
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VCOLRL: LEARN TO SOLVE THE VERTEX COLORING
PROBLEM USING REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present VColRL, a reinforcement learning framework designed to solve the
vertex coloring problem (VCP), where the objective is to assign colors to the ver-
tices of a graph with the minimum number of colors, such that no two adjacent
vertices share the same color. The framework is built on a novel Markov Deci-
sion Process (MDP) configuration to effectively capture the dynamics of the VCP,
developed after evaluating various MDP configurations. Our experimental results
demonstrate that VColRL achieves competitive performance in terms of using
fewer colors as compared to advanced mathematical solvers and other metaheuris-
tic approaches while being significantly faster. Additionally, our results show that
VColRL generalizes well across different types of graphs.

1 INTRODUCTION

Combinatorial optimization is a branch of mathematical optimization that focuses on identifying
the best solution from a finite collection of possibilities. Common examples of combinatorial op-
timization problems include the traveling salesman problem (TSP, (Voigt, 1831)), the maximum
independent set problem (MIS, (Miller & Muller, 1960)), and the vertex coloring problem (VCP,
(Birkhoff, 1912)). However, most combinatorial optimization problems are NP-hard, making find-
ing exact solutions in many real-world scenarios impractical.

Over the years, researchers have developed efficient heuristics (e.g. (Knuth, 1997)) to address these
problems. However, these heuristics are often problem-specific and require effective application of
domain knowledge. In addition to heuristic approaches, researchers have developed advanced op-
timization solvers such as the Gurobi Optimization Studio (Gurobi Optimization, 2023) and IBM
ILOG CPLEX Optimization Studio (IBM, 2024), which excel at finding exact solutions for com-
plex problems. These solvers utilize sophisticated mathematical techniques and algorithms, such
as branch-and-bound (Morrison et al., 2016) and cutting-plane methods (Lee et al., 2015), (Goffin
& Vial, 2002), to handle large-scale integer, and mixed-integer programming problems with high
precision. Despite their powerful capabilities, the compute and time required for these solvers to
find optimal solutions increase substantially as the problem size grows (Luppold et al., 2018).

An alternative approach to tackling complex optimization problems is through data-driven meth-
ods. These methods provide a simpler structure and do not require extensive domain expertise. By
leveraging Machine Learning, data-driven approaches focus on learning from data and performing
straightforward computations, such as matrix multiplications (Burkov, 2019). This simplicity often
results in significant time savings, as these techniques can process large datasets and yield solutions
more rapidly compared to traditional solvers for bigger problem instances. Over the past decades,
the rise of neural networks and advanced ML methods has further enhanced these data-driven tech-
niques, making them more powerful and versatile.

While supervised learning offers one path, obtaining labeled datasets can be challenging. As a
result, alternative methods are needed. Reinforcement learning presents a promising option as it
does not rely on labeled data. Instead, it frames the problem as a Markov Decision Process (MDP),
allowing the system to learn optimal strategies through iterative interactions with the environment
and feedback (Sutton & Barto, 2018), (Ernst & Louette, 2024).

Deep reinforcement learning (DRL), a subset of reinforcement learning, has gained prominence due
to its ability to handle high-dimensional state and action spaces using deep neural networks. DRL

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

combines reinforcement learning with deep learning to model complex environments and discover
intricate patterns that are difficult to capture with traditional methods (Lapan, 2020). By leveraging
deep neural networks, DRL can learn sophisticated policies and make decisions based on large and
complex datasets, further enhancing its effectiveness in solving complex optimization problems.
This approach has proven particularly useful in areas such as robotics (Morales et al., 2021), au-
tonomous systems (Kiran et al., 2021), and game playing (Dong et al., 2020), where it can achieve
remarkable performance by learning from interactions with the environment.

For graph-related problems, Graph Neural Networks (GNNs, (Scarselli et al., 2008)) provide a sig-
nificant advancement. GNNs are tailored to work with graph-structured data, capturing vertices’
intricate relationships and dependencies. They utilize a message-passing approach to collect infor-
mation from neighboring vertices and update the representation of each vertex accordingly. This
method allows GNNs to effectively model complex graph structures. Such capabilities are partic-
ularly beneficial for vertex coloring problems, where a deep understanding of graph topology is
crucial for achieving optimal color assignments. Furthermore, integrating GNNs with DRL can en-
hance their effectiveness by combining learned graph representations with reinforcement learning
strategies, thereby improving performance.

Our Contribution: This paper introduces VColRL, a novel reinforcement learning framework tai-
lored for solving the VCP using the the PPO (Schulman et al., 2017) algorithm in conjunction
with the GraphSAGE (Hamilton et al., 2017) architecture. VColRL leverages an episodic MDP
that models the dynamics of graph coloring by defining states, actions, transitions, and rewards.
Central to our approach is a novel reward strategy that treats the color set as ordered, penalizing
non-contiguous assignments to ensure unique and efficient solutions in terms of color usage. By
focusing on minimizing the highest-numbered color used, this strategy improves learning stability
and reduces ambiguities in the solution space.

In addition, we incorporate a detailed study of rollback mechanisms for conflict resolution. Unlike
prior methods (Ahn et al., 2020) that rely solely on hard rollback, we systematically evaluate both
hard and soft rollback methods to experimentally demonstrate that hard rollback provides superior
performance. Details about these rollbacks are discussed in section 3.1. Our framework also extends
the deferral action strategy, originally proposed by Ahn et al. (2020) for the Maximum Independent
Set (MIS) problem, to address the unique challenges of VCP. By deferring decisions for certain
vertices, the framework simplifies subproblems and enhances the agent’s ability to minimize color
usage. To the best of our knowledge, VColRL is the first framework to incorporate the deferral
action in the context of VCP.

Through an exhaustive evaluation of configurations combining different rollback strategies, reward
mechanisms, and action models, we identify the optimal design for the VCP. Extensive experiments
on synthetic graphs and benchmark datasets showcase that VColRL achieves competitive results
compared to state-of-the-art solvers and metaheuristic algorithms while maintaining significantly
lower computational costs. Furthermore, the framework demonstrates strong generalization across
graph types and scalability to larger problem instances, making it a robust solution for the VCP.

2 RELATED WORK

Vertex coloring problem is a well-known NP-hard combinatorial optimization problem (Garey &
Johnson, 1976). Exact solvers for this problem require exploring an exponentially large solution
space to guarantee optimality, which becomes computationally infeasible as the graph size grows
(de Lima & Carmo, 2018). Solutions to the vertex coloring problem can be categorized into two
main approaches: conventional methods and machine learning-based approaches.

Conventional Methods: This category includes approximation algorithms such as DSatur, Welsh-
Powell (Aslan & Baykan, 2016), as well as mathematical solvers like Gurobi and CPLEX, which
provide exact solutions but at a high computational cost, especially for large graphs. Additionally,
metaheuristic approaches such as Simulated Annealing, Genetic Algorithms, and Tabu Search are
commonly used for solving the VCP (Mostafaie et al., 2020), (Dokeroglu & Sevinc, 2021). They
are capable of generating high-quality and near-optimal results.

Machine Learning-Based Approaches: Several studies have used supervised learning for solving
the vertex coloring problem. Das et al. (2019) have introduced a supervised learning approach where

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a deep learning model, using Long Short-Term Memory layers followed by a correction phase, is
trained on optimal coloring of graphs to handle invalid color assignments. Over time, researchers
have recognized the need for graph-specific architectures to better address the complexities inherent
in vertex coloring problems. Lemos et al. (2019) has employed Graph Neural Networks (GNN)
(Scarselli et al., 2008) to predict the chromatic number of graphs, leveraging GNNs’ ability to cap-
ture graph structures. Similarly, Ijaz et al. (2022) has utilized GNNs to solve the vertex coloring
problem, focusing on efficiently finding the chromatic number of large graphs.

However, as graph sizes increase, obtaining ground truth solutions becomes impractical, leading to
the emergence of reinforcement learning as a promising solution. Huang et al. (2019) has adapted
AlphaGo Zero (Silver et al., 2017) with graph embeddings, introducing a novel deep neural network
architecture known as FastColorNet for the vertex coloring problem. Cummins & Veras (2024)
have highlighted the potential of RL to tackle the vertex coloring problem but also pointed out its
limitations without label-invariant representations. They have emphasized the importance of inte-
grating GNNs to enhance RL performance by providing essential structural insights. Gianinazzi
et al. (2021) has proposed a greedy combined probabilistic heuristic for the vertex coloring prob-
lem that integrates reinforcement learning and an attention mechanism (Vaswani, 2017) for vertex
selection. In their framework, they only used a terminal step reward based solely on color count.
Similarly, Watkins et al. (2023) introduced ReLCol, a method that combines Q-learning with GNN
for feature extraction.

The most closely related work is by Ahn et al. (2020), which applies reinforcement learning to the
MIS problem using the deferral action strategy. While effective for binary-state problems, their
framework does not naturally extend to the VCP, where permutations of color assignments result
in multiple equivalent solutions with the same number of colors, creating a non-unique solution
space that complicates learning and slows convergence. VColRL addresses these challenges with
a novel reward strategy that minimizes the highest-numbered color used, ensuring solution unique-
ness, improving learning stability, and accelerating convergence time. Although both works utilize
GraphSAGE (Hamilton et al., 2017) architecture, it is not central to VColRL’s approach. Graph-
SAGE serves as one of several possible architectural choices for capturing graph structure and can
be replaced with other graph neural network architectures without affecting the core contributions
of VColRL, which lie in its MDP design, reward strategies, and exhaustive evaluation of MDP con-
figurations. These elements, combined with the adaptation of the deferral action strategy proposed
by Ahn et al. (2020) to the multi-state complexities of VCP, set VColRL apart as a scalable and
effective solution for graph coloring.

3 FRAMEWORK FOR VERTEX COLORING PROBLEM

We now describe our framework for the VCP. Given a graph G = (V,W) with vertex set V and
edge set W, the objective is to assign colors to the vertices of a graph with the minimum number of
colors, so that no two adjacent vertices share the same color. In our approach to the VCP, we begin by
attempting to color the vertices using as few colors as possible from a set C = {1, 2, . . . , n}, where
n is initially assumed to be large enough to cover all vertices. If any vertices cannot be colored due
to constraints, they are temporarily left uncolored and addressed separately to complete the solution.
The resulting solution can be represented as a vector x = [xi : i ∈ V] ∈ ({0} ∪ C)V, where each
element xi either indicates the color assigned to vertex i from the set C or xi = 0 denotes that vertex
i has not been assigned any color.

3.1 MARKOV DECISION PROCESS FOR THE VCP

We model the VCP as a finite MDP, which terminates when either all vertices are colored or the time
limit (episode length) is reached.

The key components of the MDP are:

States: States represent the current configuration of the system. A state is represented by a vertex-
state vector s = [si : i ∈ V] ∈ ({∗, 0} ∪ C)|V|, where si ∈ C denotes the color assigned to vertex
i, and si = ∗ indicates that the vertex is undecided, meaning it is yet to be colored. Initially, all
vertices are undecided (si = ∗ for all i ∈ V). The process ends when no undecided vertices remain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

or the time limit is reached. After termination, any vertex i that remains undecided will be referred
to as uncolored and will be assigned si = 0.

Actions: Actions represent the decisions the agent makes for the undecided vertices. Let V∗ denote
the set of undecided vertices. We consider two models for action:

• Model with Deferral: In this model, the agent can either defer the decision for an undecided
vertex or assign it a color. This is represented by a∗ = [ai : i ∈ V∗] ∈ ({∗} ∪ C)|V∗|,
allowing the agent to delay coloring certain vertices and focus on smaller parts of the graph
first.

• Model without Deferral: In this model, the agent must assign a color to each undecided
vertex without the option to defer. This is represented by a∗ = [ai : i ∈ V∗] ∈ C|V∗|.

Transitions: Transitions define how the system moves from one state to another after an action is
taken. The transition from state s → s′ for action a∗ occurs in two phases: the update phase and
the clean-up phase.

Update Phase: The action a∗, determined by the policy for the undecided vertices V∗, is applied to
create an intermediate state ŝ. Specifically, ŝi = ai if i ∈ V∗, and ŝi = si otherwise.

Clean-up Phase: The clean-up phase ensures the resulting state s′ is conflict-free. For each pair of
conflicting vertices (i.e., vertices assigned the same color), we consider two rollback models:

• Hard Rollback Model: Both conflicting vertices are reset to the undecided state, providing
greater flexibility to revisit and resolve conflicts, though this may require more steps.

• Soft Rollback Model: Only the vertices involved in the latest action are reset to the un-
decided state, leaving previous assignments unchanged. This approach resolves conflicts
more quickly but offers fewer opportunities to adjust earlier assignments.

Rewards: The immediate reward for a transition s → s′ is a weighted combination of two terms,
namely vertex satisfaction reward and color usage penalty. Vertex satisfaction reward, representing
the increase in the number of assigned vertices, is measured as Sat(s′)− Sat(s), where Sat(s) =∑

i∈V I (si ∈ C), and I is the indicator function.

For the color usage penalty, we consider two models, both of which serve the same purpose of
minimizing color usage but represent the penalty in different ways:

• Max-color strategy: Penalizes based on the highest-numbered color assigned from C, de-
fined as:

UB(s) =

{
0, if si = ∗,∀i ∈ V,
max {si | si ∈ C;∀i ∈ V} , otherwise.

• Color-count strategy: Penalizes based on the total number of distinct colors used, defined
as

Count(s) =

{
0, if si = ∗,∀i ∈ V,
|{si | si ∈ C;∀i ∈ V}| , otherwise.

The max-color strategy encourages contiguous color assignment starting from the lowest-numbered
color in the set C since the penalty is determined solely by the highest-numbered color assigned.
In contrast, the color-count strategy penalizes based on the total number of distinct colors used,
regardless of their positions.

For a transition s → s′, the immediate reward using the max-color strategy is given by rs→s′ =
w1 · [Sat(s′)−Sat(s)] +w2 · [UB(s)−UB(s′)], whereas for the color-count strategy, the reward
is calculated similarly, with the UB function replaced by the Count function.

Since our objective is to ensure that all vertices are colored, we should prioritize increasing vertex
satisfaction reward over reducing the color usage penalty. This can be achieved by ensuring that the
weights satisfy w1 > w2. This choice is crucial because, for example, if w1 and w2 are equal, a
situation could arise where coloring one more vertex by using one new color results in a zero reward,
effectively making it equivalent to taking no action at all.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of the MDP for the VCP with w1 = 2 and w2 = 1. The red arrow represents
the final transition, the black arrow represents the update phase, and the blue arrow represents the
cleanup phase. The sum of elements in the tuples (vertex satisfaction reward, color usage penalty)
denotes the immediate reward for a transition, while the numerical value in the terminal state rep-
resents the total returns, calculated by summing the rewards of all transitions in the episode. The
vertices highlighted in yellow indicate the subgraphs where actions are taken, with the action vector
a ordered by vertices A, B, C, and D, maintaining the same vertex order within the subgraphs.

Illustrative example of VColRL’s underlying MDP: Figure 1 illustrates the vertex coloring pro-
cess for a graph with four vertices labeled A, B, C, and D. The initial state vector is [∗, ∗, ∗, ∗],
indicating that no vertices have been assigned colors yet. An action [1, 2, ∗, ∗] is taken, assigning
colors 1 and 2 to vertices A and B, respectively, resulting in the next state [1, 2, ∗, ∗]. This transition
yields a vertex satisfaction reward of w1×2 = 4, where w1 = 2 is the weight for vertex satisfaction,
and 2 vertices are satisfied. The color usage penalty is w2 ×−2 = −2, where w2 = 1 is the weight
for color usage, and 2 colors are used. This results in the tuple (4,−2), where 4 corresponds to the
weighted vertex satisfaction reward, and -2 corresponds to the weighted color usage penalty. The
total transition reward for this step is obtained by summing these values, yielding a reward of 2.
Subsequently, action [2, 1] is applied to the undecided vertices C and D, resulting in an intermediate
state of [1, 2, 2, 1]. This configuration leads to a conflict, requiring the application of rollback strate-
gies during the clean-up phase. Depending on the specific rollback strategy used, the transition will
proceed as follows:

In the hard rollback strategy, all vertices are reverted to the undecided state, resulting in a state vector
[∗, ∗, ∗, ∗] and a final tuple of (−4, 2). The reward and penalty are calculated based on reverting all
assignments. The action [1, 2, 1, 2] is then applied leading to the final state [1, 2, 1, 2] with a reward
tuple of (8,−2), giving a total episode return (i.e., the cumulative reward in that episode) of 6.

In contrast, the soft rollback strategy only reverts the newly assigned vertices, resulting in the state
[1, 2, ∗, ∗] and a tuple of (0, 0), indicating no additional reward or penalty from the reverted assign-
ments. The action [1, 2] is then applied to the remaining undecided vertices C and D, resulting in the
final state [1, 2, 1, 2] with a reward tuple of (4, 0), giving a total return of 6 for the episode.

3.2 TRAINING WITH PROXIMAL POLICY OPTIMIZATION FOLLOWING GRAPHSAGE
ARCHITECTURE

We use the Proximal Policy Optimization algorithm (PPO, (Schulman et al., 2017)) to train the agent
to solve the VCP problem. The objective for the actor is expressed as:

Lactor(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
where the subscript t denotes the time within the episode (trajectory), rt(θ) = π(at|st;θnew)

π(at|st;θold)
is the

probability ratio of the new policy to the old policy at time t, ϵ is a hyperparameter that defines the
clipping range to prevent large policy updates, Ât is the advantage which represents the difference

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

between the actual return and the estimated value of the state at time t. In addition, PPO also has
critic loss and we add entropy regularization to the total objective to encourage exploration. For a
detailed explanation of PPO equipped with entropy regularization, refer to Appendix A.3.

We use the GraphSAGE neural network architecture (Hamilton et al., 2017) for the policy and value
networks. As discussed in 3.1, our approach focuses on assigning colors to the undecided vertices
of the graph by considering their subgraph. Unlike works such as LwD (Ahn et al., 2020), where
the determined part of the graph is unaffected by new assignments, in the VCP, new assignments
can lead to conflicts with vertices that were colored in previous steps. Therefore, we design a vertex
feature that effectively conveys all the necessary information to the subgraph, enabling it to identify
which color assignments could lead to conflicts. Consequently, our vertex feature vector is of the
length of 1 + |C|, where |C| represents the number of colors in the set C. The first element of the
feature vector is set to 1 so that after feature aggregation in the GNN (Appendix A.2), it reflects
the vertex’s degree. The remaining |C| elements indicate the color usage status by the vertex’s
neighbors: 1 if none use the corresponding color, and -1 if one or more do.

For details about the actor and critic networks, model training, and hyperparameters, refer to Ap-
pendix A.2 and B.1.

3.3 ADDRESSING INCOMPLETE SOLUTIONS IN THE VCOLRL FRAMEWORK

The model is designed to output a color assignment for each vertex at each state, requiring the
learning of a probability distribution over a fixed set of colors. We set this color set length to 15.
VColRL begins with an initial set of 15 colors. An incomplete solution may occur either when the
time limit is reached before all vertices are colored, resulting in fewer than 15 colors being used, or
when all 15 colors are utilized but some vertices remain uncolored. In either case, the subgraph of
uncolored vertices is extracted, and the coloring process is restarted on the subgraph. This iterative
process continues until all vertices are successfully colored. The final color count is obtained by
summing the total number of colors used across all iterations.

4 PERFORMANCE EVALUATION OF VCOLRL

In this section, we outline the experiments conducted to assess the performance of our proposed
method for solving the VCP. For our experiments, we use an NVIDIA GeForce RTX 4090 GPU for
model training, with a 12th Gen Intel® Core™ i7-12700 processor featuring 20 cores. To assess
our model’s performance, we first test it on a diverse set of random synthetic graph types, including
Erdős-Rényi (ER, (Erdos et al., 1960)), Barabási-Albert (BA, (Albert & Barabási, 2002)), and Watts-
Strogatz (WS, (Watts & Strogatz, 1998)) graphs. Following this, we evaluate our algorithm on the
DIMACS and COLOR02 benchmark datasets (Trick, 2002-2004). We train the models using a
dataset of 15,000 Erdős–Rényi (ER) graphs with 50 to 100 vertices and an edge probability of 0.15.
This data set is divided into two parts: the first 14,000 graphs are used for training, while the last
1,000 graphs are used for validation with a time limit (episode length) value of 32.

4.1 BASELINES

For our experiments, we use four baselines to compare the performance of our approach. The first
baseline is a straightforward greedy coloring approach that colors the graph vertices in a sequen-
tial manner, ensuring that no two adjacent vertices share the same color. The second baseline is
TabucolMin, built on top of the Tabucol (Hertz & Werra, 1987) algorithm, which incorporates an
additional minimization step to refine the coloring. The third baseline is VColMIS, which can be
described as follows: given an input graph, we first find the MIS and color it with color ’1’, then
find the MIS on the remaining subgraph and color it with color ’2’, and so on. For solving the
MIS problem, we use the approach discussed in Ahn et al. (2020). Finally, the fourth baseline is
the Gurobi 11 solver (Gurobi Optimization, 2023). The details of these baselines are provided in
Appendix B.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Returns (b) Colors used

(c) Graph satisfaction (d) Critic loss

Figure 2: Performance of VColRL with different MDP configurations: The strategies used in our
framework are represented by the following abbreviations: H denotes hard rollback, S denotes soft
rollback, D denotes with deferral action, W denotes without deferral action, M denotes max-color
reward strategy, and C denotes color-count reward strategy, e.g., HDM denotes hard rollback with
deferral action and max-color reward strategy.

4.2 COMPARISON OF VARIOUS MDP CONFIGURATIONS

We first analyze all combinations of rollback models (soft rollback and hard rollback), action types
(with deferral and without deferral), and reward strategies (max-color and color-count), resulting in
a total of 8 configurations. This comprehensive analysis helps us determine the best MDP configu-
ration.

Figure 2a shows the expected return over (sum of rewards) epochs. Figure 2b illustrates the average
number of colors used, reflecting how color usage evolves during training. Figure 2c presents the
graph satisfaction percentage, indicating the proportion of validation graphs where all vertices are
satisfied. Additionally, Figure 2d shows the average critic losses, normalized independently. This
figure is intended to demonstrate the relative stability of variants’ critic loss during training, but the
relative values may not reflect the true loss levels since they are normalized independently. Together,
these figures offer a comprehensive view of the agent’s decision-making process, highlighting its
impact on color efficiency, graph satisfaction, and critic loss stability.

Figure 2a demonstrates that returns increase for all MDP configurations, indicating that the agent ef-
fectively learns to fulfill its objective. Similarly, Figure 2b shows a consistent decrease in the number
of colors used across epochs for all configurations, reflecting the agent’s ability to minimize color
usage. Among these, the HDM (hard rollback with deferral action and max-color reward strategy)
emerges as the best-performing configuration, achieving higher returns and using fewer colors on
average. This is particularly evident between epochs 150–300, where the blue line representing
HDM stands out by being above others in returns and below others in average colors used. In Fig-
ure 2c, all hard rollback configurations initially start with lower graph satisfaction values, gradually
increase to 100%, but differ in their post-convergence behavior. While HDM maintains full satis-
faction, demonstrating stability, other configurations begin to deteriorate, resulting in instability. In
contrast, the soft rollback configurations start with high graph satisfaction (near 100%), experience
significant drops, and then oscillate before recovering to approximately 90% in 300 epochs, imply-
ing slower convergence and longer training times. Not maintaining graph satisfaction indicates that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the agent fails to color all vertices within the allotted time limit. Despite this, Figure 2a shows that
returns remain relatively stable for such configurations, suggesting that only a few vertices per graph
are left uncolored. However, HDM consistently achieves full graph satisfaction, demonstrating its
ability to color graphs more efficiently within less time.

HDM emerges as the best configuration due to several key factors. First, the hard rollback mecha-
nism in HDM reverts both conflicting vertices to a deferred state, unlike soft rollback, which only re-
verts the newly assigned vertex. Since reinforcement learning relies on trial and error, hard rollback
offers greater flexibility, enabling the model to explore better solutions more effectively. Addition-
ally, the with deferral action strategy allows the agent to break the problem into simpler subproblems
by postponing some decisions to later timesteps. This mirrors human problem-solving, where cer-
tain vertices are addressed first to simplify the decision process in subsequent stages. Conversely, in
the without deferral action strategy, the agent is forced to make decisions immediately, regardless
of its confidence, which hinders its performance. Lastly, the max-color reward strategy treats the
color set as ordered, encouraging the agent to assign colors sequentially from the first color up to
k, ensuring the solution is unique in terms of the colors used. This contrasts with the color-count
strategy, where multiple optimal solutions can exist. For instance, if three colors are needed to color
a graph, under the color count strategy, both color assignments ‘1, 2, 3’ and ‘1, 2, 4’ will yield a
color usage penalty of 3. However, under the max-color reward strategy, the former will yield a
color usage penalty of 3, while the latter will incur a penalty of 4, ensuring a unique and contiguous
solution in terms of used colors in the trained model thereby reducing randomness in the learning
process by providing an organized and effective approach for the VCP.

In summary, HDM is an MDP configuration developed by combining our novel max-color reward
strategy with the deferral action strategy proposed by Ahn et al. (2020). This configuration outper-
forms others in terms of training time and graph coloring efficiency, making it the optimal choice.
Figure 2d supports this conclusion, as the critic loss trajectory for HDM demonstrates the highest
stability among all.

4.3 PERFORMANCE ACROSS DIFFERENT GRAPHS

We now use the best-performing MDP configuration to train VColRL. Further training details can
be found in Appendix B.1. Additionally, we train VColMIS on the same dataset using the hyper-
parameters suggested by Ahn et al. (2020). VColRL is evaluated on a diverse set of graph types
and sizes, including ER (Erdos et al., 1960), BA (Albert & Barabási, 2002), WS (Watts & Strogatz,
1998), and graphs from the DIMACS and COLOR02 benchmark datasets (Trick, 2002-2004). Since
this is a highly stochastic framework, we evaluate 500 samples per graph. To do this, we combine
500 disconnected instances of each graph into a single graph, which is then fed into the model. After
obtaining the output, we report the best solution. The execution time reported for VColRL in this
section includes all of these processes.

Table 1: Performance comparison across different synthetic graph types and vertex ranges: The
evaluation is conducted on 500 graphs for each of three ranges across the Erdős-Rényi (ER),
Barabási-Albert (BA), and Watts-Strogatz (WS) graphs. For each graph, Gurobi’s execution time
is limited to 10 seconds. Each entry in the table has two values: the first one represents the average
number of colors used in those graphs, whereas the second value denotes the average execution
time in seconds. The objectives of best-performing methods in terms of minimizing color usage are
boldfaced. In ER graphs, p is the probability of edge creation; in BA, n is the number of edges to
attach from a new vertex to existing vertices; whereas in WS, n is the number of nearest neighbors
to which each vertex is joined within a ring topology, and p is the probability of rewiring each edge.

Graph Type Vertex Range Greedy TabucolMin VColMIS Gurobi VColRL
ER (p=0.15) 50-100 7.574, 6e−5 5.266, 4.98 7.196, 0.56 5.320, 4.87 5.452, 0.89
ER (p=0.125) 100-150 9.392, 2e−4 6.240, 12.21 8.694, 0.72 6.65, 10.22 6.544, 1.95
ER (p=0.10) 150-200 10.066, 1e−4 6.556, 14.47 9.292, 0.73 7.288, 10.27 7.144, 1.43
BA (n=6) 50-100 6.666, 9e−5 6.072, 4.02 9.008, 0.62 5.986, 2.03 5.998, 1.02
BA (n=6) 100-150 6.846, 1e−4 6.254, 5.55 9.886, 0.76 6.028, 5.11 6.058, 1.70
BA (n=6) 150-200 6.916, 1e−4 6.384, 5.84 10.358, 0.81 6.045, 8.04 6.180, 2.77
WS (n=15, p=0.30) 50-100 8.778, 1e−4 6.574, 7.63 8.604, 0.67 6.838, 7.52 6.906, 1.70
WS (n=15, p=0.30) 100-150 8.902, 2e−4 6.466, 10.49 8.726, 0.75 7.241, 10.17 7.016, 2.46
WS (n=15, p=0.30) 150-200 8.976, 2e−4 6.496, 10.83 8.824, 0.86 7.763, 11.14 7.028, 3.73

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison across the DIMACS and COLOR02 benchmark dataset:
Gurobi’s time limit is set to 900 seconds. Each entry in the table has two values: the first one
represents the number of colors used, whereas the second value represents the execution time in
seconds. The best-performing algorithms in terms of using the least number of colors are boldfaced
for each graph.

Graph Type Vertices, Edges Greedy TabucolMin VColMIS Gurobi VColRL
ash331GPIA 662, 4181 10, 7e−4 4, 111.02 6, 0.49 4, 312.28 5, 5.35
ash608GPIA 1216, 7844 9, 1e−3 4, 254.72 6, 0.54 8, 900.00 5, 11.53
ash958GPIA 1916, 12506 10, 2e−3 4, 555.93 6, 0.56 9, 900.00 5, 19.37
DSJC125.1 125 , 736 8, 1e−4 5, 12.58 8, 0.50 5, 46.85 6, 1.12
DSJC125.5 125, 3891 26, 2e−4 18, 19.32 25, 1.52 19, 900.00 33, 19.59
DSJC125.9 125, 6961 56, 2e−4 44, 30.51 54, 2.92 45, 900.00 57, 78.21
DSJC250.1 250, 3218 13, 3e−4 8, 46.51 12, 0.80 9, 900.00 12, 16.07
DSJC250.5 250, 15688 43, 9e−4 29, 140.17 42, 6.55 41, 900.00 45, 162.55
DSJC250.9 250, 27897 99, 1e−3 73, 229.78 101, 5.15 90, 900.00 105, 639.27
1-FullIns 3 30, 100 8, 3e−5 4, 1.06 4, 0.22 4, 0.30 4, 0.35
1-FullIns 4 99 , 593 11, 1e−4 5, 2.20 5, 0.24 5, 19.27 5, 0.74
1-FullIns 5 282 , 3247 14, 5e−4 6, 8.84 6, 0.37 6, 900.00 6, 2.89
2-FullIns 3 52 , 201 10, 5e−5 5, 0.94 5, 0.16 5, 0.95 5, 0.49
2-FullIns 4 212 , 1621 14, 2e−4 6, 2.31 6, 0.27 6, 170.61 6, 2.40
2-FullIns 5 852 , 12201 18, 1e−3 7, 54.40 8, 0.40 7, 900.00 7, 15.40
3-FullIns 3 80 , 346 12, 7e−5 6, 1.04 6, 0.90 6, 2.33 6, 0.68
3-FullIns 4 405 , 3524 17, 6e−4 7, 4.46 7, 0.49 7, 421.08 7, 3.59
4-FullIns 3 114 , 541 14, 1e−4 7, 0.97 7, 0.38 7, 5.66 7, 1.13
4-FullIns 4 690, 6650 20, 6e−4 8, 15.04 8, 0.43 8, 900.00 8, 8.27
4-FullIns 5 4146, 77305 26, 9e−3 9, 1690.21 10, 0.71 9, 900.00 10, 64.16
5-FullIns 3 154, 792 16, 1e−4 8, 1.14 8, 0.34 8, 6.62 8, 1.69
1-Insertions 4 67 , 232 5, 5e−5 5, 0.62 5, 0.10 5, 44.15 5, 0.42
1-Insertions 5 202 , 1227 6, 2e−4 6, 1.24 6, 0.28 6, 900.00 6, 1.36
1-Insertions 6 607 , 6337 7, 9e−4 7, 12.78 7, 0.21 7, 900.00 7, 6.97
2-Insertions 3 37 , 72 4, 2e−5 4, 0.47 4, 0.18 4, 1.85 4, 0.34
2-Insertions 4 149 , 541 5, 1e−4 5, 0.73 5, 0.21 5, 900.00 5, 0.71
2-Insertions 5 597 , 3936 6, 6e−4 6, 6.31 7, 0.23 6, 900.00 6, 4.26
3-Insertions 3 56 , 110 4, 4e−5 4, 0.50 4, 0.13 4, 4.39 4, 0.36
3-Insertions 4 281 , 1046 5, 2e−4 5, 1.25 5, 0.21 5, 900.00 5, 1.39
3-Insertions 5 1406 , 9695 6, 1e−3 6, 35.57 7, 0.45 6, 900.00 6, 11.86
4-Insertions 3 79 , 156 4,5e−5 4, 0.52 4, 0.20 4, 17.44 4, 0.46
4-Insertions 4 475 , 1795 5, 3e−4 5, 2.23 5, 0.21 5, 900.00 5, 2.52
le450 5a 450 , 5714 14, 7e−4 5, 510.47 11, 0.88 10, 900.00 6, 15.96
le450 5b 450 , 5734 13, 7e−4 5, 542.17 12, 0.99 10, 900.00 6, 16.36
le450 5c 450 , 9803 17, 1e−3 5, 863.32 9, 1.08 8, 900.00 5, 14.72
le450 5d 450 , 9757 18, 1e−3 7, 39.22 11, 0.69 14, 900.00 5, 13.70
mug88 1 88 , 146 4, 5e−5 4, 0.50 4, 0.31 4, 2.25 4, 0.61
mug88 25 88 , 146 4, 5e−5 4, 0.52 4, 0.26 4, 1.16 4, 0.64
mug100 1 100 , 166 4, 6e−5 4, 0.53 4, 0.29 4, 0.52 4, 0.64
mug100 25 100 , 166 4, 6e−5 4, 0.54 4, 0.30 4, 0.53 4, 0.64
myciel3 11 , 20 4, 1e−5 4, 0.46 4, 0.14 4, 0.04 4, 0.27
myciel4 23 , 71 5, 2e−5 5, 0.63 5, 0.16 5, 0.50 5, 0.32
myciel5 47 , 236 6, 6e−5 6, 0.84 6, 0.47 6, 2.76 6, 0.65
myciel6 95 , 755 7, 1e−4 7, 1.29 7, 0.31 7, 900.00 7, 1.38
myciel7 191, 2360 8, 2e−3 8, 2.87 8, 0.61 8, 900.00 8, 4.12
queen5 5 25 , 160 8, 4e−5 5, 5.15 7, 0.45 5, 0.10 5, 0.51
queen6 6 36 , 290 11, 6e−5 7, 4.91 8, 0.51 7, 0.60 7, 1.87
queen7 7 49 , 476 10, 8e−5 7, 14.85 11, 0.75 7, 0.80 7, 2.94
queen8 8 64, 728 13, 1e−4 9, 10.53 11, 0.72 9, 22.67 10, 4.90
queen9 9 81, 1056 16, 1e−4 10, 14.46 13, 0.79 10, 900.00 12, 7.06
will199GPIA 701 , 6772 11, 9e−4 7, 19.16 10, 0.84 8, 900.00 7, 11.13

Performance on Synthetic Random Graphs: We record the performance of various algorithms
on different types of graphs in Table 1, comprising ER (Erdős-Rényi), BA (Barabási-Albert), and
WS (Watts-Strogatz) graphs. For each row in this table, we test 500 random graphs. We set a
time limit of 10 seconds for Gurobi, as it would otherwise continue searching for optimal solutions
for an extended period, making it impractical to evaluate a plethora of graphs within a reasonable
timeframe. The parameters of the graphs in each row are set so that VColRL does not take more
than 10 seconds.

From Table 1, we observe that VColRL consistently achieves a better objective by using fewer colors
than VColMIS and Greedy across all tested graph types and ranges, though it takes more time. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

comparison to Gurobi, VColRL performs better particularly for ER and WS graphs. For BA graphs,
the objective of VColRL does not surpass that of Gurobi due to the scale-free nature of these graphs.
Additionally, VColRL takes significantly less time than Gurobi across all graph types and ranges.
For ER, BA, and WS graphs, VColRL is 5-7×, 2-3×, and 3-4× faster, respectively. In comparison
to TabucolMin, VColRL outperforms in terms of minimizing color usage for BA graphs. For ER
and WS graphs, VColRL does not surpass TabucolMin; however, the difference in the objective is
minimal. Specifically, VColRL, on average, requires only 0.36 more colors for ER graphs and 0.48
more for WS graphs. Although TabucolMin achieves slightly better results for ER and WS graphs,
it requires significantly more computation time across all graph types. For ER, BA, and WS graphs,
VColRL is 6-10×, 2-4×, and 3-4× faster than Tabucol respectively.

Performance on DIMACS and COLOR02 Benchmark Dataset: The performance of various
algorithms on a subset of the DIMACS and COLOR02 benchmark dataset (Trick, 2002-2004) is
recorded in Table 2. Due to CPU limitations, we only analyze graphs with fewer than 5,000 vertices
and less than 100,000 edges. For Gurobi, the time limit is set to 900 seconds, so that it can spend
sufficient time to find the solution. In each row, we boldface the best-performing objectives in terms
of color usage.

For graphs excluding the DSJC family, VColRL perform better or is at least equivalent to VColMIS
and Greedy for all graphs in terms of using fewer colors. In comparison to Gurobi, VColRL uses
fewer or equivalent colors for ∼81% of the graphs. Similarly, when compared to TabucolMin,
VColRL uses fewer or equivalent colors for ∼73% of the graphs. In terms of execution time,
VColRL is significantly faster than Gurobi and TabucolMin for the majority of the graphs.

Generalization capability and scalability: From Table 2, we observe that in 37 out of 51 tested
graph instances (∼73% of the graphs), VColRL performs better or is at least equivalent to the base-
lines in terms of color usage. On the graphs where VColRL underperforms, the average number of
extra colors used as compared to the best-performing baseline, excluding the DSJC family, is 1.12 ,
while for the DSJC family, it is 13.5. VColRL is significantly faster than Gurobi and TabuColMin
while being slower than VColMIS and Greedy; they offer significantly better solution quality than
them. Overall, VColRL provides a balanced trade-off between execution time and solution quality,
making it a generalizable and scalable solution for most graphs, with the exception to the DSJC
family. The suboptimal performance on DSJC and other graphs can be attributed to the model being
trained only on the ER 50-100 dataset with an edge probability of 0.15.

5 CONCLUSION

In this paper, we propose VColRL, a deep reinforcement learning-based approach for solving the
VCP. Our method is built on a novel MDP framework, which introduces a reward mechanism de-
signed to minimize the highest-numbered color used from an ordered set. Through extensive ex-
perimentation, we show that VColRL outperforms or performs equivalently to the baselines like
VColMIS and Greedy in terms of color usage for most of the graph types, and performs com-
petitively with Gurobi and TabucolMin with a significant reduction in execution time. Although
VColRL faces challenges with the DSJC family of graphs, its generalization across other graph
types demonstrates its potential for graph coloring tasks.

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International conference on machine learning, pp. 134–144. PMLR, 2020.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Murat Aslan and Nurdan Akhan Baykan. A performance comparison of graph coloring algorithms.
International Journal of Intelligent Systems and Applications in Engineering, 4(Special Issue-1):
1–7, 2016.

George D Birkhoff. A determinant formula for the number of ways of coloring a map. Annals of
Mathematics, 14(1/4):42–46, 1912.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A. Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019. ISBN
9781999579517. URL https://books.google.co.in/books?id=0jbxwQEACAAJ.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020.

Chase Cummins and Richard Veras. Reinforcement learning for graph coloring: Understanding the
power and limits of non-label invariant representations. arXiv preprint arXiv:2401.12470, 2024.

Dibyendu Das, Shahid Asghar Ahmad, and Kumar Venkataramanan. Deep learning-based hybrid
graph-coloring algorithm for register allocation. arXiv preprint arXiv:1912.03700, 2019.

Alane Marie de Lima and Renato Carmo. Exact algorithms for the graph coloring problem. Revista
de Informática Teórica e Aplicada, 25(4):57–73, 2018.

Tansel Dokeroglu and Ender Sevinc. Memetic teaching–learning-based optimization algorithms for
large graph coloring problems. Engineering Applications of Artificial Intelligence, 102:104282,
2021.

Hao Dong, Hao Dong, Zihan Ding, Shanghang Zhang, and T Chang. Deep Reinforcement Learning.
Springer, 2020.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.
sci, 5(1):17–60, 1960.

Damien Ernst and Arthur Louette. Introduction to reinforcement learning. Feuerriegel, S., Hart-
mann, J., Janiesch, C., and Zschech, P.(2024). Generative ai. Business & Information Systems
Engineering, 66(1):111–126, 2024.

Michael R Garey and David S Johnson. The complexity of near-optimal graph coloring. Journal of
the ACM (JACM), 23(1):43–49, 1976.

Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, Maciej Besta, and Torsten Hoe-
fler. Learning combinatorial node labeling algorithms. arXiv preprint arXiv:2106.03594, 2021.

Jean-Louis Goffin and Jean-Philippe Vial. Convex nondifferentiable optimization: A survey focused
on the analytic center cutting plane method. Optimization methods and software, 17(5):805–867,
2002.

Gurobi Optimization. Gurobi optimizer reference manual, 2023. URL https://www.gurobi.
com. Version 11.0, Available at https://www.gurobi.com.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Alain Hertz and D de Werra. Using tabu search techniques for graph coloring. Computing, 39(4):
345–351, 1987.

Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Coloring big graphs with alphagozero. arXiv
preprint arXiv:1902.10162, 2019.

IBM. Ibm ilog cplex optimization studio, 2024. URL https://www.ibm.com/products/
ilog-cplex-optimization-studio.

Ali Zeeshan Ijaz, Raja Hashim Ali, Nisar Ali, Talha Laique, and Talha Ali Khan. Solving graph
coloring problem via graph neural network (gnn). In 2022 17th International Conference on
Emerging Technologies (ICET), pp. 178–183. IEEE, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

11

https://books.google.co.in/books?id=0jbxwQEACAAJ
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Donald Ervin Knuth. The art of computer programming, volume 3. Pearson Education, 1997.

M. Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL methods to practical prob-
lems of chatbots, robotics, discrete optimization, web automation, and more. Packt Publish-
ing, 2020. ISBN 9781838820046. URL https://books.google.co.in/books?id=
O0vODwAAQBAJ.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its im-
plications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 1049–1065. IEEE, 2015.

Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colouring meets deep learn-
ing: Effective graph neural network models for combinatorial problems. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 879–885. IEEE, 2019.

Arno Luppold, Dominic Oehlert, and Heiko Falk. Evaluating the performance of solvers for integer-
linear programming, 2018. URL http://tubdok.tub.tuhh.de/handle/11420/
1842.

Raymond E Miller and David E Muller. A problem of maximum consistent subsets. Technical
report, IBM Research Report RC-240, JT Watson Research Center, Yorktown Heights, NY, 1960.

Eduardo F Morales, Rafael Murrieta-Cid, Israel Becerra, and Marco A Esquivel-Basaldua. A survey
on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement
learning. Intelligent Service Robotics, 14(5):773–805, 2021.

David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell. Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Opti-
mization, 19:79–102, 2016.

Taha Mostafaie, Farzin Modarres Khiyabani, and Nima Jafari Navimipour. A systematic study
on meta-heuristic approaches for solving the graph coloring problem. Computers & Operations
Research, 120:104850, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Michael Trick. Color02/03/04 benchmark datasets. https://mat.tepper.cmu.edu/
COLOR02/, 2002-2004.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Bernhard Friedrich Voigt. Der handlungsreisende, wie er sein soll und was er zu thun hat, um
aufträge zu erhalten und eines glücklichen erfolgs in seinen geschäften gewiss zu sein. Commis-
Voageur, Ilmenau, pp. 69–72, 1831.

George Watkins, Giovanni Montana, and Juergen Branke. Generating a graph colouring heuristic
with deep q-learning and graph neural networks. In International Conference on Learning and
Intelligent Optimization, pp. 491–505. Springer, 2023.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

12

https://books.google.co.in/books?id=O0vODwAAQBAJ
https://books.google.co.in/books?id=O0vODwAAQBAJ
http://tubdok.tub.tuhh.de/handle/11420/1842
http://tubdok.tub.tuhh.de/handle/11420/1842
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://mat.tepper.cmu.edu/COLOR02/
https://mat.tepper.cmu.edu/COLOR02/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ABOUT VCOLRL FRAMEWORK

A.1 VCOLRL ARCHITECTURE

Figure 3 illustrates the architecture of VColRL, which consists of an agent and an environment.
The agent interacts with the environment by exploring different actions and stores key information,
including the state, action, reward, and episode termination status, in a replay buffer. The returns
and advantages (defined in Appendix A.3)are calculated using data from the replay buffer, which
are then utilized by the optimizers as feedback to minimize the total objective function (defined in
Appendix A.3).

Figure 3: Architecture of VColRL

A.2 GRAPHSAGE ARCHITECTURE

The GNN component in Figure 3 follows the GraphSAGE architecture (Hamilton et al., 2017),
illustrated in Figure 4, where the vertex feature vectors are represented using solid arrows, while the
flow of information is depicted with regular arrows. It has three modules: Neighborhood Sampling,
Feature Aggregation and Concatenation, and Transformation.

In the Neighborhood Sampling module, each vertex samples a few of its neighboring vertices for
aggregating their features to be able to capture the information about its neighborhood, but before
sampling, the vertex features are normalized by multiplying each feature vector by the inverse square
root of the vertices’ degree. This normalization helps in stabilizing the learning process. Graph-
SAGE typically allows for sampling a subset of neighboring vertices; however, in our approach, we
sample the entire neighborhood. This ensures that all relevant vertices are considered for efficient
processing, which is essential for accurate feature aggregation.

In the Feature Aggregation and Concatenation module, the features of the sampled vertices are ag-
gregated and normalized again. The aggregated features are then concatenated with the original
vertex features, resulting in a feature vector that is twice the length of the input vector. This helps to
retain the information about the vertex and its neighborhood, providing a comprehensive represen-
tation for further processing.

In the Transformation module, the concatenated and aggregated features (represented as a matrix
with the number of rows equals the number of vertices in the graph) are multiplied by a weight
matrix, followed by the addition of a bias matrix. Both these matrices are learnable components of
our model. An activation function is then applied to produce the final output, enabling the model to
capture complex relationships in the data. The final output feature vectors then become the input for
the next layer, allowing the model to propagate information through multiple layers.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: GraphSAGE architecture

A.3 PROXIMAL POLICY OPTIMIZATION WITH ENTROPY REGULARIZATION

The optimizer component in Figure 3 uses the Proximal Policy Optimization algorithm (PPO,
(Schulman et al., 2017)) to train the agent to solve the VCP problem. PPO is an actor-critic-based
reinforcement learning algorithm that employs two parameterized networks: the policy network
π(at | st; θ) and the value network V (st;ω), where θ and ω are the parameters of the function
estimators. In our case, these are Graph Neural Networks with GraphSAGE (Hamilton et al., 2017)
architecture as shown in Figure 4. For more details on the policy and value network architecture,
refer to Appendix B.1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The policy network π(at | st; θ) provides the probabilities of selecting an action at, given a state st
at time t. The action is determined by sampling from this probability distribution.

On the other hand, the value network V (st;ω) estimates the expected return Eπ[Gt | st, ω] from the
current state st, where Gt is defined as the discounted sum of future rewards:

Gt =

∞∑
k=1

γkrt+k

Here, rt+k denotes the reward received at time t + k, and γ is the discount factor that balances the
importance of immediate versus future rewards.

Additionally, PPO uses the advantage function to improve the policy. The advantage function Ât is
defined as the difference between the actual return and the estimated value of the state:

Ât = Gt − V (st;ω)

The objective function of PPO involves maximizing a surrogate loss function to improve the policy
while ensuring stability. The objective function can be expressed as:

Lactor(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
where rt(θ) = π(at|st;θnew)

π(at|st;θold)
is the probability ratio of the new policy to the old policy, and ϵ is a

hyperparameter that defines the clipping range to prevent large policy updates.

In addition to the policy loss, we have critic loss and entropy regularization to guide the training
process. The critic loss is responsible for training the value network V (st;ω) by minimizing the
difference between the predicted value from the value network and the actual return from memory.
This is done using a squared error loss between the value estimate and the discounted return Gt. The
critic loss function is given by:

Lcritic(ω) = Et

[
(V (st;ω)−Gt)

2
]

The entropy regularization term is added to encourage exploration and prevent premature conver-
gence to suboptimal policies. The entropy of the policy π(at | st; θ) measures the uncertainty of
the action selection and is defined as:

H(π(at | st; θ)) = −
∑
at

π(at | st; θ) log π(at | st; θ)

For using an optimizer that works by minimizing an objective function, we must adjust the signs
of the actor loss and the entropy term accordingly. The actor loss should be negated because we
want to maximize the policy objective, while the critic loss remains as it is, as we want to minimize
the value estimation error. The entropy term is subtracted to maximize exploration by encouraging
higher entropy.

Thus, the total minimization objective function for PPO, combining the actor loss, critic loss, and
entropy regularization, is given by:

Ltotal(θ, ω) = −c1Lactor(θ) + c2Lcritic(ω)− c3H(π(at | st; θ))

where c1, c2, and c3, ∈ R+ are hyperparameters that control the balance between actor loss, critic
loss, and entropy regularization.

In summary, the actor learns to adjust the policy to increase the probability of selecting actions in a
state for which the advantage is maximized, thereby promoting actions that yield higher returns. The
critic loss helps the agent predict the returns from states, while the entropy regularization encourages
the exploration of action space, leading to more robust policies.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 MODEL TRAINING AND HYPERPARAMETERS

In our experiments, we train the model using a dataset of 15,000 Erdős–Rényi (ER) graphs with
50 to 100 vertices and an edge probability of 0.15. This data set is divided into two parts: the first
14,000 graphs are used for training, while the last 1,000 graphs are used for validation.

Both the actor and critic networks consist of four layers, each with a hidden dimension of 128. ReLU
is used as the activation function. The input to both the actor and critic networks is a feature vector
described in Section 3.2. We train the model for 300 epochs using the ADAM optimizer (Kingma,
2014). Although this might seem excessive, validation statistics continue to improve even after
200 epochs, i.e., the average number of colors kept decreasing while satisfying all vertices. This is
because vertex coloring is a challenging task in reinforcement learning, and extended training helps
the model learn more effectively. Figures 2b and 2c demonstrate this improvement in validation
metrics during the training period. The best-performing model is determined based on its ability to
completely satisfy all validation dataset graphs while utilizing the least number of colors.

The model configurations and hyperparameters are selected through manual tuning and insights
from prior works on similar problems. The number of layers is determined empirically by testing
various configurations to avoid the over-smoothing issue commonly observed in Graph Neural Net-
works due to excessive message passing (Chen et al., 2020). After experimentation, we settle on
four layers. For the number of neurons per layer, we test values of 16, 32, 64, 128, and 256, finding
that increasing the number beyond 128 does not lead to performance improvements. For hyperpa-
rameters, we start with values suggested by Ahn et al. (2020) for the MIS problem and then explore
nearby ranges. After evaluating various combinations, the final set of hyperparameters available in
Table 3 is selected.

Table 3: Hyperparameters used for training.

Hyperparameter Value
Episode Length/ Time Limit 32
Replay buffer size 32
Batch size 32
Batch size for gradient step 16
Number of gradient steps per update 4
Actor loss coefficient 1
Critic loss coefficient 0.25
Entropy regularization coefficient 0.01
Learning rate of optimizer 0.0001
Gradient Norm 1
Discount factor for PPO 1
Clip Value for PPO 0.2
Vertex satisfaction reward weight 2
Color usage penalty weight 1

B.2 NORMALIZATION OF REWARDS

Since our immediate reward is the weighted sum of the vertex satisfaction reward and the color
usage penalty, we normalize each component by dividing it by a relevant factor before computing
the sum. Specifically, the vertex satisfaction reward is divided by the number of vertices, and the
color usage penalty is divided by the number of colors in set C. This ensures that both components
are scaled appropriately and that neither dominates the reward function. Though it is possible to
apply an additional normalization step after combining the two components, we do not apply further
normalization in our approach.

B.3 IMPLEMENTATION OF BASELINES

B.3.1 GREEDY COLORING

This baseline assigns colors to vertices in a sequential manner, ensuring that no two adjacent vertices
share the same color. The algorithm works by iterating through each vertex and selecting the smallest

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Greedy Coloring

1: V ← Number of vertices in Graph
2: result← array of length V initialized with -1
3: result[0]← 0
4: available← array of length V initialized with True
5: max− color← 0
6: for each vertex u ranging from 1 to V − 1 do
7: for each neighbor i of vertex u in Graph do
8: if result[i] ̸= −1 then
9: available[result[i]]← False

10: end if
11: end for
12: cr← 0
13: while cr < V do
14: if available[cr] == True then
15: break
16: end if
17: cr← cr + 1
18: end while
19: result[u]← cr
20: if cr > max− color then
21: max− color← cr
22: end if
23: available← array of length V initialized with True //resetting available colors
24: end for
25: return max− color +1

available color that has not been assigned to its neighboring vertices. The pseudocode for this is
available in Algorithm 1.

B.3.2 TABUCOLMIN

Algorithm 2 TabucolMin

1: Graph← Input-Graph
2: N − Colors← 15
3: solution← 0
4: coloring ← list of size num− vertices in Graph, initialized with −1
5: Tabu− list− length← 6
6: max− iteration← 100000
7: while N − Colors ≥ 1 do
8: is − colorable, coloring ← Tabucol(Graph, N − Colors, Tabu − list − length, max −

iteration)
9: if is− colorable then

10: solution← N − Colors
11: N − Colors← N − Colors− 1
12: else if solution == 0 then
13: N − Colors← N − Colors+ 15
14: else
15: return solution, coloring
16: end if
17: end while

This algorithm is an iterative metaheuristic designed to minimize the number of colors required to
properly color a graph, leveraging the Tabucol algoithm as a subroutine. Hertz & Werra (1987)
contains the pseudocode and details about the Tabucol algorithm. TabucolMin begins with an initial

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

color count, typically set to 15, and attempts to color the graph. If the graph can be successfully
colored with the current number of colors, the algorithm reduces the color count by one and retries.
Conversely, if the color count cannot be reduced further and no solution has yet been found, the
algorithm increases the color count by 15 to expand the search space and retries whereas if the
color count cannot be reduced further and a solution has been found, the process stops. Crucially,
the reported runtime accounts only for the search space where a solution was successfully found,
excluding any computational effort expended in unsuccessful attempts, such as the initial trials with
fewer colors. This ensures that the timing reflects only the effective search for the minimal coloring
solution. Algorithm 2 presents the pseudocode for this baseline.

B.3.3 VCOLMIS

Algorithm 3 VColMIS

1: num− colors← 0
2: Graph← Input-Graph
3: while Graph is not empty do
4: mis← Compute-MIS-RL(Graph)
5: if mis is not empty then
6: num− colors← num− colors+ 1
7: else
8: num− colors← num− colors+ num-vertices(Graph)
9: break

10: end if
11: Graph← remove vertices present in mis set(Graph, mis)
12: end while
13: return num− colors

VColMIS is based on the Maximum Independent Set (MIS) strategy. In this approach, the vertices
in the MIS set are colored with the same color. A subgraph is then created from the remaining
uncolored vertices, and the process is repeated by finding a new MIS and assigning another color.
This process continues iteratively until all vertices in the graph are colored. For the MIS part, we
train the RL-based model described by Ahn et al. (2020) on the same dataset used to train our
model. This model takes a graph as input and outputs its maximum independent set. We call this
model Compute-MIS-RL. Algorithm 3 contains the pseudocode for this approach.

B.3.4 GUROBI 11 SOLVER

Given a color set C and graph G = (V,W), we use the Gurobi 11 Optimizer (Gurobi Optimization,
2023) to solve the following integer linear programming model for the vertex coloring problem.

Minimize
|C|∑
c=1

zc

subject to xv,c + xu,c ≤ zc, ∀(u, v) ∈W, ∀c ∈ C
|C|∑
c=1

xv,c = 1, ∀v ∈ V

xv,c ∈ {0, 1}, zc ∈ {0, 1}, ∀v ∈ V, ∀c ∈ C

Here, xv,c is a binary variable that indicates whether vertex v is assigned color c, and zc is a binary
variable that indicates whether color c is used in the solution.

The algorithm starts with an initial color set size of 15 and iteratively increases the size by 15 if the
solver fails to find a feasible solution. The reported runtime includes only the computational effort
spent in the search space where a solution is successfully found, excluding any time spent on earlier,
unsuccessful attempts with smaller color sets.

18

	Introduction
	Related Work
	Framework for Vertex Coloring Problem
	Markov Decision Process for the VCP
	Training with Proximal Policy Optimization following GraphSAGE architecture
	Addressing Incomplete Solutions in the VColRL Framework

	Performance Evaluation of VColRL
	Baselines
	Comparison of various MDP Configurations
	Performance across different graphs

	Conclusion
	ADDITIONAL DETAILS ABOUT VCOLRL FRAMEWORK
	VColRL Architecture
	GraphSAGE Architecture
	Proximal Policy Optimization with entropy regularization

	Additional Experimental Details
	Model Training and Hyperparameters
	Normalization of Rewards
	Implementation of baselines
	Greedy Coloring
	TabucolMin
	VColMIS
	Gurobi 11 Solver

