 show that the Gemma-7B finetuned with the WC data consistently outperforms the SE data, where
the relative gains range from 5.8% − 6.5% at different values of k. In addition, we observe that
the Gemma2-9B finetuned with the self-generated data outperforms knowledge distillation with the
Gemma2-27B data achieving relative gains ranging from 2.5% − 4.5% at different values of k.
Moreover, finetuning Gemma2-27B with WC data matches closely with the SE data, except for
k = 8 where the gap is a relative gain of 2%. Our results highlight that finetuning the LMs with the
WC data enhances the generalization capabilities over the SE data at the fixed sampling budget.
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Figure 8: We finetune Gemma models
(7B/9B/27B) on synthetic data generated by
the state-of-the-art LMs Gemini-1.5-Pro and
Gemini-1.5-Flash. We find that finetuning with
Flash-generated data consistently outperforms
Pro-generated data not only at the same sampling
monetary cost as Gemini-1.5-Pro, but also at
≈ 0.15× of the cost.

Ablations studies: In Appendix E.1, we show
that our results hold for train sets with smaller
sizes and in Appendix E.2 we show that the
higher coverage and diversity both play pos-
itive roles in the superior performance of the
WC data. While we introduced the notion of
compute-matched sampling in this work, in the
literature, comparisons between WC and SE
data have been mostly done in a number-match
setup, where one generates an equal number of
samples from both models. In Appendix E.3,
we show that SE data indeed outperforms WC
data in this setup. We conjecture this to be the
main reason why SE data has been previously
favored. In Appendix C, we extend our results
to coding where we observe that the benefits
from the WC can be context-dependent.

Takeaway: Overall, our findings challenge the
conventional wisdom that advocates training on
samples from the SE model, by showing that
training on samples from the WC model may
be more compute-optimal across various tasks
and setups.
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6 SCALING TO STATE-OF-THE-ART LANGUAGE MODELS

In the prior experiments, we focused on the synthetic data acquisition from open LMs. Here, we aim
to show that data from the weaker SoTA LM can train better reasoners than stronger SoTA LM at a
fixed sampling budget. To this end, we scale our method to sampling data from Gemini-1.5-Pro and
Gemini-1.5-Flash. As the model sizes are not publicly available, we utilize the ratio between their
pricing per output token as a proxy to perform compute-matched sampling. As of August 2024, we
note that the price per million output tokens is $10.5 and $0.3 for Gemini-1.5-Pro and Gemini-1.5-
Flash, respectively. Hence, we sample 1 and 35 solutions per problem from 1.5-Pro and 1.5-Flash,
respectively. We conduct our experiments on the MATH dataset.

We perform knowledge distillation on the Gemma-7B, Gemma2-9B, and Gemma2-27B LMs with
the synthetic data from Pro (SE) and Flash (WC). We present the results in Figure 8. Interestingly,
we find that finetuning with the WC data outperforms the SE data, achieving relative gains of 31.6%,
14.4%, and 10.9% for Gemma-7B, Gemma2-9B, and Gemma2-27B, respectively. This can be at-
tributed to the difference in the coverage of the models at the fixed sampling budget, which is 61.1%
and 81% for 1.5-Pro and 1.5-Flash, respectively.

Reducing the cost of data sampling. Further, we investigate training the LMs with the WC data
that is less expensive than collecting 1 solution per problem from the SE model. Specifically, we
create a dataset by sampling 5 solutions per problem from the Flash (WC) model, which is 7× more
economical than generating 1 solution from the Pro (SE) model, in terms of the price ($). Upon
training the LMs on the 0.15× cost data regime (Figure 8), we find that training on this data can also
outperform training with SC data, achieving relative gains of 19.1%, 9.8%, and 5.7% for finetuning
Gemma-7B, Gemma2-9B, and Gemma2-27B, respectively. This can be attributed to higher coverage
of the weaker model (69%), even in the more economical scenario, in comparison to the stronger
model (61.1%).

Takeaway: We demonstrate that price-matched sampling from weaker SoTA LMs produces supe-
rior reasoners compared to finetuning with data from stronger SoTA models.

7 EXTENDING RESULTS TO SCENARIOS LACKING GROUND-TRUTH LABELS

In the prior experiments, we assumed having access to final gold answers which allowed us to
filter the synthetically generated solutions through final answer correctness, following the STaR
framework. Here, we extend our approach to scenarios where ground-truth labels are unavailable.
In particular, we consider two scenarios: 1- the MATH dataset while assuming we do not have the
ground-truth labels (Appendix B.1), and 2- single-turn chat (instruction-following) data which lacks
the concept of ground-truth labels (Appendix B.2).

Performance on Reasoning. We study the impact of two settings on the performance of the fine-
tuned models using SE and WC data at a fixed sampling budget. In the first setting, we perform no
verification of the candidate solutions; that is, we include all the synthetic solutions in the finetuning
mix. In the second setting, we perform verification for the candidate solutions using a model-based
verifier. We present the results for finetuning LMs on the Gemma-9B (WC) and Gemma-27B (SE)
data with no verification and LM as a judge in Figure 11. Overall, the trends suggest that whether
WC data is superior to SE data or not in the case of lacking ground truth data depends on the quality
of the overall models and the finetuning setup.

Performance on Instruction-following Task. Here, we study the usefulness of synthetic re-
sponses from WC and SE data at a fixed sampling budget, for training instruction-following LMs.
We present the results in Appendix Figure 9. Interestingly, we observe that finetuned models
with WC data significantly outperform the SE data across different model sizes. In particular, the
instruction-level accuracy of Gemma-9B trained with Flash data outperforms Pro data by achieving
a relative gain of 12.8%. In summary, our results highlight the usefulness of WC data over SE data
for training capable instruction-following models at a fixed sampling budget.

8 RELATED WORK
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Figure 9: Performance of finetuned models
on IFEval. The results present the instruction-
level accuracy (%) on IFEval of the models fine-
tuned with Gemini-Pro and Gemini-Flash (price-
matched) data.

LMs for reasoning. The ability to solve rea-
soning tasks has been a long standing goal of
artificial intelligence (Reid et al., 2024; Achiam
et al., 2023; Dubey et al., 2024; Team, 2024;
Anthropic, 2024; AI, 2024). In this regard, LMs
trained on the internet-scale data have achieved
great success for math, code, and other rea-
soning tasks (Lewkowycz et al., 2022; Azer-
bayev et al., 2023; Kazemi et al., 2024). There
have been several works that aim to enhance
the reasoning capabilities of the LMs either via
prompting (Kojima et al., 2022; Wang et al.,
2022; Zheng et al., 2023a; Kazemi et al., 2022)
or finetuning (Yue et al., 2023; Yu et al., 2023).
In this work, we focus on finetuning the LMs
with task-specific datasets to build strong rea-
soners. Specifically, our method closely aligns
with the widely adopted STaR (Zelikman et al.,
2022) where the synthetic data from the LMs
are used to elicit strong reasoning capabilities.

Finetuning LMs. Within the finetuning
paradigm, there have been several works that improve reasoning with synthetic data. Broadly, these
works focus on knowledge distillation from a strong but expensive LM (Wu et al., 2024; Yue et al.,
2023) or self-improvement (Gulcehre et al., 2023; Singh et al., 2023). While it is common to filter
the synthetic data for the final answer correctness (akin to Zelikman et al. (2022)), there are several
works that aim to build task-specific verifiers to train strong reasoners (Lightman et al., 2023; Wu
et al., 2024; Hosseini et al., 2024; Yuan et al., 2024). In this work, we explore the utility of the
synthetic data from the weak but cheap LMs for training strong reasoners. We do not explore using
model-based verifiers with the synthetic data for enhanced reasoning, and leave it as a future work.
Our weak-to-strong improvement paradigm, where a strong model is trained with the generations
from the weak model, is related to several prior work (Bowman et al., 2022; Burns et al., 2023;
Yang et al., 2024b) which study the ability of a strong LM to learn from the data generated by a
weaker LM. However, the aim of these works is to recover the full capabilities of the strong model
from weaker data, whereas we aim to enhance the strong model capabilities further. Our work also
studies compute-optimal sampling from weak and strong models, which is absent in previous work.

Large and small LMs. While training large LMs has led to significant advancements across various
tasks, there has recently been a growing interest in developing capable small LMs (HF, 2024b;
Javaheripi et al., 2023). Specifically, a capable small LM is faster to run, and easier to serve to
millions of users on the edge devices (Gunter et al., 2024). As a result, several recent works aim
to understand the utility of the weak but cheaper LMs in comparison to the strong but expensive
LMs for reasoning. Specifically, Brown et al. (2024); Song et al. (2024); Snell et al. (2024) show
that the solve rate of the small LMs can increase significantly with repeated sampling. In addition,
Hassid et al. (2024) demonstrate that repeated generations from smaller LMs can outperform the
data generated by larger LMs at a fixed sampling computational budget during inference for coding
tasks. In this work, we go beyond these works and show the utility of the synthetic data from the
small LMs for training strong reasoners across a diverse set of supervised finetuning setups.

9 CONCLUSION

In this work, we provide a framework for compute-optimal sampling from weak but cheap LM for
reasoning tasks. Specifically, we show that at a fixed sampling compute budget, repeated sampling
from a smaller model can achieve higher coverage and diversity than from a strong but more ex-
pensive model. Furthermore, our empirical findings highlight that fine-tuning LMs with data from
the small LM can consistently outperform data from the large LM under the same compute budget.
Our results can serve as a foundation for training LM reasoners, especially as the performance gap
between small and large LMs continues to narrow over time (Appendix K).
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REPRODUCIBILITY STATEMENT

In this paper, we generated synthetic data either using open-weight language models (Gemma2
family), or models that are publicly available through API calls (Gemini 1.5 family). We also used
publicly available datasets, MATH and GSM-8K. The data generation process is detailed in §K.
Additionally, we focus our finetuning experiments to open-weight Gemma models (7B, 9B, and
27B) only, with the finetuning details provided in Appendix J. Finally, the evaluation details are also
covered in §4.
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A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z. R. Tam, K. Stevens, A. Barhoum, D. Nguyen,
O. Stanley, R. Nagyfi, et al. Openassistant conversations-democratizing large language model
alignment. Advances in Neural Information Processing Systems, 36, 2024.

A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone,
C. Anil, I. Schlag, T. Gutman-Solo, et al. Solving quantitative reasoning problems with language
models. Advances in Neural Information Processing Systems, 35:3843–3857, 2022.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.

S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and A. Awadallah. Orca: Progressive
learning from complex explanation traces of gpt-4. arXiv preprint arXiv:2306.02707, 2023.

S. Muralidharan, S. T. Sreenivas, R. Joshi, M. Chochowski, M. Patwary, M. Shoeybi, B. Catanzaro,
J. Kautz, and P. Molchanov. Compact language models via pruning and knowledge distillation.
arXiv preprint arXiv:2407.14679, 2024.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization. arXiv preprint arXiv:2404.19733, 2024.

12

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/blog/smollm
https://huggingface.co/blog/smollm


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut, A. Lazari-
dou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

Z. Shao, D. Dai, D. Guo, B. Liu, and Z. Wang. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model. ArXiv, abs/2405.04434, 2024. URL https:
//api.semanticscholar.org/CorpusID:269613809.

A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, P. J. Liu, J. Harrison, J. Lee, K. Xu,
A. Parisi, et al. Beyond human data: Scaling self-training for problem-solving with language
models. arXiv preprint arXiv:2312.06585, 2023.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute optimally can be more effective
than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Y. Song, G. Wang, S. Li, and B. Y. Lin. The good, the bad, and the greedy: Evaluation of llms
should not ignore non-determinism. arXiv preprint arXiv:2407.10457, 2024.

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Stan-
ford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière, M. S.
Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024a.

G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,
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A DISCUSSION

In this work, we introduce compute-matched sampling in the context of data generation from a weak
and cheap (WC) model and a strong and expensive (SE) model. We demonstrate that WC data can
train stronger language models (LM) for reasoning tasks than SE data when constrained by a fixed
compute budget. A relevant area for future work, and a current limitation of this study, is to explore
the conditions under which WC data consistently outperforms SE data in model finetuning (e.g.,
based on relative gains/losses in terms of coverage, diversity, and false positive rate). Additionally,
we focus on establishing the utility of WC data through sequence-based supervised finetuning, given
its widespread use. However, it would also be valuable to examine the behaviors of WC and SE data
in iterative finetuning (Singh et al., 2023), as well as supervised finetuning through logit matching.
In addition, it will be interesting to study the implications of our findings for pretraining where
the experimental designs are non-trivial. In particular, pretraining of language models requires a
more complicated infrastructure due to the scale of tokens (trillions) and diversity of data domains
(natural language, math, coding, multilingual data) involved in it. Finally, an essential aspect of
training reasoning models involves verification (Cobbe et al., 2021), and it would be appropriate to
investigate the impact of WC and SE data on training LM verifiers for reasoning tasks.

B ADDITIONAL DETAILS: SCENARIOS LACKING GROUND-TRUTH LABELS

In the prior experiments, we assumed having access to final gold answers which allowed us to
filter the synthetically generated solutions through final answer correctness, following the STaR
framework. Here, we extend our approach to scenarios where ground-truth labels are unavailable.
In particular, we consider two scenarios: 1- the MATH dataset while assuming we do not have
the ground-truth labels (§B.1), and 2- single-turn chat (instruction-following) data which lacks the
concept of ground-truth labels (§B.2).
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(a) Analyzing Gemma2-9B and 27B data.
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(b) Analyzing Gemini-Pro and Flash data.

Figure 10: Analyzing the percentage of bad solutions in the synthetic data. The results present
the amount of bad solutions, that lead to incorrect final answer, if we do not have access to oracle
verifier (final answer correctness) for MATH dataset. Specifically, we consider two strategies: no
filtering and using language model as a judge. (a) We analyze the amount of data pollution in
Gemma-27B and Gemma-9B (compute-matched). (b) We analyze the amount of data pollution in
Gemini-Pro and Gemini-Flash (price-matched).

B.1 PERFORMANCE ON REASONING

We study the impact of two settings on the performance of the finetuned models using SE and WC
data at a fixed sampling budget. In the first setting, we perform no verification of the candidate
solutions; that is, we include all the synthetic solutions in the finetuning mix. In the second setting,
we perform verification for the candidate solutions using a model-based verifier. Specifically, we
use an language model (LM) as a judge (Zheng et al., 2023b) setting for verification where, akin
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(b) Finetuning w/ Gemma data using LM as a judge.

Figure 11: Finetuning with Gemma data without access to ground-truth labels. The results
present the accuracy of the finetuned models with Gemma-27B and Gemma-9B (compute-matched)
data without access to the ground-truth labels. (a) We do not perform any filtering on the synthetic
data. (b) We perform filtering using language model as a judge.
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(a) Finetuning w/ Gemini data without filtering.
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(b) Finetuning w/ Gemini data with LM as a judge.

Figure 12: Finetuning with Gemini data without access to ground-truth labels. The results
present the accuracy of the finetuned models with Gemini-Pro and Gemini-Flash (price-matched)
data without access to the ground-truth labels. (a) We do not perform any filtering on the synthetic
data. (b) We perform filtering using language model as a judge.

to prior work (Yuan et al., 2024), an LM is prompted to verify if a solution is correct or not. Note,
however, that in practice one can use any other type of verifier, including a verifier that has been
previously trained to judge the quality of the solutions. Due to the lack of ground-truth data, LM as
judge is expected to be better than no verification but worse than oracle verifier in filtering incorrect
solutions from the data.

Setup We experiment with the same (WC, SE) model pairs as in the previous experiments,
i.e. (Gemma-9B, Gemma-27B) and (Gemini-1.5-Flash, Gemini-1.5-Pro). Following the compute-
matched setup, we generate 10 and 30 solutions per problem from Gemma-27B and Gemma-9B;
following the price-matched setup, we generate 1 and 35 solutions per problem from Pro and Flash.
We also consider a cheaper version where we collect 5 solutions per problem from Flash, as done in
the previous experiments. Post-generation, we use the Flash model to verify the final answers for the
Gemma-9B and Flash data, and the Pro model to verify the final answers for Gemma-27B and Pro
data. This is to ensure that we do not spend more compute (or cost) for the WC setup. Subsequently,
we perform supervised finetuning of Gemma-7B/9B/27B with the (un-)filtered synthetic data.

Data Analysis We start by analyzing the data in the no-verification and LM as a judge setups and
present the percentage of synthetic data that leads to incorrect final answer for the two strategies in
Figure 10. We find that the majority of the synthetic solutions from Gemma-9B and Gemma-27B,
65%+, lead to incorrect final answer without any verification. However, we observe that LM as a
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judge verification significantly reduces the amount of bad solutions from Gemma-9B and Gemma-
27B (down to ∼ 25%). On the other hand, we observe that the percentage of bad solutions is
between 40%− 48% for Gemini-Pro and Gemini-Flash without any verification. Similar to Gemma
models, the amount of bad data reduces to 23% after LM as judge verification. Now, we will study
the impact of finetuning LMs on this data.

Results We present the results for finetuning LMs on the Gemma-9B (WC) and Gemma-27B (SE)
data with no verification and LM as a judge in Figure 11. We observe that finetuning models with the
SE data slightly outperforms WC data across the two strategies (Figure 11a and 11b). This indicates
that the finetuned models are more sensitive to the incorrect solutions from Gemma-9B data in
comparison to the Gemma-27B data at the fixed sampling budget. Further, we present the results
for finetuning LMs on the Gemini-Flash (WC) and Gemini-Pro (SE) data in Figure 12, indicating
that the finetuned models with the WC data consistently outperform the SE data across the two
strategies (Figure 12a and 12b). Interestingly, we observe that cheaper Flash data (e.g., 5 solutions
per problem) outperforms price-matched version of Flash data (e.g., 35 solutions per problem) for
training Gemma-7B and Gemma-9B without any verification (Figure 12a). This can be attributed to
the presence of a larger number of bad solutions among 35 solutions in comparison to 5 solutions in
the finetuning mix. Overall, the trends suggest that whether WC data is superior to SE data or not in
the case of lacking ground truth data depends on the quality of the overall models and the finetuning
setup.

B.2 PERFORMANCE ON INSTRUCTION-FOLLOWING TASK

Apart from the reasoning tasks, the synthetic data from the SE models is also used for instilling
instruction-following (chat) capabilities (Taori et al., 2023; Teknium, 2023). Due to the subjectivity
of the chat data, the notion of final answer correctness may be ill-defined. For instance, there is no
ground-truth for the instruction ‘poem on strawberries and beaches’. Here, we study the usefulness
of synthetic responses from WC and SE data at a fixed sampling budget, for training instruction-
following LMs.

Setup: We use Gemini-1.5-Pro and Gemini-1.5-Flash as the SE and WC models, respectively, as
they have the capability to follow user instructions. In particular, we prompt the generators with
5000 random instructions from the OpenAssistant1 dataset (Köpf et al., 2024). We generate 1
and 35 responses per instruction for Pro and Flash respectively, following a price-matched setup.
Subsequently, we perform supervised finetuning of for Gemma-7B, 9B and 27B with the synthetic
instruction-following data. Finally, we evaluate the finetuned models on the IFEval data (Zhou et al.,
2023) and report the instruction-level accuracy.

Results: We present the results in Figure 9. Interestingly, we observe that finetuned models with WC
data significantly outperform the SE data across different model sizes. In particular, the instruction-
level accuracy of Gemma-9B trained with Flash data outperforms Pro data by achieving a relative
gain of 12.8%. In summary, our results highlight the usefulness of WC data over SE data for training
capable instruction-following models at a fixed sampling budget.

C EXTENDING OUR RESULTS TO CODING TASKS

Here, we aim to understand the utility of the synthetic data from the Gemma2-9B (WC) and
Gemma2-27B (SE) model on coding tasks. To this end, we generate candidate solutions for the
MBPP (Austin et al., 2021) dataset from WC and SE models at the low and high sampling budgets
and finetune models in three setups on these data. We use the santizied version of MBPP5 contain-
ing 427 problems overall; we used 3 problems for fewshot prompting (used for sampling from the
models), 324 problems for synthetic training data generation, and 100 problems for validation. The
candidate solutions are filtered by the unit tests that accompany each instance of the dataset. After
finetuning, we evaluate the LMs on 164 problems from the HumanEval dataset (Chen et al., 2021).

We compare the coverage and diversity of the synthetic datasets in Figure 13 and observe that the
coverage of the WC model is higher than SE at low data regime while it is similar to SE in the

5https://huggingface.co/datasets/google-research-datasets/mbpp/viewer/
sanitized
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Figure 13: Synthetic data analysis for MBPP dataset. We present the (a) coverage, and (b) di-
versity for a subset of the santized MBPP dataset for Gemma2-27B and Gemma2-9B at two fixed
sampling budgets.
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Figure 14: Supervised-finetuning with MBPP and evaluation on HumanEval. We report the
results for finetuning diverse language models on the MBPP synthetic data from the SE model
(Gemma2-9B) and WC model (Gemma2-27B) at the fixed sampling budgets.

high sampling budget regime. In addition, we find that the diversity of the WC model is more than
that of the SE model for the low and high sampling budgets. Subsequently, we finetune Gemma-7B,
Gemma2-9B, and Gemma2-27B models with the ground-truth and synthetic datasets and evaluate on
HumanEval (Figure 14). Our empirical findings indicate that finetuning with WC data outperforms
SE data for the student-LM and WC-LM finetuning setups, while the performances are similar for
SE-LM finetuning setup at the low sampling budget. At the high sampling budget, where the models
have similar coverage, we find that training with the SE data is better for student-LM finetuning
while WC-data is better for WC-LM finetuning. This might be attributed to the limited dataset size
of MBPP and similar coverage by WC and SE models at the high sampling budget.

D EXPERIMENTS ON LLAMA MODELS

Here, we extend our results on another set of open language models from the Llama series Dubey
et al. (2024). Specifically, we consider Llama-3.2-3B-Instruct and Llama-3.1-8B-instruct as the pair
of WC and SE models, respectively. Subsequently, we sample 1 solution per problem and 3 solutions
per problem from the WC and SE model, in accordance with the compute-matched sampling ratio for
the problems in the MATH train dataset. In addition, we filter the solutions that lead to the incorrect
final answer. We finetune Llama-3.2-1B-Instruct (student-LM), Llama-3.2-3B-Instruct (WC-LM),
and Llama-3.1-8B-Instruct (SE-LM) on the WC and SE data. Finally, these models are evaluated on
the problems from the MATH500 test set. We present the results in Table 2.
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Data Student-LM F.T. WC-LM F.T. SE-LM F.T.
Llama-8B 5.6 31.6 36.4
Llama-3B (compute-matched) 7.2 33.2 38.2

Table 2: Results on Llama models. We find that WC data is more compute-optimal than SE data
across diverse finetuning setups for the Llama models as well. We abbreviate finetuning as F.T.
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Figure 15: Impact of the dataset size. The performance of finetuned LMs on the synthetic data
from WC and SE models, at different sizes of the training set. Training with the WC data leads to
better models than training with the SE data at both dataset sizes.

Consistent with our results on Gemma models, we find that training with the WC data is more
compute-optimal than SE data across diverse finetuning setups including knowledge distillation,
self-improvement, and weak-to-strong improvement. These benefits can be explained by the high
coverage and diversity of WC data in comparison to SE data. Specifically, we observe that the WC
model has a coverage of 67% and a diversity of 2.2, whereas the SE model has a coverage of 49%
and a diversity of 1.

E ABLATION STUDIES

We perform several ablation studies to better understand the merit of WC data.

E.1 IMPACT OF DATASET SIZE

We study whether the benefits of the synthetic data from the WC model hold at different dataset
sizes. We repeat our experiments for the MATH dataset at the high budget, but when only having
access to 500 training data (selected randomly from the training set). We present the results for
the finetuned models in Figure 15. We observe that models trained with the WC data outperform
those trained with the SE data, achieving relative gains of 12.93%, 11.4%, and 5.1% for the three
paradigms, respectively. This highlights the utility of generating more data from the WC model
instead of the SE model in the low-problem regimes at the fixed sampling budget.

E.2 COVERAGE AND DIVERSITY

We aim to understand the role of coverage and diversity in enhancing the performance of models
trained with WC-generated synthetic data. To this end, for the MATH dataset, we consider the
original high-sampling (30 solutions per problem) WC dataset as a (high coverage, high diversity)
dataset. We then construct a (high coverage, low diversity) version by only selecting one correct
solution per question from our samples. This reduces the diversity of the original WC dataset from
11 to 1, while maintaining the coverage. We also create a (low coverage, low diversity) dataset
where we generate just one solution per problem from the WC model and filter it for the correctness
of the final answer. The coverage of this dataset (27%) is lower than that of the WC dataset with 30
solutions per problem (43%). We train models across the three finetuning setups on these sets and
present the results in Figure 16. Our results indicate that across all setups, the high coverage and high
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diversity data is better than high coverage and low diversity, and high coverage and low diversity is
better than low coverage and low diversity. This reveals that both the coverage and diversity play a
critical role in training strong reasoners from the smaller LMs.
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Ablation: Role of coverage and diversity
low coverage, low diversity
high coverage, low diversity
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Figure 16: Understanding the role of coverage and diversity for training strong reasoners with WC
model. We compare the performance of training the LMs with synthetic data acquired by collecting (a) 1
solution per problem (low diversity, low coverage), (b) 30 solutions per problem (high diversity, high coverage),
and (c) 30 solutions per problem but keeping just one correct solution (high coverage, low diversity). We find
that both high diversity and coverage are helpful for training strong reasoners.

E.3 DEFAULT VS COMPUTE-OPTIMAL SAMPLING FROM CHEAP LMS

We anticipate that the reason why data from SE models has been previously preferred over data
from WC is because they have been tested in a setup where an equal number of samples have been
generated from the two models (e.g., see (Singh et al., 2023)), as opposed to a compute-matched
setup. To verify this, we generated 1 solution per problem (number-matched) from the WC model
for the MATH and GSM-8K datasets and trained the models under the three fine-tuning setups on
this generated data, after filtering for final answer correctness. We then compare the performance
of the models trained with synthetic data, where we generate 3 solutions per problem from the WC
model, matched in sampling compute to the SE model. We present the results in Figure 17. We
see that the models trained with the number-matched WC data are sub-optimal in comparison to the
models trained with the compute-matched WC data, and lead to worse models compared to training
with the SE data. This highlights that the future comparisons between synthetic data from weak and
strong models should be made in the sampling compute-matched regime.

E.4 MIXING STRONG AND WEAK-MATCHED DATA

Here, we aim to study the impact of distributing our fixed budget on sampling candidate solutions
from both the SE and WC models. To do so, we sample 5 solutions per problem from the Gemma-
27B (SE) and 15 solutions per problem from the Gemma-9B (WC) data. We compare this data with
two non-mixture settings: 1- 10 solutions per problem from SE model and no solutions from the
WC model, and 2- 30 solutions per problem from WC model and no solutions from the SE model.
We observe the mixed data has a coverage of 68.8% in comparison to the 70.7% from WC data.
This indicates that the compute-matched sampling from WC model solves more unique problems
than mixing SE and WC data at the same sampling budget. We then finetune models on the mixed
data and present the results for Student-LM, WC-LM, and SE-LM finetuning in Figure 18. We
observe that in the student-LM and SE-LM setups, mixed data underperforms whereas in the WC-
LM setup it slightly outperforms the non-mixed setups. This could be due to the fact that mixing
two datasets results in two data distributions that might be harder for models to learn. Overall, our
results highlight that the usefulness of data mixing might be context-dependent. We leave a rigorous
study of SE and WC data mixing for optimal performance as a future work.
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(a) Finetuning LMs on MATH data.
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(b) Finetuning LMs on GSM-8K data.

Figure 17: Comparison between number-matched sampling and compute-matched sampling from the
WC model. We report the results for finetuning diverse LMs with synthetic data from WC and SE model at
the low sampling budget. Conventionally, practitioners would compare the performance of the models trained
with WC data and SE data at the fixed number of samples from both models. However, we observe larger gains
using the samples from WC model that acquired at the fixed sampling budget as that of SE model.
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Figure 18: Finetuning models with mixing strong and weak (compute-matched) data. The
results present the performance of the models finetuned with mixing the data from Gemma2-27B
(SE) with the data from Gemma2-9B (WC) for the fixed sampling budget. Specifically, we mix 5
solutions (5S) per problem from SE model with the 15 solutions (15S) per problem from WC model.

F QUALITATIVE EXAMPLES

We present a few qualitative examples for model-generated solutions that lead to the correct final
answer with incorrect (or correct) reasoning for the MATH dataset. We provide two bad reasoning
examples in Table 3 and Table 4. The existence of such examples contributes to the false positive
rates in the synthetic dataset. In addition, we provide a good reasoning example in Table 5.

G COVERAGE TRENDS

We present the coverage trends for diverse sampling budgets on the MATH and GSM-8K dataset in
Figure 19a and Figure 19b, respectively.
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Problem:
When three standard dice are tossed, the numbers a, b, c are obtained. Find the probability that abc =
180.
Ground-truth:
We first factor 180 into three positive integers from the set {1, 2, 3, 4, 5, 6}. Since 180 > 53 = 125,

at least one of the integers must be 6. Since 180 > 52 · 6 = 150, at least two integers must equal 6.
Indeed, 180 = 5·6·6 is the only such way to factor 180. Therefore, (a, b, c) = (5, 6, 6), (6, 5, 6), (6, 6, 5) are

the only possibilities for a, b, c. Each occurs with probability
(

1
6

)3
= 1

216
, so the probability that

abc = 180 is 3 · 1
216

=
1

72
.

Generated solution (Incorrect reasoning):
There are 63 = 216 possible outcomes. The numbers 1, 3, 6 are the only possible values for a, b, c. If
a = 1, then b = 3 and c = 6, so the probability of this outcome is 1

216
. If a = 3, then b = 1

and c = 6, so the probability of this outcome is also 1
216

. If a = 6, then b = 3 and c = 1, so the

probability of this outcome is also 1
216

. Therefore, the probability that abc = 180 is 1+1+1
216

=
1

72
.

Final Answer: The final answer is 1
72

. I hope it is correct.

Table 3: Qualitative example for incorrect reasoning the model generated data for MATH.

Problem:
A point is selected at random from the portion of the number line shown here. What is the probability
that the point is closer to 4 than to 0? Express your answer as a decimal to the nearest tenth.
[asy]unitsize(0.2inch); draw((0,0)--(5,0)); draw((0,-0.1)--(0,0.1)); draw((1,-0.1)--(1,0.1));
draw((2,-0.1)--(2,0.1)); draw((3,-0.1)--(3,0.1)); draw((4,-0.1)--(4,0.1)); draw((5,-0.1)--(5,0.1));
label(""0"",(0,-0.1),S); label(""1"",(1,-0.1),S); label(""2"",(2,-0.1),S); label(""3"",(3,-0.1),S);
label(""4"",(4,-0.1),S); label(""5"",(5,-0.1),S); [/asy].
Ground-truth:
We find the point which is equidistant from 0 and 4. Clearly, this occurs at 2. So, for all x > 2, x

is closer to 4 than 0. So, the probability is equal to the length of this region 5−2
5

= .6 .

Generated solution (Incorrect reasoning):
The total length of the number line is 5 − 0 = 5. The total length of the portion of the number line

from 1 to 4 is 4 − 1 = 3. Therefore, the probability is 3
5

= 0.6 = 0.60 = 0.6 . Final Answer: The

final answer is 0.6. I hope it is correct.

Table 4: Qualitative example for incorrect reasoning the model generated data for MATH.

H DATA ANALYSIS: GSM-8K

We presented the coverage, diversity, and false positive rate of the synthetic data from Gemma2-27B
and Gemma2-9B on the MATH dataset in the main text. In Figure 20, we present these metrics for
the GSM-8K dataset.

I SOLVING PROBLEMS ACROSS LEVELS FOR MATH

We present the effect of repeated sampling from the weak but cheaper LM and stronger but expensive
LM on solving the problems across different levels for the MATH dataset in Figure 21.

J EXPERIMENTAL SETUP DETAILS

As mentioned in the main text, we mainly experimented with MATH (Hendrycks et al., 2021) and
GSM-8K (Cobbe et al., 2021) datasets, which are widely adopted for evaluating reasoning and
mathematical problem solving. MATH consists of competition level problems with various levels
of difficulty (Level 1-5) and GSM-8K comprises of grade school level math problems. Each dataset
contains 7500 math problems in their training split. We evaluate the models on 500 problems from
the MATH test split (Lightman et al., 2023) and 1319 problems from the GSM-8K test split. Further,
we use 500 problems from the MATH test split and 500 problems from GSM-8K as the validation
dataset.

We generate the solutions for the problems in the MATH using a 4-shot prompt and for GSM-8K
using an 8-shot prompt. We generated the candidate solutions in the synthetic dataset using TopK
(K= 3) strategy with a temperature of 0.7. The MATH prompts are identical to the Minerva prompts
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Problem:
How many ways are there to put 4 distinguishable balls into 2 indistinguishable boxes?
Ground-truth:
In this problem we don’t care which box is which, we only care which balls are together and which
ones aren’t. For each ball, there are 2 choices of which box to place it in. Since this choice is
independent for each of the 4 balls, we multiply the number of choices together. Hence there are
24 = 16 ways to place 4 distinguishable balls into 2 distinguishable boxes. We then divide by the
number of ways to arrange the boxes. There are 2! = 2 ways to arrange the 2 boxes, so there are
16
2

= 8 ways to arrange 4 distinguishable balls into 2 indistinguishable boxes. Note: This method

does not generalize if there are more than 2 boxes.
Generated solution (Correct reasoning):
If we label the boxes as 1 and 2, then there are 24 = 16 ways to put 4 balls into two boxes. However,

since the boxes are indistinguishable, we must divide by 2!, so the answer is 16
2

= 8 . Final Answer:

The final answer is 8. I hope it is correct.

Table 5: Qualitative example for correct reasoning the model generated data for MATH.
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Figure 19: Coverage (Pass@K) trends for synthetic data acquisition from Gemma2-9B and
Gemma2-27B on the (a) MATH and (b) GSM-8K datasets. For a compute-matched comparison,
Pass@3K for Gemma2-9B should be compared against Pass@K for Gemma2-27B.

(Appendix D.2 in (Lewkowycz et al., 2022)). In addition, the GSM-8K prompts look similar to the
ones found in popular open-source evaluation frameworks.6

In addition, we train the Gemma1-7B model with a batch size of 8 for 2400 and 24000 step under the
low and high sampling budget, respectively. We perform a hyperparameter search for the learning
rates {1e− 7, 5e− 7, 1e− 6} based on the model performance on the validation datasets.

K A FUTURE PERSPECTIVE

We showed that for the current WC and SE models, training reasoners through sampling from WC
models may be more compute-optimal. Here, we aim to discuss the relevance of these results for the
future set of WC and SE models. To do so, we surveyed 17 LMs that pass the following criteria: 1-
the model size is known and falls within [1B, 9B] or [20B, 80B] range, 2- the model is released in the
past one year, 2- the technical report of the model reports results on the MATH dataset and the model
is capable on it (> 20%), 4- ranks high on the OpenLLM leaderboard under the pretrained models
category (HF, 2024a). This resulted in models from seven families including Gemma-2 (Team et al.,
2024b), LLaMA-3 (Dubey et al., 2024), Mixtral (Jiang et al., 2024), Qwen (Team, 2024; Yang et al.,
2024a), Grok-1 (xAI, 2024), DeepSeek-v2 (Shao et al., 2024), and Yi (Young et al., 2024). We
grouped these models into small LM (1B to 9B) and large LMs (20B to 80B). We then plotted in
Figure 22 the model performances on the MATH dataset against their date of the publication release
on arxiv and fitted trendlines to the data points representing the small and large LMs using the least
squares method7.

6https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/
tasks/gsm8k/gsm8k-cot-llama.yaml

7We consider the number of active model parameters for mixture-of-experts LMs.
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Figure 20: Synthetic data analysis for GSM-8K. The (a) coverage, (b) diversity, and (c) false
positive rate for the GSM-8K dataset. The results are provided for synthetic data generation from
Gemma2-27B and Gemma2-9B at two sampling budgets.
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Figure 21: Coverage across different levels of the MATH dataset. With compute-matched sam-
pling, the coverage of the Gemma2-9B model is more than the Gemma2-27B model across all levels
of the MATH dataset.

Our analysis reveals that, despite the variance, the trendline for the smaller LMs is steeper than
that of the larger LMs. This indicates that the reasoning performance of the small LMs may be
improving more rapidly over time compared to the larger LMs. The rapid rise in the performance of
the small LMs can be attributed to factors such as the enhanced quality and scale of the pretraining
data (e.g., LLaMA-3 employs 15T tokens), pruning and knowledge distillation (Muralidharan et al.,
2024). With the performance gap between small and large LMs narrowing over time, we anticipate
that our results will become even more relevant in the future.
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Problem:
Solve for n: 2−n

n+1
+ 2n−4

2−n
= 1.

9B-generated solution:
Let x = 2−n

n+1
. Then we have

x +
2n − 4

2 − n
= 1

⇒ x +
2(n − 2)

2 − n
= 1

⇒ x +
−2(2 − n)

2 − n
= 1

⇒ x − 2 = 1

⇒ x = 3.

Therefore, 2−n
n+1

= 3, so 2 − n = 3n + 3 and 4n = −1 and n = −
1

4
. Final Answer: The final answer is

− 1
4
. I hope it is correct.

Table 6: Qualitative example from Level 5 of MATH dataset that gets solved by repeated sam-
pling from Gemma2-9B (30 solutions) but remains unsolved by Gemma2-27B (10 solutions) at
fixed sampling budget.
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Figure 22: Variation in the performance of open LMs on the MATH dataset over time. The
fitted trendlines suggest that the quality of smaller LMs is improving more rapidly than that of
larger LMs over time. This highlights that our findings on utilizing smaller LMs for training strong
reasoners will become increasingly relevant in the future.
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