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Figure 1: UniVDC—the first zero-shot unified video diffusion framework that jointly completes
sparse depth and inpaints structural degradations. From diverse sparse/damaged inputs (top, rows
1-2), UniVDC yields metrically consistent and temporally coherent depth (row 3). Bottom: varied
sparse depth patterns all supported by one model via a four-stage training protocol and bidirectional
overlapping sliding-window Inference (BOSW) inference.

ABSTRACT

Recovering metrically consistent and temporally stable depth from dynamic
videos remains challenging, particularly when sparse, noisy measurements co-
exist with structural voids, occlusion reveals, motion drift, and sensor dropouts.
Under these conditions, single-frame methods lack temporal correction while ex-
isting video depth estimation approaches underutilize explicit sparse geometry,
leading to scale drift and flicker. To address this, we introduce UniVDC, the first
unified zero-shot spatiotemporal diffusion framework for long-range video depth
completion. Our approach centers on multi-source geometric and semantic priors.
We combine two geometric inputs: fine-grained relative depth with structural and
edge cues from a depth estimator, and coarse metric depth obtained by inverse-
distance—weighted interpolation of sparse measurements. Unlike methods that
feed RGB frames directly, we extract global semantic features and inject them
hierarchically into the diffusion network, yielding compact geometric inputs and
scene context robust to frame-level appearance noise. A four-stage training pro-
tocol stabilizes prior fusion and calibrates the long-horizon scale. In inference,
we introduce bidirectional overlapping sliding-window (BOSW) to reduce scale
drift and boundary error accumulation over long sequences and alleviate occlusion
in one-directional inference. Experiments show that UniVDC achieves state-of-
the-art performance on multiple zero-shot video depth completion benchmarks in
terms of completion accuracy, structural consistency, and temporal coherence.
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1 INTRODUCTION

Depth is fundamental to 3D perception tasks across autonomous navigation (Carranza-Garcia et al.,
2022; Hane et al., [2017} [Tao et al.,|2022), robotics (Bagnell et al., [2010; |Kim & Chen, [2015)), video
generation (Zhang et al.; 2021 and AR/VR (Rasla & Beyeler, [2022; |Slater et al., 1997} Holynski
& Kopf}, [2018). In realistic video streams, sparse, irregular, and noisy LIDAR/SfM (Schonberger &
Frahm, [2016)/RGBD (Silberman et al., 2012a)/structured-light (Lange & Seitz, 2001; Herrera et al.,
2012) samples appear alongside occlusion reveals, block voids, motion or exposure drift, and sensor
dropouts, producing large spatiotemporal holes beyond classical inpainting. Completing depth that
is geometrically continuous, semantically coherent, and temporally consistent under globally sparse
yet locally degraded observations remains a significant challenge. However, existing single-frame
depth completion methods (Viola et al.,|2024; [Liu et al., [2024; Zuo et al.| [2024; Wang et al.| 2025
Lin et al.||2025) suffer from parallax ignorance and lack temporal self-correction mechanisms. Sim-
ilarly, current video depth estimation approaches (Hu et al., 2025} [Yang et al.| |2024a}; |Chen et al.,
2025}, |Shao et al., [2025; [Wang et al.l 2023)) rely primarily on relative cues while underexploiting
explicit sparse measurements. They smooth or cache features yet propagate errors unidirectionally,
leading to amplified long-range scale drift and flicker. Therefore, a unified methodology capable
of fully leveraging sparse geometry and temporal context while maintaining robustness to heteroge-
neous degradations is imperative.

To bridge this gap, we propose UniVDC: the first zero-shot unified diffusion framework for long-
range video depth completion and inpainting that explicitly elevates temporal context to a co-primary
structural prior alongside sparse geometry, relative depth, and semantics. Our framework employs
a unified spatiotemporal diffusion backbone conditioned on four complementary priors: (1) coarse
sparse-guided depth maps that supply local geometric anchors; (2) robust relative depth cues regulat-
ing global ordinal relationships and scale consistency; (3) temporally aggregated semantic features
synchronizing texture-geometry alignment; and (4) explicitly injected temporal context, enhanced
through a bidirectional sliding-window mechanism. To ensure robust gradient flow while disentan-
gling multi-source priors, we implement a four-stage training protocol: initial single-frame warm-up
progresses to short-range joint spatiotemporal propagation, followed by decoupled temporal-spatial
stabilization stages. This hierarchical refinement progressively locks in structural coherence and
metric stability. During inference, our bidirectional overlapping sliding-window (BOSW) strategy
executes concurrent forward-backward diffusion with adaptive overlap fusion. This design mitigates
unidirectional scale drift, boundary inconsistencies, and localized flicker artifacts. It also enable
seamless generalization across sparse completion, structural repair, and hybrid tasks, all without
task-specific fine-tuning.

We distill our technical advances into three main contributions:

* The First Unified Video Diffusion with Four-Stage Training for Zero-Shot Depth Completion:
We propose a video-oriented unified diffusion framework with a four-stage training strategy that
jointly tackles sparse depth completion and structural damage inpainting, yielding generalized
zero-shot performance across diverse sparsity patterns and scene domains.

* Bidirectional Overlapping Sliding-Window (BOSW) Inference: We devise a bidirectional,
overlap-aware sliding window inference strategy that suppresses long-range scale drift and miti-
gates local flicker, strengthening temporal coherence over extended sequences.

« State-of-the-Art Accuracy and Consistency: Across diverse video depth completion and inpaint-
ing benchmarks, our method attains state-of-the-art performance in both completion fidelity and
temporal/structural consistency.

2 RELATED WORKS

Single-frame Depth Completion. Depth completion fuses sparse or degraded depth with RGB to
produce dense, scale-stable maps. Contemporary approaches (Zuo et al., 2024; |Wang et al.| [2025
Lin et al.,[2025)) integrate multi-scale priors or generative architectures. Diffusion or prior-enhanced
methods (Viola et al 2024; |Liu et al., 2024) improve zero-shot robustness yet remain challenged
by ultra-low sampling density, severe noise corruption, and long-sequence temporal inconsistency.
Consequently, efficient high-resolution inference with guaranteed temporal stability remains an open
challenge.
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Figure 2: Overall Pipeline of UniVDC. Given video frames combined with arbitrary sparse or
degraded depth (ds) and monocular relative depth cues (d,.;), we VAE-encode the inputs—including
the coarse depth completion (d;,,;)—to condition a spatiotemporal diffusion U-Net for recovering
fine-grained, scale-consistent depth. After encoding, both the relative depth (z(% <)) and the coarse
completion (z(4nt)) are used for conditioning. A four-stage training strategy increases sequence
length and activates temporal and spatial layers progressively; BOSW inference (Figure [3) later
fuses forward/backward windows for long-range stability.

Monocular Depth Estimation. Monocular depth estimation aims to infer relative geometry from
RGB inputs; while large-scale pretraining and geometric regularization enhance generalization,
single-frame models (Yang et al.l 2024bjc; Bochkovskii et al., [2024; Birkl et al.l |2023; Hu et al.
2024; Ke et al., |[2024; [Fu et al., 2024)) lack persistent scale anchoring and exhibit limited occlusion
coherence. Recent video-based (Blattmann et al., 2023aZb; |(Chen et al., 2024; Ho et al.| [2022) or
diffusion-based methods (Hu et al., 2025} [Yang et al.| [2024a}; Chen et al., |2025; |Shao et al.| 2025
Wang et al.,|2023) employ sliding windows, global aggregation, or feature reuse to mitigate temporal
flicker. However, most rely on relative scaling and underutilize explicit sparse geometric constraints,
fundamentally limiting metric consistency. Motivated by these limitations, we introduce UniVDC:
a unified framework combining multi-scale sparse-semantic fusion with generative geometric priors
and temporal consistency regularization for generalized depth completion across diverse sampling
patterns and domains.

3 METHOD

As shown in Figure [2, given an in-the-wild video v € RT*3*HxW "sparge or degraded depth
s € RTXIXHXW ‘and a validity mask m € RTXIXHXW e aim to recover a dense depth sequence
d € RT*IXHXW ith complete geometry, persistent cross-frame scale consistency, temporal sta-
bility, and degradation robustness. Here T' denotes the frame count, and H and W denote spatial
dimensions. UniVDC integrates (1) multi-source geometric & semantic priors, (2) a four-stage
training protocol, and (3) bidirectional overlapping sliding-window (BOSW) inference, jointly im-
proving cross-domain generalization and long-range consistency.

3.1 FOUNDATIONS OF VIDEO DIFFUSION MODELING

We adapt Stable Video Diffusion (SVD) (Blattmann et al., 2023a)) to depth completion by jointly
encoding conditioning inputs (RGB + sparse-derived priors) and target depth into a temporal la-
tent space (Rombach et al. [2022)) to reinforce coherence and efficiency. The encoder £ produces
z®) = £(x) (where z*) denotes the joint encoded representation of multi-source priors used for
conditioning, z(x) = & (dint ® dret) + Csem)s zéd) = £(d) (where d denotes the depth), and
forward diffusion adds noise with noise level o;:

2V = 2(Y + 0%¢,e ~ N(0,1). (1)
Training then minimizes a denoising score matching (DSM) (Vincent, 2011} objective
Lacpin =By 51 5, [No0) DotV 00,2%) = 2|3 @)
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Figure 3: Bidirectional Overlapping Sliding-window Inference. Forward and backward win-
dow streams with overlap O produce latent sequences. Overlapping frames employ linear ramp
blending, while new windows initialize overlaps using prior clean latents augmented with Gaus-
sian noise. After generating forward (z(/)) and backward (z(*)) latents, a global linear weighting
wy(t), wp(t) = 1 — wy(t) fuses them into the final sequence, supplying early stabilization and pos-
terior correction for long-range depth consistency.

Frame Sequence
Infer Direction

Forward Infer

— Backward Infer
(] Initial Latents
. Infered Latents+Noise

with A\(¢) = (1 + 0%)o 2 to balance gradients across noise scales. The denoiser Dy, a temporally
aware U-Net (Ronneberger et al. 2015), employs EDM (Karras et al., |2022) preconditioning for
numerical stability over wide noise ranges:

Dy(2!V;04,2%) = aaip(01)2\Y + Cout(00) Fo(cin(0) 28V Cnoise(0¢), 27, 3)

where Fj is a learnable U-Net, and csyip, Cout , Cnoise gOVern residual path modulation, output scaling,
and noise encoding across noise levels.

3.2 MODEL DESIGN

We decouple conditioning into geometric and semantic streams: sparse metric depth anchors com-
bined with monocular relative depth establish scale and topological constraints, while a global se-
mantic vector provides scene-object context. A local inverse-distance interpolation corrected by
a lightweight linear alignment to relative depth produces a coarse depth d. that is continuous,
scale-stabilized, and edge-aware. (d., d;1) are fed into the diffusion, excluding raw RGB to prevent
texture and illumination noise from amplifying cross-domain bias. Temporal semantic coherence is
injected via separate embedding cge,, With minimal dimensionality overhead, prioritizing structural
fidelity and robustness noise.

3.2.1 CONSTRUCTION OF GEOMETRIC AND SEMANTIC PRIORS

Prior construction proceeds through: relative depth inference, locally aligned coarse metric comple-
tion, robust percentile normalization, and finally injection of a global semantic embedding.

Relative Depth Prior. A pretrained monocular model (Depth Anything v2 (Yang et al.l |2024c))
extracts d,¢ encoding ordinal relationships and boundaries. Though metrically uncalibrated, it re-
mains stable across appearance variations and complements sparse anchors: relative depth supplies
global layout and sharp boundary continuities, while anchors restore absolute scale.

Coarse Metric Depth Completion (“‘Coarse Interpolate” in Figure 2). For each frame, observed

depths dfmor are retained on valid pixels €2, then fill missing regions via inverse-distance weighted
interpolation over k nearest anchors:
k
S d;
=14
sz brior(pe), i = = @
i

To mitigate over-smoothing, a lightweight local linear fit (scale/shift) aligns d,.;’s neighborhood
values to anchors. This fit is applied to missing pixels while valid pixels remain unchanged:

t = arg mlHZ’LUzHS drel(pl) t - dprior(pi)HQ- (5)

=1

dt( ) df)rlor( ) pe Qta
s-dig(p) +t, pg’

This hybrid approach (anchors + localized ordinal alignment) suppresses scale drift in large gaps
and better preserves discontinuities than pure interpolation or global rescaling.
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Robust normalization. Per-frame robust scaling is applied: clip both depth maps to their 1st-99th
percentile range, linearly map to [—1, 1], then concatenate (d., d,c1) as the unified geometric ten-
sor. Clipping suppresses extreme outliers, thus stabilizing latent distribution statistics without RGB
reliance.

5 clip(d, d=,d") —d~ 3

d=2 1

I — , d” = Piy(d),;d" = Pogy(d) (6)

Global Semantic Conditioning. A frozen CLIP (Radford et al., 2021)) encoder extracts a single
aggregated semantic embedding cgep, from the video, which we inject it via conditioning layers
instead of channel concatenation. This maintains lean geometry inputs while adding scene-object
context uncontaminated by frame-level appearance noise.

3.2.2 MODEL STRUCTURE ADAPTATION AND SCALE ALIGNMENT

We freeze the VAE (Rombach et al.,[2022)) and semantic encoder, finetuning exclusively the diffusion
U-Net (Ronneberger et al.l 2015). Freezing preserves pretrained priors and confines optimization to
geometry-temporal refinement.

Model Input Channel. The first-layer input is extended to incorporate (d.,d,e). Initial con-
volution weights are adjusted via channel ratio scaling to maintain activation variance, preserving
pretrained spatial-temporal inductive bias while avoiding early feature saturation.

Metric Depth Output. The decoded unscaled depth d undergoes metric recovery through least-
squares optimization (solving for global scale s and shift ¢) over valid anchor pixels. The affine
transformation dpetric = Sd + ¢ is then applied globally, compensating residual scale drift from
relative priors and stochastic sampling.

3.3 TRAINING PROTOCOL

UniVDC integrates: (1) multi-domain synthetic data, (2) unified degradation/sparsification, and (3)
four-stage spatiotemporal training, targeting zero-shot depth completion with structural fidelity and
temporal stability across domains.

Datasets and Sampling. Uniformly shuffled clips are sampled from five synthetic sources (Hyper-
sim (Roberts et al.l [2021), TartanAir (Wang et al.| [2020), MatrixCity (L1 et al., [2023), GTA5-540
(Huang et al., |2018)), vKITTI2 (Cabon et al.,[2020)) covering indoor realism, motion/climate diver-
sity, urban scale hierarchy, traffic semantics, and controllable roadway layouts. Synthetic corpora
provide precise metric depth/pose, programmable appearance diversity, and consistent scaling.

Unified Degradation Synthesis. As shown in Figure [I] exactly one degradation is applied per it-
eration to avoid supervision ambiguity from compounded artifacts and enforce modality-agnostic
geometric priors. The figure depicts: (a) RGB reference; (b) full ground-truth depth; (c) range trun-
cation (beyond-threshold removal); (d) rectangular occlusion; (e) sparse random points (minimal
pixel retention); (f) simulated 8-/16-line LiDAR patterns; (g) keypoint-driven anchors; (h) 8x down-
sampling. Single-mode application ensures clearer gradients and reduces overfitting to composite
degradations.

Four-Stage Spatiotemporal Training Protocol. Our four-stage strategy (Figure [2)) isolates then
progressively reintegrates spatial/temporal learning. Stage I (T=1) trains spatial modules exclu-
sively, establishing robust local completion, boundary fidelity, and degradation-agnostic priors.
Stage II (2-15 frames) engages temporal attention/normalization to learn correspondence, motion-
aware aggregation, and cross-frame depth propagation for complementary hole filling. Stage III
(2-40 frames) freezes spatial weights while refining temporal pathways to enforce long-range scale
consistency, sustained occlusion recovery, and object persistence without degrading spatial embed-
dings. Stage IV (25 frames) re-enables lightly regularized spatial updates while freezing temporal
parameters, sharpening high-frequency details and thin structures under stabilized temporal priors.
This progression mitigates gradient interference, yielding globally coherent geometry with refined
microstructure and enhanced cross-domain generalization.
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3.4 BIDIRECTIONAL OVERLAPPING SLIDING-WINDOW

Existing long-video depth systems (Hu et al., |2025; Shao et al. 2025 |Yang et al., 2024a) em-
ploy unidirectional sliding windows with causal conditioning. These approaches (1) propagate
early scale drift/artifacts recursively and (2) prevents posterior frames from resolving earlier oc-
clusions/holes—thus perpetuating structural biases. We propose Bidirectional Overlapping Sliding-
Window Inference (BOSW), introducing a symmetric backward chain fused via lightweight opera-
tions to suppress directional error accumulation while preserving metric scale.

As shown in Figure[3] let 7" denote the frame count, W the window length, overlap O (0 < O < W),
stride S = W — O. Forward windows Wy advance head—tail; backward windows W, traverse
tail—head. Frame overlaps yield dual latent estimates per direction.

Intra-direction local overlap fusion. For overlapping forward windows W, = [s,,eq], W) =
[sp, ep] With s, < t < e, blend by agf) = Sa—t Z((Jf) (t) = agf)z(ga)(t) + (1 - agf))zéb)(t).

€q—Sp,’

Non-overlapped frames propagate unchanged. The backward chain mirrors this procedure, smooth-
ing latent transitions and preventing seam artifacts.

Final overlap fusion. Overlap initialization injects the prior window’s clean latent with variance-

matched Gaussian noise, preserving scale consistency and edge anchors while maintaining stochas-

tic diversity. After intra-direction blending yielding iéf ) and i(()b), we globally weight them by:

w(t) = 1— 2L, wy(t) = 2L (wy+w, = 1) forming 0™ (t) = w (825 (£) +ws ()2 (1).

Early frames optimize forward stability, mid-frames attenuate localized anomalies through symmet-
ric processing, while late frames employ backward correction to enhance global consistency.

Posterior frames frequently reveal geometry obscured earlier (disocclusions, thin structures), and the
backward chain provides this evidence, transforming unidirectional error propagation into bidirec-
tional equilibrium. Linear overlap ramps ensure continuity, noise-anchored initialization balances
structural anchoring with diversity, and global temporal weighting stabilizes metric scale. As Figure
and Figure [6] show, these components collectively suppress drift, enhance disocclusion recovery,
and maintain boundary coherence in ultra-long depth completion.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We employ five benchmarks covering outdoor, indoor, dynamic, synthetic, and handheld
settings: KITTT (Geiger et al.,|2013)) (sparse LiDAR, wide metric range), NYUv2 (Silberman et al.,
2012b) (indoor static structure), BONN (Palazzolo et al., |2019) (fast human/object motion with
occlusion cycles), Sintel (Butler et al.l 2012)) (large displacement, blur, appearance shift), and Scan-
NetV2 (handheld egomotion with repeated occlusion cycles). Collectively, they encompass scale
variation, motion, occlusion, and domain shift.

Degradation and Prior Configurations. As shown in Figure |1} we follow PriorDA (Wang et al.,
2025) and group settings as: (1) Completion: 8-line LiDAR, sparse SfM (ORB (Rublee et al.,
2011)/SIFT (Lowel [1999)) points, extremely sparse Bernoulli sampling. (2) Inpainting: range trun-
cation (< 2m indoor / < 15m outdoor), random rectangles, resolution downsampling. (3) Mixed:
composite of sparsity + masking + resolution loss. A unified masking interface tests adaptive fusion
across heterogeneous inputs.

Baselines. To our knowledge, this is the first work formalizing unified video depth completion. We
compare three lineages: (1) Single-frame depth estimators (Depth Anything V2 (Yang et al., 2024c),
DepthPro (Bochkovskii et al.| [2024)). (2) Video depth models (DepthCrafter (Hu et al., [2025),
ChronoDepth (Shao et al., [2025), Depth Any VideoYang et al| (2024a), Video Depth Anything
(Chen et al., [2025))). (3) Single-frame completion models (DepthLabLiu et al.|(2024)), Marigold-DC
(Viola et al.,2024), Omni-DC (Zuo et al., [2024), PriorDA (Wang et al., [2025))). This contrasts prior
utilization against temporal modeling. Relative-depth methods are metric-aligned via least-squares
on valid prior pixels.
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Table 1: Zero-shot Depth Completion. ScanNet-TAE reports TAEJ, all other results are reported
in AbsRel|. “S”: points sampled with SIFT and ORB; “E”: 100 random points; “L”: 8 LiDAR
lines.

KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
Model
S E L S E L S E L S E L S E L S E L
DAV2 13.02 1272 12.84 30.39 29.21 29.02 9.13 832 8.12 3845 4596 46.16 13.15 1265 12.61 2217 2254 2253
Depth pro 12.15 989 1037 2697 20.19 2033 673 6.39 6.18 112.18 130.51 111.77 9.31 87 851 3207 3328 3.321

DepthCrafter 1148 1092 10.56 27.97 29.73 2883 7.08 641 633 5029 4185 3811 1356 1323 13.18 1.776 191 1.829
ChronoDepth 2142 17.77 18.56 36.92 3446 3442 852 799 781 5544 70,59 6926 1645 1628 1597 1532 1525 1.528
Depth Any Video  8.61 8.1 7.82 16.61 17.14 17.25 8.16 7.18 6.02 37.82 425 4626 1098 10.68 1045 1.763 1.898 1.885
Video DA 821 797 801 1875 1931 1826 6.03 514 528 32.66 36.83 3706 875 82 809 1.171 1.199 1.198

DepthLab 33.13 43.03 44.65 932 11.02 10.13 741 78 585 24042 327.75 22233 8.08 694 508 4718 533 3.397
Marigold-DC 7.1 572 689 983 937 905 194 225 1.85 12286 635 5558 471 3.08 3.64 2899 2439 1.774
Omni-DC 4.87 431 54 881 81 793 183 26 197 401 64.02 4027 4.64 283 321 2575 2621 1.545
PriorDA 527 363 446 883 889 883 238 227 227 6378 60.07 7074 448 276 333 1991 1.783 1.446

UniVDC(ours) ~ 5.11 421 5.11 852 878 845 3.06 214 292 3677 4139 3572 425 298 3.17 1.032 0875 0.928

Table 2: Zero-shot Depth Inpainting. ScanNet-TAE reports TAE/, all other results are reported in
AbsRel]. “C”: average result for random square masks; “R”: masks for depth beyond 2m (indoors)
and 15m (outdoors); “D”: applying 8x downsampling to the GT depths.

KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
Model
C R D C R D C R D C R D C R D C R D
DAV2 1276 1475 13.18 29.26 37.29 2891 842 20.67 845 44.14 4598 4515 1266 1558 12.64 226 1.898 2244
Depth pro 9.84 13.69 998 1998 2891 20.16 638 19.84 6.39 136 52.56 13021 8.69 11.16 873 3.332 2932 3318

DepthCrafter 11.04 11.12 10.83 302 3898 29.38 6.49 19.61 643 3898 39.88 39.15 1322 1646 13.21 1.898 1.528 1.828
ChronoDepth 17.55 17.05 17.5 3443 3837 3435 8.14 1829 8.15 70.71 3791 70.79 1627 19.04 16.35 1.527 1.315 1.525
Depth Any Video 8.12 1074 8.87 1695 2644 1672 7.03 19.94 747 4306 4788 4486 10.6 1298 10.37 1.887 1.782 1.876
Video DA 7.97 1019 8.65 1952 3123 18.83 531 19.6 538 38.01 398 3573 822 1092 817 1.199 1.127 1.193

DepthLab 1224 16.15 30 8.88 2624 7.66 229 2251 371 5539 20.68 23779 2.07 1205 286 2.028 2.055 1.742
Marigold-DC 297 119 674 876 26.84 879 193 206 2.7 5814 19 70.72 247 1099 3.17 1.398 2451 1.296
Omni-DC 1.66 1123 549 9.06 2627 7.71 236 2053 15 6826 1866 37.05 259 11.67 24 2519 2545 0931
PriorDA 242 1374 6.03 92 2657 8.19 257 2235 287 4881 19.66 4829 241 1208 272 1212 2302 0.908

UniVDC(ours)  3.88 10.56 599 8.75 1094 7.97 186 1947 2.09 36.71 1827 49838 233 988 261 0932 1115 0.856

Evaluation Metrics. For completion: Absolute Relative Error (; ZkN:_Ol Iicd%””ll) and 0,
(% Zszfol max(%, 7%) < 1.25). Temporal Alignment Error (TAE) (Yang et al., [2024a) quanti-

fies geometric consistency:

1 T-1

TAE = T =D > AbsRel (f(i%,p"), 51) + AbsRel (f(25F1, phH1), 2k) 7)
k=0

where p'*! denotes reverse correspondence from p?, enhancing sensitivity to scale drift and flicker.

Training. We employ DepthCrafter’s (Hu et al., [2025) pretrained SVD architecture, trained on
8xA800 GPUs with mixed precision (von Platen et al., |2022). Inputs are resized to 640x320. Opti-
mization uses Adam (Kingma & Bal [2014) (1 x 10~°), with staged training: single-frame first (20
epochs, batch 160), then video sequences (batch 16) over three stages (40k/20k/10k steps).

4.2 QUANTITATIVE COMPARISON OF DEPTH COMPLETION

Zero-shot Depth Completion. As shown in Table[T]and[7] our approach achieves superior AbsRel
and d; in most cases and consistently lower temporal error across all ScanNet TAE metrics. Com-
pared to single-frame and video depth estimators, it retains competitive accuracy while preserving
minimal temporal error. Relative to single-frame completion models, it demonstrates stronger cross-
dataset consistency and temporal stability, confirming the efficacy of unified modeling in multi-
domain zero-shot scenarios.

Zero-shot Depth Inpainting. We evaluate three degradation patterns: square masking, range trun-
cation, and downsampling. Throughout Table [2]and[8] our method maintains optimal AbsRel and d;
performance and reduced temporal instability on ScanNet TAE. Compared with single-frame com-
pletion models, it significantly reduces error in large occlusion and structural break cases without
compromising temporal performance. Against video depth approaches, it sustains both low error
and TAE under complex motion and heavy occlusion, demonstrating joint preservation of comple-
tion fidelity and inter-frame coherence across diverse masks.
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Table 3: Zero-shot Depth Completion with Mixed Prior. ScanNet-TAE reports TAE|, all other
results are reported in AbsRel]. “C”: average result for random square masks; “D”: applying 8x
downsampling to the GT depths; “E”: 1000(D+E) / 2000(E+C) random points.

Model KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C
DAV2 13.18 13.18 12.72 2895 2891 2925 844 835 833 499 4567 4365 1265 12.65 12.66 2.243 2249 2253

Depth pro 992 10.01 995 20.08 2029 19.75 64 637 64 13265 1294 12684 876 875 872 3322 3317 3.334

DepthCrafter 10.75 1092 11.25 28.65 2829 2852 6.19 651 633 475 4146 3412 1324 13.16 13.14 1.857 1.905 1.846
ChronoDepth 17.37 17.54 177 34.61 3435 3457 8.16 804 8 7096 705  70.89 16.43 1637 1633 1.524 1527 1.527
Depth Any Video 857 89 803 1723 17.1 16.66 751 725 736 4647 4297 4218 1059 10.66 1039 1.881 1.891 1.879

Video DA 8.67 864 796 1899 1882 1951 535 538 515 555 3615 3459 819 818 822 1.194 1.196 1.2

DepthLab 2995 30.99 2674 9.2 937 947 354 475 465 24223 23651 14002 33 3.62 319 2696 2485 2.93
Marigold-DC 589 678 654 99 996 884 283 287 13 7174 7225 5709 323 321 255 151 1543 148
Omni-DC 565 552 563 941 94 932 172 266 112 4673 4636 39.16 284 24 239 1332 116 1337
PriorDA 512 605 556 883 868 865 3.02 297 167 502 548 5029 253 277 191 LI81 1.07 L1174

UniVDC(ours)  6.82 598 492 9.02 855 859 212 221 1.88 4578 40.88 3243 274 264 238 0.867 0.84 0.843
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Figure 4: Qualitative Comparison for Video Depth Completion. For better visualizing the tem-
poral quality, we show the temporal profiles of each result in red boxes, by slicing the depth values
along the time axis at the red line positions.

Zero-shot Depth Completion with Mixed Prior. Table [3]and [9]demonstrate fused inputs of sparse,
downsampled, and point-sampled data. Our method consistently achieves superior AbsRel and d;
across datasets and prior combinations, with minimal ScanNet TAE error. Compared to other cat-
egories, it maintains enhanced scale stability and cross-scene consistency under multi-prior fusion,
confirming generalization trends while reflecting effective prior utilization. This unified framework
simultaneously adapts to complex sparse inputs and preserves temporal stability.

4.3 QUALITATIVE COMPARISON OF DEPTH COMPLETION

Figure [4] compares temporal consistency of state-of-the-art methods on KITTI and Sintel datasets,
using 8-beam LiDAR and ORB/SIFT features respectively as sparse priors. Visualization analyses
reveal that depth completion methods achieve superior scale accuracy and structural integrity over
depth estimation approaches. Our technique further demonstrates enhanced structural completeness
and smoothness compared to alternative completion methods. Temporal slices exhibit significant
flickering and scale drift in estimation techniques. Although Marigold-DC and PriorDA closely
approach ground truth, their single-frame limitations result in persistent flickering and discontinuous
transitions.

Figure [5] further compares inter-frame consistency between PriorDA and our method on KITTL
Green rectangles highlight PriorDA’s pronounced flickering and incomplete depth recovery between
frames. This evidence confirms that even advanced single-frame completion methods remain con-
strained by per-frame priors, failing to leverage sequential temporal information for enhanced depth
reconstruction.

Table [ shows that our model attains leading accuracy while maintaining competitive inference
speed. Expanding the sliding window from the baseline to longer sequences (supporting bidirec-



Under review as a conference paper at ICLR 2026

Table 4: Performance and inference efficiency comparisons on the ScanNet dataset (90 frames).
Ours: 25-frame window with 15 overlapping frames; Ours-50: 50-frame window (25 overlapping);
Ours-50-uni: unidirectional 50-frame window; Ours-100: 100-frame window. (On Nvidia H20).

Ours Ours Ours
50 50-Uni 100

Depth Marigold ~ Omni Prior

Lab DC DC pa | Ous

Model ‘DAVZ Depth ‘ Depth  Chrono Depth  Video

pro Crafter  Depth AV DA

Paramters / M 335 952 2157 1525 1423 382 2080 1290 85 433 2492 2492 2492 2492
Runtime / s 4981 63.182 | 28.404 30.437 11.487 5244 | 2951.763 9497.182 109.178 58.587 | 66.517 47.381 36.975 29.037

AbsRel | 13.028  9.037 13.6 16.61  10.856  8.549 5243 4.117 3.886 3.888 | 3.664  3.788 432 9.224
51T 82.832  92.269 | 81.814 76.090 88.563 92.862 | 94.321 94.893 95.640  95.340 | 98.780 98.670 97.272 87.743
TAEL 2.208  3.268 1.820 1.503 1.860  1.186 3.042 1.866 1.841 1.452 | 0921 0.937 1.053 1.579

Table 5: Quantitative Aablation Studies. We investigate the impact of different training and infer-
ence strategies on model performance. (w/o0) indicates that the latents of the overlapping parts do
not add noise.

Training Inference KITTI ScanNet

Stage |  Stage2 Stage3 Stage4 Naive Unidir(w/o) Unidir. Bidir(w/o) Bidir. AbsRell 61 T AbsRell 11T TAE|

(A) v v 1572 8018 | 1272 8138 2253
®) v v v v 995 9193 | 784 8714 1511
© v v v v 898 9278 | 693  90.03 1589
D) v v v v 945 9204 | 745 8836 1491
(E) v v v v v 803 9459 | 597 9314 1437
(F) v v v v v 703 9505 | 455 9681  1.061
(G) v v v v v 688 9514 | 432 9727 1.053
(H) v v v v v 599 9691 | 384 9852 0942
) v v v v v 584 9789 | 366 9878 0.921

tional and unidirectional modes) markedly increases throughput and accelerates inference, with only
controlled accuracy degradation that remains within a competitive range. The baseline configuration
leads in accuracy without lagging in speed among comparable methods. A medium-sized window
further improves speed with near-optimal accuracy. Unidirectional inference reduces latency while
preserving temporal stability. An ultra-long window achieves higher speed at the cost of a moderate
accuracy drop. With tunable window length and overlap, the unified diffusion framework robustly
balances efﬁ01ency and accuracy even at large parameter scales.

Input Video 8-beam LiDAR PriorDA

Figure 5: Inter-Frame Consistency Comparison. Additional results are provided in Appendix
[A74] Additional experimental results are demonstrated in Part 1 of the supplementary video.

4.4 ABLATION STUDIES

4-stage training strategy (A—E). Table [5] demonstrates complementary effects across training
stages. Training solely on single-frame data (A vs.B) yields the worst performance in both com-
pletion accuracy and temporal consistency. Omitting Stage 3 training (C vs.B vs.E) causes marginal
degradation in completion performance but severe deterioration in temporal consistency, thus con-
firming the critical role of long-term temporal optimization for enhancing temporal awareness.
When Stage 4 training is excluded (D vs.B vs.E), completion accuracy declines markedly, demon-
strating that enhanced spatial perception directly improves completion efficacy.

Bidirectional overlapping sliding-window inference (E-I). As Table 5] shows, compared to naive
inference (E), overlapping sliding windows significantly enhance both completion accuracy and
temporal consistency. When injecting noise into denoised latents for re-optimization (F vs.G, H
vs.I), both metrics improve further, demonstrating that noise refinement optimizes latent represen-
tations with known priors. Bidirectional sliding windows (BOSW) (H, I) outperform unidirectional
variants (F, G) in completion accuracy and temporal consistency. As demonstrated in Figure [6] us-
ing 8-beam LiDAR depth priors, our bidirectional inference framework effectively mitigates scale
drift for fast-moving objects while reducing depth flickering. Simultaneously (row 2), it suppresses
error accumulation during prior propagation, validating BOSW’s efficacy in enhancing temporal
coherence.
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Input Video Ground Truth Unidirectional Bidirectional

Figure 6: Qualitative Comparison of Inference Strategies. Bottom: last frame of the video clip.

Table 6: Ablation Study on Input Conditions. Effects of relative-depth backbone selection, prior
noise injection, and RGB conditioning on UniVDC. We compare different MDE backbones for
d.e; (DAV2-B/DepthPro/DAV2-L), noise perturbations to three priors (d,..;/d./RGB), and two RGB
conditioning pathways (CLIP semantics vs. direct images). Metrics are reported on KITTI and
ScanNet as AbsRel|/d; 7/TAE]. Perturbation methodologies are detailed in Appendix [A-6]

d .1 Base Model Perturbation Injection ~ RGB Image Injection KITTI ScanNet

Wlodye; DAV2-B  DepthPro DAV2L d,.; d. RGB CLIP Dire. AbsRel | 877 AbsRel| 611 TAE|
J) v v 7.14 89.21 5.31 88.96 1.084
(K) v v 6.15 93.87 3.85 93.84  0.969
@) v v 592 98.03 3.62 9875 0912
M) v v 5.84 97.89 3.66 98.78  0.921
N) v v v 6.21 93.47 391 93.99 0970
O) v v 6.49 88.10 4.47 87.90 1.023
(P) v v v 6.01 97.79 3.75 97.84 0923
Q v ' v v ' 6.87 83.21 531 83.96  1.154
R) v v 6.97 88.18 5.07 88.91 1.023
o) v v v 7.89 81.16 6.21 79.97 1.359
T v v v / / / / /

Ablation Study on Input Conditions. As Table [6] shows, the results substantiate that UniVDC is
a unified spatiotemporal diffusion framework leveraging multiple priors rather than a post-hoc re-
finement of a single estimator. First, replacing the d,..; source across MDE backbones (DepthPro,
DAV2-L) consistently improves AbsRel and TAE relative to w/o d,.;, confirming that ordinal cues
function as one component within a multi-prior conditioning scheme rather than a fixed dependency
(J, K, L, M). Notably, even without d,..;, UniVDC remains competitive against alternative methods,
indicating that metric anchors (d.), semantic conditioning, and temporal modeling (BOSW + staged
training) provide substantial performance and stability on their own (J, vs. Table baselines).
Second, the three perturbations (d., d,.;, RGB) affect the model to different degrees; even under the
most severe case with all three applied simultaneously, UniVDC remains competitive, highlighting
the resilience of its multi-prior conditioning and temporal modeling (N, O, P, Q). Third, when using
direct RGB as the conditioning input, the model becomes highly sensitive to RGB perturbations,
whereas CLIP-based semantic conditioning is markedly more robust in maintaining cross-domain
and long-range consistency (R, S vs.M). Together with staged training and bidirectional overlap in-
ference, these ablations demonstrate that gains arise from unified diffusion conditioning over multi-
source priors and temporal modeling, not from reliance on any single external estimator.

5 CONCLUSION

UniVDC establishes the first zero-shot unified framework for open-world video depth completion.
It transforms incomplete and degraded depth inputs augmented by monocular cues into metrically
consistent, temporally coherent sequences. By integrating geometric priors through a conditioned
spatiotemporal diffusion process with four-stage training and bidirectional sliding window infer-
ence, the framework unifies multi-degradation adaptation, long-term consistency, and open-domain
generalization. Experiments demonstrate comprehensive improvements in sparse depth accuracy,
structural fidelity, scale stability, and temporal smoothness across variable-length videos. We an-
ticipate UniVDC will advance downstream video-centric applications through enhanced geometric
understanding.

10
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A APPENDIX

A.1 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. All authors have read and are committed to complying with
its guidelines throughout this research.

A.2 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release the implementation of our algorithm in an open-source
repository upon acceptance of this paper.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLM to polish writing.

A.4 INTER-FRAME CONSISTENCY COMPARISON
Comprehensive inter-frame consistency comparisons between our method and PriorDA are provided

in Figure[7] Comparative results of all baselines under varying sparse depth patterns are available in
the supplementary video (UniVDC_Video.mp4).

A.5 QUANTITATIVE COMPARISON OF DEPTH COMPLETION

Tables and [9] present the §; metrics of depth completion performance for each method under
varied sparse depth patterns.

A.6 PERTURBATION INJECTION.

* Depth perturbation (d., d,.;): Gaussian noise addition: +5% per depth value.
* Image perturbation (RGB):

Gaussian noise: t = 0,0 =1

Rotation: [0°, 360°]

Translation: £50 pixels

Horizontal flipping

Random rectangular occlusion (50px - image width)
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Figure 7: Comprehensive Inter-Frame Consistency Comparison.

Table 7: Zero-shot Depth Completion. ScanNet-TAE reports TAEJ, all other results are reported
in §1 7. “S”: points sampled with SIFT and ORB; “E”: 100 random points; “L”’: 8 LiDAR lines.

KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
Model
S E L S E L S E L S E L S E L N E L
DAV2 83.08 8424 843 4544 445 45119 9393 94.17 94.65 52.62 53.07 5244 8245 8436 84.38 2217 2254 2253

Depth pro 87.20 92.08 91.59 57.09 69.43 69.18 97.6 97.73 97.97 53.05 5291 5252 91.83 93.17 934 3207 3328 3.321

DepthCrafter 86.81 88.89 88.58 48.86 44.52 4552 97.16 97.05 9751 67.71 6598 65.14 8274 8333 8357 1776 191 1829
ChronoDepth ~ 63.81 73.04 7143 44.1 4532 454 9432 9442 9484 5541 5378 5527 77.13 7771 78.16 1532 1525 1528
Depth Any Video 91.07 94.66 94.76 744 7419 7396 9502 9491 972 6286 63.19 6299 87.69 89.59 89.72 1.763 1.898 1.885
Video DA 94.89 95.06 94.66 68.96 66.69 7027 974 9756 9448 63.86 6231 63.09 9232 93.88 939 1.171 1.199 1.198

DepthLab 48.21 3498 3342 9129 8847 89.8 947 9381 9545 6127 49.67 5895 9256 95.16 96.46 4.718 533 3.397
Marigold-DC ~ 95.39 95.56 9441 89.62 90.19 902 99.13 98.54 9889 76.67 822 8329 9631 97.15 97.18 2899 2439 1.774
Omni-DC 96.92 9622 9506 91.55 9143 91.6 99.02 983 9885 9338 86.57 9345 96.56 98.00 984 2575 2.621 1.545

PriorDA 98.01 97.52 97.05 89.69 89.88 89.76 98.85 98.77 9891 8821 87.65 89.21 97.08 97.73 97.64 1991 1.783 1.446

UniVDC(ours) 9899 96.99 97.61 92.33 91.93 90.92 9851 98.83 98.43 94.15 88.31 94.35 98.77 98.67 98.73 1.032 0.875 0.928
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Table 8: Zero-shot Depth Inpainting. ScanNet-TAE reports TAE/, all other results are reported in
01T. “C”: average result for random square masks; “R”: masks for depth beyond 2m (indoors) and
15m (outdoors); “D”: applying 8x downsampling to the GT depths.

KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
Model
C R D C R D C R D C R D C R D C R D
DAV2 84.24 7697 8272 44.61 2635 4476 9442 5736 9443 5275 51.04 5356 8434 7241 844 226 1.898 2244

Depth pro 9242 79.73 91.71 69.87 3398 69.37 97.78 69.01 97.79 5274 4945 53.02 93.17 8644 93.11 3332 2932 3318

DepthCrafter 88.24 85.75 87.18 43.69 2349 4386 9731 6445 9751 6505 57.76 6448 8348 7034 829 1.898 1.528 1.828
ChronoDepth 7346 69.74 71.46 4533 2434 4537 9459 68.18 94.69 53.76 52.55 54.05 77.7 63.92 77.58 1.527 1315 1.525
Depth Any Video 94.38 82.34 9337 75.19 39.41 7552 9539 6274 95.12 6451 61.08 6455 89.74 81.25 89.99 1.887 1.782 1.876
Video DA 95.07 80.66 93.08 66.04 33.62 6791 9722 7021 9724 6235 57.8 6296 93.84 86.32 93.87 1.199 1.127 1.193

DepthLab 92.74 75.01 5237 91.92 4923 9249 9892 47.66 98.54 86.58 789 66.02 98.61 74.89 97.97 2.028 2.055 1.742
Marigold-DC ~ 99.27 80.08 97.83 92.16 48.54 91.26 99.61 49.68 9891 853 80.23 81.59 97.67 76.74 97.15 1.398 2451 1.296
Omni-DC 9893 79.1 98.69 91.73 49.26 92.08 99.27 51.07 99.01 92.55 80.33 9523 9839 76.1 98.53 2519 2545 0.931
PriorDA 98.75 74.81 9841 909 4821 91.07 99.1 48.00 9899 9334 80.6 9137 97.84 75.16 97.94 1212 2302 0.908

UniVDC(ours)  99.22 92.83 98.77 93.08 89.36 93.22 99.33 70.73 99.14 9597 80.38 93.11 98.97 98.54 98.71 0.932 1.115 0.856

Table 9: Zero-shot Depth Completion with Mixed Prior. ScanNet-TAE reports TAE], all other
results are reported in §; 7. “C”: average result for random square masks; “D”: applying 8x down-
sampling to the GT depths; “E”: 1000(D+E) / 2000(E+C) random points.

Model KITTI NYUv2 Bonn Sintel ScanNet ScanNet-TAE
D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C D+C D+E E+C
DAV2 82,65 82.64 84.18 4475 4476 4431 9441 9428 94.15 5355 5355 5277 844 8439 8436 2243 2249 2253

Depth pro 91.88 91.65 91.93 69.59 69.08 70.42 97.78 97.79 97.72 53.02 53.07 529 93.07 93.08 93.15 3.322 3317 3.334

DepthCrafter 87.64 87.83 88.03 4533 4638 4637 97.72 9694 9734 658 6593 6591 83.12 83.11 83.74 1.857 1905 1.846

ChronoDepth ~ 71.87 7127 97.36 4527 4338 4527 94.67 9458 944 5393 54.13 5375 7745 7757 7759 1524 1527 1527

Depth Any Video 94.14 9398 94.59 7338 74.12 7594 94.66 9491 9482 6347 63.15 6433 89.53 89.6 89.96 1.881 1.891 1.879
Video DA 93.01 93.06 95.05 674 6794 66.07 9727 97.11 97.55 62.81 6299 6237 93.87 9391 93.85 1.194 1.196 1.2

DepthLab 5234 499 56.19 91.87 9241 92.05 97.54 97.58 9745 6491 57.15 68.02 9749 97.88 97.87 2.696 2485 293
Marigold-DC ~ 97.58 97.76 98.52 91.14 91.11 92.08 98.86 98.8 99.27 813 80.58 843 97.13 97.14 9757 151 1543 148
Omni-DC 984 98.64 99.11 9195 92.15 922 989 98.99 99.31 94.89 94.11 96.48 9844 9859 9775 1.332 1.16 1.337
PriorDA 98.27 98.39 98.61 90.69 90.64 90.73 98.94 9894 9897 90.95 90.61 9197 97.85 9791 9891 1.181 107 1.174

UniVDC(ours) 9895 98.36 99.29 92.09 9234 92.22 99.11 98.96 99.33 95.05 9519 9393 98.81 98.97 98.883 0.867 0.84 0.843
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