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Abstract. Chest X-ray imaging is essential for diagnosing thoracic dis-
eases, with multi-label classification playing a critical role in identifying
multiple conditions from a single image. Despite deep neural networks
significantly advancing this field, noisy labels extracted from clinical re-
ports pose a significant challenge, undermining the performance of deep
models. Several research attempts have been made to address this issue
but fail to consider the critical inter-class correlations prevalent in chest
X-ray diagnostics. To this end, we propose a Global and Local Noise
Correction framework. Our framework comprises a classification back-
bone and two primary components: a global noise correction module
and a local noise correction module. The global noise correction module
calculates the noise transition matrix based on the label co-occurrence
frequencies and uses the estimated noise transition matrix to reduce the
impact of the noisy labels. The local noise correction module treats the
temporal ensembling of samples historical predictions as the instance-
specific pseudo labels, which also serve as the supervision. The proposed
framework addresses the shortcomings of existing techniques, i.e., the
unreliability of noise transition matrices in the presence of class imbal-
ances and zero co-occurrence frequencies. Comprehensive experimental
results demonstrate that our framework surpasses competing methods,
showcasing its superior ability to combat label noise and improve multi-
label chest X-ray classification accuracy.
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1 Introduction

Chest X-Ray (CXR) imaging is the most common screening technique, effectively
assisting in the clinical diagnosis and treatment of various thoracic diseases [10].
Multi-label CXR classification involves simultaneously identifying multiple con-
ditions or abnormalities in a single X-ray image [1]. The advent of deep neural
networks (DNNs) has significantly advanced this field [16,22,2]. The success of
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DNNs heavily relies on accurately labeled training data. However, clinical data
often contain label noise because natural language processing (NLP) techniques
are used to automatically extract labels from diagnostic reports, and these ex-
tracted labels lack verification by professional physicians [4]. Although this solu-
tion reduces annotation costs, the noisy labels negatively impact DNNs’ perfor-
mance and generalization ability [24]. Therefore, it is crucial to develop robust
multi-label CXR classification methods that can handle label noise [26,15,11,18].

In recent years, an increasing number of researchers have focused on this
issue. The MODL-KNNS method [26] adopts a model ensemble strategy and
averages all models predictions as the pseudo label, which is then refined by
the k-nearest neighbor smoothing strategy. The LSR method [15] employs label
smoothing regularization to mitigate the impact of noisy labels. The NVUM
method [11] maintains a non-volatile running average of model logits as training
targets. The SNEL method [18] learns from noisy labels by performing model en-
semble and designing noise-robust loss functions. Despite their robustness, these
methods do not account for inter-class correlations, which are prevalent in tho-
racic diseases [3,15]. For instance, emphysema and pneumothorax often co-occur,
as do effusion and atelectasis. This co-occurrence suggests potential label corre-
lations in multi-label learning, which have been explored through methods such
as graph convolution [5,23] and label co-occurrence analysis [9,13]. Specifically,
the method proposed by Chen et al. [9] utilizes label co-occurrence to estimate
the noise transition matrix, leveraging label correlation to address label noise.
However, this method encounters challenges when applied to chest X-ray images,
where the noise transition matrix may not exhibit diagonal dominance due to
the imbalanced class distribution. This can render the estimated matrix unreli-
able for model training. Furthermore, in some cases, the co-occurrence frequency
between classes may be zero, leading to an invalid noise transition matrix.

To address these issues, we propose a Global and LocAl Noise CorrEction
(GLANCE) framework for chest X-ray classification tasks with noisy labels. Our
GLANCE framework comprises a classification network that includes an encoder
followed by a fully connected (FC) layer, a global noise correction (GNC) module,
and a local noise correction (LNC) module. Given an input image, the classifica-
tion network outputs the probabilistic prediction, whose supervision is obtained
from the GNC and LNC modules. The GNC module computes the global noise
transition matrix based on label co-occurrence frequencies to rectify the noisy
observed labels. Here the temporal ensembling is adopted to boost the calcu-
lation of the noise transition matrix. Concurrently, the LNC module generates
instance-specific pseudo labels through temporal ensembling of samples histor-
ical predictions, leveraging the DNNs tendency to fit clean data first. Both the
globally corrected labels and the instance-specific pseudo labels are utilized to
supervise the predictions, thereby optimizing the model.

The main contributions of this work are as follows: (1) We introduce the
GLANCE framework, designed to mitigate label noise in multi-label CXR clas-
sification tasks. Our framework demonstrates the efficacy of leveraging inter-
class correlations to address label noise within this task. (2) We leverage label



Title Suppressed Due to Excessive Length 3

co-occurrence frequencies to calculate the noise transition matrix. By incorpo-
rating temporal ensembling and local noise correction, we mitigate issues caused
by imbalanced class distributions and zero co-occurrence frequencies, resulting in
more robust matrix estimation. (3) Experimental results show that our GLANCE
framework outperforms six competing methods in combating label noise in chest
X-ray classification.

2 Method

2.1 Problem Definition and Overview

Given a noisy multi-label classification dataset D = {(xi, ȳi)}Ni=1 where xi ∈
RH×W×R represents the i-th CXR image size H×W with R colour, ȳi ∈ {0, 1}C
is the label of xi, N is the total number of samples, C denotes the number of
classes. The presence of the j-th disease in the CXR image is indicated by a ‘1’
at the j-th position in ȳi, a ‘0’ signifies absence. However, it is important to note
that some of the indications of disease presence or absence in the labels of dataset
D may be erroneous due to noise. Our goal is to develop a robust multi-label
classification model for CXR images by training on this noisy dataset D.

As depicted in Fig. 1, our GLANCE framework consists of a classification
backbone, a GNC module, and an LNC module. The classification backbone un-
dergoes a warm-up phase for Ewarm epochs and then is trained intercorporated
with the GNC and LNC modules. The GNC module computes the global noise
transition matrix to rectify the noisy observed labels. Concurrently, the LNC
module generates instance-specific pseudo labels through temporal ensembling
of samples’ historical predictions. Both the globally corrected labels and the
instance-specific pseudo labels are utilized to supervise the predictions, thereby
optimizing the model.

2.2 Classification Backbone

DenseNet [7] serves as the foundational architecture F(Θ), incorporating an
encoder and an FC layer, where Θ denote its parameters. The encoder contains
several dense blocks followed by an average pooling layer. Given an input image
xi, the encoder derives the image feature, which is then fed into the FC layer
and a sigmoid function S, yielding the probabilistic output pi = S(F(xi;Θ)).
During the warm-up phase, the backbone is optimized using the binary cross
entropy (BCE) loss calculated between the observed label ȳi and its prediction
pi. After the warm-up phase, the backbone is optimized by integrating the GNC
and LNC modules. We now delve into the details of the GNC and LNC modules.

2.3 Global Noise Correction Module

In each epoch, we first identify samples with low training loss values and form
them as a reliable set Dr [27]. Specifically, we calculate the standard multi-label
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Fig. 1. Overview of our GLANCE framework. yi represents the label of the training
set, pi represents the model prediction, and p̂(t)

i represents the time-integrated pseudo-
label of the sample at the t th epoch. T represents the estimated noise transition matrix,
where Tt represents the weighted noise transition matrix obtained at the t th epoch. W
represents the weight matrix for weighting the cross-entropy loss, which is calculated
by T and pi.

classification loss for noisy training examples and then set a pre-defined threshold
to select samples with lower training loss values. Subsequently, we consider the
relationship between co-occurrence probability and noise transition probability,
established through four equations (see Eq. 1). By solving this bilinear decom-
position problem, the noise transition matrix is calculated. The noise transition
matrix for this task is denoted as T ∈ [0, 1]C×2×2. For class j ∈ {1, 2, ..., C}, four
elements of its noise transition matrix T j ∈ [0, 1]2×2 can be calculated using the
following system of equations:

P (Y j=0, Y i=0)=P (Yj=0)P (Y i=0|Yj=0)T j
00+P (Yj=1)P (Y i=0|Yj=1)T j

10,

P (Y j=0, Y i=1)=P (Yj=0)P (Y i=1|Yj=0)T j
00+P (Yj=1)P (Y i=1|Yj=1)T j

10,

P (Y j=1, Y i=0)=P (Yj=0)P (Y i=0|Yj=0)T j
01+P (Yj=1)P (Y i=0|Yj=1)T j

11,

P (Y j=1, Y i=1)=P (Yj=0)P (Y i=1|Yj=0)T j
01+P (Yj=1)P (Y i=1|Yj=1)T j

11.
(1)

where T j
00+T

j
01 = 1,T j

10+T
j
11 = 1, P (Yi=1) represents the probability that the

sample is accurately labeled as 1 in the dataset D. The co-occurrence frequency
P̂
(
Y j = v, Y i = k

)
, v, k ∈ {0, 1} is calculated through frequency counting using

the reliable set Dr (see Eq. 2) and treated as co-occurrence probability P (Y j =
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v, Y i = k) in Eq. 1.

P̂
(
Y j=v, Y i=k

)
=

1

n

∑
D

1
[
yj=v, yi=k

]
(2)

The indicator 1[A] represents whether the condition A is met. Similarly, the
conditional probability P (Y i = v | Yj = k) in Eq. 1 is approximated as frequency
by

P̂
(
Y i=v | Yj=k

)
=

∑
Dr

1
[
yi=v, yj=k

]∑
Dr

1
[
yj=k

] (3)

As the co-occurrence probabilities and conditional probabilities are known, we
can obtain T j , P (Yj=0) and P (Yj=1).

For class j, we can derive C−1 noise transition matrices, denoted as T j
r where

r ∈ {1, 2, ..., C − 1}. These noise transition matrices are different and we select
one by Eq. 4 for model training.

T j=argmin
T jr

C−1∑
i=1

∥T jr−T ji∥1 , (4)

where || • || represents the L1-norm.
Inspired by early learning and memorization phenomena [12], temporal en-

sembling is used for boosting noise transition matrix estimation. Firstly, initialize
the noise transition matrices of C classes: T (0)

j = [[1, 0], [0, 1]] . Each epoch we
can solve the T

(t)
j and update them by Eq. 5.

T
(t+1)
j =βT

(t)
j +(1−β)T j , (5)

In cases where the estimated transition matrices exhibit illegal, they are replaced
by the initial matrix to reduce the impact of the wrong estimation. Finally, the
noise transition matrix T (t) is used to calculate the weight W of the loss function
using the risk consistent algorithm. The global weighted BCE loss is shown as 6:

Lglobal=−W [ȳlog(p)+(1− ȳ)log(1−p)] . (6)

2.4 Local Noise Correction Module

As previously discussed, the estimation of the noise transition matrix through
the analysis of label co-occurrence can sometimes be unreliable. It is notewor-
thy that certain classes may not have any actual associations with other classes.
Therefore, a local noise correction module is introduced. We extend early learn-
ing regularization [12] to the multi-label classification for this local noise correc-
tion. First, we define the binary prediction for sample i as p′

i = (1− pi,pi). For
each sample i, a history vector p̂i is saved, which is calculated using the histori-
cal prediction of the model. Early learning regularization aims to maximize the
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inner product of the model’s current output and the history vector. The local
regularization can be calculated by Eq. 7:

Llocal = log(1− ⟨p̂(t)′

i ,p
′

i⟩). (7)

where p̂
(t)′

i represents the historical record vector of sample i at the t th epoch.
The historical record vector contains C classes, with each class featuring a binary
predictive outcome. ⟨⟩ represents the inner product. For p̂(t)′

i , we initialize p̂(0)′

i =
0 and calculate the historical record value of each epoch according to Eq. 8:

p̂
(t)′

i = γp̂
(t−1)′

i + (1− γ)p
′

i. (8)

where γ is a parameter that controls the influence of early memory.

2.5 Loss

Finally, the total loss is:
L = Lglobal + αLlocal. (9)

where α is a hyperparameter that controls the weight of the Llocal.

3 Experiments and Results

3.1 Dataset and Experimental Setup

Dataset. The NIH Chest X-ray14 Dataset [19] comprises 112,120 X-ray im-
ages with disease labels from 30,805 unique patients. The dataset includes 15
classes: 14 diseases and one No findings class. Images can be classified as No find-
ings or one or more disease classes: Atelectasis, Consolidation, Infiltration, Pneu-
mothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural Thick-
ening, Cardiomegaly, Nodule, and Hernia. The authors used NLP to extract
disease labels from the associated radiological reports. These labels are expected
to be over 90% accurate and suitable for noisy label learning. As the official data
split, the data is divided into a training set of 86,524 samples and a test set of
25,596 samples at the patient level. Additionally, 10% of the training data is
randomly selected as a validation set. An additional test set, annotated by five
radiologists, provides more reliable data for model evaluation [14].
Implementation Details. DenseNet [7], pre-trained on the ImageNet dataset [6],
is adopted as the backbone network. The model is trained for 30 epochs. The ini-
tial learning rate lr is set to 0.0001 and decays to 0.00001 when the training epoch
reaches 20. The Adam optimizer [8] is used, with a batch size of 32. The dropout
ratio is set to 0.2. During training, all images are resized to 224×224. Data aug-
mentation strategies include random affine transformations and random flipping.
We set hyperparameters in GLANCE to Ewarm = 5, α = 2.5, β = γ = 0.9 for
the NIH dataset and introduce a mean teacher network [17] to further enhance
the models robustness. The experiments are conducted on a workstation with
one NVIDIA GTX 1080Ti GPU using the PyTorch framework.



Title Suppressed Due to Excessive Length 7

Table 1. Test accuracy (%) of our GLANCE, baseline, and five competing methods
on the official test set of the NIH Chest X-ray14 dataset. The best and second-best
results in each row are highlighted in bold and underline, respectively.

Class Method
BCE GCE GLS MLT USDNL NVUM Ours

Atelectasis 0.7672 0.7761 0.7804 0.7816 0.7792 0.7838 0.7849
Cardiomegaly 0.8752 0.8914 0.8866 0.8813 0.8841 0.8923 0.8929
Effusion 0.8084 0.8282 0.8284 0.8245 0.8269 0.8338 0.8353
Infiltration 0.6934 0.6987 0.7050 0.7042 0.6962 0.7062 0.7046
Mass 0.8239 0.8264 0.8267 0.8305 0.8241 0.8317 0.8325
Nodule 0.7569 0.7682 0.7700 0.7718 0.7718 0.7770 0.7726
Pneumonia 0.7149 0.7288 0.7261 0.7224 0.7276 0.7309 0.7321
Pneumothorax 0.8612 0.8596 0.8547 0.8544 0.8539 0.8665 0.8677
Consolidation 0.7442 0.7543 0.7491 0.7478 0.7546 0.7539 0.7632
Edema 0.8352 0.8464 0.8446 0.8410 0.8412 0.8495 0.8477
Emphysema 0.8984 0.9044 0.9045 0.8973 0.8971 0.9061 0.9061
Fibrosis 0.7998 0.8145 0.8240 0.8160 0.8142 0.8216 0.8208
Pleural Thicken 0.7726 0.7840 0.7842 0.7878 0.7811 0.7885 0.7877
Hernia 0.8922 0.8793 0.9205 0.9185 0.9240 0.9148 0.9270
Average 0.8031 0.8114 0.8146 0.8128 0.8126 0.8183 0.8197
No Findings 0.7298 0.7293 0.7332 0.7332 0.7299 0.7395 0.7436

Table 2. Test accuracy (%) of our GLANCE, baseline, and five competing methods
on the additional test set of the NIH Chest X-ray14 dataset. The best and second-best
results in each row are highlighted in bold and underline, respectively.

Class Method
BCE GCE GLS MLT USDNL NVUM Ours

Average 0.8697 0.8732 0.8818 0.8739 0.8791 0.8878 0.8907
No Findings 0.9364 0.9331 0.9380 0.9393 0.9409 0.9414 0.9457

3.2 Comparative Experiments

The proposed GLANCE framework is compared with a baseline method and
five recent methods: (1) Binary Cross-Entropy (BCE) loss, which is the baseline
method, (2) Generalized Cross-Entropy (GCE) loss [25], which combines the
standard cross-entropy loss and the mean absolute error loss, (3) Generalized
Label Smoothing (GLS) [20], which uses the positively or negatively weighted
average of both the hard observed labels and uniformly distributed soft labels as
the target labels, (4) Multi-label Transition Matrix (MLT) [9], which estimates
the noise transition matrix through label co-occurrence. (5) Uncertainty-Based
Single Dropout (USDNL) [21], which performs sample selection based on the
uncertainty estimated using a single dropout after early training, (6) Non-volatile
unbiased memory (NVUM) [11], which stores a non-volatile running average of
model logits as the training targets. It also uses Mixup and the mean teacher
network to improve the models robustness. All competing methods were re-
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Table 3. Test accuracy (%) of our GLANCE and its four variants on the official test
set of the NIH Chest X-ray14 dataset. The best result in each column is highlighted in
bold.

BCE GNC LNC MT Average No Findings
✓ 0.8031 0.7298
✓ ✓ 0.8158 0.7375
✓ ✓ 0.8165 0.7413
✓ ✓ ✓ 0.8185 0.7427
✓ ✓ ✓ ✓ 0.8197 0.7436

Table 4. Test accuracy (%) of our GLANCE and its four variants on the additional
test set of the NIH Chest X-ray14 dataset. The best result in each column is highlighted
in bold.

BCE GNC LNC MT Average No Findings
✓ 0.8697 0.9364
✓ ✓ 0.8857 0.9411
✓ ✓ 0.8838 0.9439
✓ ✓ ✓ 0.8879 0.9436
✓ ✓ ✓ ✓ 0.8907 0.9457

implemented using their released codes. The learning rate, batch size, weight
decay, optimizer, epochs number, and backbone are kept the same as those in
our GLANCE for a fair comparison. Table 1 and Table 2 show the comparison
results on the official and additional test sets, respectively. Experimental results
indicate that our GLANCE achieves the best result on both the official test set
and the additional test set.

3.3 Ablation Analysis

Both the GNC and LNC modules play an essential role in the proposed GLANCE
framework. We conducted ablation studies on the NIH Chest X-ray14 dataset
to investigate the effectiveness of these two modules individually. The ablation
results on the official and additional test sets are shown in Table 3 and Table 4,
respectively. The results indicate that incorporating either the GNC module or
the LNC module with the baseline model (i.e., BCE) improves the performance
on both diseases and No findings identification. Additionally, using the mean
teacher (MT) mechanism further enhances the models performance.

4 Conclusion

In this paper, we propose to model the label correlation for facilitating the label-
noise-robust learning for chest X-ray classification. To achieve this, we propose



Title Suppressed Due to Excessive Length 9

the GLANCE framework to model the global label correlation and the local sam-
ple historical prediction. We perform global correction by estimating the noise
transition matrix through label co-occurrence, and perform sample-local correc-
tion based on the historical prediction of each sample. We conducted experiments
on the NIH Chest X-ray14 dataset and the results show that our GLANCE
framework performs better than other competing methods significantly. Abla-
tion studies demonstrate the contribution of the global noise correction module
and the local noise correction module.
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