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ABSTRACT

Optimal transport (OT) has wide applications including machine learning. It
concerns finding the optimal mapping for Monge OT (or coupling for Kantorovich
OT) between two probability measures. This paper generalizes the classic pairwise
OT to the so-called Optimal Multiple Transportation (OMT) accepting more than
two probability measures as input. We formulate the problem as minimizing the
transportation costs between each pair of distributions and meanwhile requiring
cycle-consistency of transportation among probability measures. In particular, we
present both the Monge and Kantorovich formulations of OMT and obtain the
approximate solution with added entropic and cycle-consistency regularization,
for which an iterative Sinkhorn-based algorithm (ROMT-Sinkhorn) is proposed.
We empirically show the superiority of our approach on two popular tasks: visual
multi-point matching (MPM) and multi-model fusion (MMF). In MPM, our OMT
solver directly utilizes the cosine distance between learned features of points
obtained from off-the-shelf graph matching neural networks as the pairwise cost.
We leverage the ROMT-Sinkhorn algorithm to learn multiple matchings. For MMF,
we focus on the problem of fusing three models and employ ROMT-Sinkhorn
instead of the Sinkhorn algorithm to learn the alignment between layers. Both
tasks achieve competitive results with ROMT-Sinkhorn. Furthermore, we showcase
the potential of our approach in addressing the travel salesman problem (TSP) by
searching for the optimal path on the probability matrix instead of the distance
matrix. Source code will be made publicly available.

1 INTRODUCTION

Figure 1: An illustration of Optimal Multi-
ple Transport (OMT). Assuming three (or
more) probability measures α, β, γ, OMT
satisfies T1#α = β, T2#β = γ, T3#γ = α,
and the cycle-consistency constraints X =
T3(T2(T1(X))) given a set X sampled from
α.

Optimal transport (OT) (Peyre & Cuturi, 2019) is a
mathematical tool with wide applications including
vision and learning. In general, it aims to learn the
optimal transportation between the source and target
probability measures. While mainstream OT research
primarily focuses on transportation between two distri-
butions, less attention has been given to studying the
general setting when there are multiple distributions
for transportation. In fact, many real-world problems
ranging from point matching (Wang et al., 2023) to
model fusion (Liu et al., 2022a) often involve more
than two distributions or sets and there calls for a
unified approach, beyond naively running pairwise
transportation in isolation.

With the above setting, in this paper, we study the
generalized form of OT for more than two probabil-
ity measures and term it Optimal Multiple Transport
(OMT). As illustrated in Fig. 1, the case considers
three probability measures and it seeks to minimize the cost of three transportation while ensuring
cycle-consistency among measures: specifically given a set X sampled from the probability measure
α, the transportation mappings T1, T2, T3 satisfy the condition X = T3(T2(T1(X))). In this setting,
we propose Monge and Kantorovich formulations for OMT, considering the challenges posed by
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cycle-consistency constraints in solving the problems. In this paper, we introduce the entropic
regularizer and transform the hard cycle-consistency constraint into a regularization term. This
transformation leads to a regularized version of OMT, as approximately and efficiently solved via our
proposed tailored iterative Sinkhorn algorithm called ROMT-Sinkhorn algorithm.

Furthermore, based on OMT, we discover a side product: a new and easily comprehensible formula-
tion for the Traveling Salesman Problem (TSP), which we refer to as TSP-OMT. In this formulation,
we construct closed-loop circuits for TSP using the cycle-consistency constraint. To compute an
approximate solution for TSP-OMT, the regularized approach is to get the approximated solution but
fail to guarantee closed-loop circuits with the probability matrix. However, this inspired us to explore
searching for paths in the probability space rather than the distance space. To compare the solutions,
we employ a greedy algorithm to find TSP paths in the Euclidean space, Sinkhorn probability space,
and the regularized TSP-OMT probability space and find our method outperforms, which shows the
potential to construct a probability space from the distance.

In our experiments, we provide empirical case studies concerning two popular matching tasks: visual
multi-point matching and neural multi-model fusion. For the former task, we compute a certain
node-to-point distance e.g. cosine distance using the learned node feature from graph matching
networks (e.g. (Wang et al., 2021))1 and adopt ROMT-Sinkhorn for inference these neural matching
model. For the latter task, we also adopt the ROMT-Sinkhorn instead of the pairwise Sinkhorn
algorithm to calculate the layer alignment for the fusion of three models. Both two task experiments
achieve competitive results demonstrating the effectiveness and superiority of our proposed approach.
The highlights of this paper are as follows:

1) We generalize OT to the multi-party case called Optimal Multiple Transport (OMT), which solves
multiple transportation mappings between probability measures while try to ensure cycle-consistency
among these mappings. Both its Monge and Kantorivich formulations are developed.

2) We model the OMT problem by adopting entropic and cycle-consistency regularization, and
propose an iterative Sinkhorn algorithm named ROMT-Sinkhorn, to obtain an approximate solution.

3) As a side product, we introduce a new formulation for the Traveling Salesman Problem (TSP)
called TSP-OMT, in which we incorporate cycle-consistency to capture the closed-loop constraint of
TSP. We use the regularized TSP-OMT formulation to compute the probability matrix of TSP, which
allows us to search for the optimal path in the probability space instead of the distance space.

4) We apply the ROMT-Sinkhorn algorithm to two domains: multi-point matching and multi-model
fusion. The competitive experimental results show the superiority of our methods.

2 RELATED WORKS AND PRELIMINARIES

2.1 OPTIMAL TRANSPORTATION

Given two probability measures α and β supported on X and Y , the Monge formulation of Optimal
Transportation (Monge, 1781) aims to find a mapping T : X → Y that minimizes an overall cost:

min
T

{
∫
X
c(x, T (x))dα(x) : T#α = β} (1)

where c(·, ·) is the cost function and the push-forward measure β = T#α means the satisfaction
β(S) = α(x ∈ X : T (x) ∈ S}), for an arbitrary set S ⊂ Y . The Monge problem is exactly not
easy to calculate and a popular improvement is the Kantorovich relaxation (Kantorovich, 1942)
which seeks the coupling P instead. Specifically, for the discrete case, we assume α =

∑n
i=1 aiδxi

and β =
∑m

j=1 bjδyj
where ({xi}, {yj}) are the locations from (X ,Y), and (a,b) are probability

vectors. Then the Kantorovich problem aims to find the coupling P, which is specified as

min
P∈U(a,b)

< C,P >=
∑
ij

CijPij , (2)

where U(a,b) = {P ∈ R+
nm|P1m = a,P⊤1n = b} and C is the cost matrix defined by the diver-

gence between {xi}ni=1 and {yj}mj=1. This minimization can link to the linear program (Bertsimas &

1Note that the visual graph matching networks in fact embed the structure information into the node features
hence their output is node-wise features suitable for our OT setting.
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Tsitsiklis, 1997) but the calculation speed is really slow for high dimensions. Entropic regularization
(Cuturi, 2013) is one of the simple but efficient methods for solving OT problems:

min
P∈U(a,b)

< C,P > −ϵH(P), where H(P) = − < P, logP− 1m×n > . (3)

Here ϵ > 0 is the regularization coefficient. This entropic OT can be solved by Sinkhorn iterations by
vector-matrix multiplication (Cuturi, 2013).

Multi-marginal Optimal Transport. Instead of coupling two histograms (a,b) in Kantorovich
problem, the multi-marginal optimal Transportation couples K histograms (ak)Kk=1 by solving the
following multi-marginal transport (Abraham et al., 2017):

min
P∈U((ak)k)

< C,P >=
∑
k

nk∑
ik=1

Ci1,i2,...,iKPi1,i2,...,iK (4)

where Ci1,i2,...,iK is n1 × · · · × nK cost tensor and the valid coupling set U((ak)k) is defined as

U((ak)k) = {P ∈ R+
n1×n2...nK

|∀k, ∀ik,
∑
l ̸=k

nl∑
il=1

Pi1,...,iK = ak
ik}. (5)

The multi-marginal OT and our OMT both deal with multiple distributions. However, the multi-
marginal OT primarily emphasizes learning the joint coupling among more than two distributions,
whereas our focus is on learning the coupling between each pair of distributions and maintaining
cycle-consistency constraints among these couplings.

2.2 CYCLE CONSISTENCY FOR MATCHING

The idea of cycle consistency has been broadly considered in learning and vision. Examples include
the application in multiple graph matching (Wang et al., 2021; Bernard et al., 2019; Tourani et al.,
2023), image matching (Sun et al., 2023; Bernard et al., 2019), and shape matching (Bhatia et al.,
2023; Bernard et al., 2019) etc. These instances of multiple matching with cycle-consistency in
various domains motivate us to investigate whether multiple transportation can be performed with
cycle-consistent constraints in the Optimal Transport problem. Thus, in this paper, we elaborate on
the concept of cycle-consistency in OT and introduce the definition of OMT in Sec. 3.1.

2.3 VISUAL MATCHING AND MODEL FUSION

Visual Point Matching (PM) (Sarlin et al., 2020; Sun et al., 2021) is a significant research area
in computer vision that aims to find optimal point correspondences between images, which has
various applications, such as 3D structure estimation and camera pose estimation. Graph matching
(GM) (Caetano et al., 2009) builds upon PM and treats the point sets as graphs, aiming to find the
optimal node correspondences between graph-structured data. GM can be typically formulated as
LAP (Crama & Spieksma, 1992), which is known to be NP-hard and requires expensive and complex
solvers. Recent works (Wang et al., 2019; Yu et al., 2019) have focused on learning node features
using supervised or unsupervised loss functions. In this paper, our main focus is on multi-point
matching (Swoboda et al., 2019), where we utilize the trained models (Wang et al., 2019) to extract
point features and perform inference on testing data, which emphasizes the cycle-consistency among
multiple images, enabling more robust and accurate matching results.
Model fusion (for neural networks) as a post-processing step after model training, has gained
increasing attention, with methods ranging from optimal transport (Singh & Jaggi, 2020; Imfeld
et al., 2023) to graph matching (Liu et al., 2022b), which permute the neural weights of each
model for alignment (i.e. fusion). Besides, it is also proposed for merging different neural network
architectures (Wang et al., 2020a), heterogeneous neural networks (Nguyen et al., 2023) and models
of different tasks (Stoica et al., 2023). (Wortsman et al., 2022) show that averaging the weights
of models fine-tuned with different hyperparameter configurations often improves accuracy and
robustness for large pretrained models and (Matena & Raffel) propose a ”Fisher merging” method
that provides a performance boost in settings with simple parameter averaging. In this paper, we
focus on improving alignments for multiple models and show how to leverage the cycle-consistency
in our OMT framework compared with the pairwise fusion baseline (Singh & Jaggi, 2020).

3 OPTIMAL MULTIPLE TRANSPORTATION AND OUR SOLVERS

In this section, we begin by presenting the Monge and Kantorovich formulations for Optimal Multiple
Transport (OMT) in Sec. 3.1. Then, we introduce regularized terms that are incorporated into OMT,
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leading to the development of the iterative Sinkhorn algorithm (called ROMT-Sinkhorn Algorithm)
in Sec. 3.2. Lastly, in Sec. 3.3, we leverage the principles of OMT to devise a novel formulation of
the Traveling Salesman Problem (TSP) that highlights the theoretical potential of OMT.

3.1 THE MONGE AND KANTOROVICH FORMULATION OF OMT
OMT’s Monge Formulation. We first assume K probability measures (αk)

K
k=1 supported on the

space (Xk)
K
k=1. Note for simplicity, we define that XK+1 = X1 and αK+1 = α1. Then OMT aims

to find mappings (Tk)
K
k=1 where Tk : Xk → Xk+1 by optimizing the objective function that

min
(Tk)k∈C((αk)k)

∑
i

∫
Xk

ck(x, Tk(x))dαk(x), (6)

where ck(·, ·) is the cost function for the space (Xk,Xk+1). The constraint C((αk)k) is specified:

C((αk)k) = {(Tk)
K
k=1|(Tk)#αk = αk+1, ∀k; Tk ◦ TK−1 ◦ · · · ◦ T2 ◦ T1(X) = X, ∀X ⊂ X1}, (7)

where (Tk)#αk = αk+1 is the push-forward operation from measure αk to αk+1 satisfying
αk+1(B ∈ Xk+1) = αk(x ∈ Xk|Tk(x) ∈ B) for any measurable set B. And ∀X ⊂ X1, the
equality Tk ◦ TK−1 ◦ . . . T2 ◦ T1(X) = X is the cycle-consistency constraint that enforces the final
transport results aligning to the original one beginning at points in X1. Naturally, we can get the
measure α1(X) = α1(Tk ◦ · · · ◦ T1(X)). Note the cycle-consistency starts from α1 and one can also
formulate the OMT’s Monge problem starting from α2, α3, . . . , αK . For the calculation, the OMT’s
Monge formulation encounters difficulties like those of traditional Monge OT and the solution may
even not exist in discrete cases. Hence for OMT, Kantorovich relaxation is introduced for tractability.

OMT’s Kantorovich Formulation. Assume that the (probability) measures αk =
∑nk

i=1 a
k
i δxk

i

where xk
i is the location in Xk space, and ak is the histogram for αk. Then the Kantorovich OMT

aims to seek K coupling matrices (Pk)
K
k=1 where Pk is the coupling between αk and αk+1:

min
(Pk)k∈C′((ak)k)

K∑
k=1

< Ck,Pk >, (8)

where Ck is the cost matrix between locations (xk
i )i and (xk+1

i )i, and the coupling set C((ak)Kk=1) is

C′((ak)Kk=1) =
{
(Pk)

K
k=1|∀k,Pk ∈ U(ak,ak+1),

K∏
k=1

P̃k = I
}
. (9)

Here I represents the identity matrix, and P̃k = Pk⊘ak is obtained through element-wise division ⊘,
which signifies row normalization of the matrix Pk (i.e., P̃k = Diag(1/ak)Pk). Note the constraints∏K

k=1 P̃k = I aim to ensure cycle-consistency. Specifically, for any measure α′ supported on X1

with probability vector a′, we consider (a′P̃1) as the transition from X1 to X2 with the matrix
P̃1 satisfying

∑
i a

′
i =

∑
i(a

′P̃1)i. Similarly,We can transport the a′ to X2, . . . ,XK space with
P̃2, . . . , P̃K . Then a′

∏K
k=1 P̃k = a′ represents the probability a′ being transported back to its initial

state. Consequently, we can naturally derive the constraint
∏K

k=1 P̃k = I as the cycle-consistency
constraint. In essence, we can understand P̃k as a probability transition matrix in a Markov chain,
where the sum of probability transition elements in each row is equal to 1, and

∏K
k=1 P̃k represents

the K-step transition probability matrix, which returns to the identity matrix as the cycle-consistency.

For Eq. 8, note the Kantorovich form of OMT is no longer a linear programming due to the constraints
of cycle-consistency. For efficiency, we propose the regularized OMT, which allows to derive an
iterative Sinkhorn algorithm for obtaining approximate solutions.

3.2 REGULARIZED OMT AND THE SOLVING ALGORITHM

By applying entropic regularization to relax Eq. 8 (Cuturi, 2013), we transform the cycle-consistency
into a regularizer which is Specifically formulated as:

min
(Pk)k:Pk∈U(ak,ak+1)

K∑
k=1

< Ck,Pk > −ϵ
∑
k

H(Pk)− δ||
K∏

k=1

P̃k − I||2F (10)
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Figure 2: Illustration of transport solutions P1, P2, and P3, along with the cycle-consistency matrix
P̃1P̃2P̃3, based on three given histograms. The histograms on the left correspond to α1, α2, and α3,
while the middle histograms represent the couplings from α1 to α2, α2 to α3, and α3 to α1. Finally,
the rightmost matrix denotes P̃1P̃2P̃3, which exhibits a close similarity to the identity matrix.

where ϵ, δ > 0 are the coefficients for entropic and cycle-consistent regularization respectively. By
introducing Lagrangian dual variables (fk,gk) for each marginal constraint in U(ak,ak+1) with
k = 1, 2, . . . ,K, we can get equation with respect to Pk as follows:

∂L
∂Pk

= Ck + ϵ logPk − fk1
⊤ − 1g⊤

k − δMk = 0 (11)

where L is the Lagrangian function and Mk is specified as

Mk = 2Diag
(

1

ak

)( k−1∏
t1=1

P̃t1

)⊤( K∏
t2=1

P̃t2 − I

) K∏
t3=k+1

P̃t3

⊤

. (12)

According to Eq. 11, the solution has the form

Pk = Diag(efk/ϵ)e(−Ck+δMk)/ϵDiag(egk/ϵ) (13)

The details are given in Appendix A. When δ = 0, the solution Pk degenerates into the vanilla
entropic OT and when δ > 0, (Pk)k tend to satisfy cycle-consistency. Note the matrices (Mk)k are
derived from the probability matrices Pk. If the matrices (Pk)k are known, we can update (Mk)k
using Eq. 12. Similarly, if (Mk)k are known, (Pk)k can be updated via the Sinkhorn algorithm. By
initializing the matrices (M (0)

k )k as zero matrices, we can obtain (P
(0)
k )k as the pairwise Sinkhorn

solutions. Then, by iteratively updating (M
(l)
k )k and (P

(l)
k )k till convergence by Eq. 12 and by

Pl+1
k = Sinkhorn(Ck − δM

(l)
k ,ak,ak+1), we can obtain the solution of Regularized OMT in Eq. 10.

We present our algorithm in Algorithm 1. As shown in Fig. 3, 6 points are sampled from three 2D-
Gaussian distributions and Euclidean distances are used as costs for computing couplings. Compared
to the pair-wise Sinkhorn algorithm, our ROMT-Sinkhorn achieves cycle-consistency results. Fig. 2
illustrates the transportation results among more complex distributions. It is noteworthy that the
left three histograms are sampled from Gaussian mixture distributions, and the couplings can be
computed using the ROMT-Sinkhorn algorithm as shown in the middle three subfigures. As shown in
the rightmost subfigure, the cycle-consistency

∏K
k=1 P̃k = I is almost satisfied.

Transportation’s Order Switching Problem. For the order of sets, assume K = 3 and the couplings
are P1, P2, and P3. Consistency requires P1P2P3 = I. If we switch the second and third orders
with matching matrices PT

3 , PT
2 , and PT

1 , the consistency becomes PT
3 P

T
2 P

T
1 = P1P2P3 = I.

Thus, for K = 3, switching the order does not affect the problem formulation. As for K > 3,
switching the order does indeed impact the formulation of the problem. However, note our directed
cyclical structure is essentially a subgraph of pairwise structure. When the latter is satisfied, the
former is also satisfied, allowing our method to still improve the matching performance.

3.3 SIDE PRODUCT: A NEW OMT-BASED TSP FORMULATION

From the multiple transportation view, we consider an interesting assumption: What if all the
transportation is in the same space? This means we can set that α = α1 = α2 = · · · = αK and then
all probability measures share the same locations and histograms, which leads to the same cost matrix
(i.e. C = C1 = C2 = · · · = CK) and coupling solutions (i.e. P = P1 = P2 = · · · = PK) for all
transportation. Under this assumption, the cycle-consistency is transformed into PK = I, which
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Algorithm 1 ROMT-Sinkhorn: Iterative Sinkhorn-
based Algorithm for Regularized OMT
Input: Cost Matrices (Ck)

K
k=1 and histograms

(ak)Kk=1, iteration number L
Output: the couplings (P(L−1)

k )Kk=1

Initialize M
(0)
k = 0nk,nk+1

for all k
for l = 0, 1, . . . , L− 1 do

for k = 1, 2, . . . ,K do
P

(l)
k = Sinkhorn(Ck − δM

(l)
k ,ak,ak+1)

P̃
(l)
k = P

(l)
k ⊘ ak

end for
Calculate (M

(l+1)
k )k by Eq. 12 with (P̃

(l)
k )k

end for

Figure 3: Multiple Matching on 2-D points.
The left one is the result of pairly adopting the
Sinkohrn algorithm; the right is the solutions of
our ROMT-Sinkhorn Algorithm 1. We can find
our matching forms a closed loop, whereas the
pairwise Sinkhorn results do not.

implies that each point returns to its original location after transportation. This inspires us to draw a
connection to the Traveling Salesman Problem (TSP).

In TSP, it assumes K points with its distance matrix C and our aim is to get the solution P ∈
{0, 1}K×K . Note we assume the transport for points themselves is not allowed (i.e. (C)ii → ∞ and
thus (P)ii = 0). For simplicity, we break the probability measure assumption (i.e.

∑
i a

k
i = 1)

and set ak = 1 for all k to coincide with TSP. Besides, we apply the cycle-consistency view in OMT
to capture the closed-loop constraint, which forms a new TSP formulation (called TSP-OMT) as:

min
P

< C,P > s.t. P1K = 1K , P⊤1K = 1K , < Pk, I >= 0(∀k < K), PK = I. (14)

Here, Pk represents the k-th power of matrix P and the condition < Pk, I >= 0 for k < 0 is
introduced to terminate the consistency process before the final step to ensure that (Pk)ii = 0,
which guarantees that the probability of a traveling salesman starting from position i, taking k steps
(k < K), and returning to position i is zero. On the other hand, the condition (P)K = I is imposed
to enforce cycle-consistency, ensuring that (PK)ii = 1, which guarantees that the salesman returns
to their original position, completing the cycle.

Note that the optimization in Eq. 14 is no longer a Linear Program problem. Similar to the approach
in Sec. 3.2, the entropic and closed-loop regularization is employed for the minimization as:

min
P

< C,P > −ϵH(P) +
∑
k

δk||Pk − I||2F s.t. P1K = 1K , P⊤1K = 1K , (15)

where (δk)k are the regularization coefficients. We set δk < 0 for k < K to make (Pk)ii approach
0 for every k < K, and δK > 0 to make (Pk)ii approach 1. Then with the Lagrangian method for
Eq. 15, we can get the solution form as

P = Diag(ef/ϵ)e−(C+M)/ϵDiag(eg/ϵ), and M =

K∑
k=1

k−1∑
t=0

2δk(P
t)⊤(Pk − I)Pk−1−t)⊤, (16)

where f and g are Lagrangian duals. Then we can obtain the approximate solution of TSP with
the iterative Sinkhorn algorithm as proposed in Algorithm 2. The details are given in Appendix B.
However, unfortunately, Algorithm 2 can not achieve the ideal closed-loop solution which may be
due to the simple setting of δk and too many regularized terms of closed-loop constraints.

Algorithm 2 Probability Matrix Calculation for
Regularized TSP-OMT.
Input: Cost Matrix C and iteration number L
Output: the coupling P(L)

Initialize M (0) = 0K×K

for l = 0, 1, . . . , L do
P(l) = Sinkhorn(C+M (l),1K ,1K)
Calculate M (l+1) by Eq. 16 with P = P(l)

end for

In fact, our probability-based results on the other
hand enable the selection of the TSP path from
a probabilistic perspective rather than relying
solely on the traditional distance matrix. This
shift transforms TSP into a sampling problem,
where the calculated probability matrix can be
utilized. For example, we can employ a greedy
method, as described in Appendix B, to search
for a closed-loop path based on the probability
matrix computed using Algorithm 2. In Fig. 4,
25 points are randomly sampled as the locations and we compare the total cost based on greedy
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(a) Distance Matrix (b) Sinkhorn (c) Ours (d) LKH3
Figure 4: Comparison of TSP solutions. The left three adopt the greedy method on distance matrix,
and probability matrix with Sinkhorn and our algorithm in Algorithm 2, respectively. The rightmost
one is the strong TSP solver LKH3 (Helsgaun, 2017). Our method performs competitively.

search using the Euclidean distance matrix, Sinkhorn probability matrix, and our probability matrix
calculated by Algorithm 2 in Fig. 4 and find that our approach performs competitively.

Though our current method is still far from competing with strong classic TSP solvers like
LKH3 (Helsgaun, 2017), as shown in Fig. 4, it provides a new perspective for tackling the TSP, which
involves converting the distance matrix into a probability matrix and searching for the optimal path
based on the probabilities2. In the probability matrix, the edge selection is based on global considera-
tions, which inherently provides an advantage over distance-based edge selection. Moreover, if an
improved algorithm can be developed to obtain the closed-loop probability solution in the future, we
would no longer need the sampling algorithm to determine the TSP path. This opens up possibilities
for efficiently solving large-scale TSP problems using matrix scaling methods via GPU computing.

3.4 APPLICATION TO MULTI-POINT MATCHING AND MULTI-MODEL FUSION

In this subsection, we apply our method to the task of multi-set matching and multi-model fusion.

OMT for Multi-point Matching. Here, we apply the ROMT-Sinkhorn algorithm to the inference
of the multi-point matching model. We assume the existence of multiple sets, each containing
several point features extracted from images by the trained neural model. Our goal is to establish
cycle-consistent matches among these sets. Specifically, given K probability measures (αk)

K
k=1,

where αk =
∑n

i=1 a
k
i δxk

i
, and xk

i represents the point feature, we can define the cost Ck between
αk and αk+1. Then the inference during the testing process can be formulated with Eq. 10. To
solve the optimization, we utilize the ROMT-Sinkhorn Algorithm, as presented in Algorithm 1, to
obtain predictions for the testing data. Fig. 5 illustrates the inference results using Pairwise Sinkhorn
and ROMT-Sinkhorn algorithms, where a neural matching model (NMGM (Wang et al., 2021))
serves as the backbone. It can be observed that the coupling P3 generated by the pairwise Sinkhorn
method contains a mismatch for two points at the rear of the vehicle. However, our ROMT-Sinkhorn
Algorithm corrects this misalignment and produces accurate matching.

OMT for Multi-model fusion. Following (Singh & Jaggi, 2020) that applies the OT for model fusion
task, we apply our ROMT-Sinkhorn algorithm instead of the previous pairwise Sinkhorn algorithm in
(Singh & Jaggi, 2020) for multi-model fusion. Without loss of generality, here we consider fusing
three models. Assume W

(l,l−1)
k is the weight matrix for model k (k = 1, 2, 3) between layer l and

l − 1, and Ŵ
(l,l−1)
k (k = 2, 3) is the modified weights with alignments P̃l−1

1 , P̃l−1
3 before layer l:

Ŵ
(l,l−1)
2 = W

(l,l−1)
2 (P̃

(l−1)
1 )⊤ and Ŵ

(l,l−1)
3 = W

(l,l−1)
3 P̃

(l−1)
3 . (17)

Then we can get the weight alignments for W̃(l,l−1)
2 and W̃

(l,l−1)
3 to W

(l,l−1)
1 by

W̃
(l,l−1)
2 = P̃l

1Ŵ
(l,l−1)
2 and W̃

(l,l−1)
3 = (P̃l

3)
⊤Ŵ

(l,l−1)
3 , (18)

where P̃l
1 is the alignment from model 1 to model 2 and P̃l

3 is the alignment from model 3 to model
1 for layer l calculated by ROMT-Sinkhorn. Finally, we get the parameter matrix of the fused model:

W
(l,l−1)
F =

1

3

(
W

(l,l−1)
1 + W̃

(l,l−1)
2 + W̃

(l,l−1)
3

)
. (19)

Initializing l = 2 and updating Ŵ
(l,l−1)
k and W̃

(l,l−1)
k (k=2,3) by varying l, we can get the fused

model’s parameter matrices {W(l,l−1)
F } for predictions.

2We believe that there is a potential of adapting our techniques to more combinatorial problems beyond TSP.
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Figure 5: Example point matching results after applying P1, P2, and P3 to the original point set.
The features are extracted using NMGM (Wang et al., 2021). We observe that the Sinkhorn method
fails to achieve cycle-consistency, while our ROMT-Sinkhorn method successfully maintains cycle-
consistency, resulting in the graph after applying P3 remaining identical to the original graph.

Table 1: Three Point Sets Matching Comparisons with NMGM (Wang et al., 2021), PCA-
GM (Wang et al., 2019), IPCA-GM (Wang et al., 2020b) and CIE-H (Yu et al., 2019) backbone
on Willow. Accuracy (ACC), Consistent rate (CR) and Consistent Accuracy (CACC) (%) are reported
and ROMT-Sinkhorn outperforms in CR and CACC and performs competitively in Acc.

Method NMGM PCA-GM IPCA-GM CIE-H
ACC CR CACC ACC CR CACC ACC CR CACC ACC CR CACC

Hungarian (Munkres, 1957) 91.10 93.94 84.42 56.50 59.74 33.64 40.03 63.03 22.69 37.13 68.59 18.52
EMD (Dantzig, 1949) 91.08 93.90 84.38 92.19 90.28 84.24 94.26 91.41 87.32 89.84 84.09 78.28
Sinkhorn (Cuturi, 2013) 91.02 93.76 84.28 92.64 90.12 84.86 94.51 91.44 87.76 93.08 84.72 82.88
MMOT (Elvander et al., 2020) 91.96 93.28 87.10 93.59 94.12 89.36 94.22 90.57 87.93 94.06 86.89 85.70
ROMT-Sinkhorn (ours) 92.30 99.72 88.28 93.27 98.96 90.04 95.06 95.00 90.31 94.62 98.47 91.48

Table 2: Four Point Sets Matching Comparison Results on Willow.
Method NMGM PCA-GM IPCA-GM CIE-H

ACC CR CACC ACC CR CACC ACC CR CACC ACC CR CACC

Hungarian (Munkres, 1957) 92.39 96.66 84.58 57.33 51.04 25.96 39.24 54.73 16.10 37.30 61.01 13.05
EMD (Dantzig, 1949) 92.39 96.66 84.38 92.47 88.12 81.44 93.83 87.75 82.21 89.85 80.24 73.18
Sinkhorn (Cuturi, 2013) 92.28 96.26 84.40 92.74 87.04 81.34 93.81 86.93 82.14 93.08 80.45 78.31
MMOT (Elvander et al., 2020) 92.34 93.74 85.04 93.38 90.44 85.12 93.98 85.75 82.68 93.83 82.14 80.65
ROMT-Sinkhorn (ours) 92.54 98.78 85.48 93.11 96.38 85.96 94.53 92.40 85.92 94.16 97.78 88.11

4 EXPERIMENTS
4.1 EXPERIMENTS ON VISUAL POINT MATCHING ACROSS SETS

We evaluate on the task of keypoint matching on Pascal VOC dataset with Berkeley annotations (Ev-
eringham et al., 2010; Bourdev & Malik, 2009) and Willow Object Class dataset (Cho et al., 2013).
In addition to the average accuracy (ACC) (Wang et al., 2021) to evaluate matching results, we
develop two metrics called Consistent Rate (CR) and Consistent Accuracy (CACC) to assess the
cycle-consistency effectiveness of the inference method. These metrics are defined as follows:

CR =
1

n
<

K∏
k=1

P̂k, In > and CACC =
1

n
<

K∏
k=1

(P̂k ⊙Yk), In > (20)

where P̂k is the one-hot matching prediction results of Pk for the k−th point set to (k + 1)−th
set, Yk is the ground truth for Pk and ⊙ denotes element-wise matrix multiplication and n is the
number of points in the first set. Note CR refers to the accuracy of forming cycles through matching,
while CACC represents the accuracy of forming cycles where each feature point within the cycle is
matched correctly. We adopt the mean value of CR and CACC as evaluations.

Results. The results are summarized in Tab. 1 and Tab. 3. We utilize the previous neural matching
models, namely NMGM (Wang et al., 2021), PCA-GM (Wang et al., 2019), IPCA-GM (Wang et al.,
2020b) and CIE-H (Yu et al., 2019) ), as the backbone to evaluate our inference algorithm. We
compare our ROMT-Sinkhorn algorithm with (Munkres, 1957), EMD (Dantzig, 1949) and Sinkhorn
Algorithm (Cuturi, 2013). As shown in Tab. 1, for the Willow dataset, our method outperforms all

8
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Table 3: Comparison with PCA-GM (Wang et al., 2019), IPCA-GM (Wang et al., 2020b) and
CIE-H (Yu et al., 2019) backbone on Pascal VOC dataset with Berkeley annotations. Accuracy
(ACC), Consistent rate (CR) and Consistent Accuracy (CACC) (%) are all reported here and our
ROMT-Sinkhorn outperforms in CR and CACC evaluation and performs competitively in Acc.

Method PCA-GM IPCA-GM CIE-H
ACC CR CACC ACC CR CACC ACC CR CACC

Hungarian (Munkres, 1957) 49.89 60.80 25.63 58.57 60.34 36.16 60.83 66.25 36.87
EMD (Dantzig, 1949) 67.03 65.59 44.44 69.07 68.09 47.24 71.60 68.67 49.87
Sinkhorn (Cuturi, 2013) 68.14 66.64 45.28 69.83 69.02 48.94 72.67 68.54 51.04
MMOT (Elvander et al., 2020) 67.85 69.30 48.75 70.18 65.98 49.39 72.06 67.34 51.62
ROMT-Sinkhorn (ours) 68.74 82.69 51.63 70.93 84.68 55.24 73.52 83.57 57.65

Table 4: Results for fusing MLP and VGG11, along with the effect of finetuning the fused
models, on MNIST and CIFAR10 respectively. The numbers below the test accuracies represent
the efficiency factor of a fusion technique compared to retaining all the provided models.

Dataset +
MA MB MC

Model Fusion without Fine-tuning Fine-tuning
Model PREDICTION VANILLA OTfusion Ours VANILLA OTfusion Ours

MNIST + 97.72 97.75 97.69 98.00 25.59 84.16 84.32 97.88 97.96 98.00
MLP 1× 1× 3× 3× 3× 3× 3× 3×
CIFAR10 + 90.31 90.50 90.51 91.55 9.99 88.38 88.77 90.2 89.67 90.51
VGG11 1× 1× 3× 3× 3× 3× 3× 3×

other inference methods by CR and CACC and performs competitively by ACC. For experiments on
Pascal VOC with Berkeley annotations, our ROMT-Sinkhorn outperforms others across all backbones.
Results for more than three measures are given in Appendix C.

4.2 EXPERIMENTS ON NEURAL NETWORK MODEL FUSION

Following the network fusion protocol in (Singh & Jaggi, 2020) using already-trained neural networks
for fusion i.e. a single new network whose parameters are fused from the input networks’, our
experiments are focused on exploring the benefits of fusing multiple models that only differ in their
parameter initializations (i.e., seeds). We study this in the context of deep networks such as MLP and
VGG11 which have been trained on MNIST and CIFAR10 respectively.

Results. We focus on the setting of three model fusions, and the results are presented in Tab. 4. As
baselines, we evaluate the performance of prediction ensembling, vanilla averaging, and OTfusion
(Singh & Jaggi, 2020), in addition to the individual models. Prediction ensembling involves keeping
all the models and averaging their predictions (output layer scores), representing an ideal but unrealis-
tic performance achievable through fusion into a single model. Vanilla averaging refers to directly
averaging the model parameters. The numbers below the test accuracies (e.g., 1× and 3×) indicate
the factor by which a fusion technique is efficient in maintaining all the given models. We observe
that vanilla averaging performs ineffectively in this case and is worse than OTfusion and our proposed
method, especially for MLP and VGG11. Our method achieves the best performance. However, both
OTfusion and our method do not yet surpass the individual models. As explained in (Singh & Jaggi,
2020), this can be attributed to the combinatorial hardness of the underlying alignment problem and
the greedy nature of the algorithm. We also consider fine-tuning from the fused models. Finetuning
improves the performance of all three methods: vanilla averaging, OTfusion, and our method. Our
method achieves the highest test accuracy, outperforming the other fusion techniques, as shown in
Tab. 4. Specifically, when applied to MLP, our method with fine-tuning approaches the performance
of the prediction ensemble in terms of test accuracy.

5 CONCLUSION AND LIMITATION

We have introduced a generalized form for optimal multiple transportation (OMT), which enables
transportation among multiple measures while (softly) preserving cycle-consistent constraints. Build-
ing upon the cycle-consistency regularized formulation of OMT, we further propose an iterative
Sinkhorn method to approximate the solution. We have applied our OMT algorithms to the domains
of visual point set matching and multi-model fusion, both of which have demonstrated competitive
performance. We also demonstrate the potential of our approach for solving the challenging TSP
problems in probabilistic space, in contrast to traditional methods working in the distance space. For
the limitation, our ROMT-Sinkhorn introduces an additional hyperparameter δ for tuning. Similarly,
for the regularized TSP-OMT, the number of hyperparameters increases by K.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Isabelle Abraham, Romain Abraham, Maıtine Bergounioux, and Guillaume Carlier. Tomographic re-
construction from a few views: a multi-marginal optimal transport approach. Applied Mathematics
& Optimization, 75(1):55–73, 2017.

Florian Bernard, Johan Thunberg, Paul Swoboda, and Christian Theobalt. Hippi: Higher-order
projected power iterations for scalable multi-matching. In Proceedings of the ieee/cvf international
conference on computer vision, pp. 10284–10293, 2019.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

Harshil Bhatia, Edith Tretschk, Zorah Lähner, Marcel Seelbach Benkner, Michael Moeller, Christian
Theobalt, and Vladislav Golyanik. Ccuantumm: Cycle-consistent quantum-hybrid matching of
multiple shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1296–1305, 2023.

L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In
International Conference on Computer Vision, pp. 1365–1372. IEEE, 2009.
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APPENDIX

A LAGRANGIAN METHOD FOR REGULARIZED OMT

We first give the derivation of Eq. 12. At first, given the minimization

min
(Pk)k:Pk∈U(ak,ak+1)

L1 =

K∑
k=1

< Ck,Pk > −ϵ
∑
k

H(Pk)− δ||
K∏

k=1

P̃k − I||2F , (21)

we can adopt the Lagrangian method to solve it. For each coupling Pk, we introduce (fk,gk) to the
constraints in U(ak,ak+1), i.e.

Pk1nk+1
= ak and (Pk)

⊤1nk
= ak+1, (22)

and then we can get the Lagrangian function as

L = L1 −
∑
k

(
< fk,Pk1nk+1

− ak > + < gk, (Pk)
⊤1nk

− ak+1 >
)

(23)

We compute the partial derivative of L with respect to Pk as

∂L
∂Pk

= Ck + ϵ logPk − fk1
⊤ − 1g⊤

k − δMk = 0, (24)

where Mk is specified as

Mk =
∂f

∂Pk
=

∂tr(Y ⊤Y )

∂Pk
=

∂||
K∏

k=1

P̃k − I||2F

∂Pk
. (25)

Here we set Y =
K∏

k=1

P̃k− I and f = tr(Y ⊤Y ) in Eq. 25. With the method given in (Hu, 2012), We

solve it by utilizing the relationship between matrix derivative and its partial derivatives. Specially,
we have

df = tr(dY ⊤Y ) + tr(Y ⊤dY ) = tr(2Y ⊤dY ) = tr(
∂f⊤

∂Y
dY ), (26)

then it is satisfied that ∂f⊤

∂Y = 2Y ⊤. For the matrix Pk, we have

df = tr(
∂f⊤

∂Y
d

K∏
t=1

P̃t) = tr(

K∏
t3=k+1

P̃t3

∂f⊤

∂Y

k∏
t1=1

P̃t1Diag
(

1

ak

)
dPk)

= tr(2

K∏
t3=k+1

P̃t3(

K∏
t2=1

P̃t2 − I)⊤
k∏

t1=1

P̃t1Diag
(

1

ak

)
dPk)

= tr(

2Diag
(

1

ak

)
(

k∏
t1=1

P̃t1)
⊤(

K∏
t2=1

P̃t2 − I)(

K∏
t3=k+1

P̃t3)
⊤

⊤

dPk)

(27)

thus we have

Mk = 2Diag
(

1

ak

)( k−1∏
t1=1

P̃t1

)⊤( K∏
t2=1

P̃t2 − I

) K∏
t3=k+1

P̃t3

⊤

. (28)

According to Eq. 24, we have

Pk = Diag(efk/ϵ)e(−Ck+δMk)/ϵDiag(egk/ϵ) (29)

and the iterative Sinkhorn algorithm can be used with the constraints given in Eq. 22.
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B MORE DETAILS IN TSP-OMT

B.1 LAGRANGIAN METHOD FOR REGULARIZED TSP-OMT

For the minimization of regularized TSP-OMT, we have

min
P

L2 =< C,P > −ϵH(P) +
∑
k

δk||Pk − I||2F s.t. P1K = 1K , P⊤1K = 1K . (30)

Lagrangian methods are used to solve it here. Introducing the duals (f ,g) to the constraints P1K =
1K ,P⊤1K = 1K , we can get the Lagrangian function

L = L2− < f ,P1K − 1K > − < g,P⊤1K − 1K > . (31)

Then we can compute the partial derivative of L with respect to P as

∂L
∂P

= C+ ϵ logP− f1⊤ − 1g⊤ +M = 0, (32)

where M is specified as

M =
∑
k

δk
∂||Pk − I||2F

∂P
=

K∑
k=1

k−1∑
t=0

2δk(P
t)⊤(Pk − I)(Pk−1−t)⊤. (33)

To prove that, we define fk = tr(Y ⊤Y ) = ||Pk − I||2F where Y = Pk − I, then

dfk = tr
(
2Y ⊤dY

)
= tr(

k−1∑
t=0

∂f⊤
k

∂Y
(PtdPPk−1−t)) = tr(

k−1∑
t=0

Pk−1−t ∂f
⊤
k

∂Y
PtdP )

= tr

(2 k−1∑
t=0

(Pt)⊤(Pk − I)(Pk−1−t)⊤

)⊤

dP

 ,

(34)

Thus we have

∂fk
∂P

=

k−1∑
t=0

2(Pt)⊤(Pk − I)(Pk−1−t)⊤. (35)

So we can get that

M =
∑
k

δk
∂fk
∂P

=

K∑
k=1

k−1∑
t=0

2δk(P
t)⊤(Pk − I)(Pk−1−t)⊤. (36)

According to Eq. 32, we can the solution form

P = Diag(ef/ϵ)e−(C+M)/ϵDiag(eg/ϵ). (37)

Thus the iterative Sinkhorn algorithm can be applied for calculation.

B.2 GREEDY METHOD FOR SEARCHING WITH PROBABILITY MATRIX

With a known probability matrix calculated by Sinkhorn or Algorithm 2, we can apply the Algorithm 3
to get the TSP path.
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Table 5: Experiments of four measures: Comparison with PCA-GM (Wang et al., 2019), IPCA-
GM (Wang et al., 2020b) and CIE-H (Yu et al., 2019) backbone on Pascal VOC dataset with
Berkeley annotations. Accuracy (ACC), Consistent rate (CR) and Consistent Accuracy (CACC) (%)
are all reported here and our ROMT-Sinkhorn outperforms in CR and CACC evaluation and performs
competitively in Acc.

Method PCA-GM IPCA-GM CIE-H
ACC CR CACC ACC CR CACC ACC CR CACC

Hungarian (Munkres, 1957) 54.30 55.96 22.01 62.65 57.08 34.01 65.86 58.23 34.64
EMD (Dantzig, 1949) 70.45 61.06 40.04 70.71 62.90 42.28 73.91 64.36 45.04
Sinkhorn (Cuturi, 2013) 70.49 61.31 40.53 71.33 63.92 43.92 74.53 63.74 45.78
MMOT (Elvander et al., 2020) 70.56 61.41 41.73 71.32 61.44 43.93 74.69 63.19 46.17
ROMT-Sinkhorn (ours) 70.60 63.74 41.54 71.86 78.99 50.01 75.40 76.41 51.60

Algorithm 3 Greedy
Input: the coupling P
Output: the path tour

Initialize tour = []
i, j = where(P == P.max())
P[i, :] = P[:, j] = P[:, i] = 0
k = j
tour.append(i)
tour.append(j)
for m = 1, . . . , n− 2 do
i, j = k,where(P[k, :] == P[k, :].max())
P[i, :] = P[:, j] = 0
k = j
tour.append(j)

end for

C MORE EXPERIMENTAL RESULTS

The experimental results of four measures are given in Tab. 2 and Tab. 5 for visual matching and Tab. 6
for model fusion. Fig. 6 is the convergence cure for visual matching for Willow 3GM data with IPCA
as the backbone, which shows that our ROMT-Sinkhorn can easily converge with several epochs.
Note the error is set as the L2 norm for the iterative coupling difference (i.e.

∑
k ||Pt

k −Pt−1
k ||2 with

current iterative number t).

Runtimes of the pair-wise Sinkhorn and ROMT-Sinkhorn are shown in Tab. 7. The time complexity
of ROMT-Sinkhorn is L times that of the pair-wise Sinkhorn, where L represents the number of
iterations.

For the order of sets, we first consider three measure case with A, B, and C, with a mapping order
defined as A → B, B → C, and C → A, represented by matching matrices P1, P2, and P3.
Consistency requires that P1P2P3 = I. If we switch the order to A → C, C → B, and B → A,
with matching matrices P⊤

3 , P⊤
2 , and P⊤

1 , the consistency becomes P⊤
3 P

⊤
2 P

⊤
1 = P1P2P3 = I.

Therefore, for the case of three measures (K = 3), switching the order (of Fig. 5) does not affect
the problem formulation. We test the experiments on Willow 3GM with IPCA-GM as backbone
and the results are given in Tab. 8. Although the problems with and without switching the order are
equivalent, the results may differ slightly due to initialization and other factors.

As for K > 3, switching the order does indeed impact the formulation of the problem. However,
note our directed cyclical structure is essentially a subgraph of pairwise structure. When the latter is
satisfied, the former is also satisfied, allowing our method to still improve the matching performance.
We show the experiments of switching the second and third set order in Tab. 9.

We conducted an ablation study for visual matching experiments by varying δ and ϵ. The results are
given in Tab. 10.
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Table 6: Comparison results for four model fusion.
Dataset +

MA MB MC MD
Model Fusion without Fine-tuning Fine-tuning

Model PREDICTION VANILLA OTfusion Ours VANILLA OTfusion Ours

MNIST + 97.72 97.75 97.69 97.26 97.91 20.12 86.52 87.13 97.86 98.06 98.08
MLP 1× 1× 4× 4× 4× 4× 4× 4×
CIFAR10 + 90.31 90.50 90.51 90.58 91.79 10.02 88.66 88.94 10.86 89.79 90.35
VGG11 1× 1× 4× 4× 4× 4× 4× 4×

Figure 6: The convergence curve of ROMT-Sinkhorn for Willow 3GM data with IPCA backbone.

Table 7: Runtimes of pair-wise Sinkhorn and ROMT-Sinkhorn in different experiments. We
set L = 5 and get the average runtime of pair-wise Sinkhorn and ROMT-Sinkhorn on all samples of
an experiment.

Experiment runtime of pair-wise Sinkhorn(s) runtime of ROMT-Sinkhorn(s)

Willow 3GM 0.0113 0.0583
Willow 4GM 0.0150 0.0782
Willow 5GM 0.0188 0.0989

Table 8: The results for the case of three measures (K=3 ) when switching the order on
Willow 3GM with IPCA-GM as backbone.

Willow 3GM with IPCA-GM ACC CACC CR

ROMT-Sinkhorn : A→B, B→C, C→A 0.9506 0.9031 0.9500
ROMT-Sinkhorn : A→C, C→B, B→A 0.9459 0.8974 0.9477

Table 9: The results for the case of three measures (K=4 ) when switching the second and third
set order on Willow 4GM with IPCA-GM as backbone.

Willow 4GM with IPCA-GM ACC CACC CR

ROMT-Sinkhorn without switching 0.9453 0.8592 0.9240
ROMT-Sinkhorn with switching the order 0.9460 0.8557 0.9222
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Table 10: Ablation study for visual matching experiments by varying δ and ϵ.

δ ϵ ACC CACC CR

0.001 1e-9 0.9412 0.8767 0.9158
0.001 1e-10 0.9412 0.8767 0.9158
0.01 1e-9 0.9442 0.8967 0.9475

0.001 1e-11 0.9412 0.8767 0.9158
0.01 1e-10 0.9442 0.8967 0.9475
0.01 1e-11 0.9442 0.8967 0.9475
0.1 1e-9 0.9382 0.9087 0.9951
0.1 1e-10 0.9382 0.9087 0.9951
0.1 1e-11 0.9382 0.9087 0.9951
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