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ABSTRACT

Recent work has constructed neural networks that are equivariant to continuous
symmetry groups such as 2D and 3D rotations. This is accomplished using explicit
group representations to derive the equivariant kernels and nonlinearities. We
present two contributions motivated by frontier applications of equivariance beyond
rotations and translations. First, we relax the requirement for explicit Lie group
representations, presenting a novel algorithm that finds irreducible representations
of noncommutative Lie groups given only the structure constants of the associated
Lie algebra. Second, we demonstrate that Lorentz-equivariance is a useful prior for
object-tracking tasks and construct the first object-tracking model equivariant to
the Poincaré group.

1 INTRODUCTION

Many tasks in machine learning exactly or approximately obey a continuous symmetry such as
2D rotations. An ML model is said to be equivariant to such a symmetry if the model respects
it automatically (without training). Equivariant models have been applied to tasks ranging from
computer vision to molecular chemistry, leading to a generalization of equivariance techniques beyond
2D rotations to other symmetries such as 3D rotations. This is enabled by known mathematical results
about each new set of symmetries. Specifically, explicit group representation matrices for each new
symmetry group are required. For many important symmetries, formulae are readily available to
produce these representations. For other symmetries we are not so lucky, and the representations
may be difficult to find explicitly. In the worst cases, the classification of the group representations is
an open problem in mathematics. For example, in the important case of the homogeneous Galilean
group, which we define in Appendix B, the classification of the finite dimensional representations is
a so-called “wild algebraic problem” for which we have only partial solutions (De Montigny et al.,
2006; Niederle & Nikitin, 2006; Levy-Leblond, 1971).

To construct an equivariant network without prior knowledge of the group representations, novel
approaches are needed. In this work, we propose an algorithm LearnRep that finds the representation
matrices with high precision. We validate that LearnRep succeeds for the Poincaré group, a set
of symmetries governing phenomena ranging from particle physics to object tracking. We further
validate LearnRep on two additional sets of symmetries where formulae are known. We apply
the Poincaré group representations obtained by LearnRep to construct SpacetimeNet, a Poincaré-
equivariant object-tracking model. As far as we are aware, LearnRep is the first automated solver
which can find explicit representation matrices for sets of symmetries which form noncompact,
noncommutative Lie groups. Further, SpacetimeNet is the first object-tracking model with a rigorous
guarantee of Poincaré group equivariance.

1.1 GROUP REPRESENTATIONS AND EQUIVARIANT MACHINE LEARNING

Group theory provides the mathematical framework for describing symmetries and building equiv-
ariant ML models. Informally, a symmetry group G is a set of invertible transformations α, β ∈ G
which can be composed together using a product operation αβ. We are interested in continuous
symmetries for which G is a Lie group. In prior constructions of Lie group-equivariant models,
group representations are required. For a group G, an n−dimensional (real) group representation
ρ : G→ Rn×n is a mapping from each element α ∈ G to an n× n-dimensional matrix ρ(α), such
that for any two elements α, β ∈ G, we have ρ(α)ρ(β) = ρ(αβ).
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Two parallel techniques have been developed for implementing Lie group equivariant neural networks.
The first approach was described in general by Cohen et al. (2019). For the latter approach taken by
Thomas et al. (2018); Anderson et al. (2019); Bogatskiy et al. (2020), convolutions and nonlinearities
are performed directly on the irreducible representations of the group, which we define in Section B.4.
A common thread in these works has been to utilize existing formulas derived for the matrix elements
of these irreducible representations. However, these formulas are only available for specific Lie
groups where the representation theory is well-understood. A more convenient approach for extending
equivariance to novel Lie groups would utilize an automated computational technique to obtain the
required representations.

In this work, we automate the generation of explicit group representation matrices of Lie groups using
an algorithm called LearnRep. LearnRep poses an optimization problem defined by the Lie algebra
associated with a Lie group, whose solutions are the representations of the algebra. A penalty term is
used to prevent the formation of trivial representations. Gradient descent of the resulting loss function
produces nontrivial representations upon convergence. We apply LearnRep to three noncommutative
Lie groups for which the finite-dimensional representations are well-understood, allowing us to verify
that the representations produced are irreducible by computing their Clebsch-Gordan coefficients and
applying Schur’s Lemma.

One of the Lie groups for which LearnRep performs well is the Lorentz group of special relativity.
Prior work has applied Lorentz-equivariant models to particle physics. As we will explain, the
Lorentz group along with the larger Poincaré group also governs everyday object-tracking tasks. We
construct a Poincaré-equivariant neural network architecture called SpacetimeNet and demonstrate
that it can learn to solve a 3D object-tracking task subject to “motion equivariance,” where the inputs
are a time series of points in space.

In summary, our contributions are:

• LearnRep, an algorithm which can find irreducible representations of a noncompact and
noncommutative Lie group.

• SpacetimeNet, a Poincaré group-equivariant neural network which guarantees motion
equivariance for object-tracking tasks.

We have provided complete software implementations of LearnRep and SpacetimeNet. Our work
contributes towards a general framework and toolset for building neural networks equivariant to novel
Lie groups, and motivates further study of Lorentz equivariance for object tracking.

2 RELATED WORK

Several authors have investigated automated means of identifying Lie group representations. (Rao &
Ruderman, 1999) used gradient descent with several starting points to find the Lie group generators,
given many examples of data which had been transformed by the group. Applying the technique
requires knowledge of how the group acts on a representation space. Here we know the Lie algebra
structure but we do not know how to compute its representations. Tai et al. (2019) gave a closed-form
solution for the canonical coordinates for Lie groups. But their formula only applies for Abelian one-
parameter Lie groups, excluding SO(3),SO(2, 1), and SO(3, 1). Cohen & Welling (2014) proposed
a probabilistic model to learn representations of compact, commutative Lie groups from pairs of
images related by group transformations. In the present work we demonstrate a new approach to
handle noncompact and noncommutative groups such as SO(3),SO(2, 1), and SO(3, 1). Computer
algebra software such as the LiE package developed by Van Leeuwen et al. (1992) automates some
calculations related to completely reducible Lie groups. Unfortunately this limits us when considering
other Lie groups where the representation theory is not well-understood.

Beginning with the success of (approximately) translation-equivariant CNNs introduced by LeCun
et al. (1989) for image recognition, a line of work has extended equivariance to additional continuous
symmetry groups. Most relevant are the architectures for groups SE(2) (Worrall et al., 2017; Weiler
& Cesa, 2019), SE(3) (Weiler et al., 2018; Cohen et al., 2019; Kondor et al., 2018; Thomas et al.,
2018; Cohen et al., 2018; Kondor, 2018; Gao et al., 2020; Anderson et al., 2019; Fuchs et al., 2020;
Eismann et al., 2020), and the group of Galilean boosts (Zhu et al., 2019).
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The work by Thomas et al. (2018); Kondor et al. (2018); Anderson et al. (2019); Bogatskiy et al.
(2020) used Clebsch-Gordan coefficients in their equivariant neural networks. Weiler et al. (2018),
generalized by Cohen et al. (2019) showed all equivariant linear maps are convolutions whose kernels
satisfy some linear constraints. In our work we obtain Clebsch-Gordan coefficients from similar
linear constraints (equation 5) and use them to show that the learned representations are irreducible.
We also use them in SpacetimeNet. Griffiths & Griffiths (2005) provide an introductory exposition of
Clebsch-Gordan coefficients and Gurarie (1992) provides a more general exposition.

One of the first constructions that addressed spatiotemporal symmetries was by Zhu et al. (2019).
They introduce motion-equivariant networks to handle linear optical flow of an observer moving
at a fixed speed. They use a canonical coordinate system in which optical flow manifests as a
translation, as described for general one dimensional Lie groups by Tai et al. (2019). This allows
them to use the translation equivariance of CNNs to produce Galilean boost-equivariance. However,
this gives up equivariance to translation in the original coordinate system. To maintain approximate
translation-equivariance, the authors apply a spatial transformer network (Jaderberg et al., 2015) to
predict a landmark position in each example. This is similar to the work of Esteves et al. (2018),
which achieved equivariance to 2D rotation and scale, and approximate equivariance to translation.

The first mention of Poincaré-equivariant networks appears to be a work by Cheng et al. (2019) on
the link between covariance in ML and physics. Concurrently to this work, Bogatskiy et al. (2020)
constructed a Lorentz-equivariant model which operated on irreducible representations of the Lorentz
group. That work obtained the representations and Clebsch-Gordan coefficients analytically and
applied the resulting model to particle physics. That approach relies on the existing representation
theory of the group SO(3, 1). In contrast, our techniques may be applied to Lie groups without
such a theory.1 Another concurrent work by Finzi et al. (2020) proposed a framework for building
models equivariant to arbitrary Lie groups. That work also made use of the exponential and logarithm
maps between Lie algebra and group. It does not provide a technique for identifying the Lie algebra
representations. Our ideas complement this line of work by providing an algorithm (LearnRep)
that solves for the representations numerically, and demonstrating a novel application of Poincaré
equivariance to object tracking.

3 EXPERIMENTS

3.1 CONVERGENCE OF LEARNREP TO IRREDUCIBLE REPRESENTATIONS

We apply LearnRep to SO(3),SO(2, 1), and SO(3, 1) to learn 3, 3, and 4 dimensional irreducible
representations respectively. The loss function converges to 0 with the penalty term bounded
above by a constant. We exponentiate the resulting algebra representation matrices to obtain group
representations and calculate the tensor product structure as described in Appendix C.1.1. The results
indicate that the learned representations are irreducible representations of the associated Lie algebras
to within numerical error of about 10−6. Schur’s Lemma in the special case of the tensor product
with the trivial representation indicates the isomorphism class of each learned group representation.

3.2 POINCARÉ-EQUIVARIANT OBJECT-TRACKING NETWORKS

We created MNIST-Live, a benchmark dataset of spacetime point clouds sampled from digits from the
MNIST dataset moving uniformly through space. Each sample consists of 64 points with uniformly
random times t ∈ [−1/2, 1/2], and spatial coordinates sampled from a 2D probability density
function proportional to the pixel intensity. Using instances of the 0 and 9 classes, we train on
examples with zero velocity and evaluate on examples with random velocity and orientation. This
dataset is analogous to data from an event camera (see (Orchard et al., 2015)) or LIDAR system.
We train 3 layer SO(2, 1) and SO(3, 1)-equivariant SpacetimeNet models with 3 channels and batch
size 16 on 4096 MNIST-Live examples and evaluate on a test set of 124 examples. We obtain test
accuracy of 80± 5%. Further details and source code are available in the Appendix.

1As we mention in Section 1, such Lie groups include important cases like HG(m,n).
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Figure 1: Tensor product structure of the learned group representations ρ with several known
(analytically-derived) group representations ρ1 for the groups SO(3),SO(2, 1), and SO(3, 1). Each
column is for the group indicated at the bottom, each row is for a different choice of ρ1 for that group,
and the horizontal axis indicates the ρ(i) onto which we project the tensor product ρ⊗ ρ1 ∼= ⊕i∈Iρ(i).
The diagnostic r (defined in Appendix B.5) is plotted on the y-axis with a log scale for each subfigure.
The labelling of group representations is explained in Section 3.1, recall that the primed integers
indicate learned representations. The first row demonstrates by Schur’s Lemma that to within
numerical error of about ∼ 10−6 the learned SO(3) group representation denoted 1′ is isomorphic
to the spin-1 irreducible group representation obtained from known formulae, i.e. 1′SO(3)

∼= 1SO(3).
The first row also indicates that 1′SO(2,1)

∼= 1SO(2,1), and (1/2′, 1/2′)SO(3,1)
∼= (1/2, 1/2)SO(3,1).

The remaining rows indicate that the tensor product structure of the learned group representations
matches that of the known irreducible group representations.

3.3 CONCLUSION

We envision many applications of Poincaré-equivariant deep neural networks beyond the physics
of particles and plasmas. SpacetimeNet can identify and track objects as they move through 3D
space while maintaining equivariance to the motion and coordinate system of the observer. This
suggests that Lorentz-equivariance may serve as a useful prior for object-tracking tasks, especially
when the observer’s velocity is not known. With a treatment of bandlimiting and resampling as in
Worrall et al. (2017); Weiler et al. (2018), our work could be extended to build Poincaré-equivariant
networks for volumetric data. More broadly, understanding the representations of noncompact and
noncommutative Lie groups would enable the construction of networks equivariant to other sets of
symmetries such as the Galilean group. Since the representation theory of these groups is not entirely
understood, automated techniques such as LearnRep could play a beneficial role.
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A APPENDIX

B TECHNICAL BACKGROUND

We explain the most crucial concepts here and defer to the Appendix for a derivation of the represen-
tation theory of the Lorentz group.

B.1 SYMMETRY GROUPS SO(n) AND SO(m,n)

A 3D rotation may be defined as a matrix A ∈ R3×3 which satisfies the following properties, in
which 〈~u,~v〉 =

∑3
i=1 uivi:

(i) detA = 1 (ii) ∀~u,~v ∈ R3, 〈A~u,A~v〉 = 〈~u,~v〉;

these imply the set of 3D rotations forms a group under matrix multiplication and this group is
denoted SO(3). This definition directly generalizes to the n−dimensional rotation group SO(n). For
n ≥ 3, the group SO(n) is noncommutative, meaning there are elements A,B ∈ SO(n) such that
AB 6= BA. Allowing for rotations and translations of n dimensional space gives the n−dimensional
special Euclidean group SE(n). SO(n) is generalized by a family of groups denoted SO(m,n), with
SO(n) = SO(n, 0). For integers m,n ≥ 0, we define 〈~u,~v〉m,n =

∑m
i=1 uivi −

∑m+n
i=m+1 uivi. The

group SO(m,n) is the set of matrices A ∈ R(m+n)×(m+n) satisfying (i-ii) below:

(i) detA = 1 (ii) ∀~u,~v ∈ Rm+n, 〈A~u,A~v〉m,n = 〈~u,~v〉m,n;

these imply that SO(m,n) is also a group under matrix multiplication. While the matrices in
SO(n) can be seen to form a compact manifold for any n, the elements of SO(m,n) form a
noncompact manifold whenever n,m ≥ 1. For this reason SO(n) and SO(m,n) are called compact
and noncompact Lie groups respectively. The representations of compact Lie groups are fairly well
understood Bump (2004); Cartan (1930).

B.2 ACTION OF SO(m,n) ON SPACETIME

We now explain the physical relevance of the groups SO(m,n) by reviewing spacetime. We refer
to Feynman et al. (2011) (ch. 15) for a pedagogical overview. Two observers who are moving at
different velocities may disagree on the observed coordinates {(ti, ~ui)} ⊂ R4 of some events in
spacetime. Newton and Galileo proposed that they could reconcile their coordinates by applying a
spatial rotation and translation (i.e., an element of SE(3)), a temporal translation (synchronizing their
clocks), and finally applying a transformation of the following form:

ti 7→ ti ~ui 7→ ~ui + ~vti, (1)

in which ~v is the relative velocity of the observers. The transformation equation 1 is called a Galilean
boost. The set of all Galilean boosts along with 3D rotations forms the homogeneous Galilean group
denoted HG(1, 3). Einstein argued that equation 1 must be corrected by adding terms dependent
on ||~v||2/c, in which c is the speed of light and ||~v||2 is the `2 norm of ~v. The resulting coordinate
transformation is called a Lorentz boost, and an example of its effect is shown in figure 2. The set
of 3D rotations along with Lorentz boosts is exactly the group SO(3, 1). In the case of 2 spatial
dimensions, the group is SO(2, 1). Including spacetime translations along with the Lorentz group
SO(n, 1) gives the larger Poincaré group Pn with n spatial dimensions. The Poincaré group P3 is
the group of coordinate transformations between different observers in special relativity.

Consider an object tracking task with input data consisting of a spacetime point cloud with n
dimensions of space and 1 of time, and corresponding outputs consisting of object class along with
location and velocity vectors. A perfectly accurate object tracking model must respect the action
of Pn on the input. That is, given the spacetime points in any observer’s coordinate system, the
perfect model must give the correct outputs in that coordinate system. Therefore the model should be
Pn-equivariant. For low velocities the symmetries of the homogeneous Galilean groups HG(n, 1)
provide a good approximation to SO(n, 1) symmetries, so Galilean-equivariance may be sufficient for
some tasks. Unfortunately the representations of HG(n, 1) are not entirely understood De Montigny
et al. (2006); Niederle & Nikitin (2006); Levy-Leblond (1971).
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Figure 2: Activations of an SO(2, 1)-Equivariant neural network constructed using our framework.
The arrows depict the elements of the 3-dimensional representation space (arrows) and are embedded
on their associated points within the point cloud. This point cloud is from the MNIST-Live dataset as
generated with digits embedded in the x− t plane. The y axis is suppressed. The left plot depicts
the “original” activations (with the digit at rest). The right plots show what happens if we transform
the point cloud with a Lorentz boost in the ±x direction before feeding it through the network. As
dictated by Lorentz-equivariance, the activation vectors generated by the network transform in the
same way as the input point cloud.

B.3 LIE GROUPS AND LIE ALGEBRAS

Here we give an intuitive summary of Lie groups and Lie algebras, deferring to Bump (2004) for a
rigorous technical background. A Lie group G gives rise to a Lie algebra A as its tangent space at
the identity. This is a vector space V along with a bilinear product called the Lie bracket: [a, b] which
must behave like2 the commutator for an associative ring R with multiplication operation ×R:

[a, b] = a×R b− b×R a
The Lie algebra for SO(3), denoted so(3), has a basis {J1, J2, J3} satisfying

[Ji, Jj ] = εijkJk, (2)

in which εijk ∈ {±1, 0} is the totally antisymmetric Levi-Civita symbol.3 Intuitively, the Lie bracket
shows how group elements near the identity fail to commute. For example, the matrices Rx, Ry, Rz
for rotations about the x and y axes by a small angle θ satisfy RxRy −RyRx = Rz +O(θ2); more
generally the Lie bracket of equation 8 is satisfied to first order in θ. The Lie algebra so(3, 1) of
the Lorentz Group SO(3, 1) also satisfies equation 8 for the generators J1, J2, J3 of its subalgebra
isomorphic to so(3). It has 3 additional generators denoted K1,K2,K3, which satisfy:

[Ji,Kj ] = εijkKk [Ki,Kj ] = −εijkJk (3)

These Ki correspond to the Lorentz boosts in the same way that the Ji correspond to the rotations. In
general, if A is a t-dimensional Lie algebra with generators T1, ..., Tt such that

[Ti, Tj ] =

t∑
k=1

AijkTk, (4)

we call the tensor Aijk the structure constants of A. For connected matrix Lie groups such as
SO(m,n), the structure constants Aijk are easily obtained. For example, one may apply the matrix
logarithm to several elements of the group to obtain elements of the algebra, then find a complete
basis for the algebra and write the commutator of all basis elements in this basis.

B.4 GROUP REPRESENTATIONS AND THE TENSOR PRODUCT

Let G be a Lie group and ρ : G→ Rn×n be a representation of G as defined in Section 1.1. Then ρ
defines a group action on Rn: given a vector ~u ∈ Rn and a group element α ∈ G, we can define

α ∗ρ ~u := ρ(α)~u

2Specifically, the Lie bracket must satisfy the Jacobi identity and [a, a] = 0.
3The symbol εijk simply expresses in equation 8 that [J1, J2] = J3, [J2, J3] = J1, and [J3, J1] = J2.
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using the matrix product. We then say that ρ is irreducible if it leaves no nontrivial subspace invariant
– for every subspace V ⊂ Rn with 0 < dimV < n, there exists α ∈ G,~v ∈ V such that α ∗ρ ~v /∈ V .

Given two G-representations ρ1 : G→ Rn1×n1 , ρ2 : G→ Rn2×n2 , we define their tensor product
as

ρ1 ⊗ ρ2 : G→ Rn1n2×n1n2 , (ρ1 ⊗ ρ2)(α) = ρ1(α)⊗ ρ2(α),

in which ⊗ on the right hand side denotes the usual tensor product of matrices. It is easy to check
that ρ1 ⊗ ρ2 is also a representation of G using the fact that for matrices A1, A2 ∈ Rn1×n1 and
B1, B2 ∈ Rn2×n2 ,

(A1 ⊗B1)(A2 ⊗B2) = (A1A2)⊗ (B1B2).

For ρ1, ρ2 as above we also define their direct sum as

(ρ1 ⊕ ρ2)(α) =

(
ρ1(α)

ρ2(α)

)
.

For two groups H,G we say that H is isomorphic to G and write H ∼= G if there exists a bijection
f : H → G such that f(αβ) = f(α)f(β). For ρ1, ρ2 as above, their images ρi(G) form matrix
groups and we say that ρ1 and ρ2 are isomorphic and write ρ1 ∼= ρ2 if these groups are isomorphic,
i.e. ρ1(G) ∼= ρ2(G). Some familiar representations of SO(3) act on scalars ∈ R, vectors ∈ R3, and
tensors (e.g., the Cauchy stress tensor) – these representations are all nonisomorphic.

For many Lie groups such as SO(n, 1) and SO(n), a property called complete reducibility guarantees
that any representation is either irreducible, or isomorphic to a direct sum of irreducible representa-
tions. For such groups it suffices to identify the irreducible representations to understand all other
representations and construct equivariant models.

B.5 CLEBSCH-GORDAN COEFFICIENTS AND TENSOR-PRODUCT NONLINEARITIES

Clebsch-Gordan Coefficients: Let G be a completely reducible Lie group and let ρ1, ρ2, ρ3 be
irreducible G-representations on the vector spaces Rn1 ,Rn2 ,Rn3 . Consider the tensor product
representation ρ1⊗ρ2. AsG is completely reducible, there exists a set S of irreducible representations
such that ρ1 ⊗ ρ2 ∼=

⊕
ρ∈S ρ. Suppose ρ3 ∈ S. Then there exists a matrix C ∈ Rn3×(n1n2) which

projects the space of the n3-dimensional group representation ρ3 from the tensor product space
Rn1 ⊗ Rn2 . That is,

∀(α, ~u,~v) ∈ G× Rn1 × Rn2 ,

C(ρ1(α)⊗ ρ2(α))(~u⊗ ~v) = ρ3(α)C(~u⊗ ~v)

⇒ C(ρ1(α)⊗ ρ2(α)) = ρ3(α)C. (5)

The matrices C satisfying equation 5 for various ρ3 are called the Clebsch-Gordan coefficients. In
equation 5 there are n1n2n3 linear constraints on C, and therefore this is a well-posed homogeneous
linear program (LP) for C. The entries of C may be found numerically by sampling several distinct
α ∈ G and concatenating the linear constraints (equation 5) to form the final LP. The solutions for C
form a linear subspace of Rn3×(n1n2) given by the nullspace of some matrix we denote C[ρ1, ρ2, ρ3].

Tensor Product Nonlinearities: Tensor product nonlinearities, including norm nonlinearities, use
the Clebsch-Gordan coefficients defined above to compute equivariant quadratic functions of multiple
G-representations within the G-equivariant model. This was demonstrated for the case of SE(3) by
Thomas et al. (2018); Kondor et al. (2018) and for SO(3, 1) by Bogatskiy et al. (2020).

B.6 EQUIVARIANT CONVOLUTIONS

Consider data on a point cloud consisting of a finite set of spacetime points {~xi} ⊂ R4, a rep-
resentation ρ0 : SO(3, 1) → R4×4 of the Lorentz group defining its action upon spacetime, and
feature maps {~ui} ⊂ Rm, {~vi} ⊂ Rn associated with representations ρu : SO(3, 1)→ Rm×m and
ρv : SO(3, 1)→ Rn×n. A convolution of this feature map can be written as

~u′i =
∑
j

κ(~xj − ~xi)~uj

9
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in which κ(~x) : R4 → Rn×m, a matrix-valued function of spacetime, is the filter kernel.

P3-equivariance dictates that for any α ∈ SO(3, 1),

ρv(α)
∑
j

κ(~xj − ~xi)~uj =
∑
j

κ(ρ0(α)(~xj − ~xi))ρu(α)~uj

⇒ κ(∆~x) = ρv(α
−1)κ(ρ0(α)∆~x)ρu(α) (6)

Therefore a single kernel matrix in Rn×m may be learned for each coset of spacetime under the
action of SO(3, 1). The cosets are indexed by the invariant

t2 − x2 − y2 − z2.

The kernel may then be obtained at an arbitrary point ~x ∈ R4 from equation 6 by computing an α
that relates it to the coset representative ~x0: ~x = ρ0(α)~x0. A natural choice of coset representatives
for SO(3, 1) acting upon R4 is the set of points {(t, 0, 0, 0) : t ∈ R+} ∪ {(0, x, 0, 0) : x ∈
R+} ∪ {(t, ct, 0, 0) : t ∈ R+}.

B.7 ANALYTIC DERIVATION OF LORENTZ GROUP REPRESENTATIONS

To compare our learned group representations with those obtained through prior methods, we require
analytical formulae for the Lie algebra representations for the algebras so(3), so(3, 1), and so(2, 1).
The case of so(3) has a well-known solution (see Griffiths & Griffiths (2005)). If complex matrices
are permissible the library QuTiP ? has a function “jmat” that readily gives the representation matrices.
A formula to obtain real-valued representation matrices is given in ? and a software implementation
is available at ?. The three-dimensional Lie algebra so(2, 1) = span{Kx,Ky, Jz} has structure
constants given by equation 7:

[Ji,Kj ] = εijkKk [Ki,Kj ] = −εijkJk (7)

In fact, these three generators Kx,Ky, Jz may be rescaled so that they satisfy equation 8 instead, the
structure constants of so(3):

[Ji, Jj ] = εijkJk, (8)

This is due to the isomorphism so(3) ∼= so(2, 1). Specifically, leting {Lx, Ly, Lz} denote a Lie
algebra representation of so(3), defining

Kx = −iLx Ky = −iLy Jz := Lz,

it may be easily checked thatKx,Ky, Jz satisfy the applicable commutation relations from equation 7.
This reflects the physical intuition that time behaves like an imaginary dimension of space.

The final Lie algebra for which we require explicit representation matrix formulas is so(3, 1).
Following ?, we define new generators Ai, Bi as

Ai :=
1

2
(Ji + iKi) Bi :=

1

2
(Ji − iKi), (9)

we see that the so(3, 1) commutators equation 8, equation 7 become

[Ai, Aj ] = iεijkAk, [Bi, Bj ] = iεijkBk, [Ai, Bj ] = 0. (10)

Therefore so(3, 1) ∼= so(3)⊕ so(3), and the irreducible algebra representations of so(3, 1) may be
obtained as the direct sum of two irreducible algebra representations of so(3).

C METHODS

C.1 LEARNING LIE GROUP REPRESENTATIONS

For a matrix M ∈ Rn×n we denote its Frobenius and L1 norms by

|M |2F =
∑

1≤i,j≤n

|Mij |2, |M |1 =
∑

1≤i,j≤n

|Mij |.

10
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The approach of LearnRep is to first learn a Lie algebra representation and then obtain its correspond-
ing group representation through the matrix exponential. Fix a t-dimensional Lie algebra A with
structure constants Aijk as defined in equation 4. Fix a positive integer n as the dimension of the
representation of A. Then let the matrices T1, ..., Tt ∈ Rn×n be optimization variables, and define
the following loss function on the Ti:

L[T1, ..., Tt] = max

(
1, max

1≤i≤t

1

|Ti|2F

)
︸ ︷︷ ︸

N [Ti]−1

×

∑
1≤i≤j≤t

∣∣∣∣∣[Ti, Tj ]−∑
k

AijkTk

∣∣∣∣∣
1

. (11)

This is the magnitude of violation of the structure constants of A, multiplied by a norm penalty term
N [Ti]

−1. The purpose of the norm penalty is to avoid convergence to a solution where Ti = 0n×n
for any i, which will act trivially when restricted to the nontrivial subgroup {etTi : t ∈ R}. We pose
the optimization problem:

min
T1,...,Tt∈Rn×n

L[T1, ..., Tt].

The generators were initialized with entries from the standard normal distribution. Gradient descent
was performed in PyTorch with the Adam optimizer (Kingma & Ba, 2014) with initial learning rate
0.1. The learning rate was decreased exponentially when loss plateaued. Plots of the loss and penalty
during training are available in the Appendix.

C.1.1 VERIFYING IRREDUCIBILITY OF LEARNED REPRESENTATIONS

Suppose LearnRep has converged to T1, . . . Tt such that L[Ti] = 0. Then the T1, ..., Tt are a nonzero
n-dimensional representation of the Lie algebra A. The groups considered here are covered by the
exponential map applied to their Lie algebras, so there exists an n-dimensional representation ρ of
the Lie group G which is defined by

ρ(α) = exp

[
t∑
i=1

bαi Ti

]
,

in which each α ∈ G is uniquely determined by constants bα1 , . . . , b
α
t ∈ R, and exp denotes the matrix

exponential. The constants bαi are independent of n and may be obtained from a single representation
using the matrix logarithm. Throughout this section, ρ denotes the above representation. In general ρ
may leave some nontrivial subspace invariant. In this case it is reducible and splits as the direct sum
of lower-dimensional irreducible representations ρi as explained in B.4:

ρ ∼= ρ1 ⊕ . . .⊕ ρ`.

Recall that any representation may be obtained as such a direct sum of irreducible representations with
dimensions n1, . . . , n` satisfying n =

∑`
i=1 ni. If n is set to the minimum dimension of a nontrivial

irreducible representation, the only permissible partitions of n have ` = 1 and ` = n – as the latter
representation is trivial, equation 11 diverges, so LearnRep can only converge to an irreducible
n dimensional representation.4 It is important to verify that the learned ρ is indeed irreducible
with ` = 1. To validate that ρ is irreducible, LearnRep computes its tensor product structure and
compares with the expected structure. Specifically, it computes the Clebsch-Gordan coefficients for
the direct-sum decomposition of the tensor product of the learned representation ρ with several other
known representations ρ1, ..., ρr. Section B.5 defines these coefficients and explains how they are
computed from the nullspace of the matrix C = C[ρ, ρ1, ρ2], in which ρ2 appears in the decomposition
of ρ ⊗ ρ1. Let ρ1, ρ2 denote two other known representations, and consider the Clebsch-Gordan
coefficients C such that Cρ⊗ ρ1 = ρ3C. The dimension of the nullspace of C indicates the number
of linearly independent matrices C of Clebsch-Gordan coefficients. The singular values of C are
denoted SV1(C) ≤ ... ≤ SV`(C). The ratio

r(C) := SV2(C)/SV1(C) (12)

4This applies to our experiments learning SO(3) representations, with n = 3.
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diverges only if the nullspace is one dimensional which therefore corresponds to a unique solution for
C. The number of expected solutions is known (e.g., it may be computed using the same technique
from the formulae for the irreducible representations). Therefore if r(C) diverges for exactly the
choices of ρ1, ρ2 where the theory indicates that unique nonzero Clebsch-Gordan coefficients exist,
then this is consistent with our having learned an irreducible representation of the group G.

Clearly the tensor product with the trivial representation ρ1 = 1 is ρ ⊗ 1 = ρ. In this case, the
permissible C correspond to G−linear maps Rn → Rn2 . By a result of Schur (Schur’s Lemma),
the only such (nonzero) maps are isomorphisms Schur (1905). Therefore a divergent value of r(C)
when ρ1 = 1 indicates that ρ ∼= ρ2. This is shown in the top row of figure 1 and discussed further in
Section 3.1.

C.1.2 STOPPING CONDITION

Similar to (Rao & Ruderman, 1999), LearnRep restarts gradient descent several times from random
initialization points. A restart is triggered if loss plateaus and the learning rate is smaller than the loss
by a factor of at most 10−4. The tensor product structure is computed upon convergence to loss under
10−9 and a restart is triggered if the divergences of r(C) do not agree with the theoretical prediction,
indicating a reducible representation has been learned.

C.2 SPACETIMENET ARCHITECTURE

We obtain all Clebsch-Gordan coefficients through the procedure explained in Section B.5. We place
them in a tensor: Cg,qr,ls,mt. This notation corresponds to taking the tensor product of an element
of the lth group representation space indexed by s with an element of the mth group representation
space indexed by t, and projecting it onto the qth group representation space indexed by r. The space
of possible Clebsch-Gordan coefficients can be multidimensional.5 We use an index g to carry the
dimension within the space of Clebsch-Gordan coefficients.

The trainable weights in SpacetimeNet are complex-valued filter weights denoted fkqg and channel-
mixing weights denoted W k

qcgd. Each layer builds a collection of equivariant convolutional filters
F kxijqr from the geometry of the point cloud. Let q′ denote the index of the group representation in
which the points are embedded. Let Xxir denote the point coordinates, in which x indexes the batch
dimension, i indexes the points, and r indexes the q′ group representation space. Define the (globally)
translation-invariant quantity ∆Xxijr := Xxjr −Xxir. The equivariant filters at layer k are:

F kxijqr = δqq′∆Xxijr +
∑
s,t,g

Cg,qr,q′s,q′tf
k
qg∆Xxijs∆Xxijt. (13)

The forward pass consists of tensor product nonlinearities between equivariant filters and activations.
The input and activations for the kth layer of the network are defined on a tensor V kximct, where x is
the batch dimension, i indexes the points, m is the group representation index, c is the channel index,
t indexes the group representation space. Our mixing weights are then defined for the kth layer as
W k
qcgd with layer update rule:

V k+1
xiqcr =

∑
g,l,s,m,t,d,j

Cg,qr,ls,mtF
k
xijlsV

k
xjmdtW

k
qcgd. (14)

C.3 PROOF THAT SPACETIMENET IS POINCARÉ-EQUIVARIANT

We now prove that SpacetimeNet is Pn-equivariant. Consider an arbitrary Poincaré group transforma-
tion α ∈ Pn, and write α = βt in which β ∈ SO(n, 1) and t is a translation. Suppose we apply this
α to the inputs of equation 13 through the representations indexed by q: ρq(α)st, in which s, t index
the representation matrices. Then since the translation t leaves ∆X invariant, the resulting filters will
be

5This is common if a group representation is itself obtained via tensor product.
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F kxijqr = δqq′
∑
r′

ρq′(β)rr′∆Xxijr′+∑
s,t,g

Cg,qr,q′s,q′tf
k
qg

∑
s′,t′

ρq′(β)ss′∆Xxijs′ρq′(β)tt′∆Xxijt′

=δqq′
∑
r′

ρq′(β)rr′∆Xxijr′+

∑
g,s′,t′

(∑
s,t

Cg,qr,q′s,q′tρq′(β)ss′ρq′(β)tt′

)
fkqg∆Xxijs′∆Xxijt′

=δqq′
∑
r′

ρq′(β)rr′∆Xxijr′+∑
s,t,g,r′

(ρq(β)rr′Cg,qr′,q′s,q′t) f
k
qg∆Xxijs∆Xxijt

=
∑
r′

ρq′(β)rr′

δqq′∆Xxijr′

+
∑
s,t,g,r′

Cg,qr′,q′s,q′tf
k
qg∆Xxijs∆Xxijt


=
∑
r′

ρq′(β)rr′F
k
xijqr′ ,

where we have used equation 5. The network will be equivariant if each layer update is equivariant.
Recall the layer update rule of equation 14:

V k+1
xiqcr =

∑
g,l,s,m,t,d,j

Cg,qr,ls,mtF
k
xijlsV

k
xjmdtW

k
qcgd.

Suppose for the same transformation α = βt above, that V k and ∆X are transformed by α. Then
because the activations associated with each point are representations of SO(n, 1), they are invariant
to the global translation t of the point cloud and we have

V k+1
xiqcr =

∑
g,l,s,m,t,d,j

Cg,qr,ls,mt
∑
s′

ρm(β)ss′F
k
xijls′×∑

t′

ρm(β)tt′V
k
xjmdt′W

k
qcgd

=
∑
s′,t′

∑
g,l,s,m,t,d,j

(Cg,qr,ls,mtρm(β)ss′ρm(β)tt′)×

F kxijls′V
k
xjmdt′W

k
qcgd

=
∑

g,l,s,m,t,d,j,r′

(ρm(β)rr′Cg,qr′,ls,mt)F
k
xijlsV

k
xjmdtW

k
qcgd

=
∑
r′

ρm(β)rr′V
k+1
xiqcr′ ,

where again we applied equation 5.

C.4 SUPPLEMENTARY FIGURES
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Figure 3: Convergence to arbitrary precision group representations of three Lie groups:
SO(3),SO(2, 1), and SO(3, 1). The multiplicative norm penalty is plotted in each lower subplot,
and demonstrates that this penalty is important early on in preventing the learning of a trivial rep-
resentation, but for later iterations stays at its clipped value of 1. Loss is plotted on each upper
subplot.
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Figure 4: (Left) SO(2, 1)-equivariant neural network learning to recognize digits from the MNIST-
Live dataset in 2 spatial dimensions. Error bars for train accuracy and loss are computed as the mean
and standard deviation across a sliding window of 15 batches. (Right) SO(3, 1)-equivariant neural
network training to recognize digits from the MNIST-Live dataset in 3 spatial dimensions. Error bars
for train accuracy and loss are computed as the mean and standard deviation across a sliding window
of 15 batches.

1from lan import LieAlgebraRepresentation, \
2LieAlgebraRepresentationDirectSum, \
3LieAlgebraTensorProductRepresentation, \
4LieGroupEquivariantNeuralNetwork
5

6learned_generators = [...]
7known_generators = [...]
8

9learned_irrep = LieAlgebraRepresentation(learned_generators)
10scalar_irrep = LieAlgebraRepresentation(
11numpy.zeros((
12learned_irrep.algebra.dim, 1, 1
13))
14)
15known_irrep = LieAlgebraRepresentation(known_generators)
16

17representations = LieAlgebraRepresentationDirectSum([
18scalar_irrep,
19known_irrep
20learned_irrep,
21LieAlgebraTensorProductRepresentation(
22[learned_irrep, learned_irrep])
23])
24

25model = LieGroupEquivariantNeuralNetwork(
26representations, num_layers=10, num_channels=32)

Figure 5: Our Lie Algebraic Networks (lan) module handles Lie algebra and Lie group representations,
derives Clebsch-Gordan coefficients for the equivariant layer update, and computes the forward pass.
This makes it simple to build an equivariant point cloud network once the representations are obtained.

15


	Introduction
	Group Representations and Equivariant Machine Learning

	Related Work
	Experiments
	Convergence of LearnRep to Irreducible Representations
	Poincaré-Equivariant Object-Tracking Networks
	Conclusion

	Appendix
	Technical Background
	Symmetry Groups `39`42`"613A``45`47`"603ASO(n) and `39`42`"613A``45`47`"603ASO(m,n)
	Action of `39`42`"613A``45`47`"603ASO(m,n) on Spacetime
	Lie Groups and Lie Algebras
	Group Representations and the Tensor Product
	Clebsch-Gordan Coefficients and Tensor-Product Nonlinearities
	Equivariant Convolutions
	Analytic Derivation of Lorentz Group Representations

	Methods
	Learning Lie Group Representations
	Verifying Irreducibility of Learned Representations
	Stopping condition

	SpacetimeNet Architecture
	Proof that SpacetimeNet is Poincaré-Equivariant
	Supplementary figures


