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Abstract

We study the problem of online sequential decision-making given auxiliary1

demonstrations from experts who made their decisions based on unobserved con-2

textual information. These demonstrations can be viewed as solving related but3

slightly different tasks than what the learner faces. This setting arises in many4

application domains, such as self-driving cars, healthcare, and finance, where ex-5

pert demonstrations are made using contextual information, which is not recorded6

in the data available to the learning agent. We model the problem as a zero-7

shot meta-reinforcement learning setting with an unknown task distribution and a8

Bayesian regret minimization objective, where the unobserved tasks are encoded9

as parameters with an unknown prior. We propose the Experts-as-Priors algo-10

rithm (ExPerior), an empirical Bayes approach that utilizes expert data to estab-11

lish an informative prior distribution over the learner’s decision-making problem.12

This prior enables the application of any Bayesian approach for online decision-13

making, such as posterior sampling. We demonstrate that our strategy surpasses14

existing behaviour cloning and online algorithms, as well as online-offline base-15

lines for multi-armed bandits, Markov decision processes (MDPs), and partially16

observable MDPs, showcasing the broad reach and utility of ExPerior in using17

expert demonstrations across different decision-making setups.18

1 Introduction19

Reinforcement learning (RL) has found success in complex decision-making tasks, spanning areas20

such as game playing [1, 2, 3], robotics [4, 5], and aligning with human preferences [6]. However,21

RL’s considerable sample inefficiency, necessitating millions of training frames for convergence,22

remains a significant challenge. A notable body of work within RL has been dedicated to integrating23

expert demonstrations to accelerate the learning process, employing strategies like offline pretraining24

[7] and the use of combined offline-online datasets [8, 9]. While these approaches are theoretically25

sound and empirically validated [10, 11], they typically presume homogeneity between the offline26

demonstrations and online RL tasks. A vital question arises regarding the effectiveness of these27

methods when expert data embody heterogeneous tasks, indistinguishable by the learner.28

An important example of such heterogeneity is in situations where experts operate with additional29

information not available to the learner, a scenario previously explored in imitation learning with30

unobserved contexts [12, 13, 14, 15]. Existing literature either relies on the availability of experts to31

query during training [16, 17, 18, 19] or focuses on the assumptions that enable imitation learning32

with unobserved contexts, sidestepping online reward-based interactions [20, 21]. Recent contribu-33

tions by Hao et al. [22, 23] suggest the utilization of offline expert data for online RL, albeit without34

accounting for unobserved contextual variations.35

Our work addresses the more general challenge of online sequential decision-making given auxiliary36

offline expert data with unobserved heterogeneity. We view such demonstrations as solving related37

Submitted to the Automated Reinforcement Learning Workshop at ICML 2024. Do not distribute.



Task 1

Task 2

Task N

Goal

Expert

Parametric or 
Max Entropy 

Prior

Algorithm 
Prior/Posterior

Bayesian 
Agent

Environment 

History

Update

Goal (Unknown Task)

Step 1: Expert 
Demonstrations

Step 2: Learning 
the Prior

Step 3: Reinforcement 
Learning

Task Specific Variables

Task Specific Variables

Task Specific Variables

DE = {(s,a, s′), . . .}

.

.

.

µθ⋆

c ∼ µME (·|history)

a ∼ πc (·|s)

(s,a, s′, r)

? ∈ {      ,      , … ,     }

or µME
or c ∼ µME (·|history)

Figure 1: Illustration of ExPerior in a goal-oriented task. Step 1 (Offline): The experts demonstrate their
policies for related but different tasks while observing the goal type. Step 2 (Offline): The expert data DE only
contains the trajectories states/actions — goal types are not collected. We form a parametric or nonparametric
max-entropy prior distribution over tasks using DE. Step 3 (Online): The goal type is unknown but drawn from
the same distribution of goals in Step 1. The learner uses the learned prior for posterior sampling.

yet distinct tasks from those faced by the learner, where differences remain invisible to the learner.38

For instance, in a personalized education scenario, while a learning agent might access observable39

characteristics like grades or demographics, it might remain oblivious to factors such as learning40

styles, which are visible to an expert teacher and can significantly influence teaching methods. A41

naı̈ve imitation learning algorithm without access to this ”private” information will only learn a42

single policy for each observed characteristic [24], leading to sub-optimal decisions. On the other43

hand, a purely online approach will require extensive trial and error to result in meaningful decisions.44

We integrate offline expert data with online RL, treating the scenario as a zero-shot meta-45

reinforcement learning (meta-RL) problem with an unknown distribution over tasks (unobserved46

factors). Unlike typical meta-RL frameworks where the learner is exposed to multiple tasks during47

training (different students in our example) to learn the underlying task distribution [25, 26].48

Contributions: We define a Bayesian regret minimization objective and consider different tasks as49

parameters under an unknown prior distribution. We use empirical Bayes to derive an informative50

prior over the decision-making task from expert data. We use the learned prior distribution to drive51

exploration in the online RL task, using approaches like posterior sampling [27]. We propose two52

procedures to learn such a prior: (1) a parametric approach that can utilize any existing knowledge53

about the parametric form of the prior distribution, and (2) a nonparametric approach that employs54

the principle of maximum entropy when such prior knowledge does not exist. We call our frame-55

work Experts-as-Priors or ExPerior for short (see Figure 1). ExPerior outperforms existing offline,56

online, and offline-online baselines in multi-armed bandits, Markov decision processes (MDPs),57

and partially observable MDPs. For multi-armed bandits, we find the Bayesian regret incurred by58

ExPerior is proportional to the entropy of the optimal action under the prior distribution, aligning59

with the entropy of expert policy if the experts are optimal. We introduce a frequentist algorithm for60

multi-armed bandits and prove a Bayesian regret bound proportional to a term that closely resembles61

the entropy of the optimal action. Our results suggest using the entropy of expert demonstrations to62

evaluate the impact of unobserved factors.63

2 Related Work64

Our work is an addition to the recent body of reinforcement learning research that leverages of-65

fline demonstrations to speed up online learning [28, 10, 29, 7, 9]. Classic algorithms such as66

DDPGfD [30] and DQfD [31] achieve this by combining imitation learning and RL. They modify67

DDPG [5] and DQN [1] by warm-starting the algorithms’ replay buffers with expert trajectories68

and ensuring that the offline data never gets overridden by online trajectories. Closely related to69

our study is the meta-RL literature, which aims to accelerate learning in a given RL task by using70

prior experience from related tasks [32, 33, 34]. These papers present model-agnostic meta-learning71

training objectives to maximize the expected reward from novel tasks as efficiently as possible.72

Two unique features distinguish our problem from the settings considered above. First, our setting73

assumes heterogeneity within the offline data and with the online RL task that is unobserved to the74
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learner, while the (optimal) experts are privy to that heterogeneity. Second, we assume the learner75

will only interact with one online task, making our setup similar to zero-shot meta-RL [35, 36, 37].76

Most similar to our work is the ExPLORe algorithm [38], which assigns optimistic rewards to the77

offline data during the online interaction and runs an off-policy algorithm using both online and78

labelled offline data as buffers. For our setting, the algorithm incentivizes the learner to explore the79

expert trajectories, leading to faster convergence. We consider this work one of our baselines.80

Our methodology utilizes only the state-action trajectory data from expert demonstrations without81

task-specific information or reward labels. Other similar methods require additional offline informa-82

tion. For example, Nair et al. [29] assume that the offline data contains the reward labels and use that83

to pre-train a policy, which is then fine-tuned online. Mendonca et al. [39] require task labelling for84

each trajectory and use the offline data to learn a single meta-learner. Similarly, Zhou et al. [40] and85

Rakelly et al. [41] require the task label and reward labels. They then infer the task during online86

interaction and use the task-specific offline data. Finally, our methodology builds on posterior sam-87

pling [42]. Hao et al. [22, 23] consider a similar problem using posterior sampling to leverage offline88

expert demonstration data to improve online RL. However, they assume homogeneity between the89

expert data and online tasks. In contrast, our setting accounts for heterogeneity.90

3 Problem Setup91

Decision Model for Unobserved Heterogeneity of Tasks. To account for unobserved heterogene-92

ity, we consider a generalization of finite-horizon Markov Decision Processes (MDPs) with a notion93

of probabilistic task variables [43, 13, 21]. The MDP’s underlying model will additionally depend94

on an unobserved task variable that encapsulates some information about the specific task. In a95

personalized education setup where teaching a student corresponds to a task, and the learning agent96

can observe students’ characteristics, like their demographic status and grades. Other factors, such97

as the student’s learning style (e.g., visual learners vs self-study), may not be readily available, even98

though they are important in determining the optimal teaching style.99

Let C be the set of all unobserved variables that can describe the heterogeneity of potential tasks100

(e.g., the set of all possible learning styles). A (contextual) MDP M = (S,A, T , R,H, ρ, µ⋆) is101

parameterized by states S, actions A, transition function T : S × A× C → ∆(S), reward function102

R : S × A × C → ∆(R), horizon H > 0, initial state distribution ρ ∈ ∆(S), and task distribution103

µ⋆. We assume the transition/reward functions and µ⋆ are unknown, and for simplicity, ρ does not104

depend on the task variable. For each task c ∼ µ⋆, we consider T episodes, where at the beginning105

of each episode t ∈ [T ], an initial state s1 ∼ ρ is sampled. Then, at each timestep h ∈ [H], the106

learner chooses an action ah ∈ A, observes a reward rh ∼ R (sh, ah, c) and the next state sh+1 ∼107

T (sh, ah, c). Without loss of generality, we assume the states are partitioned by [H] to make the108

notation invariant to timestep h. Let Π be the set of all Markovian policies. For a policy function109

π : S → ∆(A) ∈ Π and task variable c, we define the value function Vc (π) = E
[∑H

h=1 rh

∣∣∣ π, c]110

and the Q-function as Qπ
c (s, a) := E

[∑H
h′=h rh′

∣∣∣ sh = s, ah = a, π, c
]

for all s ∈ S, a ∈ A.111

Moreover, we define the optimal policy for a task variable c ∈ C as πc := argmaxπ∈Π Vc (π). Note112

that since the task variable is unobserved, the learner’s policy will not depend on it. The learning113

agent’s goal is to learn history-dependent distributions p1, . . . , pT ∈ ∆(Π) over Markovian policies114

to minimize the expected regret, defined as Reg := Ec∼µ⋆

[∑T
t=1 Vc(πc)− Eπt∼pt [Vc(π

t)]
]
.115

The above setup assumes a fixed distribution µ⋆ over the set of learning styles and aims to minimize116

expected regret over the population of students. Our setup and regret assume the unobserved factors117

remain fixed during training. This captures scenarios wherein the unobserved variables correspond118

to less-variant factors (a student’s learning style is more likely to remain unchanged). No learn-119

ing algorithm can control the regret value if we allow the unobserved factors to change arbitrarily120

throughout T episodes without access to hidden information. Consider a two-armed bandit with121

a task value drawn with uniform probability from C = {c1, c2} and can change at each episode.122

Assume the expected reward of the first arm under c1 and c2 is one and zero, respectively, and it is123

reversed for the other arm. Any algorithm that does not have access to c would result in linear regret124

since each action is sub-optimal with a probability of 0.5, independent of the algorithm’s choice.125

Remark. Our setup can be formulated as a Bayesian model parameterized by C, and our regret126

can be seen as the Bayesian regret of the learner. However, the distribution µ⋆ is not the learner’s127

prior belief about the true model as it is often formulated in Bayesian learning, but a distribution128
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over potential tasks that the learner can encounter. Our setup can thus be seen as a meta-learning129

problem. In fact, it is zero-shot meta-learning since we do not assume having access to more than130

one online task during training — we only learn the prior distribution using the offline data.131

Expert Demonstrations. In addition to the online setting described above, we assume the learner132

has access to an offline dataset of expert demonstrations DE, where each demonstration τE =133

(s1, a1, s2, a2, . . . , sH , aH , sH+1) refers to an interaction of the expert with a decision-making task134

during a single episode, containing the actions made by the expert and the resulting states. We as-135

sume that the unobserved task-specific variables forDE are drawn i.i.d. from distribution µ⋆, and the136

expert had access to such unobserved variables (private information) during their decision-making.137

Moreover, we assume the expert follows a near-optimal strategy [22, 23].138

Assumption 1 (Noisily Rational Expert). For any c ∈ C, experts select actions based on a dis-139

tribution defined as pE (a | s ; c) ∝ exp {β ·Qπc
c (s, a)}, for all s ∈ S, a ∈ A, and some known140

competence value of β ∈ [0,∞]. In particular, the expert follows the optimal policy if β →∞.141

We assume experts do not provide any rationale for their strategy, nor do we have access to rewards142

in the offline data; this is a combination of imitation and online learning rather than offline RL.143

4 Experts-as-Priors Framework for Unobserved Heterogeneity144

Our goal is to leverage offline data to help guide the learner through its interaction with the decision-145

making task. The key idea is to use expert demonstrations to infer a prior distribution over C and then146

to use a Bayesian approach such as posterior sampling [27] to utilize the inferred prior for a more147

informative exploration. If the current task is from the same distribution of tasks in the offline data,148

we expect that using such priors will lead to faster convergence to optimal trajectories compared to149

the commonly used non-informative priors. Consider the personalized education example. Suppose150

we have gathered offline data on an expert’s teaching strategies for students with similar observed151

information like grade, age, location, etc. The teacher can observe more fine-grained information152

about the students that is generally absent from the collected data (e.g., their learning style). Our153

work relies on the following observation: The space of the optimal strategies for students with154

similar observed information but different learning styles is often much smaller than the space of all155

possible strategies. With the inferred prior distribution, the learner needs only to focus on the span of156

potentially optimal strategies for a new student, allowing for significantly more efficient exploration.157

We resort to empirical Bayes and use maximum marginal likelihood estimation [44] to construct a158

prior distribution from DE. Given a probability distribution (prior) µ on C, the marginal likelihood159

of an expert demonstration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE is given by160

PE (τE ; µ) = Ec∼µ

[
ρ(s1) ·

H∏
h=1

pE (ah | sh ; c) T (sh+1 | sh, ah, c)
]
. (1)

We aim to find a prior distribution to maximize the log-likelihood ofDE under the model described in161

(1). This is equivalent to minimizing the KL divergence between the marginal likelihood PE and the162

empirical distribution of expert demonstrations, which we denote by P̂E. In particular, we form an163

uncertainty set over the set of plausible priors as P(ϵ) :=
{
µ ; DKL

(
P̂E

∥∥∥ PE (· ; µ)
)
≤ ϵ
}

, where164

the value of ϵ can be chosen based on the number of samples so the uncertainty set contains the165

true prior with high probability [35]. However, the set of plausible priors does not uniquely identify166

the appropriate prior. In fact, even for ϵ = 0, P(ϵ) can have infinite plausible priors. To solve this167

ill-posed problem, we propose two approaches, parametric and nonparametric prior learning.168

Parametric Experts-as-Priors. For settings where we have existing knowledge about the paramet-169

ric form of the prior, we can directly apply maximum marginal likelihood estimation to learn it. In170

particular, we define the parametric expert prior as the following. Note that we can calculate the171

gradients of the marginal likelihood using the score function estimator [45].172

Definition 1 (Parametric Expert Prior). Let Θ be a set of plausible prior distribution parameters173

(e.g., Beta distribution parameters for a Bernoulli bandit). We call µθ⋆ a parametric expert prior, iff174

θ⋆ ∈ argminθ∈Θ

∑
τ∈DE

− log PE (τ ; µθ).175

Nonparametric Experts-as-Priors. For settings where there is no existing knowledge on the para-176

metric form of the prior, we can employ the principle of maximum entropy to choose the least177

informative prior that is compatible with expert data:178
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Definition 2 (Max-Entropy Expert Prior). Let µ0 be a non-informative prior on C (e.g., a uniform179

distribution). Given some ϵ > 0, we define the maximum entropy expert prior µME as the solution180

to the following optimization problem:181

µME = argmin
µ

DKL (µ ∥ µ0) s.t. µ ∈ P(ϵ). (2)

182 Note that the set of plausible priors P(ϵ) is a convex set, and therefore, (2) is a convex optimization183

problem. We derive the solution to problem (2) using Fenchel’s duality theorem [46, 47]:184

Proposition 1 (Max-Entropy Expert Prior). Let N = |DE| be the number of demonstrations in DE.185

For each c ∈ C and demonstration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE, define mτE(c) as186

the (partial) likelihood of τE under c, i.e., mτE(c) =
∏H

h=1 pE (ah | sh ; c) T (sh+1 | sh, ah, c).187

Denote m(c) ∈ RN as the vector with elements mτE(c) for τE ∈ DE. Moreover, let λ⋆ ∈ R≥0 be188

the optimal solution to the Lagrange dual problem of (2). Then, the solution to optimization (2) is:189

µME(c) = lim
n→∞

exp
{
m(c)⊤αn

}
Ec∼µ0 [exp {m(c)⊤αn}]

,

where {αn}∞n=1 is a sequence converging to the following supremum:190

sup
α∈RN

− logEc∼µ0

[
exp

{
m(c)⊤α

}]
+

λ⋆

N

N∑
i=1

log

(
N · αi

λ⋆

)
. (3)

The proof is provided in Appendix A.3. Instead of solving for λ⋆, we set it as a hyperparameter191

and then solve (3). Even though Proposition 1 requires the correct form of Q-functions for different192

values of c, we will see in the following sections that we can parameterize the Q-functions and treat193

those parameters as a proxy for the unobserved factors. Once such a prior is derived, we can employ194

any Bayesian approach for the decision-making task. We provide a pseudo-algorithm for ExPerior195

in Appendix B. The following sections will detail the algorithm for bandits and MDPs.196

5 Learning in Bandits197

K-armed Bandits. For K-armed bandits, note that S = ∅, H = 1, and A = {1, . . . ,K}. Each198

expert demonstration τE = a will be the pulled arm by the expert for a particular bandit, and the199

(partial) likelihood function in Proposition 1 can be simplified as mτE(c) = pE (a ; c). This likeli-200

hood function only depends on the task variable c through the expert policy pE, and since pE only201

depends on c through the mean reward function (Assumption 1), we can consider the set of mean202

reward functions as a proxy for the unobserved task variables C. e.g. in a Bernoulli K-armed bandit203

setting, we can define CBer =
{
a 7→ ⟨ea,ϑ⟩ ; ϑ ∈ [0, 1]K

}
.204

Stochastic Contextual Bandits. In contextual bandits, the state space S is the set of contexts and205

H = 1. Therefore, the likelihood function for a demonstration τE = (s, a) will be mτE(c) =206

pE (a | s ; c). Like K-armed bandits, the likelihood function only depends on c through the expert207

policy. Therefore, we can similarly define the set of mean reward functions as the proxy for the208

unobserved task variables. For instance, we can consider the task parameters for linear contextual209

bandits as CLin =
{
(s, a) 7→ ⟨ϕ (s, a) ,ϑ⟩ ; ϑ ∈ Rd

}
, for a known feature function ϕ : S×A → Rd.210

Posterior Sampling. With the above parameterizations of C, we can use Proposition 1 to derive211

the maximum entropy prior distribution over the task parameters. However, we cannot sample from212

the exact posterior since the derived prior is not a conjugate prior for standard likelihood functions.213

Instead, we resort to approximate posterior sampling via stochastic gradient Langevin dynamics214

(SGLD) [48]. We call this method ExPerior-MaxEnt in our experiments. We also employ a215

parametric approach as discussed in section 4, which we call ExPerior-Param. In particular, we216

use the Beta distribution as our prior model and learn the parametric expert prior in Definition 1.217

ExPerior-Param has an advantage over ExPerior-MaxEnt since it provides exact posterior sam-218

pling for Bernoulli bandits.219

We aim to evaluate our approach compared to other baselines, including online methods that do220

not use expert data and offline behaviour cloning. We provide an empirical regret analysis for221

ExPerior based on the informativeness of expert data, number of actions, and number of training222

episodes. We also discuss the robustness of ExPerior to misspecified expert models and the advan-223

tage of ExPerior-MaxEnt to ExPerior-Param when the parametric prior model is misspecified.224

To characterize the effect of expert data on the learner’s performance, we propose an alternative for225

K-armed bandits inspired by the successive elimination and derive a Bayesian regret bound for it.226
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Figure 2: The Bayesian regret of ExPerior and baselines for K-armed Bernoulli bandits (K = 10). We consider
three categories of task distributions based on the entropy of the optimal action.

Experiments. We consider K-armed Bernoulli bandits for our experimental setup (code: https:227

//anonymous.4open.science/r/ExPerior-0773). We evaluate the learning algorithms in228

terms of the Bayesian regret over multiple task distributions µ⋆. We consider up to Nµ⋆ = 64229

different beta task distributions, where their parameters are chosen to span a different range of het-230

erogeneity, consisting of tasks with various expert data informativeness. To estimate the Bayesian231

regret, we sample Ntask = 128 bandit tasks from each task distribution and calculate the average232

regret. We use NE = 1000 expert demonstrations for each task distribution in our experiments. We233

compare ExPerior to the following baselines: (1) Behaviour cloning (BC), which learns a policy by234

minimizing the cross-entropy loss between the expert demonstrations and the agent’s policy solely235

based on offline data. (2) Naı̈ve Thompson sampling (Naı̈ve-TS) that chooses the action with the236

highest sampled mean from a posterior distribution under an uninformative prior. (3) Naı̈ve upper237

confidence bound (Naı̈ve-UCB) algorithm that selects the action with the highest upper confidence238

bound. Both Naı̈ve-TS and Naı̈ve-UCB ignore expert demonstrations. (4) UCB-ExPLORe, a variant239

of the algorithm proposed by Li et al. [38] tailored to bandits. It labels the expert data with opti-240

mistic rewards and then uses it alongside online data to compute the upper confidence bounds for241

exploration, and (5) Oracle-TS, which performs exact Thompson sampling having access to the242

true task distribution µ⋆. For a more fair comparison, we also consider a variant of Oracle-TS,243

which uses SGLD for approximate posterior sampling.244

Comparison to baselines. Figure 2 demonstrates the average Bayesian regret for various task distri-245

butions over T = 1500 episodes with K = 10 arms. To better understand the effect of expert data,246

we categorize the task distributions by the entropy of their optimal actions into low entropy (less247

than 0.8), high entropy (greater than 1.6), and medium entropy. Oracle-TS and ExPerior-Param248

outperform other baselines, yet the performance of ExPerior is comparable to the SGLD variant249

of Oracle-TS. This indicates that the maximum entropy prior derived from Proposition 1 closely250

approximates the true task distribution, µ⋆, with the performance difference with Oracle-TS is251

primarily due to approximate posterior sampling. Moreover, the pure online algorithms Naı̈ve-TS252

and Naı̈ve-UCB, which disregard expert data, display similar performance across different entropy253

levels, contrasting with other algorithms that show significantly reduced regret in low-entropy con-254

texts. This underlines the impact of expert data in settings where the unobserved confounding has255

less effect on the optimal actions. Specifically, in the extreme case of no task heterogeneity, BC256

is anticipated to yield optimal performance. Additionally, Naı̈ve-UCB surpasses UCB-ExPLORe in257

medium and high entropy settings, possibly due to the over-optimism of the reward labelling in Li258

et al. [38], which can hurt the performance when the expert demonstrations are uninformative.259

Empirical regret analysis for Experts-as-Priors. We examine how the quality of expert demon-260

strations affects the Bayesian regret achieved by Algorithm 2. Settings with highly informative261

demonstrations, where unobserved factors minimally affect the optimal action, should exhibit near-262

zero regret since there is no diversity in the tasks, and the experts are near-optimal. Conversely,263

in scenarios where unobserved factors significantly influence the optimal actions, we anticipate the264

regret to align with standard online regret bounds, similar to the outcomes of Thompson sampling265

with a non-informative prior. We conduct trials with ExPerior and Oracle-TS across various num-266

bers of arms over T = 1500 episodes, calculating the mean and standard error of Bayesian regret267

across distinct task distributions. As depicted in Figure 3 (a), both ExPerior and Oracle-TS yield268

sub-linear regret relative to K and T , comparable to the established regret bound of O(
√
KT ) for269

Thompson sampling. However, the middle panel indicates that the regret of ExPerior is proportional270

to the entropy of the optimal action, having an almost linear relationship. This observation seems to271

be in contrast with the standard Bayesian regret bounds for Thompson sampling under correct prior272

that have shown a sublinear relationship of O
(√

Ent(πc)
)

, where Ent(πc) denotes the entropy of273

the optimal action under µ⋆ [49]. We analyze this observation more concretely below.274
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Figure 3: (a) Empirical analysis of ExPerior’s regret in Bernoulli bandits based on the (left) number of arms,
(middle) entropy of the optimal action, and (right) number of episodes. (b) The regret bound from Theorem 2
V.S. the entropy of the optimal action. The linear relationship is consistent with the middle panel of (a).

Ablations. We run additional experiments in Appendix C.1 to assess the robustness of ExPerior to275

misspecified experts. We create expert data from different experts with various competence levels,276

such as optimal, noisily rational, and random-optimal experts, where the latter chooses an action op-277

timally with a fixed probability and randomly otherwise. Table 2 in the appendix shows ExPerior’s278

robustness to different expert models. With β = 10 for training ExPerior-MaxEnt and β = 1279

for ExPerior-Param achieves consistent out-performance among different expert types. We eval-280

uate the advantage of learning nonparametric max-entropy prior over misspecified parametric pri-281

ors in Table 3. Even though ExPerior-Param with Beta model outperforms ExPerior-MaxEnt,282

ExPerior-MaxEnt is superior to ExPerior-Param if the prior is chosen as Gaussian or Gamma.283

An Alternative Frequentist Approach for K-armed Bandits To analyze the effect of expert284

data on the Bayesian regret, we devise an alternative frequentist approach, based on the successive285

elimination algorithm [50], which follows a similar intuition to Experts-as-Priors. In particular, we286

prove a bound on its Bayesian regret and show that the derived bound is proportional to a term that287

closely resembles the entropy of the optimal action, showing that the observation in the middle panel288

of Figure 3 (a) is consistent within different approaches.289

The idea of successive elimination is to identify suboptimal arms and deactivate them over time. In290

particular, it runs a uniform sampling policy among active arms and builds confidence intervals for291

each. It then deactivates all the arms with an upper confidence bound smaller than at least one arm’s292

lower confidence bound. We modify this algorithm using the policy derived from expert demonstra-293

tions instead of a uniform sampling policy. Recall that in K-armed bandits, each expert trajectory294

τE represents the pulled arm by the expert. Hence, the empirical distribution of expert demonstra-295

tions can be seen as a sampling policy over different arms. The concrete algorithm is provided in296

Algorithm 1 in Appendix A.4. We now provide a Bayesian regret bound of this algorithm.297

Theorem 2. Consider a stochasticK-armed bandit and let p be the empirical expert policy. Assume298

that (i) the mean reward function is bounded in [0, 1] for all arms, (ii) T ≥ 1
mina;p(a)̸=0 p(a) , (iii) the299

expert is optimal, i.e., ∀a ∈ A : p(a) = PE (a ; µ
⋆) and β → ∞, and (iv) the learner follows300

Algorithm 1. Then, with probability at least 1− δ,301

Reg ≲
√

T log (TK/δ)
∑

a,a′∈A,a̸=a′

√
p(a)

p(a) + p(a′)

(
1− p(a)

p(a) + p(a′)

)[√
p(a) +

√
p(a′)

]
. (4)

See Appendix A.4 for the proof. Two terms in (4) depend on expert data: (1) The relative standard302

deviation between any two pairs of arms and (2) a scaling factor that depends on the magnitude of303

probability that the arms are optimal. For homogeneous demonstrations, where the expert data only304

includes one unique pulled arm, the standard deviation (Term 1) is zero, resulting in zero regret. On305

the other hand, in extreme heterogeneity, where the empirical expert distribution is uniform over the306

arms, we have Reg ≲
√
KT log T , a similar bound for standard successive elimination. Finally, to307

assess the relationship between the regret bound and the entropy of the expert data, we fix K = 2,308

T = 100, and plot the bound from (4) as a function of the entropy of the optimal action for various309

task distributions. Figure 3 (b) demonstrates a linear relationship, similar to the regret incurred by310

ExPerior in Figure 3 (a). This observation opens up new directions to further analyze the theoretical311

regret for ExPerior and propose similar frequentist approaches for MDPs.312

6 Learning in Markov Decision Processes (MDPs)313

For MDPs, we need to parameterize both the mean reward and transition functions. However, we314

assume the transition functions are invariant to the task variables to simplify our methodology and315
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Table 1: The average reward per episode in Frozen Lake (PODMP) after 90,000 training steps.

Fixed # Hazard = 9 Fixed β = 1

β = 0.1 β = 1 β = 2.5 β = 10 # Hazard = 2 # Hazard = 5 # Hazard = 7 # Hazard = 9

ExPerior-MaxEnt -22.58 ± 1.17 6.00 ± 0.00 3.58 ± 0.89 1.62 ± 1.85 11.47 ± 0.52 5.71 ± 0.67 6.00 ± 0.00 6.00 ± 0.00
ExPerior-Param -23.32 ± 0.69 -4.31 ± 1.80 5.27 ± 0.51 6.00 ± 0.00 12.00 ± 0.37 2.11 ± 1.41 5.42 ± 0.40 -4.31 ± 1.80
Naı̈ve Boot-DQN -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -14.36 ± 5.88 -20.57 ± 2.91 -20.39 ± 1.75 -23.32 ± 0.69
ExPLORe 5.99 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 -30.68 ± 12.40 -10.64 ± 16.64 -13.00 ± 19.00 6.00 ± 0.00
Optimal 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 12.00 ± 0.37 6.53 ± 0.31 6.00 ± 0.00 6.00 ± 0.00

avoid extra modelling assumptions. Under this assumption, it is sufficient to parameterize the opti-316

mal Q-functions, e.g., using a deep Q-network (DQN) and treat those parameters as a proxy for the317

task variables, i.e., CMDP := {(s, a) 7→ Q (s, a ; θ) ; θ ∈ Θ}, where Θ is the set of parameters for a318

DQN. We can then derive a closed-form log-pdf of the posterior distribution under the maximum en-319

tropy prior. See Appendix A.5 for details. The derived posterior log-pdf can then be used as the loss320

function for DQN Langevin Monte Carlo [51, 52] as the counterpart for Thompson sampling with321

SGLD. However, running Langevin dynamics can lead to highly unstable policies due to the com-322

plexity of the optimization landscape in DQNs. Instead of sampling from the posterior distribution,323

we use a heuristic that combines the learned prior distribution with bootstrapped DQNs [53].324

The original method of Bootstrapped DQNs utilizes an ensemble of L randomly initialized Q-325

networks. It samples a Q-network uniformly at each episode and uses it to collect data. Then,326

each Q-network is trained using the temporal difference loss on parts of or possibly the entire327

collected data. This method and its subsequent iterations [54, 55, 56] achieve deep exploration328

by ensuring diversity among the learned Q-networks. To incorporate Bootstrapped DQN into329

the ExPerior framework and utilize the expert data, we can formulate the ensemble as a discrete330

prior distribution over the Q-networks. Let θens =
(
θ1
ens, . . . ,θ

L
ens

)
be the parameter vector331

for an ensemble of Q-functions. We can define the ensemble prior, parameterized by θens, as332

µθens
(θ) := 1

L

∑L
i=1 I

(
θi
ens = θ

)
for any θ ∈ Θ. Based on this prior model, we can learn the333

parametric expert prior using maximum marginal likelihood estimation, as formulated below.334

Proposition 3 (Ensemble Marginal Likelihood). Consider a contextual MDP M =335

(S,A, T , R,H, ρ, µ⋆). Assume the transition function T does not depend on the task variables336

and Assumption 1 holds. Then, the negative marginal log-likelihood of expert data DE under the337

ensemble prior µθens is upper bounded by338

− log PE (DE ; µθens) ≤
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)
,

where β is the competence level of the expert in Assumption 1.339

Proposition 3 is proved in Appendix A.6. We can then initialize the Q-networks in the Bootstrapped340

DQN method using ensemble parameters that minimize the above upper bound. We will refer to this341

method as ExPerior-Param. As an alternative approach, instead of minimizing the above upper342

bound, we can match the discrete prior distribution µθens
to the max-entropy prior by initializing343

the Q-functions in the ensemble with parameters sampled from the max-entropy expert prior. In344

particular, we can apply SGLD on the log-pdf of the max-entropy prior derived in Appendix A.5.345

We will refer to this approach as ExPerior-MaxEnt.346

Experimental Setup. A main challenge in RL is the reward sparsity, where the learner needs347

to explore the environment deeply to observe reward states. Utilizing expert demonstrations can348

significantly improve the efficiency of exploration. For this reason, we focus on ”Deep Sea,” a349

sparse-reward tabular RL environment proposed by Osband et al. [55] to assess deep exploration for350

different RL methods. The environment is an M ×M grid, where the agent starts at the top-left351

corner of the map, and at each time step, it chooses an action from A = {left, right} to move to352

the left or right column, while going down by one row. In the original version of Deep Sea, the goal353

is always on the bottom-right corner of the map. We introduce unobserved task variables by defining354

a distribution over the goal columns while keeping the goal row the same. We consider four types of355

goal distributions where the goal is situated at (1) the bottom-right corner of the grid, (2) uniformly at356

the bottom of any of the right-most M
4 columns, (3) uniformly at the bottom of any of the right-most357

M
2 columns, and (4) uniformly at the bottom of any of theM columns. We setM = 30 and generate358

N = 1000 samples from the optimal policies as offline expert demonstrations. To further evaluate359

ExPerior and showcase its applicability to partially-observed MDP, we also consider the ”Frozen360
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Figure 4: The average reward per episode over 2,000 episodes in ”Deep Sea.” The goal is located at the right
column, uniformly at the right-most quarter of the columns, uniformly at the right-most half, and uniformly at
random over all the columns, respectively. ExPerior outperforms the baselines in all instances.
Lake” environment, which requires the learner to navigate to a goal while avoiding hazards [17].361

The learner cannot observe the hazard location, while the expert has access to the whole map. Taking362

action, reaching the goal, and hitting the hazard incur rewards of -2, 20, and -100, respectively. The363

frozen lake map is 5×5, where the hazard (weak ice) is randomly located in the interior squares. We364

consider different settings with 2, 5, 7, and 9 potential locations for the hazard. At the start of each365

episode, the hazard will be chosen randomly within the potential locations. We generate N = 1000366

samples from noisily rational experts with different competence levels for this environment. See367

Appendix C.2 for the MDP experiments in Frozen Lake experiments.368

Baselines. We compare ExPerior to the following baselines. (1) ExPLORe, proposed by Li et al. [38]369

to accelerate off-policy reinforcement learning using unlabeled prior data. In this method, the offline370

demonstrations are assigned optimistic reward labels generated using the online data with regular371

updates. This information is then combined with the buffer data to perform off-policy learning.372

(2) Naı̈ve Boot-DQN, which is the original implementation of Bootstrapped DQN with randomly373

initialized Q-networks [53]. The latter baseline is purely online.374

Deep Sea Results. Figure 4 demonstrates the average reward per episode achieved by the baselines375

for T = 2000 episodes. For each goal distribution, we run the baselines with 30 different seeds and376

take the average to estimate the expected reward. ExPerior outperforms the baselines in all instances.377

However, the gap between ExPerior and the fully online Naı̈ve Boot-DQN, which measures the ef-378

fect of using the expert data, decreases as we go from the low-entropy setting (upper left) to the379

high-entropy task distribution (bottom right). This is consistent with the empirical and theoretical380

results discussed in section 5 and confirms our expectation that the expert demonstrations may not381

be helpful under strong unobserved confounding (strong task heterogeneity). The ExPLORe base-382

line substantially underperforms, even compared to the fully online Naı̈ve Boot-DQN (except for383

the first task distribution with zero-entropy). We suspect this is because ExPLORe uses actor-critic384

methods as its backbone model, which are shown to struggle with deep exploration [57].385

Frozen Lake Results. We run all the baselines for 90,000 steps with 30 different seeds. Table 1386

shows the average reward after 500 evaluation steps at the end of the training. ExPerior outperforms387

the baselines in almost all instances except for the case of β = 0.1, which corresponds to a nearly388

random expert. On the other hand, ExPLORe achieves near-optimal results for β = 0.1. We hypoth-389

esize that ExPLORe’s performance is mainly due to the superiority of their base actor-critic model390

since it can achieve near-optimal performance even when the expert trajectories are low-quality.391

7 Conclusion392

We introduce the Experts-as-Priors (ExPerior) framework, a novel empirical Bayes approach, to393

address the problem of sequential decision-making using expert demonstrations with unobserved394

heterogeneity. We ground our methodology in the maximum entropy principle to infer a prior dis-395

tribution from expert data that guides the learning process in both bandit settings and Markov De-396

cision Processes (MDPs). This advantage underscores the utility of our approach in contexts where397

the learner faces uncertainty and variability in task parameters, a common challenge in real-world398

applications from autonomous driving to personalized learning environments. Our work contributes399

to the understanding of leveraging expert demonstrations under unobserved heterogeneity and offers400

a practical framework readily applied to a broad spectrum of decision-making tasks. We provide a401

principled way to incorporate the wealth of information contained in expert behaviours, thus opening402

new avenues for research in meta-reinforcement learning. One limitation of our work is the limited403

set of experiments, especially those with human-in-the-loop. Future directions include extending to404

more complex environments, and further investigating our RL algorithm’s theoretical properties.405
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A Proofs575

A.1 Notation576

We assume C is a measurable set with an appropriate σ-algebra and there exists a probability measure577

µ0 on C. We denote Lp(C, µ0) as the space of all measurable functions f : C → R such that578

∥f∥p =
(∫

C |f |p dµ0

)1/p
< ∞. Moreover, we define L∞(C, µ0) as the space of all essentially579

bounded measurable functions from C to R. Unless stated otherwise, we assume the probability580

measures are absolutely continuous w.r.t. µ0, and their density functions are in L1(C, µ0). We581

may abuse the notation and use the same symbol for a probability measure and its Radon–Nikodym582

derivative w.r.t. µ0. Finally, we use E [·] to denote expectation under the probability measure µ0.583

A.2 Useful Lemmas584

Here, we state and prove a set of results that will be useful for the rest of this section. The first one585

is Fenchel’s duality theorem:586

Lemma 4 (Fenchel’s Duality [58]). Let X and Y be Banach spaces, let f : X → R ∪ {+∞} and587

g : Y → R ∪ {+∞} be convex functions and let A : X → Y be a bounded linear map. Define the588

primal and dual values p, d ∈ [−∞,+∞] by the Fenchel problems589

p = inf
x∈X

f(x) + g(Ax)

d = sup
y∗∈Y ∗

−f∗(A∗y∗)− g∗(−y∗),

where f∗ and g∗ are the Fenchel conjugates of f and g defined as f∗(x∗) = supx∈X ⟨x∗, x⟩−f(x)590

(similarly for g), X∗ is the dual space of X and ⟨·, ·⟩ is its duality pairing, and A∗ : Y ⋆ → X⋆ is591

the adjoint operator of A, i.e., ⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩. Suppose A dom(f) ∩ cont(g) ̸= ∅, where592

dom(f) := {x ∈ X ; f(x) <∞} and cont(g) are the continuous points of g. Then, strong duality593

holds, i.e., p = d.594

Proof. See the proof of Theorem 4.4.3 in Borwein and Zhu [58].595

We can use Fenchel’s duality to solve generalized maximum entropy problems. In particular, we596

prove a generalization of Theorem 2 in [47] for density functions in L1(C, µ0):597

Lemma 5. For any function µ ∈ L1(C, µ0), define the extended KL divergence as598

ψ(µ) :=

{
DKL (µ ∥ µ0) If ∥µ∥1 = 1,

+∞ o.w.

Moreover, assume a set of bounded feature functions m1,m2, . . . ,mN : C → R is given and denote599

m as the vector of all N features. Consider the linear function Am : L1(C, µ0)→ RN defined as600

∀µ ∈ L1(C, µ0) : Am(µ) := (E [m1 · µ] ,E [m2 · µ] , . . . ,E [mN · µ]) .
We define the generalized maximum entropy problem as the following:601

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) , (5)

for an arbitrary closed proper convex function ζ : RN → R. Then the following holds:602

1. The dual optimization of (5) is given by603

sup
α∈RN

− logE
[
exp

{
m⊤α

}]
− ζ∗ (−α) , (6)

where ζ⋆ is the convex conjugate function of ζ.604

2. Denote α1,α2, . . . as a sequence in RN converging to supremum (6), and define the fol-605

lowing Gibbs density functions606

µα
Gibbs (c) :=

exp
{
m(c)⊤α

}
E [exp {m⊤α}] .

Then,607

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) = lim
n→∞

ψ(µαn

Gibbs) + ζ
(
Am(µαn

Gibbs)
)
.
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Proof. Part 1: We first derive the convex conjugate of ψ. Note that
(
L1(C, µ0)

)⋆
= L∞(C, µ0)608

with the pairing609

∀h ∈ L∞(C, µ0), µ ∈ L1(C, µ0) : ⟨h, µ⟩ :=
∫
C
h(c) · µ(c) dµ0.

Hence, by Donsker and Varadhan’s variational formula610

∀h ∈ L∞(C, µ0) : ψ
⋆(h) = sup

µ∈L1(C,µ0)

⟨h, µ⟩ − ψ(µ) = logE [exp {h}] . (7)

Moreover, the adjoint operator of Am is given by A⋆
m : RN → (C → R):611

∀α ∈ RN , c ∈ C : A⋆
m (α) (c) = m (c)

⊤
α. (8)

Using (7) and (8) and Lemma 4 concludes the proof.612

Part 2: Denote the primal and dual objective functions by613

P (µ) := ψ(µ) + ζ (Am(µ)) ,

D(α) := − logE
[
exp

{
m⊤α

}]
− ζ∗ (−α) ,

and their optimal values as P ∗ and D∗. For any ν ∈ L1(C, µ0), note that614

DKL (ν ∥ µ0)−DKL (ν ∥ µα
Gibbs) =

∫
C
ν log ν dµ0 −

(∫
C
ν log ν dµ0 −

∫
C
ν logµα

Gibbs dµ0

)
=

∫
C

(
m(c)⊤α

)
ν(c) dµ0 − logE

[
exp

{
m⊤α

}]
= Am(ν)⊤α− logE

[
exp

{
m⊤α

}]
. (9)

Using (9), we can re-write the dual objective function as:615

∀α ∈ RN , ν ∈ L1(C, µ0) : D(α) = −DKL (ν ∥ µα
Gibbs) + DKL (ν ∥ µ0)−Am(ν)⊤α− ζ⋆(−α).

(10)

Moreover, note that616

−Am(ν)⊤α− ζ⋆(−α) = −Am(ν)⊤α−
(
sup
x
⟨x,−α⟩ − ζ(x)

)
≤ −Am(ν)⊤α−

(
⟨Am(ν),−α⟩ − ζ(Am(ν))

)
= ζ(Am(ν)). (11)

Combining (10) and (11), we get617

∀α ∈ RN , ν ∈ L1(C, µ0) : D(α) ≤ −DKL (ν ∥ µα
Gibbs) + DKL (ν ∥ µ0) + ζ(Am(ν))

= −DKL (ν ∥ µα
Gibbs) + P (ν). (12)

Now, fix an arbitrary ϵ > 0, and consider a sequence of µ1, µ2, . . . ∈ L1(C, µ0) such that for all618

j ∈ N:619

P (µj)− P ∗ <
ϵ

2j
. (13)

We can re-write (13) using the fact P ∗ = D∗ = limn→∞D(αn):620

∀j ∈ N : lim
n→∞

P (µj)−D(αn) <
ϵ

2j
(14)

In particular, by setting ν = µj in (12) and combining the result with (14), we get621

∀j ∈ N : lim
n→∞

DKL

(
µj
∥∥∥ µαn

Gibbs

)
<

ϵ

2j
.

Hence, limj∈∞ limn→∞ DKL

(
µj
∥∥ µαn

Gibbs

)
= 0. From properties of the KL divergence, it follows622

that limj→∞ P (µj) = limn→∞ P (µαn

Gibbs), concluding the proof.623
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A.3 Max-Entropy Prior624

Proposition 1. Let N = |DE| be the number of demonstrations in DE. For each c ∈ C and demon-625

stration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE, define mτE(c) as the (partial) likelihood of626

τE under c:627

mτE(c) =

H∏
h=1

pE (ah | sh ; c) T (sh+1 | sh, ah, c) . (15)

Denote m(c) ∈ RN as the vector with elements mτE(c) for τE ∈ DE. Moreover, let λ⋆ ∈ R≥0 be628

the optimal solution to the Lagrange dual problem of (2). Then, the solution to optimization (2) is629

as follows:630

µME(c) = lim
n→∞

exp
{
m(c)⊤αn

}
Ec∼µ0

[exp {m(c)⊤αn}]
,

where {αn}∞n=1 is a sequence converging to the following supremum:631

sup
α∈RN

− logEc∼µ0

[
exp

{
m(c)⊤α

}]
+
λ⋆

N

N∑
i=1

log

(
N · αi

λ⋆

)
.

Proof. We first simplify the KL-divergence between the empirical distribution of the expert trajec-632

tories P̂E and the marginal likelihood PE (· ; µ):633

DKL

(
P̂E

∥∥∥ PE (· ; µ)
)
=

∑
τ(i)∈DE

P̂E(τ
(i)) log

P̂E(τ
(i))

PE
(
τ (i) ; µ

)
= − logN − 1

N

∑
τ(i)∈DE

log PE

(
τ (i) ; µ

)
(P̂E(τ

(i)) = 1
N )

= − logN − 1

N

∑
τ(i)∈DE

logE [mτ(i) · µ]− 1

N

∑
s
(i)
1 ∈DE

log ρ
(
s
(i)
1

)
.

By (1) and (15)

Using the above equality, we can re-write the definition of uncertainty set P(ϵ) as634

P(ϵ) =
{
µ ; − 1

N

∑
τ∈DE

logE [mτ · µ]− ϵ− logN − 1

N

∑
s1∈DE

log ρ (s1) ≤ 0

}
.

Therefore, we can re-write the optimization (2) as635

µME = argmin
µ∈L1(C,µ0)

ψ(µ) s.t. − 1

N

∑
τ∈DE

logE [mτ · µ]− ϵ− logN − 1

N

∑
s1∈DE

log ρ (s1) ≤ 0,

(16)

where the extended KL divergence ψ(µ) is defined as:636

ψ(µ) :=

{
DKL (µ ∥ µ0) If ∥µ∥1 = 1,

+∞ o.w.

Note that P(ϵ) is a convex set. To see this, consider µ1, µ2 ∈ P(ϵ). Then, for any 0 ≤ λ ≤ 1, we637

have µ = (1− λ)µ1 + λµ2 ∈ P(ϵ) since E [mτ · µ] is linear in µ and − log is convex. Moreover, It638

is easy to see there exists a strictly feasible solution for (16) (e.g., consider the true distribution µ⋆639

over C). Thus, strong duality holds, and we can form the Lagrangian function as640

L(µ, λ) := ψ(µ) + λ

(
1

N

∑
τ∈DE

− logE [mτ · µ]
)
− λ

(
ϵ+ logN +

1

N

∑
s1∈DE

log ρ (s1)

)
.
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Given that λ⋆ ∈ R≥0 is the optimal solution to the Lagrange dual problem, the maximum entropy641

prior µME will be the solution to642

inf
µ∈L1(C,µ0)

L(µ, λ⋆) = inf
µ∈L1(C,µ0)

ψ(µ) + λ⋆

(
1

N

∑
τ∈DE

− logE [mτ · µ]
)

+ constant in µ. (17)

Now, for each x ∈ RN , define the convex function ζ(x) := λ⋆

N

(∑N
i=1− log xi

)
. Moreover, for643

µ ∈ L1(C, µ0), define Am(µ) := (E [mτ(1) · µ] ,E [mτ(2) · µ] , . . . ,E [mτ(N) · µ]). Then,644

L(µ, λ⋆) = ψ(µ) + ζ (Am(µ)) . (18)

Combining (17) and (18), the maximum entropy prior µME is the solution to645

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) .

Using Lemma 5 and noting that646

ζ∗(x∗) =
λ⋆

N

(
N∑
i=1

−1− log

(
−N
λ⋆
· x∗i
))

concludes the proof.647

A.4 K-armed Bandit Frequentist Algorithm & Regret648

To simplify the analysis, we employ a deterministic sampling approach by pulling each arm a fixed649

number of times based on its probability. To do so, we discretize the expert policy with a step size650

pmin, which leads to a relative frequency of ⌈ P̂E(a)
pmin
⌉ for an arm a. In particular, we can choose651

pmin = mina∈A P̂E(a).652

Algorithm 1 Successive Elimination with Expert Sampling

1: Input: Episodes T , Arms A = [K], expert policy P̂E, step size pmin, an unknown task c ∼ µ⋆,
and δ ∈ (0, 1).

2: for t = 1 . . . T do
3: Try an active arm a with a relative frequency of ⌈ P̂E(a)

pmin
⌉. // all arms are active at t = 0.

// nt(a) is the number of times that an arm a is pulled by episode t and V t
c (a) is its empirical

mean reward.
4: Increment nt(a) and update V t

c (a).

5: Construct UCBt
a = V t

c (a) +
√

log(4T 4K/δ)
2nt(a)

and LCBt
a = V t

c (a)−
√

log(4T 4K/δ)
2nt(a)

.

6: De-activate all arms a s.t. ∃a′ with UCBa ≤ LCBa′ , and normalize P̂E.
7: end for

Theorem 2. Assume that (i) the mean value of reward function R is bounded in [0, 1] for all arms,653

(ii) T · pmin ≥ 1, (iii) the expert is optimal, i.e., P̂E = PE (· ; µ⋆) (β →∞, |DE| → ∞), and (iv) the654

learner follows Algorithm 1. Then, with probability at least 1− δ,655

Reg ≲
√
T log (TK/δ)

∑
a,a′∈A;a̸=a′

√√√√ P̂E(a)

P̂E(a) + P̂E(a′)
·
(
1− P̂E(a)

P̂E(a) + P̂E(a′)

)[√
P̂E(a) +

√
P̂E(a′)

]
.

Proof. Fix δ ∈ (0, 1) and c ∈ C. Let E be the event that
∣∣∣V t

c (a)− Vc(a)
∣∣∣ ≤ √ log(4T 4K/δ)

2nt(a)
for all656

arms a ∈ A, all t ≤ T , and all T ∈ N, where nt(a) is the number of times that arm a was pulled by657

time t. Note that since T ≥ 1
pmin

, each arm will be pulled at least once and nt(a) ≥ 1.658
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We first show that P (E) ≥ 1− δ. Fix T , arm a, and t ≤ T . Suppose nt(a) = j for 1 ≤ j ≤ T . By659

Hoeffding’s inequality, we have660

P

(∣∣∣V t
c (a)− Vc(a)

∣∣∣ ≤
√

log (4T 4K/δ)

2j

)
≥ 1− δ

2T 4K
. (19)

Now, using the union bound over all episodes and all actions, we get661

P

(
∃a ∈ A, T ∈ N, t ≤ T, j ≤ t :

∣∣V t
c (a)− Vc(a)

∣∣ >√ log (2T 4K/δ)

2j

)

≤
∞∑

T=1

∑
a∈A

T∑
t=1

t∑
j=1

P

(∣∣V t
c (a)− Vc(a)

∣∣ >√ log (2T 4K/δ)

2j

)

≤
∞∑

T=1

∑
a∈A

T∑
t=1

t · δ

2T 4K
By (19)

≤
∞∑

T=1

δ

2T 4K
× T 2 ×K =

∞∑
T=1

δ

2T 2
≤ δ,

which concludes that P (E) ≥ 1− δ.662

The rest of the proof computes the regret for when E holds. For simplicity and without loss of663

generality, we assume all expert probabilities are dividable by pmin. Recall that we follow a de-664

terministic sampling approach and choose each arm according to its relative frequency P̂E(·)
pmin

for665

multiple batches, where each batch loops over all active actions. Let ta be the episode in which we666

eliminate an arm a in favour of another arm. Then, it is easy to show that667

∀a′ ∈ active arms by ta : P̂E(a
′) · ta ≤ nta(a′), (20)

This lower bound corresponds to the case where no other arm is eliminated before eliminating a.668

Moreover, we have an upper bound for nta(a) considering the worst-case scenario in which the only669

remaining arms are a and ac, where ac is the optimal action for task c:670

nta(a) ≤
P̂E(a)

P̂E(a) + P̂E(ac)
· ta. (21)

Now, let Regc(a) be the total regret contributed by the arm a for a given task c ∼ C. We can upper671

bound the regret as672

Regc(a) = nta(a) (Vc(ac)− Vc(a))
(i)

≤ 2nta(a)

(√
log (4T 4K/δ)

2nta(a)
+

√
log (4T 4K/δ)

2nta(ac)

)

≤ 2
P̂E(a)

P̂E(a) + P̂E(ac)
· ta
(√

log (4T 4K/δ)

2nta(a)
+

√
log (4T 4K/δ)

2nta(ac)

)
By (21)

=
√

2log (4T 4K/δ) · P̂E(a)

P̂E(a) + P̂E(ac)
· ta
(√

1

nta(a)
+

√
1

nta(ac)

)

≤
√
2log (4T 4K/δ) · P̂E(a)

P̂E(a) + P̂E(ac)
· ta
(√

1

taP̂E(a)
+

√
1

taP̂E(ac)

)
By (20)

=
√
2talog (4T 4K/δ) · P̂E(a)

P̂E(a) + P̂E(ac)

(√
1

P̂E(a)
+

√
1

P̂E(ac)

)
(ii)

≤
√
2T log (4T 4K/δ) · P̂E(a)

P̂E(a) + P̂E(ac)

(√
1

P̂E(a)
+

√
1

P̂E(ac)

)
,
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where (i) holds since the confidence intervals of arm a and ac overlap at episode ta (otherwise, a673

would have been eliminated before ta), and (ii) follows from the fact that ta ≤ T .674

Finally, we upper bound the Bayesian regret by taking the expectation of
∑

a ̸=ac
Regc(a) over c ∼675

C. Note that since the expert is optimal, we have P̂E(a) = µ⋆(ac = a) for all k ∈ A.676

Reg = Ec∼µ⋆

∑
a ̸=ac

Regc(a)


(i)

≤
∑
a′∈A

µ⋆ (ac = a′)

 max
c;ac=a′

∑
a ̸=a′

Regc(a)


=
∑
a′∈A

P̂E(a
′)

 max
c;ac=a′

∑
a̸=a′

Regc(a)


≤
√
2T log (4T 4K/δ)

∑
a′∈A

∑
a̸=a′

P̂E(a
′)P̂E(a)

P̂E(a) + P̂E(a′)

(√
1

P̂E(a)
+

√
1

P̂E(a′)

)
(ii)

≤
√
8T log (4TK/δ)

∑
a,a′∈A;a̸=a′

P̂E(a
′)P̂E(a)

P̂E(a) + P̂E(a′)

(√
1

P̂E(a)
+

√
1

P̂E(a′)

)

=
√
8T log (4TK/δ)

∑
a,a′∈A;a ̸=a′

√
P̂E(a′)

P̂E(a) + P̂E(a′)
· P̂E(a)

P̂E(a) + P̂E(a′)

(√
P̂E(a) +

√
P̂E(a′)

)
where (i) follows by partitioning C into {c ; c ∈ C, ac = a′}a′∈A and choosing the worst-case task677

in each partition, and (ii) holds since 4K/δ > 1. Replacing P̂E(a)

P̂E(a)+P̂E(ac)
with 1 − P̂E(a

′)

P̂E(a)+P̂E(ac)
678

concludes the proof.679

A.5 Max-Entropy Expert Posterior for MDPs680

Proposition 6 (Max-Entropy Expert Posterior for MDPs). Consider a contextual MDP M =681

(S,A, T , R,H, ρ, µ⋆). Assume the transition function T does not depend on the task variables.682

Moreover, assume the reward distribution is Gaussian with unit variance and Assumption 1 holds.683

Then, the log-pdf posterior function under the maximum entropy prior is given as:684

∀θ ∈ Θ : logµME (θ | HT ) =−
T∑

t=1

H∑
h=1

1

2

(
rth +max

a′∈A
Es′ [Q (s′, a′ ; θ)]−Q

(
sth, a

t
h ; θ

))2

+
∑
τ∈DE

α⋆
τ ·

∏
(s,a)∈τ

exp {β ·Q (s, a ; θ)}∑
a′∈A exp {β ·Q (s, a′ ; θ)} + constant in θ,

(22)

where HT =

{((
sth, a

t
h, r

t
h, s

t
h+1

)H
h=1

)T
t=1

}
is the history of online interactions, DE is the expert685

demonstration data, β is the competence level of the expert in Assumption 1, and {α⋆
τ}τ∈DE are686

derived from Proposition 1.687

Remark. We note that, in principle, the ExPerior framework allows for task-dependent transition688

functions. In this case, the log-pdf in (22) provides an optimistic upper bound on the true posterior689

log-pdf function. See Hao et al. [23] for a similar analysis. We leave the general case for future690

work. Note that the second term of (22) is simply the log-pdf of the max-entropy prior.691

Proof. Since the transition function is task-independent, the likelihood of an expert trajectory τE can692

be simplified as:693

∀c ∈ C : mτE(c) =

H∏
h=1

pE (ah | sh ; c) ·
H∏

h=1

T (sh+1 | sh, ah) . (23)
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The second term in (23) is constant in c. This implies that the likelihood function mτE(c) will694

depend on c only through the expert policy, which itself is a function of optimal Q-functions by695

Assumption 1. Note that the second term in the definition of mτE can be simply removed since we696

can re-weight the parameters α in the optimization step (3) of Proposition 1. Hence, assuming the697

deep Q-network is expressive enough, without loss of generality, we can re-define the likelihood698

function of an expert trajectory τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) as699

∀θ ∈ Θ : mτE(θ) =

H∏
h=1

exp {β ·Q (sh, ah ; θ)}∑
a′∈A exp {β ·Q (sh, a′ ; θ)}

.

We can now write the log-pdf of the posterior distribution of θ givenHT :700

∀θ ∈ Θ : log µME (θ | HT )

= log P (HT | θ) + log µME(θ) + constant in θ

=
L∑

t=1

H∑
h=1

log ρ
(
st1
)
+ logR

(
rth
∣∣ sth, ath ; θ)+ log T

(
sth+1

∣∣ sth, ath)+ logµME(θ) + const.

=

L∑
t=1

H∑
h=1

logR
(
rth
∣∣ sth, ath ; θ)+ log µME(θ) + const., (24)

Now, given the Bellman equations, we can write the mean value of the reward function as701

∀s ∈ S, a ∈ A : E [R (s, a ; θ)] = Q (s, a ; θ)−max
a′∈A

Es′ [Q (s′, a′ ; θ)]

The reward distribution is Gaussian with unit variance. Therefore,702

∀s ∈ S, a ∈ A, r ∈ R : R (r | s, a ; θ) = N
(
Q (s, a ; θ)−max

a′∈A
Es′ [Q (s′, a′ ; θ)] , 1

)
. (25)

Moreover, by Proposition 1, the log-pdf of the maximum entropy expert prior is given as703

∀θ ∈ Θ : log µME(θ) =
∑
τ∈DE

α⋆
τ ·mτ (θ) =

∑
τ∈DE

α⋆
τ ·

∏
(s,a)∈τ

exp {β ·Q (s, a ; θ)}∑
a′∈A exp {β ·Q (s, a′ ; θ)} .

(26)

Combining (24) to (26), we conclude the proof.704

A.6 Ensemble Marginal Likelihood705

Proposition 3. Consider a contextual MDP M = (S,A, T , R,H, ρ, µ⋆). Assume the transition706

function T does not depend on the task variables and Assumption 1 holds. Then, the negative707

marginal log-likelihood of expert data DE under the ensemble prior µθens is upper bounded by708

− log PE (DE ; µθens) ≤
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)
,

where β is the competence level of the expert in Assumption 1.709

20



Proof. Recalling (1), the log-likelihood of the expert trajectories DE under µθens is given by710

− log PE (DE ; µθens
) =

∑
τ(i)∈DE

− logEθ∼µθens

[
ρ(s

(i)
1 )

H∏
h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θ
)
T
(
s
(i)
h+1

∣∣∣ s(i)h , a
(i)
h

)]

=
∑

τ(i)∈DE

− logEθ∼µθens

[
H∏

h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θ
)]

+ constant in θens

(ρ, T do not depend on θ)

=
∑

τ(i)∈DE

− log

 1

L

L∑
j=1

H∏
h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θj
ens

)
(By Definition of µθens

)

≤
∑

τ(i)∈DE

1

L

L∑
j=1

H∑
h=1

− log pE

(
a
(i)
h

∣∣∣ s(i)h ; θj
ens

)
By Jensen’s inequality

=
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

[
log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)]
By Assumption 1

711

B High-Level Implementation of ExPerior712

Algorithm 2 Max-Entropy Posterior Sampling (ExPerior)

1: Input: Expert demonstrations DE, Reference distribution µ0, λ⋆ ≥ 0, and unknown task c ∼
µ⋆.

2: µME ← MAXENTROPYEXPERTPRIOR(µ0,DE, λ
⋆)

3: history← {}
4: for episode t← 1, 2, . . . do
5: sample ct ∼ µME (· | history) // posterior sampling
6: for timestep h← 1, 2, . . . ,H do
7: take action ath ∼ πct (· | sh)
8: observe rth ∼ R(sth, ath, c), sth+1 ∼ T (sth, a

t
h, c) and append (ath, r

t
h, s

t
h+1) to history

9: end for
10: end for
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C Additional Experiments713

C.1 Ablation Studies for Bernoulli Mult-Armed Bandits714

Table 2: Ablation experiments to assess the robustness of ExPerior to misspecified expert models. Random-
optimal experts choose the optimal action with probability γ and choose random actions with probability 1 −
γ. ExPerior-MaxEnt achieves consistent out-performance by setting the hyperparameter β = 10. while
ExPerior-Param get almost similar results for β = 1 and β = 2.5.

Optimal Noisily-Rational Random-Optimal
β = 0.1 β = 1 β = 2.5 β = 10 γ = 0.0 γ = 0.25 γ = 0.5 γ = 0.75

β = 0.1
ExPerior-MaxEnt 51.7± 5.1 52.3± 5.3 52.3± 5.3 52.0± 5.1 51.7± 5.0 52.3± 5.3 52.1± 5.1 52.0± 5.1 51.8± 5.0
ExPerior-Param 11.1± 4.3 33.1± 7.3 12.6± 3.5 11.7± 3.8 10.9± 4.2 40.1± 9.6 12.3± 4.7 11.4± 4.0 10.7± 4.2

β = 1
ExPerior-MaxEnt 45.7± 3.4 52.2± 5.3 51.6± 5.1 50.0± 4.8 47.3± 3.8 52.5± 5.3 51.0± 4.8 49.1± 4.2 48.0± 3.6
ExPerior-Param 9.1± 3.0 21.3± 1.3 13.4± 2.9 10.1± 3.0 9.4± 3.1 22.8± 1.3 9.8± 3.0 8.6± 2.7 8.8± 2.9

β = 2.5
ExPerior-MaxEnt 37.0± 1.9 52.1± 5.3 51.0± 4.9 47.1± 4.5 38.3± 2.0 52.1± 5.1 48.9± 4.1 44.8± 3.2 40.5± 2.1
ExPerior-Param 8.5± 2.8 24.3± 1.2 19.0± 2.1 12.8± 2.9 9.2± 3.1 24.6± 1.2 15.9± 3.0 10.9± 3.2 8.8± 2.9

β = 10
ExPerior-MaxEnt 38.5± 9.4 52.0± 5.2 47.6± 4.4 39.7± 2.9 29.7± 3.6 52.5± 5.3 41.9± 2.6 37.7± 2.8 31.9± 3.0
ExPerior-Param 11.2± 4.8 26.9± 1.2 25.0± 1.5 21.0± 2.1 11.8± 3.3 26.8± 1.1 23.2± 1.8 20.1± 2.5 16.1± 3.0

Oracle-TS 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7 8.5± 2.7
Oracle-TS (SGLD) 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9 24.2± 3.9

Table 3: Superiority of ExPerior-MaxEnt compared to ExPerior-Param with misspecified parametric prior.

Low Entropy Mid-Entropy High-Entropy

ExPerior-Param 0.7 ± 0.3 6.8 ± 0.8 24.5 ± 2.8
ExPerior-MaxEnt 11.6 ± 1.3 25.7 ± 1.2 41.3 ± 2.2
ExPerior-Param (Gamma) 39.3 ± 2.2 36.8 ± 0.9 51.8 ± 3.6
ExPerior-Param (Beta-SGLD) 60.2 ± 6.3 40.4 ± 2.0 45.6 ± 2.0
ExPerior-Param (Normal) 546.5 ± 153.4 492.5 ± 185.6 461.8 ± 104.8

Oracle-TS 0.9 ± 0.4 7.3 ± 0.8 21.5 ± 2.2
Oracle-TS (SGLD) 11.0 ± 1.6 21.2 ± 1.0 39.9 ± 3.2

C.2 Frozen Lake715

Table 4: The average reward per episode in Frozen Lake (MDP) after 90,000 training steps.

Fixed # Hazard = 9 Fixed β = 1

β = 0.1 β = 1 β = 2.5 β = 10 # Hazard = 2 # Hazard = 5 # Hazard = 7 # Hazard = 9

(MDP)
ExPerior-MaxEnt -23.36 ± 1.26 12.26 ± 0.29 12.68 ± 0.03 12.71 ± 0.03 13.02 ± 0.18 12.78 ± 0.11 12.78 ± 0.06 12.26 ± 0.29
ExPerior-Param -25.53 ± 2.35 12.64 ± 0.08 12.70 ± 0.03 12.68 ± 0.03 13.00 ± 0.18 12.78 ± 0.12 12.73 ± 0.07 12.64 ± 0.08
Naı̈ve Boot-DQN -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -14.39 ± 5.22 -20.99 ± 2.86 -20.39 ± 1.75 -23.32 ± 0.69
ExPLORe 11.74 ± 0.41 11.75 ± 0.63 11.96 ± 0.28 12.3 ± 0.22 -113.84 ± 17.50 -54.89 ± 13.75 -10.00 ± 7.60 11.75 ± 0.63
Optimal 12.71 ± 0.03 12.71 ± 0.03 12.71 ± 0.03 12.71 ± 0.03 13.02 ± 0.18 12.78 ± 0.11 12.76 ± 0.06 12.64 ± 0.03
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