
ErrorTrace: A Black-Box Traceability Mechanism
Based on Model Family Error Space

Chuanchao Zang1, Xiangtao Meng1, Wenyu Chen1, Tianshuo Cong2,6, Yaxing Zha3, Dong Qi4,
Zheng Li1,5,6,*, Shanqing Guo1,5,6,*

1School of Cyber Science and Technology, Shandong University
2School of Cryptologic Science and Engineering, Shandong University
3China Transportation Information Technology Group Co., Ltd., China

4Shandong Branch, China United Network Communications Group Co., Ltd., China
5State Key Laboratory of Cryptography and Digital Economy Security, Shandong University

6Shandong Key Laboratory of Artificial Intelligence Security, Shandong University

Abstract

The open-source release of large language models (LLMs) enables malicious users
to create unauthorized derivative models at low cost, posing significant threats
to intellectual property (IP) and market stability. Existing IP protection meth-
ods either require access to model parameters or are vulnerable to fine-tuning
attacks. To fill this gap, we propose ErrorTrace, a robust and black-box trace-
ability mechanism for protecting LLM IP. Specifically, ErrorTrace leverages
the unique error patterns of model families by mapping and analyzing their dis-
tinct error spaces, enabling robust and efficient IP protection without relying on
internal parameters or specific query responses. Experimental results show that
ErrorTrace achieves a traceability accuracy of 0.8518 for 27 base models when
the suspect model is not included in ErrorTrace’s training set, outperforming
the baseline by 0.2593. Additionally, ErrorTrace successfully tracks 34 fine-
tuned, pruned, and merged models across various scenarios, demonstrating its
broad applicability and robustness. In addition, ErrorTrace shows a certain
level of resilience when subjected to adversarial attacks. Our code is available at:
https://github.com/csdatazcc/ErrorTrace.

1 Introduction

Large language models (LLMs) have advanced rapidly in recent years, with increasing model sizes
and expanding training datasets significantly improving their capabilities in language understanding
and generation (1; 20; 28; 47). However, these advancements come at the cost of requiring both
substantial computational resources and deep domain expertise (27), raising critical concerns about
model copyright and intellectual property (IP) rights. One major concern is the risk of unauthorized
use and repackaging of original models. Malicious actors can fine-tune open models and claim them as
their own, undermining the contributions of the original developers (10; 26; 27; 28). A notable case in
2024 involved a group of Stanford University students allegedly plagiarizing MiniCPM-Llama3-V2.5,
a Chinese open-source model developed by Facade Intelligence (39).1

To protect LLM IP, various traceability methods have been proposed. Watermarking, the most
prominent approach, typically requires modifying the original model parameters (2; 3; 15; 16;
25; 34; 38; 43), while other methods avoid modifying the model but still require access to its
parameters (21; 42; 37; 40; 41). Thus, these methods are limited to white-box settings, which restricts
their applicability. Black-box query-based methods rely on carefully designed prompts but often

1Corresponding authors
1https://www.globaltimes.cn/page/202406/1313632.shtml

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/csdatazcc/ErrorTrace
https://www.globaltimes.cn/page/202406/1313632.shtml

involve high computational costs or require human expertise. They are also sensitive to changes in
model behavior, such as those introduced by fine-tuning, which limits their robustness (8; 11; 18).

Gemma LLaMa Mistral Qwen
Model Families

G
em

m
a

LL
aM

a
M

is
tra

l
Q

w
en

M
od

el
 F

am
ilie

s

0.60 0.55 0.44 0.41

0.55 0.59 0.39 0.38

0.44 0.39 0.46 0.44

0.41 0.38 0.44 0.50 0.40

0.45

0.50

0.55

0.60

(a)

40 20 0 20 40

40

20

0

20

40

Mistral
Llama
Qwen
Gemma

(b)

Figure 1: (a) Intersection of erroneous data from dif-
ferent family models. (b) Error space dimensionality
reduction display.

To fill this gap, we propose implicit finger-
printing via data-driven error analysis—a
black-box mechanism that identifies the
likely family origin of a suspicious model
based solely on its error patterns. Instead
of relying on white-box access or care-
fully crafted queries, our method analyzes
the statistical consistency of prediction er-
rors to uncover distinctive failure behaviors
shared within a model family. The core
insight driving our method is that how mod-
els fail can be more revealing than where
they succeed. While correct outputs may
arise from convergent behaviors across in-
dependently trained models, consistent and uncommon errors often reflect deeper shared charac-
teristics—such as architectural biases, training regimes, or optimization strategies (see details in
Appendix D). Analogous to human behavior, rare mistakes shared by multiple individuals can
imply similar training or background; likewise, models from the same family tend to exhibit stable
and structured error patterns, whereas models from different families display more diverse failure
distributions. This phenomenon is empirically validated in Figure 1a, which shows significantly
higher error similarity within families than across unrelated models (see section 3 for details).

Building on this insight, we introduce ErrorTrace, a black-box traceability framework for LLM IP
protection. Given a set of data samples, we extract each model family’s error patterns and embed
them into an error space via graph-based analysis (illustrated in Figure 1b). A suspect model’s error
behavior is then projected into this space to infer its likely family affiliation, enabling reliable lineage
attribution without internal access or watermarking.

We evaluate our method on five benchmark datasets and 27 models from four popular LLM families.
The results show that our method achieves 100% traceability accuracy when the suspect model
exists in ErrorTrace’s model set, and 85.18% when it does not exist, outperforming the baseline by
25.93%. Additionally, our method performs well across various fine-tuning, pruning, and merging
strategies. In addition, ErrorTrace shows a certain level of resilience when subjected to adversarial
attacks.

Contributions. Our contributions are three-fold:

• A novel traceability perspective: We introduce a new approach to model traceability by analyzing
error space differences across model families, providing new insights into LLM IP protection.

• An effective and adaptable method: We construct a model family error space using unique error
patterns and graph-based connections, enabling reliable traceability even among models with
similar architectures.

• Comprehensive evaluation: We validate our method on 27 models from four families, which range
from 3B to 141B, this marks the first instance of achieving such a wide range of traceability
verification. Our approach outperforms baselines and accurately traces all fine-tuned, pruned, and
merged models, demonstrating its effectiveness and robustness.

2 Threat Model and Related Works

2.1 Threat Model

The auditor, either the original model owner or a third-party detection agency, has full access to the
original model but only black-box access to the suspect model, i.e., <query, output> pairs.

A suspect model is one modified through unauthorized fine-tuning or other actions that infringe on the
original model’s IP. It typically has two characteristics: similarity to the original model in architecture
and knowledge, and concealment of its link to the original model.

2

2.2 Traceability Methods

In the LLM era, traceability methods can be broadly classified into three categories.

Modifying Model Parameters: Researchers have explored embedding watermarks into LLMs (2;
3; 12; 13; 15; 16; 19; 23; 25; 31; 34; 35; 36; 38; 43; 46). However, these methods require model
modifications, increasing training costs and potentially impacting performance. Besides, it cannot be
applied to released models without protection unless retrained, limiting its practicality.

Accessing Model Parameters: These methods compare internal parameters, features, or output
logits to assess model similarity (21; 37; 40; 41; 42). However, their practicality is limited since most
major LLMs provide only external APIs.

Query-based Traceability: These methods identify suspect models by analyzing responses to
specific queries. TRAP (8) ,ProFLingo (11) generate a query and expect a specified response, but are
limited by high query costs and variable response rates in fine-tuned models. LLMmap (18) assesses
output similarity using empirical queries, but its robustness declines against adversarial obfuscation.

2.3 Traceability Granularity

Model-level traceability is widely used in LLM IP protection to identify the specific base model
behind a suspect. However, existing black-box methods often lack robustness and are vulnerable
to interference (38). For large-scale developers (e.g., Meta), protecting every individual model is
computationally costly. In contrast, model family-level traceability focuses on identifying the broader
model family, reducing overhead while aligning with the needs of developers—key stakeholders in
IP disputes. By leveraging shared features within a family, it remains effective even after fine-tuning
or pruning. It also avoids dependence on fixed queries, offering greater robustness against adaptive
attacks and input perturbations.

3 Exploring the Potential of Error Space for Traceability

This section explores the feasibility of using model error spaces for traceability. We present a
probabilistic model showing that error patterns are statistically distinct across model families and
validate this through experimental simulations.

Consider model families G1, G2, . . . , Gn, each containing models M1,M2, . . . ,Mm, and a dataset
D = {d1, d2, . . . , dN} with N samples. For model Mi and data dj , define the binary random variable
Eij as follows:

Eij = { 1 if Mi predicts incorrectly on dj
0 otherwise (1)

Number Rate LR DT RF

5000
0.01 0.00 0.60 0.20
0.05 0.60 0.40 0.80
0.1 0.60 0.20 0.40

10000
0.01 0.60 0.20 0.60
0.05 1.00 0.40 0.80
0.1 0.60 0.40 0.60

50000
0.01 0.80 0.00 0.20
0.05 1.00 0.20 0.60
0.1 1.00 0.20 0.60

Average 0.69 0.29 0.53

Table 1: The tracing success rate for
logistic regression (LR), decision trees
(DT), and random forests (RF) is evalu-
ated across varying data quantities and
proportions of erroneous data.

Each model’s error pattern is represented by the binary
vector Ei = (Ei1, . . . , EiN). Model traceability aims to
identify the family Gk based on Ei. For mathematical
validation, we make the following assumptions:

1. Independence Assumption: The error events on
different data points are independent.

2. Family Distinguishability Assumption: Models
from different families have significantly differ-
ent error probabilities on certain data points.

3. Completeness Assumption: The error events for
all models on all data points are observable and
recorded completely.

Consider the suspicious model Mi and its error pattern
Ei on dataset D. Assuming independence, the error event
Eij for each data point dj is independent. Thus, the joint
probability distribution of Ei is the product of the individual error event probabilities. To determine

3

the model family of Mi, the problem reduces to comparing the joint probability distribution of Ei

across different model families.

P (Ei|Mi ∈ Gk) =

N∏
j=1

P
Eij

Gk,j
(1− PGk,j)

(1−Eij) (2)

where PrGk,j = P (Eij = 1|Mi ∈ Gk) is the error probability of family Gk on data point dj .

Based on the assumption of family distinguishability, for model families Ga and Gb, there exists
a data point j such that PGa,j ̸= PGb,j . Thus, the joint probability distribution of the error pattern
Ei differs across model families. The suspicious model can be assigned to a family based on these
probabilistic differences.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Error probability difference

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

LR
DT
RF

(a) Error probability

5 10 15 20 25 30 35
Quantity within the model family

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

LR
DT
RF

(b) Model family size

Figure 2: (a) The impact of error probability difference
on traceability accuracy; (b) The impact of model family
size on traceability accuracy.

To validate our approach, we run a trace-
ability experiment using a synthetic dataset
across four model families. Each family
has defined error-prone data points with
varying error probabilities. We use Logis-
tic Regression (LR), Decision Trees (DT),
and Random Forests (RF) for classification.
As shown in Table 1, each family includes
four models with a 0.2 error rate difference.
LR and RF both achieve accuracy above
0.5, supporting the feasibility of using er-
ror patterns for traceability.

We further analyze the effect of model
count and error rates using 10,000 data

points at a 0.1 error rate. Figure 2 shows LR and RF improve with more models and greater
error differences, while DT is less consistent. This indicates that more erroneous data enhances
traceability. (See Appendix K for details.)

4 Methodology of ErrorTrace

We propose ErrorTrace, a novel black-box traceability method for LLM IP protection. As shown in
Figure 3, ErrorTrace consists of three steps: error uniqueness calculation, error space construction,
and suspect model inference. This section explains how the classification benchmark constructs the
error space; the regression case is provided in Appendix B.

Error Space Error Space Contraction Average Gain Calculation Unknown Model

... Start Number
End Number

Family 1 Gain

Family 2 Gain
 .
 .
Family N Gain

...

Model Set

Data Set

Step 1: Error Uniqueness Calculation

Data
Integration

Step 2: Error Space
Construction

.

.

...

Error Data

Step 3: Suspect Model Inference/Tracing

Originating Family

Figure 3: The overview of error space-based traceability mechanism ErrorTrace.

4.1 Error Uniqueness Calculation

For a model family T with N LLMs from the same familis, we first sample a prompt dataset S
covering various topics to approximate the input space. Each prompt in S represents a data point s.
We then calculate the error uniqueness of each data point s for the model family T , considering two
key aspects:

4

Intra-family Error Uniqueness. This aspect calculates the error uniqueness of data point s across
all models in family T , represented by U . The simplest approach is to calculate the proportion of
models in T that make errors on s. However, we observe that higher-performing models better reflect
the family’s unique error characteristics; thus, we weight errors by model accuracy, assigning greater
weight to errors from high-performing models, as shown in Equation 3.

U =
∑
j∈E

pj

/ N∑
i=1

pi (3)

Here, E denotes the set of LLMs in the target family that generate an error response on data point s,
and p represents the accuracy of the test model on the topic related to s.

Cross-family Error Discrepancy. This aspect verifies whether the error patterns at data point s
are unique to model family T . We introduce the cross-family error discrepancy PF as a penalty
factor to filter out shared error data points across different families. Instead of treating all non-target
families as a group, we compute the error rate for each non-target family at s and assign higher
penalty weights to families with higher error rates using squared summation, as shown in Equation 4.

PF = 1−
∑
j∈G

P 2
j

/ K∑
i=1

Pi (4)

Let G represent the set of model families whose models produce errors on data point s, Pj denote the
error rates of s for family j, and K be the number of model families excluding family T .

To better mitigate the impact of error-prone points in non-target families, we incorporate model
performance into the calculation of PF . The error rate P for each non-target family at data point s is
defined as:

Pj =
∑
j∈E

pj

/ N∑
i=1

pi (5)

Thus, the error uniqueness of data points s in a certain model family T can be expressed as:

WP(s,T) = U × PF (6)

4.2 Error Space Construction

In the previous section, we calculated the error uniqueness for all data points in the model family T .
Now, we construct the error space for T using a graph-based approach. Unlike traditional methods
like K-Means (17), DBSCAN (5), and GMM (22), we avoid this limitation by assigning each data
point a weight based on its error uniqueness. Edge weights between data points are determined by
their Euclidean distances, which we normalize using the Cumulative Distribution Function (CDF) (6)
to reduce the impact of extreme values.

F (D(i,j)) = P (D ≤ D(i,j)) (7)

Where D(i, j) represents the distance between data points i, j and F is the CDF function.

Using a single CDF mapping overlooks the effect of adjacent distance intervals. To address this, we
introduce an interval-based CDF weighting mechanism. We first sort all edge distances D(i,j) in
ascending order to obtain a sequence d1, d2, . . . , dn, where n is the total number of edges and di is
the ith distance.Then define wj as the difference between consecutive sorted distances dj+1 and dj .
The new mapping formula is defined as:

WE(di) =

i−1∑
j=1

wj

/ n−1∑
k=1

wk (8)

where WE(di) represents the weighted normalized value of the distance di.

To improve computational efficiency, we use a grid search approach to identify the densest region of
edge weights (denoted as dense), and the filtered edge set L is defined as:

5

L = Edge(WE(di) ≤ dense) (9)

where Edge represents the original set of edges, and L is the filtered set of edges.

We construct candidate error spaces for each model family T using graph-based connections. Starting
from the point with the highest error uniqueness, we apply BFS (4) to connect neighboring points.
A point is added if its uniqueness exceeds the edge weight; otherwise, it is skipped. This process
continues until no further connections can be made. We repeat it for remaining unassigned points to
form all candidate error spaces (see Figure 4).

To determine the optimal error space for model family T , we compute the effective uniqueness sum
for each dataset and select the error space with the highest sum as the optimal error space. This is
denoted as:

R(k) =
∑
s∈S

WP (s)−
∑
l∈L′

WE(l) (10)

where k is the set of candidate error spaces, S represents all points contained in the space, L
′

represents all edges used in the connection.

4.3 Suspect Model Inference

0.54

0.48

0.61

0.63

0.49

0.72

0.39

0.54

0.48

0.61

0.63

0.49

0.72

0.39

Figure 4: Example diagram of error
space construction

For each error space, we progressively reduce its size by
increasing the minimum error uniqueness. For a suspect
model Ms, we track the average error rate change during
this contraction. We compute ∆, the difference between
the maximum change and the average of the remaining
changes. If ∆ < τ , the model shows no strong alignment
with any family and is considered out-of-distribution. If
∆ ≥ τ , the family with the largest change is identified as
the source. To ensure fairness, we normalize contraction
by fixing the number of remaining points at the start and end. See details in Appendix C.

5 Experiment

5.1 Experimental Setup

Models: We use 27 models to build error space, ranging from 3 B to 141 B parameters, across
families like LLaMa, Qwen, Mistral, and Gemma (see Appendix A).

Datasets: We use five benchmark datasets namely Multinli (33), PAWS (45), CoLA (32), AG
News (44), and CommonsenseQA (24) to find error data. See details in Appendix N.

Baselines: Since ErrorTrace is a black-box traceability mechanism, we compare with black-box
baselines, i.e., LLMmap (18), TRAP (8), and ProFLingo (11), which use query-based tracing. Due
to space limitation, we introduce TRAP (8), ProFlingo (11) and the LLMmap (18) processing in
Appendix F.

Metrics: We evaluate traceability using three metrics: accuracy (ACC), cosine distance, and model
family discrepancy (MFD). Cosine distance measures the similarity between a test model’s features
and the mean features of each family—a smaller value indicates stronger alignment. This also allows
direct comparison with LLMmap, which uses a similar approach. MFD detects out-of-distribution
(OOD) models by measuring how much a test model’s embedding deviates from the structure of
known model families.

Traceability Scenario: We consider three scenarios to evaluate ErrorTrace, namely model set
known, model set unknown, and real-world scenario. In the model set known scenario, all base
models contribute to constructing the error space, while also serving as test models. In model set
unknown scenario, we designate one model as the suspect and construct error spaces using the

6

Model LLMmap Ours
Gemma Qwen LLaMa Mistral ACC Gemma Qwen LLaMa Mistral ACC

LLama7b 0.327 0.376 0.386 0.561 × 1.188 1.293 0.009 1.012 ✓
LLama70b 0.341 0.432 0.303 0.599 ✓ 1.166 1.346 0.007 1.01 ✓
LLama3:8b 0.405 0.445 0.311 0.562 ✓ 1.370 1.227 0.360 1.660 ✓

LLaMa LLama3:70b 0.388 0.489 0.226 0.526 ✓ 1.643 1.170 0.283 1.304 ✓
LLama3.2:3b 0.366 0.426 0.398 0.506 × 1.105 1.241 0.039 1.387 ✓
LLama3.1:8b 0.366 0.509 0.433 0.564 × 0.928 1.716 0.218 0.581 ✓
LLama:13b 0.327 0.376 0.386 0.561 × 1.802 0.689 0.492 0.758 ✓

Gemma7b 0.606 0.574 0.469 0.560 × 0.641 1.667 1.324 1.116 ✓
Gemma Gemma2:9b 0.333 0.363 0.268 0.568 × 1.662 0.299 1.313 0.567 ×

Gemma2:27b 0.217 0.390 0.426 0.579 ✓ 1.928 0.238 1.065 1.087 ×
Qwen7b 0.315 0.110 0.375 0.519 ✓ 1.237 0.120 1.116 0.970 ✓
Qwen72b 0.342 0.068 0.468 0.577 ✓ 1.382 0.013 1.431 1.317 ✓
Qwen3b 0.296 0.118 0.471 0.563 ✓ 1.270 0.096 1.007 1.321 ✓
Qwen32b 0.423 0.229 0.459 0.538 ✓ 1.597 0.018 1.381 1.233 ✓
Qwen2:7b 0.258 0.157 0.386 0.507 ✓ 1.236 0.058 1.521 1.372 ✓

Qwen Qwen14b 0.295 0.304 0.293 0.504 × 1.466 0.016 1.366 1.397 ✓
Qwen1.5:7b 0.246 0.385 0.403 0.496 × 1.355 0.399 0.625 0.814 ✓
Qwen1.5:72b 0.585 0.469 0.506 0.601 ✓ 1.590 0.046 1.076 1.407 ✓
Qwen1.5:4b 0.429 0.156 0.403 0.504 ✓ 1.412 0.003 1.363 1.273 ✓
Qwen1.5:32b 0.406 0.262 0.281 0.493 ✓ 1.024 0.136 1.482 0.987 ✓
Qwen1.5:14b 0.474 0.482 0.539 0.117 × 1.487 0.038 1.240 1.001 ✓

Mixtral 0.434 0.487 0.483 0.142 ✓ 0.893 0.577 1.747 0.401 ✓
Mistral7b 0.370 0.471 0.343 0.617 × 0.710 0.679 1.564 0.335 ✓

Mistral Mistral:small 0.457 0.491 0.483 0.085 ✓ 1.026 0.930 1.335 0.055 ✓
Mistral:nemo 0.543 0.521 0.537 0.057 ✓ 1.669 1.150 0.821 0.422 ✓
Mistral:large 0.588 0.508 0.496 0.207 ✓ 1.1241 0.137 1.172 1.303 ×
Mixtral:8x22B 0.306 0.237 0.275 0.351 × 1.389 0.293 1.818 0.819 ×

0.59 0.85

Table 2: Cosine similarity in model set unknown scenario
remaining 26 models, this is a more challenging scenario. In the real-world scenario, the suspect
model is modified through a series of fine-tuning, pruning, and merging methods.

Prompt Template: To minimize information leakage, we restrict prompt wording, limiting the
suspect model’s association with its family. All prompt templates are provided in Appendix L.

5.2 Effectiveness

gemma llama mistral qwen
Model Families

ge
m

m
a

lla
m

a
m

is
tra

l
qw

en
M

od
el

 F
am

ilie
s

1.00 0.00 0.02 0.02

0.00 1.00 0.00 0.00

0.02 0.00 1.00 0.04

0.02 0.00 0.04 1.00

0.0

0.2

0.4

0.6

0.8

1.0

(a)

Gemma LLaMa Mistral Qwen
Group

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04
Av

er
ag

e
G

ai
n mistral

qwen
gemma
llama

(b)

Figure 5: (a) Model family error space error intersec-
tion; (b) Average change on different error spaces.

This section evaluates our method in three
key areas: error space construction, trace-
ability of models, and comparison of space
search methods. We define the error space
contraction process, setting start and end
numbers at 1200 and 600 points (the rea-
sons for selection are shown in Figure 6b
and Appendix E).

First, our method effectively captures each
model’s error space, clearly separating dif-
ferent families. As shown in Figure 5a,
error data across families have near-zero
overlap, confirming the isolation of family-specific patterns. In the known model set scenario, all 27
test models are correctly traced to their families. Figure 5b further shows that each family has positive
alignment within its own space and negative alignment elsewhere. See Appendix I for details.

1 2 3 4 5 6 7 8
The number of query

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy 0.37

0.42 0.43 0.45
0.48

0.51
0.55

0.59

Accuracy

(a) LLMmap

1000 1100 1200 1300 1400 1500 1600 1700 1800
Start

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

end=500
end=600
end=700
LLMmap Accuracy

(b) ErrorTrace

Figure 6: (a) The effect of query numbers on
LLMmap; (b) Comparison of the highest accuracy
of ErrorTrace and LLMmap.

Second, our method performs well in the more
challenging unknown model set scenario. Each
model is tested as a suspect using the remaining
26 to build error spaces. As shown in Table 2,
our method achieves 85.18% accuracy (23/27),
significantly outperforming LLMmap’s 59.25%
(16/27).

In this scenario, four models were misidentified.
Two were from the Gemma family, likely due to
having only two models left to construct a reli-
able error space. LLMmap also struggled with
these. The other two were large Mistral mod-
els (Mixtral:8x22B and Mistral-large), whose

scale distribution is uneven (see details in section 7).

7

Methods K-Means DBSCAN GMM Ours

Accuracy 0.4074 0.4444 0.6666 0.8518

Table 3: Accuracy of different construction methods.

Furthermore, our method outperforms tra-
ditional space construction techniques (e.g.,
K-Means, DBSCAN, GMM) in identifying
effective error spaces for model traceability.
Using grid search for fair comparison, the
best baseline achieves only 66.66% accuracy, well below our 85.18% (Table 3). We also evaluate
robustness to contraction intervals. Figure 6a shows LLMmap peaks at 59.25% when using all
queries. In contrast, our method maintains high accuracy across varying intervals and consistently
outperforms LLMmap (Figure 6b). These results underscore the superiority of our approach in error
space identification and model traceability.

5.3 Impact of Dataset Size

Size 20K 30K 40K 50K

Accuracy 0.7037 0.7778 0.8148 0.8518

Table 4: Accuracy at different dataset
sizes.

We also test how dataset size affects ErrorTrace by ran-
domly sampling from the original error set (Table 4). Per-
formance improves with more data, and even at 20K sam-
ples, ErrorTrace significantly exceeds LLMmap’s best
result.

5.4 Out-Of-Distribution Model Detection

We designate LLaMA as the out-of-distribution family and treat Gemma, Qwen, and Mistral as
in-distribution. Using an optimal threshold τ = 0.025, we compute model family discrepancy for
each model. For out-of-distribution evaluation, we test three unseen models: Falcon3-7B and Falcon3-
10B (different scales within the Falcon family), and DeepSeek-R1-7B (a different family). Table 5
shows that all these models have discrepancies below τ , confirming they are correctly identified as
out-of-distribution and not part of any known family. This indicates that we can correctly identify
these out-of-distribution models as not belonging to any of the in-distribution families.

Model Gemma Qwen LLaMa Mistral MFD ACC
Falcon3-7B 0.0014 0.0019 0.0014 0.0017 0.0124 ✓
Falcon3-10B -0.0112 -0.0099 -0.0189 -0.0164 0.0167 ✓
DeepSeek-R1-7B 0.0067 0.0073 -0.0011 0.0012 0.0151 ✓

Table 5: Out-of-distribution model detection.

1. To visualize the MDF, this table presents the average change in the suspect model’s error rate within each
model family’s error space, rather than cosine distance.

5.5 Robustness

Method Model Gemma Qwen LLama Mistral ACC

mistral-openorca 0.360 0.347 0.308 0.413 ×
mistrallite 0.607 0.609 0.593 0.682 ×

LLMmap Mistral-7B-Instruct 0.454 0.581 0.470 0.687 ×
openhermes 0.260 0.415 0.290 0.510 ×

zephyr 0.386 0.421 0.392 0.442 ×

mistral-openorca 1.634 0.792 1.282 0.332 ✓
mistrallite 1.558 1.357 0.987 0.623 ✓

Ours Mistral-7B-Instruct 1.494 0.906 1.257 0.203 ✓
openhermes 1.535 0.500 1.199 0.334 ✓

zephyr 1.255 1.142 0.886 0.074 ✓

Table 6: Comparison of different fine-tuned Mistral7B be-
tween ErrorTrace and LLMmap.

We now evaluate the robustness un-
der the real-world scenario. We
select LLaMa7B and Mistral7B for
fine-tuning, as they have several
fine-tuned versions, and also test
Qwen and Gemma for different fine-
tuning purposes. Note that all fine-
tuned and trimmed models are down-
loaded from HuggingFace. See
Appendix Appendix M for details.

Model Ratio Strategy Gemma Qwen LLaMa Mistral ACC
vicuna-5.5b-ppl 20% Shortened-ppl 0.489 0.579 0.467 0.631 ✓
vicuna-3.7b-ppl 45% Shortened-ppl 0.528 0.597 0.497 0.670 ✓
vicuna-2.7b-ppl 60% Shortened-ppl 0.579 0.634 0.608 0.679 ×

LLMmap vicuna-5.5b-taylor 20% Shortened-taylor 0.421 0.438 0.420 0.631 ✓
Sheared-LLaMA-2.7B 60% Sheared 0.601 0.629 0.583 0.664 ✓
Sheared-LLaMA-1.3B 80% Sheared 0.603 0.638 0.613 0.675 ×

vicuna-5.5b-ppl 20% Shortened-ppl 1.146 0.836 0.807 1.796 ✓
vicuna-3.7b-ppl 45% Shortened-ppl 1.169 0.655 0.484 1.801 ✓

Ours vicuna-2.7b-ppl 60% Shortened-ppl 1.081 0.652 0.557 1.884 ✓
vicuna-5.5b-taylor 20% Shortened-taylor 0.996 1.010 0.620 1.916 ✓

Sheared-LLaMA-2.7B 60% Sheared 1.440 0.853 0.629 1.772 ✓
Sheared-LLaMA-1.3B 80% Sheared 0.833 1.780 0.131 1.145 ✓

Table 7: Traceability robustness experiment of pruning model.

Fine-Tuned Variants of a Sin-
gle Model. We evaluate robust-
ness on fine-tuned variants of a
model. As shown in Table 6,
our method correctly identifies
all five fine-tuned Mistral7B ver-
sions, while LLMmap misclassi-
fies them. Details on LLaMa7B
fine-tuning robustness are in Ap-
pendix H.

8

Strategy Gemma Qwen LLaMa Mistral ACC
PPL 1.398 0.506 0.769 0.487 ✓
Dare-Ties 1.586 1.185 0.652 0.356 ✓
Dare-Task 1.153 0.472 1.565 0.341 ✓

Table 8: Traceability robustness experiment of merging
model.

We then evaluate robustness against differ-
ent pruning strategies and rates. Table 7
shows that ErrorTrace consistently iden-
tifies the model family, even at 60% and
80% pruning rates, demonstrating strong
robustness across pruning methods. We
also test ErrorTrace on various model
merging strategies for Mistral-7B V0.1 and V0.2 (7). Table 8 confirms our method successfully tracks
the model’s origin.

Method Model Gemma Qwen LLama Mistral ACC

Qwen-7B-Chat 0.536 0.207 0.371 0.585 ✓

Qwen-14B-Chat 0.483 0.303 0.302 0.580 ×
LLMmap Qwen2-math 0.548 0.261 0.487 0.538 ✓

Qwen2.5-coder:7B 0.536 0.594 0.598 0.692 ×
Qwen2.5-coder:14B 0.474 0.317 0.506 0.542 ✓

Qwen-7B-Chat 1.719 0.634 1.549 0.856 ✓

Qwen-14B-Chat 1.982 0.378 0.934 1.076 ✓

Ours Qwen2-math 0.865 0.618 1.965 0.687 ✓

Qwen2.5-coder:7B 1.403 0.247 1.357 0.544 ✓

Qwen2.5-coder:14B 1.503 0.151 1.673 0.904 ✓

Table 9: Performance comparison of different ver-
sions of Qwen family models.

Fine-Tuned Variants Within a Model Family.
We further evaluate a harder scenario: fine-tuned
variants within the Qwen family. Table 9 shows
our method correctly identifies all five models,
while LLMmap misclassifies three, including
Qwen1.5:14B—mistakenly labeled as LLaMa
with only a 0.001 cosine distance difference.
This highlights LLMmap’s struggle to separate
families, while our method effectively distin-
guishes error spaces with differences above 1,
significantly outperforming LLMmap.

Fine-Tuned Variants of a Small Model Family. Recall that in Table 2, our method struggled with
the Gemma family due to only two base models available for error space construction, limiting
generalization. Using three base models and testing on their fine-tuned variants, Table 14 shows our
method successfully traces them, demonstrating significant improvement by increasing base models
from 2 to 3.

5.6 Model Granularity Traceability

Although ErrorTrace targets model family granularity, it also covers model-level traceability when
a family has a single base model. We evaluate single-model families like llama7b, llama13b, and
llama3-8b, testing on variants such as vicuna:7b, orca-mini:7b, and codellama derived from llama7b.
Table 10 shows our method successfully traces orca-mini:7b and codellama back to llama7b.

llama7b llama13b llama70b llama3-8b llama3-70b llama3.1-8b llama3.2-3b ACC

vicuna:7b 0.496 0.608 0.644 1.236 0.839 0.717 1.554 ✓
orca-mini:7b 0.496 0.632 0.722 0.581 0.869 0.564 0.609 ✓
codellama 0.369 0.514 1.161 0.994 1.213 1.075 0.462 ✓

Table 10: Model Granularity Traceability

6 ErrorTrace against Adversarial Attacks

Top-K 100 200 500 800 1200 1500

ACC 0.81 0.78 0.70 0.67 0.67 0.44

Table 11: Attacker correctly repairs the sample
points in the space.

A potential threat is that a malicious user
gains access to the samples used for build-
ing the ErrorTrace error space and exploits
them to attack the suspect model. Such at-
tacks are difficult for all black-box attribu-
tion methods. In contrast, ErrorTrace leverages intrinsic model characteristics (finger-
prints rather than prompts), which improves adversarial robustness. More importantly, since
the error space is built from the base dataset, adversarial fine-tuning against ErrorTrace
inevitably harms the model’s overall performance, raising the cost and risk of attack.

Top-K 100 500 1000 1500 2000 3000

ACC 0.81 0.74 0.70 0.67 0.67 0.67

Table 12: Attacker error repairs the sample points
in the space.

To test robustness, we conducted simulated ad-
versarial attacks. First, assuming a strong at-
tacker who can “perfectly repair” the Top-K
samples with highest error uniqueness, results
(Table 11) show attribution accuracy remains
0.70 after repairing Top-500, about 0.67 at K=1200, and only drops sharply to 0.44 at K=1500.

9

We also tested an extreme case where the attacker forces the Top-K samples with low-
est error uniqueness to be misclassified. Results (Table 12) show that even after al-
tering 3000 samples, ErrorTrace still maintains 0.67 accuracy. Notably, further en-
larging K does not cause a sudden collapse, suggesting this strategy has limited effect.

Gemma Qwen LLaMa Mistral ACC

Top-5% 1.256 0.778 0.390 1.823 ✓
Top-10% 1.081 1.031 0.878 1.938 ✓

Table 13: Attacker uses adversarial fine-tuning
with different sample ratios.

Finally, under more realistic conditions, we
fine-tuned LLaMA-7B on the top 5% and 10%
highest-uniqueness samples. As shown in Ta-
ble 13, ErrorTrace still achieves reliable attri-
bution. Overall, these experiments confirm that
ErrorTrace is robust and practical under diverse adversarial scenarios.

7 Limitations

7.1 Limitations of Model Family Scale Differences

Model Gemma Qwen LLaMa Mistral ACC
gemma7b-instruct 0.407 0.659 1.038 1.284 ✓
codegemma 0.046 1.352 1.033 0.765 ✓

gemma2:9b-instruct 0.542 0.966 0.902 1.842 ✓
gemma2-9b-chinese-chat 0.236 0.969 1.648 0.742 ✓

gemma2:27b-instruct 0.702 0.811 0.707 1.838 ✓

Table 14: Traceability effects of different Gemma
fine-tuning models

Although our method effectively protects large
model IP, it has some limits when model family
scales differ.

The first arises when family sizes vary widely.
As shown in Table 14, having only three models
makes detection harder. We suggest adding fine-
tuned variants or generating more error data via
randomization (see Appendix G).

Another occurs when models in the same family differ greatly in scale. For instance, ErrorTrace
misidentified Mixtral:8x22B. A practical fix is to build separate error spaces for different parameter
sizes, which improves fingerprint accuracy.

7.2 Limitations of Error Data Collection Cost

Another key limitation is the time cost of error data collection. For a single model, collecting about
50K errors takes 24 GPU hours. However, this is a one-time cost, since the collected data can be
reused. Notably, building the full error space for 27 models across four families only requires 2
GPU hours. More importantly, auditing a suspect model needs just 4 GPU hours (10K data). Thus,
once the error space is prepared, researchers can audit suspect models efficiently with relatively low
overhead. Compared with overall model development costs, this cost is acceptable (see Appendix J
for details).

Rate 10% 30% 50% 70%
ACC 0.81 0.67 0.67 0.59

Table 15: Subsampling with Different Filtering
Ratios

To further reduce inference costs during audit-
ing, we adopt a filtering-based subsampling strat-
egy. Within each error uniqueness interval (e.g.,
[0.4, 0.5)), part of the test data is filtered to ease
the inference load. As shown in Table 15, even
under an aggressive 70% filtering strategy, the
accuracy remains 0.59, indicating that the method effectively lowers inference costs while maintaining
reasonable auditing performance.

8 Conclusion

In this work, we propose ErrorTrace, a novel black-box traceability method for large language
models (LLMs) based on error pattern analysis. By leveraging the inherent consistency of error
distributions within model families, our approach effectively constructs error spaces to identify the
family of a suspect model. Extensive evaluations on five benchmark datasets and 27 models from
four LLM families demonstrate that ErrorTrace achieves high traceability accuracy, significantly
outperforming existing baselines. Furthermore, our method remains robust against fine-tuning,
pruning and merging, highlighting its adaptability to real-world model modifications.

10

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant(No.
62372268), Key R&D Program of Shandong Province, China (No. 2024CXGC010114, No.
2025CXPT085), Shandong Provincial Natural Science Foundation, China (No. ZR2022LZH013, No.
ZR2021LZH007).

References
[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, and J. Kaplan. Language models are few-shot

learners. In NeurIPS, 2020.
[2] J. Cai, J. Yu, Y. Shao, et al. Utf: Undertrained tokens as fingerprints a novel approach to llm

identification. arXiv preprint arXiv:2410.12318, 2024.
[3] T. Cong, D. Ran, Z. Liu, et al. Have you merged my model? on the robustness of large language

model ip protection methods against model merging. In Proceedings of the 1st ACM Workshop
on Large AI Systems and Models with Privacy and Safety Analysis, pages 69–76, 2023.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 3rd edition, 2009.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96), pages 226–231, 1996.

[6] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 1968.
[7] C. Goddard, S. Siriwardhana, M. Ehghaghi, et al. Arcee’s mergekit: A toolkit for merging large

language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 477–485, 2024.

[8] M. Gubri, D. Ulmer, H. Lee, et al. Trap: Targeted random adversarial prompt honeypot for
black-box identification. arXiv preprint, 2024.

[9] J. Huang, P. Parthasarathi, M. Rezagholizadeh, et al. Do robot snakes dream like electric
sheep? investigating the effects of architectural inductive biases on hallucination. arXiv preprint
arXiv:2410.17477, 2024.

[10] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al. Mistral 7b. arXiv preprint, arXiv:2310.06825,
2023.

[11] H. Jin, C. Zhang, S. Shi, et al. Proflingo: A fingerprinting-based intellectual property protection
scheme for large language models. In 2024 IEEE Conference on Communications and Network
Security (CNS), pages 1–9. IEEE, 2024.

[12] J. Kirchenbauer, J. Geiping, Y. Wen, et al. A watermark for large language models. In
International Conference on Machine Learning, pages 17061–17084. PMLR, 2023.

[13] C. Kong, J. Chen, S. Tan, et al. Copyright protection for large language model eaas via
unforgeable backdoor watermarking. In International Conference on Pattern Recognition, pages
1–15. Springer, Cham, 2025.

[14] A. Lewis, M. White, J. Liu, et al. Winning big with small models: Knowledge distillation vs.
self-training for reducing hallucination in qa agents. arXiv preprint arXiv:2502.19545, 2025.

[15] L. Li, B. Jiang, P. Wang, et al. Watermarking llms with weight quantization. arXiv preprint
arXiv:2310.11237, 2023.

[16] S. Li, L. Yao, J. Gao, et al. Double-i watermark: Protecting model copyright for llm fine-tuning.
arXiv preprint arXiv:2402.14883, 2024.

[17] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281–297, 1967.

[18] D. Pasquini, E. M. Kornaropoulos, and G. Ateniese. Llmmap: Fingerprinting for large language
models. arXiv preprint arXiv:2407.15847, 2024.

[19] W. Peng, J. Yi, F. Wu, et al. Are you copying my model? protecting the copyright of large
language models for eaas via backdoor watermark. arXiv preprint arXiv:2305.10036, 2023.

[20] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. Technical report, OpenAI, 2018.

[21] Y. Refael, A. Hakim, L. Greenberg, et al. Slip: Securing llms ip using weights decomposition.
arXiv preprint arXiv:2407.10886, 2024.

[22] D. A. Reynolds. Gaussian mixture models. In Encyclopedia of Biometrics, pages 659–663.
Springer, 2009.

[23] M. Russinovich and A. Salem. Hey, that’s my model! introducing chain & hash, an llm
fingerprinting technique. arXiv preprint arXiv:2407.10887, 2024.

11

[24] A. Talmor, J. Herzig, and J. Berant. Commonsenseqa: A question answering challenge for
commonsense knowledge. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2019), pages 4147–4157, 2019.

[25] R. Tang, Y. N. Chuang, X. Cai, et al. Secure your model: An effective key prompt protection
mechanism for large language models. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 4061–4073, 2024.

[26] G. Team, T. Mesnard, C. Hardin, et al. Gemma: Open models based on gemini research and
technology. arXiv preprint, arXiv:2403.08295, 2024.

[27] H. Touvron et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint,
arXiv:2307.09288, 2023.

[28] H. Touvron, N. Sarlán, and P. Dufter. Llama: Open and efficient foundation language models.
arXiv preprint, arXiv:2302.13971, 2023.

[29] F. Wan, X. Huang, L. Cui, et al. Mitigating hallucinations of large language models via
knowledge consistent alignment. CoRR, 2024.

[30] T. Wang, X. Jiao, Y. Zhu, et al. Adaptive activation steering: A tuning-free llm truthfulness
improvement method for diverse hallucinations categories. In Proceedings of the ACM on Web
Conference 2025, pages 2562–2578, 2025.

[31] Z. Wang, B. Wu, J. Deng, et al. Espew: Robust copyright protection for llm-based eaas via
embedding-specific watermark. arXiv preprint arXiv:2410.17552, 2024.

[32] A. Warstadt, A. Singh, and S. R. Bowman. Neural network acceptability judgments. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL 2019), pages 579–589, 2019.

[33] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL 2018), pages 632–642, 2018.

[34] J. Xu, F. Wang, M. D. Ma, et al. Instructional fingerprinting of large language models. arXiv
preprint arXiv:2401.12255, 2024.

[35] Z. Xu, W. Xing, Z. Wang, et al. Fp-vec: Fingerprinting large language models via efficient
vector addition. arXiv preprint arXiv:2409.08846, 2024.

[36] S. Yamabe, T. Takahashi, F. Waseda, et al. Mergeprint: Robust fingerprinting against merging
large language models. arXiv preprint arXiv:2410.08604, 2024.

[37] Z. Yang and H. Wu. A fingerprint for large language models. arXiv preprint arXiv:2407.01235,
2024.

[38] Z. Yang, Y. Wu, Y. Shen, et al. The challenge of identifying the origin of black-box large
language models. arXiv preprint, 2025.

[39] Y. Yao, T. Yu, A. Zhang, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint,
arXiv:2408.01800, 2024.

[40] B. Zeng, L. Wang, Y. Hu, et al. Huref: Human-readable fingerprint for large language models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2023.

[41] C. Zhang, H. Foerster, R. D. Mullins, et al. Hardware and software platform inference. arXiv
preprint arXiv:2411.05197, 2024.

[42] J. Zhang, D. Liu, C. Qian, et al. Reef: Representation encoding fingerprints for large language
models. arXiv preprint arXiv:2410.14273, 2024.

[43] R. Zhang and F. Koushanfar. Emmark: Robust watermarks for ip protection of embedded
quantized large language models. In Proceedings of the 61st ACM/IEEE Design Automation
Conference, pages 1–6, 2024.

[44] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.
In Proceedings of the 28th International Conference on Neural Information Processing Systems
(NeurIPS 2015), pages 649–657, 2015.

[45] Y. Zhang, Y. Zhao, and Y. LeCun. Paws: Paraphrase adversaries from word scrambling. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL
2019), pages 6506–6517, 2019.

[46] X. Zhao, Y. X. Wang, and L. Li. Protecting language generation models via invisible wa-
termarking. In International Conference on Machine Learning, pages 42187–42199. PMLR,
2023.

[47] H. Zhou et al. A survey of large language models in medicine: Progress, application, and
challenge. arXiv preprint, arXiv:2311.05112, 2023.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim are summarized in section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include the limitations of our work in section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: We provide simple proofs and experimental verifications in section 3 and in
Appendix K.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the parameters required for the experiments in section 5 and the
corresponding prompt templates are provided in Appendix L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used publicly available benchmark datasets, e.g., (45), and an anonymous
repository of the code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix J.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix O.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset we use is publicly available benchmark datasets, and the models
are open-source models, see details at Appendix A, Appendix M, Appendix N.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Once the blind review period is finished, we will release our code base with
included readme files.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is the subject of our study, and in our methodology, we do not use LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Base Model

In this section, we present the base models utilized in this study along with their fundamental
information, including their respective families and model scales. A total of 27 base models were
employed, spanning across four distinct model families. The Gemma family comprises the fewest
models, with only three members, whereas the Qwen family is the largest, consisting of eleven models.
These models vary in parameter scales from 3 billion to 141 billion, marking the first validation with
such a large scale in LLM IP protection, as detailed in Table 16. All base models are derived from
ollama.2

Model Vender Number of parameters
1 llama7b Meta AI 7B
2 llama13b Meta AI 13B
3 llama70b Meta AI 70B
3 llama3:8b Meta AI 8B
5 llama3:70b Meta AI 70B
6 llama3.1:8b Meta AI 8B
7 llama3.2:3b Meta AI 3B
8 gemma7b Google 7B
9 gemma2:9b Google 9B
10 gemma2:27b Google 27B
11 qwen4b Alibaba 4B
12 qwen7b Alibaba 7B
13 qwen14b Alibaba 14B
14 qwen32b Alibaba 32B
15 qwen72b Alibaba 72B
16 qwen2:7b Alibaba 7B
17 qwen2.5:3b Alibaba 3B
18 qwen2.5:7b Alibaba 7B
19 qwen2.5:14b Alibaba 14B
20 qwen2.5:32b Alibaba 32B
21 qwen2.5:72b Alibaba 72B
22 mistral7b Mistral AI 7B
23 mistral-nemo Mistral AI 12B
24 mistral-small Mistral AI 22B
25 mistral-large Mistral AI 123B
26 mixtral Mistral AI 39B
27 mixtral:8x22b Mistral AI 141B

Table 16: Publisher of the basic model and display of its parameter scale.

B ErrorTrace In Regression Case

For regression tasks, ErrorTrace only requires adjusting the computation of error uniqueness
from Section 4.1, replacing discrete values with continuous ones. Using BLEU as an example, we
illustrate the principle in detail. We first normalize and preprocess continuous values to reflect each
sample’s error tendency—the higher the value, the higher the risk of error. Since higher BLEU means
better performance, we redefine B = 1−BLEU . Accordingly, the intra-family consistency score
(Equation 3) extends to:

U =
∑
j∈E

B

/ N∑
i=1

B (11)

where e is the model family under evaluation, and N is the number of models. Similarly, the
inter-family discrepancy (Equation 4 and ??) extends to:

PF = 1−
∑
j∈G

P 2
j

/ K∑
i=1

Pi (12)

2https://ollama.com/

20

https://ollama.com/

Pj =
∑
j∈E

Bj

/ N∑
i=1

Bi (13)

where G is the set of all families other than E, K is the set of all families, and pi is the proportion of
values in family i relative to the total across all models.

C Reasoning Details

C.1 Details of Out-Of-Distribution Detection

Theoretical Basis: When model family A ’s error space shrinking, The average error uniqueness of
data in the error space will increase. According to the Error Uniqueness Calculation in subsection 4.1,
this increase is mainly due to the excitation of Intra-family Error Uniqueness, so models within
family A are more likely to error on data point, and depending on the limitation of Cross family Error
Discrepancy, it is unlikely that models not in A will do so.

Detection Logic: For a suspect model a in model family A, intra-family Error Uniqueness increases
its average gain in the error space of A, and inter-family Error discrepancy limits its average gain in
the other families’s error spaces, leading to a larger model family discrepancy. For a suspect model
b, not belonging to any model family, lacks both uniqueness and discrepancy constraints. So its
performance similar in different error spaces, resulting in a smaller model family discrepancy. We
define a threshold τ . If b‘s model family discrepancy exceeds τ , it is classified as an intra-family
model;otherwise, it is considered an out-of-distribution model.

C.2 Details of Changes in Average Error Rate

Based on the description of Intra-family Error Uniqueness and Cross-family Error Discrepancy in
subsection 4.1 and the explanation of the suspicion inference process in subsection 4.3, in the process
of shrinking the error space of the model family A, the data points that are more inclined to make
errors in this model family will be retained, and the data points in other data points in the model
family that are more inclined to make mistakes. As a result, for model a ∈ A, the change in the error
rate in the error space to which it belongs will be larger than that for model a ∈ A. Calculating the
average change in the error rate of the suspected model b in each error space during the contraction
process to find the error space with the largest change in the error rate, and then to find the model
family it belongs to.

Since the experimental error dataset comprises multiple foundational datasets, and different models
exhibit varying performance across tasks within these foundational datasets, the proportion of each
foundational dataset within a model family’s error space also varies. Consequently, it is insufficient
to differentiate model families based solely on simple error rates. Therefore, we opt to represent the
distinction by the difference between the suspect model’s actual error rate er within the error space
and the theoretical error rate ter of that error space.

Assume that the error space ESj consists of K foundational datasets, and the suspect model M has
theoretical error rates der1, der2, ..., derK on these datasets. Here, the theoretical error rates are
obtained by testing the suspect model on a fixed number of data points (1000 in our experiments)
from each foundational dataset. The proportion of each foundational dataset within the error space
ESj is denoted by D1, D2, ..., DK . Therefore, the theoretical error rate ter of the error space ESj

can be expressed as:

ter =

K∑
i=1

Di × deri (14)

Regarding the calculation of error data error uniqueness, we choose to represent the actual error rate
er by the ratio of the sum of the suspect model M ’s uniqueness coefficients for the error data within
the error space ESj to the sum of all uniqueness coefficients for the error data within that error space.

21

Mathematically, this is expressed as:

er =

∑
i∈MDM,j

MPi∑
i∈ESj

MPi
(15)

Where MDM,j denotes the set of data points on which the suspect model M makes errors within the
error space ESj ,MPi represents the uniqueness coefficient of data point i.

Therefore, the change of the error space is defined as the difference between the actual error rate and
the theoretical error rate:

Gain = er − ter (16)

D Origins of Error Patterns and Their Root Causes for Traceability

Model error differences reflect variations in “hallucination” tendencies, often arising from architec-
ture (9), training data (14), and alignment methods (29; 30). Models within the same family share
systematic design, expert knowledge, and high-quality data, leading to similar architectures and
behaviors; for example, LLaMa3 follows LLaMa2’s framework. In contrast, cross-family similarity
is lower due to different development strategies, e.g., Mistral uses Sliding Window Attention (SWA)
while DeepSeek uses Multi-Head Latent Attention (MLA).

E Parameter Selection

First, while more error data may seem helpful, large initial sets (e.g., 1600 points) introduce low-
uniqueness samples into the error space. Models like Gemma-7B, which rely more on high-quality
errors (e.g., min Error Uniqueness = 0.3 in Gemma/Qwen when >1600 points), can be misled by such
noise during traceability.

Second, we observed that once the error space contracts past a certain ratio(e.g.,<500 samples),
remaining points have consistently high Error Uniqueness. The target model’s error rate in its family
nears saturation, while others still improve. Contracting beyond this point hurts traceability.

So, starting with a moderate size (1000–1200 points) offers a better trade-off: enough diversity to
capture distinct patterns, while limiting noise. As contraction proceeds, Error Uniqueness rises from
0.4 to 0.6 across the final 600 points. This stabilizes the target model’s error signature within its
family, while other models continue to diverge — improving separation.

F Additional Notes and Experiments on Baseline

F.1 LLMmap

Since LLMmap traces models based on output features, we adapt it to our objectives. We first extract
and average features from models within the same series to create a representative set, then calculate
the cosine similarity between the suspect model’s features and this set to determine its family.

F.2 ProFlingo

Due to the high computational cost associated with query construction in ProFLingo, we have selected
the pre-constructed Mistal7B queries provided in the paper. Additionally, we employed the TRR
metric, as used in the paper, to evaluate Mistral itself, fine-tuned models, models from different
families, and models within the same family. TRR can be defined as:

TRR =
n

N
(17)

Here, N represents the total number of queries, and n refers to the number of queries that successfully
respond with the specified content.

Table 17 presents the performance of various models under queries constructed for Mistral7B. The
results indicate that the ProFLingo method demonstrates a certain degree of provenance effectiveness

22

Suspect Model Ground Truth TRR Difference
mistral:7b Itself 0.62 0.58↑

openhermes Positive 0.32 0.26↑
mistral-openorca Positive 0.16 0.10↑

mistrallite Positive 0.10 0.04↑
Mistral-7B-Instruct-v0.1 Positive 0.08 0.02↑

zephyr Positive 0.04 -0.02↓
LLaMa2:7B Negative 0.06 0.00

LLaMa3.2:3B Negative 0.06 0.00
qwen2.5:3b Negative 0.04 -0.02↓
gemma:7b Negative 0.04 -0.02↓
qwen:7b Negative 0.02 -0.04↓

Mistral-7B-v0.3 Related 0.32 0.28↑
Mistral-7B-v0.2 Related 0.28 0.24↑

Mistral-nemo Related 0.04 -0.02↓
Mistral-small Related 0.02 -0.04↓

Mixtral Related 0.02 -0.04↓
Table 17: ProFLingo’s performance on different models

1.Itself stands for the original model itself, Positive stands for the model that is fine-tuned from the original
model, Negative stands for the model that is unrelated to the original model, and Related stands for the model

that is of the same family as the original model.
2. Difference represents the difference between the TRR and the highest TRR in the Negative, where the TRR

exceeding more than twice the highest TRR in the Negative is shown in red, and the rest is shown in green
for fine-tuned models. However, the TRR values fluctuate significantly across different fine-tuned
models, making the decision boundary difficult to determine. Specifically, the TRR differences
between MistralLite and Mistral-7B-Instruct-v0.1 models and LLaMa2:7B are less than 0.05, while
Zephyr’s TRR is even lower than that of unrelated models. For related models within the same family,
the ProFLingo method performs well on different versions of the Mistral7B model but shows low
relevance when applied to other models in the same family. ProFLingo operates primarily at the
model granularity traceability. The high TRR between Mistral-7B-v0.3 and Mistral-7B-v0.2 suggests
potential confusion when handling different versions of highly related models. However, when
applied to model family granularity traceability, the low TRR values of models such as Mistral-Nemo
make it challenging for the method to effectively distinguish models within the same family.

F.3 TRAP

Due to the time-consuming nature of the query construction by the TRAP, we chose the query for
llama7b that has already been constructed in the paper. In addition, we also choose the TPR as the
base metric to test the llama7b model itself, its fine-tuned model, the same-family model, and the
irrelevance model. Different from the definition of TPR in ProFLingo, we follow the definition of
TPR in the TRAP paper, in which a single round with one correct response is recognized as correct,
and the final TPR is obtained through multiple rounds, which is expressed as follows.

TPR =
n

N
(18)

Where, n represents the number of validation rounds with successful responses, N represents the
total number of validation rounds. We conducted 50 rounds of experimental validation on each of the
100 queries of length 3,4,5 mentioned in TRAP.

Table 18 presents the traceability performance of TRAP on various models. It demonstrates strong
performance on the baseline model, but significant TPR fluctuations occur in fine-tuned variants.
Notably, the Vicuna:7B model reaches a TPR of 0.86 at length 3, and Llama-Chinese maintains
a TPR above 0.5 across all lengths. In contrast, TPR values for other fine-tuned models decrease
sharply, with the Nous-Herms model peaking at 0.1. The Negative and Related models outperform
Nous-Herms in most cases. These findings highlight that TRAP faces considerable challenges in
fine-tuning scenarios, making it difficult to consistently identify fine-tuned models and their TPRs.

G Explanation of the Limit on the Number of Models in the Family

The small number of models in the family is a limitation of this paper, and the error space of the
constructed model family is not as accurate as the error space constructed by the model family with a

23

Suspect Model Ground Truth TRR-3 TPR-4 TPR-5
llama:7b Itself 1.00 0.98 1.00

vicuna:7b Positive 0.26 0.20 0.20
orca-mini:7b Positive 0.86 0.32 0.52

codellama Positive 0.24 0.12 0.08
llama-chinese Positive 0.90 0.84 0.60
nous-hermes Positive 0.10 0.06 0.04

mistral:7b Negative 0.04 0.10 0.16
gemma:7b Negative 0.06 0.16 0.14
qwen:4b Negative 0.20 0.18 0.24
qwen:7b Negative 0.14 0.08 0.08

qwen2.5:3b Negative 0.00 0.02 0.00

llama3.2:3b Related 0.00 0.00 0.08
llama3.2:1b Related 0.00 0.04 0.16
llama3.1:8b Related 0.00 0.28 0.12
llama3:8b Related 0.02 0.08 0.16

llama2:13b Related 0.08 0.06 0.12

Table 18: TRAP’s performance on different models

1. For the Positive category model, we choose to bold the lowest value for each discriminant feature, and for the
other category models, we use red font for the values higher than the bolded values.

large number of models in the family, which is also illustrated by the traceability effect of the Gemma
family in Table 2. However, this does not prove that the method in this paper cannot be adapted to
the case where the number of models in the family is small. The unknown scenario of the model
set represented in Table 2 is a more challenging scenario, where there is no obvious parent-child
relationship between the test model and the training model, but rather a brother model relationship
(belonging to the same model family), and the model evolves from its family model through structural
optimization and retraining during the test, which is unacceptable to a real malicious user. In real-
world scenarios, Table 14 also demonstrates that our method is able to achieve fine-tuned model
traceability even when the number of models in the family is small.

Model Gemma Qwen LLaMa Mistral ACC
codegemma[1] 0.0048 -0.0107 -0.0119 -0.0038 ✓

Table 19: Single Model Validation

We also find that the information about the
errors made in the model family can be
enhanced by fine-tuning the base model
and by utilizing multiple samples of the
model’s stochasticity, as well as overcoming the limitation of the small number within the model
family.To verify this, we simulate a single-model family by excluding all Gemma models except
Gemma-7B. We then sample Gemma-7B-Instruct once and Gemma-7B multiple times to extract
error patterns. The results are shown

H Llama Fine-Tuning Experiments

Method Model Gemma Qwen LLama Mistral ACC
vicuna:7b 0.396 0.414 0.346 0.5107 ✓

orca-mini:7b 0.329 0.326 0.298 0.521 ✓
LLMmap codellama 0.466 0.437 0.366 0.388 ✓

llama2-chinese 0.404 0.206 0.307 0.539 ×
nous-hermes 0.547 0.637 0.548 0.701 ×

vicuna:7b 1.583 1.275 0.893 1.252 ✓
orca-mini:7b 0.539 1.594 0.214 0.787 ✓

Ours codellama 1.559 1.337 0.346 0.641 ✓
llama2-chinese 1.715 1.173 0.502 1.282 ✓
nous-hermes 1.296 1.121 0.922 1.698 ✓

Table 20: Performance comparison of different fine-tuning
models of LLaMa7B on our method and LLMmap method

The LLaMa7B fine-tuned models are
shown in Table 20. Our method suc-
cessfully identified the model family
among five fine-tuned variants, while
LLMmap performed poorly on two
models: llama2-chinese and nous-
hermes. When comparing the total co-
sine distance differences across meth-
ods, our method’s sum exceeds 1, indi-
cating a significantly higher similarity
within the same model family com-
pared to others. In contrast, LLMmap’s sum is below 1, with a maximum of 0.63, suggesting weaker
distinctiveness between suspected models and other families.

24

Table 21: Model traning set known scenario’s cosine distance and MFD.

Group Model Gemma Qwen LLaMa Mistral MFD ACC
llama7b 1.158 1.178 0.014 1.153 0.1440 ✓
llama70b 0.939 1.103 0.110 0.978 0.0967 ✓
llama3:8b 0.662 1.470 0.107 1.050 0.0987 ✓

LLaMa llama3:70b 1.379 1.354 0.086 1.205 0.1973 ✓
llama3:2:3b 0.971 1.330 0.071 1.439 0.1245 ✓
llama3:1:8b 0.996 1.190 0.094 0.836 0.0699 ✓
llama13b 1.334 1.229 0.052 0.915 0.1504 ✓

gemma7b 0.112 1.484 1.180 0.477 0.0963 ✓
Gemma gemma2:9b 0.079 1.382 1.037 1.319 0.1802 ✓

gemma2:7b 0.041 1.246 1.205 1.133 0.1891 ✓

qwen7b 1.347 0.034 1.280 1.064 0.1828 ✓
qwen72b 1.416 0.013 1.428 1.331 0.1888 ✓
qwen3b 1.303 0.034 1.209 1.323 0.1298 ✓
qwen32b 1.584 0.064 1.483 1.340 0.2366 ✓
qwen2:7b 1.399 0.020 1.427 1.373 0.1346 ✓

Qwen qwen14b 1.622 0.049 1.403 1.348 0.2253 ✓
qwen1:5:7b 1.067 0.396 0.881 0.768 0.0663 ✓
qwen1:5:72b 1.542 0.029 1.101 1.244 0.1823 ✓
qwen1:5:4b 1.246 0.075 1.563 0.967 0.0714 ✓
qwen1:5:14b 1.472 0.025 1.216 1.086 0.1362 ✓
qwen1:5:32b 1.459 0.034 1.540 1.247 0.1943 ✓

Mixtral 0.968 1.047 1.285 0.025 0.1454 ✓
Mistral7b 0.544 1.290 1.095 0.097 0.1323 ✓

Mistral Mistral:small 0.849 1.130 1.190 0.017 0.1633 ✓
Mistral:nemo 1.142 1.374 0.653 0.129 0.1222 ✓
Mistral:large 1.241 1.504 1.525 0.212 0.0838 ✓
Mixtral:8x22b 1.114 1.285 1.228 0.065 0.2179 ✓

I Detailed Results for Known Scenarios in the Model Set

In this section, we will show in detail the effectiveness of ErrorTrace in coping with the known
scenarios of the training set in terms of traceability, as shown in Table 21, where ErrorTrace is
successfully traced back to the model family it belongs to in all 27 models.

J Equipment information and time consumption

All of our experiments were conducted in an Intel(R) Platinum 8358 P CPU @ 2.6 GHz, NVIDIA
GeForce RTX 3090 GPU, 512 GB RAM, 24 GB VRAM device. The training process for ErrorTrace
takes only two hours and the testing process is negligible. The main time consumption is the collection
of error data. In this paper, a 50K error data set is used, and it takes 24 GPU hours to collect the error
information for each model, and 4 GPU hours for the suspected model during the testing process.
Compared with traditional query-based methods, e.g., ProFLingo requires 75 GPU hours to construct
a query for a single model, and TRAP consumes a large number of rounds of testing, ErrorTrace’s
time consumption for data collection is acceptable.

K Supplementary proof of error space as a traceability basis

To achieve model provenance through error patterns, two main conditions must be satisfied:

• Error Probability Differentiation: Models from different families exhibit significant
differences in error probabilities on certain data points, ensuring that there exists at least one
data point dj where the error probabilities differ between families.

• Information Content: The error patterns contain sufficient information to distinguish
between different families, which can be quantified using mutual information I(G;E).

In the main text, we provided proof of distinguishability. In this section, we will demonstrate the
information content and conduct corresponding simulation experiments.

We define mutual information I(G;E) to measure the amount of shared information between the
model family G and the error patterns E. Therefore, it suffices to prove that, under the independence
assumption and the family distinguishability assumption, there exists non-zero mutual information

25

between the error patterns E and the model families G, I(G;E) > 0.

I(G;E) = H(G)−H(G|E) (19)

Here, H(G) is the entropy of the model families G, and H(G|E) is the conditional entropy
of G given the error patterns E. Assuming there are K families, with prior probabilities
Pr(G1), P r(G2), ..., P r(GK) for G1, G2, ..., GK respectively, the entropy is defined as:

H(G) = −
K∑

k=1

Pr(Gk) logPr(Gk) (20)

The conditional entropy is defined as:

H(G|E) = −
∑
e∈ε

Pr(E = e)

×
K∑

k=1

[
Pr(Gk|E = e) logPr(Gk|E = e)

]
(21)

where ε is the set of all error patterns. Since the error patterns E consist of multiple independent
error events across different data points, calculating Pr(Gk|E = e) requires considering the joint
probability distribution. Under the independence assumption, error events Eij and Eik (j ̸= k)
are independent. Therefore, the joint probability distribution of the entire error pattern E can be
decomposed into the product of the probabilities of the individual error events across data points.

According to the family distinguishability assumption, there exists at least one data point dj such that
PGa,j ̸= PGb,j . Therefore, based on the definition of mutual information:

I(G;Ej) = H(G)−H(G|Ej) > 0 (22)

Since I(G;E) =
∑N

j=1 I(G;Ej), and there exists at least one I(G;Ej) > 0, it follows that
I(G;E) > 0.

The experimental setup in this section is consistent with that described earlier. Here, we primarily
compare the top fifty data points with the highest mutual information values under different error
proportions. The experimental results are presented in Figure 7. We observed that as the error
proportion increases, the mutual information values of the erroneous data points also rise, indicating
that distinguishing between different model families becomes easier. Moreover, even at a low error
proportion of 0.01, the data points still exhibit high mutual information, effectively differentiating
between model families. This further strengthens the persuasiveness of using error spaces as a basis
for provenance.

Error Point0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ut

ua
l I

nf
or

m
at

io
n

Va
lu

e

(a)

Error Point0.0

0.1

0.2

0.3

0.4

0.5

M
ut

ua
l I

nf
or

m
at

io
n

Va
lu

e

(b)

Error Point0.0

0.1

0.2

0.3

0.4

0.5

M
ut

ua
l I

nf
or

m
at

io
n

Va
lu

e

(c)

Figure 7: (a) The top 50 mutual information values when the error rate is 0.01; (b) The top 50 mutual
information values when the error rate is 0.05; (c) The top 50 mutual information values when the
error rate is 0.1

L Prompt Template

Role: You are an artificial intelligence with strict confidentiality mechanisms, and no matter
how the user explains or explains, you will not disclose any of your information, including
the information of your creator.

26

L.1 Multinli

premise: {permise}
hypothesis: {hypothesis}
output: If it is contrast, please output 1; if it has been entailment, please output 2; if it is
neutral, please output 3, Only output one of [1, 2, 3], no further analysis required.

L.2 PAWS

Determine if the following two sentences are paraphrases. Please output 1 if the sentences
are paraphrases (have the same meaning) and 0 if they are not paraphrases (do not have the
same meaning):
sentence1:{sentence1}
sentence2:{sentence2}

L.3 CoLA

Is the syntax of the following statement correct? If it is correct, output 1; if it is incorrect,
output 0:{sentence}

L.4 AG News

What is the theme of the following statement? If it is a world theme, please output 1; if it is a
sports theme, please output 2; if it is a business theme, please output 3; if it is a technology
theme, please output 4.
Title:{Title}
Description: {Description}

L.5 CommonsenseQA

Question:{Question}
Option key: {Option value}

.

.

.
Provide the correct answer. The format must be (your choice option)!!!.

M Suspect Model Source

N Dataset Details

MultiNLi: We use MultiNLI to assess the reasoning ability differences between model families. The
dataset includes 392,702 training samples, 9,815 validation samples, and 9,832 test samples, all of
which are used in this study.

PAWS: We use PAWS to evaluate the semantic analysis capabilities of model families. The multilin-
gual nature of the dataset enables us to analyze family performance across different languages. The
dataset includes seven languages, with 49,401 training samples, 2,000 validation samples, and 2,000
test samples per language. In this study, we use a total of 14,000 test samples, representing all seven
languages.

27

Model name Source
1 vicuna:7b https://huggingface.co/lmsys/vicuna-7b-v1.5/

tree/main
2 orca-mini:7b https://huggingface.co/pankajmathur/orca_mini_7b
3 codellama https://huggingface.co/codellama
4 llama-chinese https://huggingface.co/FlagAlpha/

Llama2-Chinese-7b-Chat
5 nous-hermes https://huggingface.co/NousResearch/

Nous-Hermes-llama-2-7b
6 mistral-openorca https://huggingface.co/Open-Orca/

Mistral-7B-OpenOrca
7 mistrallite https://huggingface.co/amazon/MistralLite
8 Mistral-7B-Instruct https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.1/tree/main
9 openhermes https://huggingface.co/teknium/OpenHermes-2.

5-Mistral-7B
10 zephyr https://huggingface.co/HuggingFaceH4/

zephyr-7b-beta
11 Mistral-7B-Instruct-v0.2 https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2
12 Mistral-7B-Instruct-v0.3 https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.3
13 Qwen-7B-Chat https://huggingface.co/Qwen/Qwen-7B-Chat
14 Qwen-14B-Chat https://huggingface.co/Qwen/Qwen-14B-Chat
15 Qwen2-math https://huggingface.co/Qwen/Qwen2-Math-7B
16 Qwen2.5-coder:7B https://huggingface.co/Qwen/Qwen2.5-Coder-7B
17 Qwen2.5-coder:14B https://huggingface.co/Qwen/Qwen2.5-Coder-14B
18 gemma7b-instruct https://huggingface.co/google/gemma-7b-it
19 codegemma https://huggingface.co/google/codegemma-7b
20 gemma2:9b-instruct https://huggingface.co/google/gemma-2-9b-it
21 gemma2:9b-chinese-chat https://huggingface.co/shenzhi-wang/

Gemma-2-9B-Chinese-Chat
22 gemma2:27-instruct https://huggingface.co/google/gemma-2-27b-it
23 vicuna-5.5b-ppl https://huggingface.co/nota-ai/cpt_st-vicuna-v1.

3-5.5b-ppl
23 vicuna-3.7b-ppl https://huggingface.co/nota-ai/cpt_st-vicuna-v1.

3-3.7b-ppl
23 vicuna-2.7b-ppl https://huggingface.co/nota-ai/cpt_st-vicuna-v1.

3-2.7b-ppl
23 vicuna-5.5b-taylor https://huggingface.co/nota-ai/st-vicuna-v1.3-5.

5b-taylor
27 Sheared-LLaMa-2.7B https://huggingface.co/princeton-nlp/

Sheared-LLaMA-2.7B
28 Sheared-LLaMa-1.3B https://huggingface.co/princeton-nlp/

Sheared-LLaMA-1.3B
29 Falcon3:7B https://huggingface.co/tiiuae/

Falcon3-7B-Instruct
30 Falcon3:10B https://huggingface.co/tiiuae/

Falcon3-10B-Instruct
31 DeepSeek-R1-7B https://huggingface.co/deepseek-ai/DeepSeek-R1
32 Mistral-7B-v0.1 & v0.2 - PPL https://github.com/arcee-ai/mergekit
33 Mistral-7B-v0.1 & v0.2 - Dare-Ties https://github.com/arcee-ai/mergekit
34 Mistral-7B-v0.1 & v0.2 - Dare-Task https://github.com/arcee-ai/mergekit

Table 22: Suspect model source
CoLA:We use the CoLA dataset to assess the differences in grammar analysis across model families.
The dataset contains 9,594 training samples and 1,063 test samples, all of which are utilized in this
study.

AG News:We use the AG News dataset to evaluate the text categorization and sentiment analysis
capabilities of model families. The dataset consists of four categories, with 120,000 training samples
and 7,600 test samples, all of which are employed in this study.

CommonsenseQA:We use the CommonsenseQA dataset to assess the reasoning abilities of model
families. The dataset contains a total of 12,247 examples, all of which are utilized in this study.

28

https://huggingface.co/lmsys/vicuna-7b-v1.5/tree/main
https://huggingface.co/lmsys/vicuna-7b-v1.5/tree/main
https://huggingface.co/pankajmathur/orca_mini_7b
https://huggingface.co/codellama
https://huggingface.co/FlagAlpha/Llama2-Chinese-7b-Chat
https://huggingface.co/FlagAlpha/Llama2-Chinese-7b-Chat
https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
https://huggingface.co/amazon/MistralLite
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/tree/main
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/tree/main
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/Qwen/Qwen-7B-Chat
https://huggingface.co/Qwen/Qwen-14B-Chat
https://huggingface.co/Qwen/Qwen2-Math-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-14B
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/codegemma-7b
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/shenzhi-wang/Gemma-2-9B-Chinese-Chat
https://huggingface.co/shenzhi-wang/Gemma-2-9B-Chinese-Chat
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl
https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl
https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor
https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor
https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/tiiuae/Falcon3-7B-Instruct
https://huggingface.co/tiiuae/Falcon3-7B-Instruct
https://huggingface.co/tiiuae/Falcon3-10B-Instruct
https://huggingface.co/tiiuae/Falcon3-10B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://github.com/arcee-ai/mergekit
https://github.com/arcee-ai/mergekit
https://github.com/arcee-ai/mergekit

O Potential Risks

We comply with legal and regulatory standards by using a common dataset to construct the error
space rather than proprietary data. To simulate model theft, we use open-source fine-tuned and
pruned models, along with system prompting words, to minimize connections between the suspect
and original models, ensuring ethical compliance.

29

	Introduction
	Threat Model and Related Works
	Threat Model
	Traceability Methods
	Traceability Granularity

	Exploring the Potential of Error Space for Traceability
	Methodology of ErrorTrace
	Error Uniqueness Calculation
	Error Space Construction
	Suspect Model Inference

	Experiment
	Experimental Setup
	Effectiveness
	Impact of Dataset Size
	Out-Of-Distribution Model Detection
	Robustness
	Model Granularity Traceability

	ErrorTrace against Adversarial Attacks
	Limitations
	Limitations of Model Family Scale Differences
	Limitations of Error Data Collection Cost

	Conclusion
	Base Model
	ErrorTrace In Regression Case
	Reasoning Details
	Details of Out-Of-Distribution Detection
	Details of Changes in Average Error Rate

	Origins of Error Patterns and Their Root Causes for Traceability
	Parameter Selection
	Additional Notes and Experiments on Baseline
	LLMmap
	ProFlingo
	TRAP

	Explanation of the Limit on the Number of Models in the Family
	Llama Fine-Tuning Experiments
	Detailed Results for Known Scenarios in the Model Set
	Equipment information and time consumption
	Supplementary proof of error space as a traceability basis
	Prompt Template
	Multinli
	PAWS
	CoLA
	AG News
	CommonsenseQA

	Suspect Model Source
	Dataset Details
	Potential Risks

