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Abstract. We present a novel generative method for producing higher-quality
counterfactual examples for decision processes using a latent space that jointly
encodes observations and associated behavioral outcome variables, such as clas-
sification decisions, actions taken, and estimated values. Our approach trains a
variational autoencoder over behavior traces to both reconstruct observations and
predict the outcome variables from the latent encoding. The resulting joint ob-
servation and outcome latent allows for unconditioned sampling of both obser-
vations and outcome variables from this space. This grants us the ability to gen-
erate counterfactuals using multiple methods, such as gradient-driven updates to
move towards desired outcomes, interpolations against relevant cases drawn from
a memory of examples, and combinations of these two. This also permits us to
sample counterfactuals where constraints can be placed over some outcome vari-
ables, while others are allowed to vary. This flexibility also permits us to directly
address the plausibility of generated counterfactuals by using gradient-driven up-
dates to raise the data-likelihood of generated examples. We use this method to
analyze the behavior of reinforcement learning (RL) agents against several out-
come variables that characterize agent behavior. From experiments in three dif-
ferent RL environments, we show that these methods produce counterfactuals
that score higher on standard counterfactual quality measures of proximity to the
query and plausibility in contrast to observation-only gradient updates and case-
based baselines. We also empirically demonstrate that counterfactuals sampled
from a jointly trained space are of higher quality than those from the common
practice of using latents from reconstruction-only autoencoders. We conclude
with an analysis of counterfactuals produced over the joint latent using combi-
nations of latent and case-based approaches for an agent trained to play a com-
plex real-time strategy game, and discuss future directions of investigation for
this approach.

Introduction

Consider a scenario where a human user needs to decide whether a self-driving vehicle
is assessing on-scene risks correctly. Feature importance methods can highlight por-
tions of the input deemed to govern system decisions, such as the road span in front of
the vehicle. While invaluable for development, they are often inadequate for conveying
an actionable understanding of agent behavior to users [37]. On the other hand, coun-
terfactuals—i.e., contrastive, example-based explanations that change specific aspects
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of the environment to arrive at a different outcome—are well-aligned with how humans
develop an actionable understanding of autonomous systems [21]. Several explainable
AI studies have also shown them to be effective for conveying explanations about AI
systems [4]. A counterfactual adding jaywalkers to the scene increases the agent’s per-
ceived risk, assuring the user that the agent recognizes the danger to the pedestrians and
is aligned with human expectations.

We present a novel generative model for generating counterfactuals that focuses
on “black-box” analyses of observational and behavioral data of machine learning sys-
tems. For this work, our focus is on reinforcement learning (RL) agents, although the
method itself is broadly applicable beyond RL. Using a corpus of performed trajectories
and corresponding outcome variables, we train a variational autoencoder [17], modified
to jointly reconstruct the agent’s observations and predict outcome variables that char-
acterize its behavior. This joint observation and outcome latent permits unconditioned
sampling that reflects correlations between observations and outcomes. This flexibility
allows integration of different counterfactual generation methods, such as using inter-
polations in latent space towards a case-based example while applying gradient-driven
updates to increase data-likelihood.

Ensuring plausible counterfactuals is a key issue: Outside of case-based approaches
that draw counterfactuals from a database of existing instances, interpolated or synthe-
sized counterfactuals run the risk of being implausible, which may reduce their credibil-
ity. We show that gradient adjustments in the joint latent to increase the data-likelihood
of counterfactuals improves plausibility and reduces the number of concrete anomalies
generated. We summarize our contributions as follows:

– A novel approach leveraging the use of a latent space jointly trained over observa-
tions and outcomes in the generation of counterfactuals, and a demonstration of its
importance for improving counterfactual quality.

– A flexible framework for traversal over the latent space with different types of con-
straints.

– A novel gradient-driven approach using an approximation of the data-likelihood
gradient that improves plausibility and decreases the number of anomalous coun-
terfactuals.

Related Work

Automated counterfactual generation has been explored by numerous communities.
One line of work has focused on case-based approaches, selecting the Nearest Unlike
Neighbor (NUN), the instance that is closest to the query based on a proximity mea-
sure such as edit distance, whose outcome variable of interest has changed, e.g., has a
different label associated with it [15]. In cases where a sufficiently close NUN cannot
be identified, transformation templates from good counterfactual pairs in the data are
used as a template for interpolation. Another approach uses feature-relevance methods
like SHAP [20] to tailor a feature edit schedule for converting the query into a coun-
terfactual [39]. As is common in counterfactual works, a proxy function is trained to
predict the outcome variable given the instance and used to ensure that the synthesized
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counterfactual changes the outcome. Most of this work focuses on tabular data, where
data is organized into discrete features (e.g., columns) and copying values has less risk
of creating an implausible instance than with less structured data, such as images.
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Fig. 1. A variational autoencoder is trained to both reconstruct the input and predict several out-
come variables such as the agent’s value function (left). As an example, given a low-value query
instance in the StarCraft II domain encoded as spatial feature layers using PySC2 (agent units are
shown in are blue; enemies, red, and assets that can be captured, green), the goal is to obtain a
higher-valued counterfactual. The query is encoded to its latent (zq) and counterfactuals (CF) are
obtained by three methods (right): identifying the Nearest Unlike Neighbor from data (NUN, top)
and then doing a partial latent interpolation to the NUN (middle), or using the gradient informa-
tion to generate the example (bottom). In these actual examples produced by the methods, adding
an additional target (green circle) for the agent raises the value estimate. The interpolation and
gradient methods produce alternatives with fewer defending forces and placement of obstacles
than the NUN.

Another body of work stems from the adversarial AI community, where input per-
turbation and sampling-based methods are used to generate counterfactuals [35]. In
particular, a Generative Adversarial Network (GAN) was used to generate counterfac-
tual scenes for Atari game scenes [26]. However, sampling for suitable solutions can
be time-consuming, whereas gradient- or example-directed traversals can be more effi-
cient.

Cyclic consistency approaches have also been employed to generate counterfactu-
als by latent manipulation [16]. However, this approach focuses on a single class trans-
forms, and is currently not amenable to counterfactuals over different combinations of
outcome variables.

Gradient descent in the feature space towards the desired outcome has been used
for tabular data [23] and, in particular, in the adversarial machine learning community
for generating counterfactuals over image data [22, 40]. However, these approaches run
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the risk of generating adversarial counterfactuals, such as shifting a minimal set of pix-
els, that may be imperceptible to human users and have low utility for understanding
the model. Diffusion based processes have also been explored for counterfactual gen-
eration, albeit this line of investigation has focused on pixel-level reconstructions [12],
compared with our joint approach which learns a latent that encodes observations and
outcomes.

Our approach is motivated by the Plug-and-Play approach, which uses gradient-
derived signals from discriminators to iteratively shift the latent of generative models
to produce outputs with the desired characteristics; and Plug-and-Play language models
(PPLM), which add gradient adjustments to increase the likelihood of generated in-
stances [25, 5]. Iterative gradient-based adjustment of a latent space was also explored
in XGEMS [13], albeit in that case, the latent was not trained to include outcome in-
formation, and reconstructions were not adjusted for plausibility. A similar approach
was taken for attribute-based perturbation in the latent space of a conditional varia-
tional autoencoder (C-VAE) for counterfactual generation [40]. This approach trained
embeddings for observations and outcomes separately, concatenating them as inputs
to the decoder. This requires that the full set of outcomes be known for a query and
outcome, whereas the joint latent requires only the query observation and allows for
adjustments that affect a subset of outcomes, leaving others to vary freely. In addition,
previous approaches have neither explicitly measured nor attempted to ensure plausibil-
ity. As multiple studies have shown, generative models are not guaranteed to produce
samples that are plausible from the in-distribution set, and taking measures to avoid
anomalous examples is required [24]. The closest these have approached is through use
of computer-vision measures of image quality, such as Fréchet Inception Divergence
[8] which uses statistics over feature activations in a network to act as a form of per-
ceptual distance. However, it is used primarily to identify unrealistic artifacts such as
blurry images. In addition, these approaches also mostly ignore the issue of proximity,
and focus only on whether valid counterfactuals can be produced.

Preliminaries

We now describe preliminaries for this work, starting with background on the genera-
tive model, followed by how counterfactual queries are formulated. We then describe
our metrics for counterfactual effectiveness and how they are implemented in our ex-
periments.

Variational Autoencoders

Variational autoencoders (VAEs) are probabilistic generative models that encode a high-
dimensional input x into a lower-dimensional latent representation z from which the
original input can be approximately reconstructed [17]. The encoder module of a VAE
maps the input to its latent representation, z = enc(x), and the decoder reconstructs
the input, x ≈ dec(z). The latent encoding is regularized by penalizing the KL diver-
gence from a prior distribution q(z) (typically a standard Gaussian) to the conditional
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distribution q(z|x) induced by the encoder. The VAE loss is given by

L(x) = Eq(z|x) log p(x|z)−DKL(q(z)||p(z|x)),

where the decoder likelihood p(x|z) is typically implicit from a reconstruction loss,
such as the MSE ||x − dec(z)||2. It can be shown [17] that the VAE loss is a lower
bound on the data likelihood, L(x) ≤ log p(x). Because the encoder distribution q(z|x)
approximates the known prior distribution q(x), samples from the input space can be
generated by drawing z ∼ q(z) and passing the result through the decoder.

Counterfactual Generation with VAEs

Let M denote the model whose behavior we wish to explore using counterfactual anal-
ysis. Given a query input xq , we want to generate a counterfactual input xc that is
“related” to x but for which M would behave differently. We quantify the behavior
of M with a vector of outcome variables y = (y(i)), i ∈ {1, . . . , N}. When M is a
reinforcement learning agent, for example, y might include the value achieved by the
agent, secondary performance measures such as time to reach the goal, and/or categor-
ical measures like whether the agent violated certain constraints.

Our approach to counterfactual generation is based on perturbing the latent rep-
resentation zq of the query input to create a counterfactual latent representation zc,
then decoding zc to obtain a counterfactual input xc, exploiting the ability of VAEs to
learn a latent representation space with meaningful axes of variation [9, 18]. We ex-
tend the basic VAE model to reconstruct both the input x and the outcome variables y
from the latent representation z, using a separate predictor for each outcome variable,
y(i) = σi(z) (Figure 1, bottom left). Our intent is to cause the latent representation to
encode information about the relationship between the input and the outcome variables,
so that traversing the latent space will produce inputs that result in different outcomes.
This also provides a trained predictor that can indicate when an example meets the
counterfactual outcome criteria. This use of a trained proxy to determine if the outcome
is met is a common practice in counterfactual generation from observational data [15].

We say that a counterfactual is valid if it achieves a desired change in the outcome
variables, and define a validity predicate κi,s,ϵ that indicates whether the ith outcome
variable was changed appropriately, given by

κi,s,ϵ =

{
I(y(i)c ̸= y

(i)
q ) if y(i) is categorical

I(y(i)c − y
(i)
q ≥ sϵ) if y(i) is numeric

,

where s ∈ {−1, 1} is the desired sign of the difference between numeric variables, and
ϵ is the desired size of the difference. For brevity, we shorten the validity predicate to
κi for the rest of this paper. While our experiments consider only a single criterion (a
single i), our approach can be extended easily to multiple criteria.

Counterfactual Quality Measures

For this work, we evaluate counterfactual generation methods along the following mea-
sures:
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– Proximity: How different a generated counterfactual is from its query.
– Plausibility: Whether the counterfactual is something one would expect to observe

in the domain of interest.
– Validity: Whether the counterfactual satisfies the counterfactual criterion κi.

Keeping the counterfactual similar to the original instance is important for under-
standing the relation between the features and the outcome variables and proximity is
commonly measured through a variety of feature-level edit distance metrics, with coun-
terfactuals having a sparser set of differences from the query being better. Plausibility
is particularly important for systems that synthesize counterfactuals, as anomalous or
implausible examples may be discounted by users [15, 21]. Is is often measured by how
likely the counterfactual is to be drawn from the actual data, Finally, validity is neces-
sary since automatically generated counterfactuals may not actually meet the counter-
factual criterion κi.

We measure the inverse of proximity of a counterfactual to its query via an obser-
vational difference score. For categorical features, this is computed as a feature edit
distance, summed over the number of label changes to convert between observations.
For numeric features, we use the absolute score difference, normalized to 0-1. Formally,
for an index of all features, the score i ∈ I , odiff(x1, x2) is computed as follows:

odiff(y1,y2) =
∑
i


I(y(i)1 ̸= y

(i)
2 ) if i is categorical

|y(i)
1 −y

(i)
2 |

W (i) if i is numeric
,

where W (i) is the interval width that normalizes the value.
Finally, there is no guarantee that a given method can produce a valid counterfactual,

one that satisfies the criterion κi. We thus grade each counterfactual generation method
by the fraction of queries for which it was able to produce a valid counterfactual, that is
1
N

∑N
i=1 κi for N queries.

Plausibility

We assess the plausibility of a latent z via an anomaly score formed from the observa-
tional difference between its decoding and that instance’s reconstruction, following the
observation that autoencoders act to denoise anomalous inputs [28]:

anom(z) = odiff(dec(z), dec(enc(dec(z))))

This measures the inverse of plausibility in our experiments.1 Using the hypothesis
that autoencoders denoise their inputs, we approximate the data likelihood gradient
with the reconstruction loss between the current latent’s reconstruction and that scene’s
reconstruction using the same model:

∇zp(dec(z)) ≈ −∇z||dec(z)− dec(enc(dec(z)))||

1 We did experiment with One-Class SVMs, but performance on a SC2 Assault scene labeled
for anomalous scenes was poor in comparison with the autoencoder approach.



Outcome-Guided Counterfactuals from a Jointly Trained Generative Latent Space 7

Fig. 2. Evidence lower bound (ELBO) loss against number of round trips for the input, starting
from random points (left) and from data-drawn instances (right). The ELBO lower bounds the
log-likelihood of the input (as the loss decreases, the input likelihood increases).

We verified the appropriateness of using this approach to increase the plausibility
of generated counterfactuals by having our VAE repeatedly encode and decode its own
reconstructions. Figure 2 shows the mean and standard deviation of the ELBO loss2 of
the input at each step of the recurrence. The figure shows the curve for 1000 scenes
sampled from our StarCraft II minigame data (described in the following sections) and
against random latents, using the encoder and decoder for that minigame. The ELBO, in
non-loss form, lower bounds the model’s log-likelihood of the data and in both cases de-
creases in ELBO loss gives an increase in instance likelihood, with the greatest impact
at the first step. Repeating this procedure with 1000 randomly sampled latents also gives
the same result. We note that while likelihoods from deep generative models may not
be sufficiently calibrated for outlier detection [38], we are not attempting to estimate a
distribution, but instead are looking to increase the likelihood—hence the plausibility—
of the reconstructions during counterfactual generation. Indeed, recent work has found
that deep network confidence assessments measure how familiar a model is with the
features of a scene [6], matching our need to reconstruct using elements the model is
more familiar with.

Counterfactual Methods

Figure 1 (right) illustrates our counterfactual generation architecture featuring the three
methods we investigate in this work. The first draws a suitable example, the Nearest Un-
like Neighbor (NUN), from previously observed examples. The second uses a traversal
in the jointly trained latent space between the query and the NUN example. By stopping
the traversal when the counterfactual criterion is met, this interpolated counterfactual
is more proximal to the query (requires fewer feature edits). The third approach uses
gradient information provided by the outcome predictors to perform a directed search
in the latent space.

2 ELBO loss drawn from our training setup, with a KL scaling term of β = 10−5.
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Nearest Unlike Neighbors

The Nearest Unlike Neighbor (NUN) is an example drawn from a library of observed
instances that is similar to the query, but has an outcome that meets the counterfactual
criterion [15]. It is a reliable way to obtain valid and plausible counterfactuals and serves
as a baseline for comparison in our experiments. We draw the NUN ⟨xq,yNUN ⟩ from
the VAE’s training instances, minimizing the observational distance while meeting the
counterfactual criterion:

xNUN = argmin
xc

odiff(xq, xc) s.t. κi = 1.

Latent Interpolation

NUNs can ensure plausibility, but may not be sufficiently proximal to the query. Sev-
eral studies have generated counterfactuals for tabular data by interpolating between
the query and the NUN [15, 39]. As we are using a generative model, we can perform
a similar interpolation in the latent space by interpolating linearly between the latent
encodings of the query zq and the NUN zNUN to obtain the interpolated latent repre-
sentation zι. The scaling factor α is sampled from 0 to 1, set to the first point where
the counterfactual criterion is first satisfied, i.e., κi(σi(zι)) = 1. If α = 1, we consider
the interpolation to have failed to produce a valid counterfactual, as the result is the
NUN. If a point was found, we then update zι with a plausibility adjustment, with the
magnitude λ selected by a grid search along the unit direction of the gradient for the
point with the lowest anomaly score.

zι = α(zNUN − zq) + (1− α)zq, α ∈ [0, 1]

zι = zι + λ∇zp(dec(zι))

Iterative Gradient Updates

Instead of relying on interpolating toward a concrete example, we can simply follow the
gradient signal from the desired outcome predictor to shift it in the desired direction.
We then apply a plausibility adjustment to shift the latent to a higher likelihood state:

z = z+ sλ1∇zy
(i)

z = z+ λ2∇zp(dec(z)).

where s ∈ {−1, 1} is the desired sign of the change, with scaling terms λ1, λ2.3 We
iterate this update until the counterfactual criterion κi(σi(z)) is satisfied or a maximum
number of steps is reached 4. We note that the gradient update over a latent space trained
only for reconstruction, without the plausibility adjustment, is equivalent XGEMS [13]
and similar methods in the literature.

3 Set to λ1 = 5, λ2 = 1, tuned over the training set.
4 This was arbitrarily set to 1000 in our experiments.
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Fig. 3. Environments used in counterfactual generation experiments.

Experiment

We now describe the RL environments used, along with the model, training, and coun-
terfactual query setup. We follow with results detailing counterfactual quality across
three environments, and show the effect of the plausibility adjustment. We then show
how the joint training helps improve counterfactual quality in comparison with a re-
construction only latent. Specific details of the model, training, errors, parameters, and
code and data release are given in the Technical Appendix.

Environments

In order to assess generalizability of our counterfactual methods, we conducted experi-
ments in three different reinforcement learning environments: Cartpole [3], Canniballs
[33], and a custom minigame in the StarCraft II Learning Environment [36]. Figure 3
illustrates the environments.

Cartpole (left) is a two-dimensional physics simulation, where the agent has to bal-
ance a pole on a cart by moving left and right. Reward is given for each timestep the
pole remains upright and balanced, with episodes ending when the pole falls over or the
cart veers too far from its origin. Observed state consist of four continuous parameters:
cart velocity and position, pole angle and angular velocity.

Canniballs (center) [33] is a gridworld game designed to exercise multiple sub-
goals in a highly stochastic environment. The player controls the red ball, and reward
is earned for consuming weaker entities in the game, with a penalty applied for stalling
or being consumed. Episodes end when the player is consumed or after a fixed number
of steps. All game entities have a strength level, including the player, who can only
consume entities weaker than itself. Strength is built up by consuming different entity
types (colored balls and triangles), where balls have their own behavior, such as ran-
dom movement, bouncing across the field, or chasing the player. Observations are in
the form of a set of categorical spatial feature layers.

StarCraft II5 (right) is a multiplayer real-time strategy game that features a variety
of unit and building types. Each unit type has strengths and weaknesses, and part of

5 https://StarCraft2.com
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the strategy is to employ the best units to win the game. Buildings provide unique
capabilities and can be destroyed or seized. For our experiments, we developed a custom
scenario designed to exercise complex decision-making. The agent takes the part of
one of the players, and is rewarded for destroying enemy forces, seizing secondary
objectives, and destroying the enemy’s command post. Capturing a secondary objective
provides the player with reinforcements, which can be used to avoid obstacles. The
observation space is spatial, but contains multiple layers containing both numerical and
categorical data, and is significantly more complex than the two other environments.
For the remainder of this paper, we will refer to this scenario as SC2 Assault.

Reinforcement Learning

Both Cartpole and Canniballs were trained using the RLLib framework [19]. For the
SC2 Assault agent, we used a V-trace [7] agent trained using the Reaver toolkit [29].
This was implemented in the StarCraft II Learning Environment via the PySC2 interface
[36], using a subset of the full action set that is focused on movement and attacks for
each type of unit. Having trained the RL agents, we produced 1000 episodes for each
environment using the trained policy. This resulted in 189,674 frames for Cartpole,
136,671 for Canniballs, and 213,407 for SC2 Assault.

For the outcome variables used to form counterfactual queries, we based our ap-
proach on the concept of interestingness elements [32, 31], corresponding to numeric
measures that allow highlighting meaningful and potentially explanatory situations as
an RL agent interacts with its environment. Each measure is derived from data rep-
resenting the agent’s internal state, such as the value function estimate, V , the action
value function Q (depending on the architecture), the action distribution, and others.
For these experiments, we used the following interestingness variables as outcomes for
exploring counterfactuals:

– Value: The value function estimate, measuring the expected discounted cumulative
reward at any given state.

– Confidence: The action execution certainty of the agent, where we use a measure
of statistical dispersion that relies on the entropy of the policy’s action distribution.

– Riskiness: The margin between highest- and lowest-valued outcomes from taking
an action, representing the perceived tolerance for mistakes in the environment.

Model

We now describe the VAE used to construct the surrogate model from agent trajectories.
For the Cartpole agent, we used MLP encoders and decoders over the vector. Canniballs
and SC2 Assault use spatial features, for which we used a convolutional architecture
encoder and decoder. The VAE itself differs from the standard hierarchical model by
having all convolutional layers feed into the latent, and using a linear transform after
the latent prior to the decoding.

For each environment, we used 95% of the recorded trajectories for training and the
remainder for testing. Test mean-squared error for normalized predictions was under
0.1 across the full range of [−1, 1].
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We now detail the three major experiments that form the core of our contributions.
The first compares gradient-driven counterfactuals across several RL environments. The
second examines how plausibility adjustments can improve the likelihood of a gener-
ated example and reduce the number of anomalous counterfactuals. Finally, we demon-
strate the effectiveness of the jointly training latent space on the quality of counterfac-
tuals. Equivalence to baselines from literature are marked when appropriate.

Counterfactual Query Setup

For each interestingness variable i and sign of change s, we sampled 100 individual
instances from the set of recorded trajectories. Each instance ⟨xq,yq⟩ was filtered so
there is sufficient margin in variable i for a valid counterfactual, e.g., −1 ≤ y

(i)
q +

sϵ ≤ 1. For the value function, ϵ was two times the standard deviation. The other
variables are in the range [−1, 1], and we set ϵ = 0.5. From our inventory of three
interestingness variables and two signs of change (increasing or decreasing their value),
we experimented with a total of six combinations (600 queries) for each counterfactual
generation method and environment.

Table 1. Counterfactual methods for each environment, with microaveraged statistics across
counterfactual quality measures. † indicates significant improvement in observational difference
against the NUN baseline. * indicates significant improvement in observational difference and
anomaly scores against the XGEMS baseline. Best values, including ties, in each domain are
bolded.

Method Obs Diff Anom Score Valid CFs
Cartpole

NUN 1.28± 0.71 0.11± 0.03 1.00

InterpPt 0.86± 0.82† 0.07± 0.02 0.50

Grad 0.99± 0.89† 0.31± 0.54 0.98

Canniballs
NUN 1754.91± 89.31 0.00± 0.00 0.67

InterpPt 5.46± 4.10† 0.20± 0.57 0.67

Grad 18.94± 20.88† 12.56± 17.13 0.99

SC2 Assault
NUN 1746.12± 573.25 7.52± 3.88 1.00

InterpPt 1234.94± 880.92† 30.38± 24.87 0.67

Grad∗ 83.36± 141.25† 33.73± 45.29 0.97

InterpPt -Pls 1224.06± 879.17 48.26± 75.52 0.69
Grad -Pls* 82.44± 136.11 34.41± 46.62 0.97

SC2 Assault, Reconstruction-only Latent
InterpPt 881.94± 770.84 72.00± 70.78 0.44
Grad 124.17± 100.85 83.07± 44.34 0.81
xGEMs 123.34± 97.66 83.12± 44.95 0.81
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Results

We compared the following methods across the three RL environments:

– Drawing the Nearest Unlike Neighbor from the training set (NUN), which is used
as a baseline.

– Latent Interpolation to the NUN, stopping at the first point where κi is met (In-
terpPt).

– Using Iterative Gradient Update to perturb the latent until κi is met (Grad).

Table 1 reports the micro-averaged mean and standard deviation of the observa-
tional differences, anomaly scores6, and fraction of valid counterfactual queries for each
method against the given query combinations for the three environments. Only values
from valid counterfactuals were used to compute these measures. Significance tests are
conducted using a two sample t-test with α = 0.01. As expected, drawing from a mem-
ory of actual instances (NUN) produces the least anomalous and most plausible coun-
terfactuals. However, both latent-based approaches produce counterfactuals that with
significantly lower observational differences (more proximal) across all three domains.
An in-depth analysis of proximity across all three domains is given in the Technical
Appendix.

The Gradient method produced valid counterfactuals for most queries, missing at
most 3% overall. The InterpPt method generated counterfactuals about 67% of the time
across all three environments, with the remainder requiring full traversal to the NUN.
We examined the impact of a plausible scene gradient adjustment on counterfactuals
for the SC2 Assault minigame environment, showing the Latent Interpolation and Gra-
dient methods without the plausibility adjustment (InterpPt -Pls, Grad -Pls). We find
the plausibility adjustment significantly reduces the anomaly score without impacting
the observational difference for InterpPt. However, we find no significant difference in
anomaly scores with Gradient.

To relate anomaly scores to a concrete number of anomalous scenes, we tuned a
threshold on the VAE reconstruction scores to detect labeled anomalous SC2 Assault
scenes, achieving a test accuracy of 95% over a baseline guess of 66% (plausible)7. Out
of 600 queries, InterpPt produced 4 anomalous counterfactuals, compared to 20 without
the plausibility adjustment. The Gradient method produced 46 with the adjustment, and
48 without.

Impact of Joint Training

We tested our hypothesis that joint training of input reconstruction and outcome pre-
diction leads to better counterfactuals, as approaches in the literature trained these two
tasks sequentially (see Sec. 2). Using the SC2 Assault task, we trained the VAE model
with just the reconstruction objective using an otherwise similar setup. We then trained
the outcome predictors given the latents produced by the reconstruction-only model,

6 Observational difference and anomaly score are the inverses of proximity and plausibility, so
lower scores indicate better performance.

7 Model and training are detailed in the Technical Appendix
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achieving prediction errors comparable to those of the full model. We then re-ran the
same set of experiments using the reconstruction-only latent and predictors. Results
are presented at the bottom half of Table 1. Here we see that counterfactuals gener-
ated from the reconstruction-only latent space produced considerably more anomalous
counterfactuals, with fewer valid counterfactuals. We note that the Gradient approach
without the plausibility adjustment over the Reconstruction-Only latent is equivalent to
XGEMS [13]. In comparison, Gradient derived counterfactuals over the joint space have
significantly lower observational differences and anomaly scores, with and without the
plausibility adjustment.

In the joint latent, the Interpt and Gradient methods produced a combined total of 50
concrete anomalies, whereas their equivalents from the reconstruction-only latent gave
a total of 176 anomalies. XGEMS itself gave 107 anomalies, in contrast to its equivalent
in the joint latent, which had 48.

Counterfactual Analysis

We now present an analysis of counterfactuals drawn from the SC2 Assault minigame
task. We first present an overview of how the minigame scenes are structured for the
agent.

Fig. 4. The SC2 Assault task uses multiple spatial frames to represent different attributes of the
units and structures in the game. The leftmost grid represents the allegiance of the unit. The
middle encodes the type of unit or structure, while the rightmost describes the health status of
that unit.

Figure 4 describes the observation format. Each scene is described by three spatial
semantic frames representing different semantic information. The Allegiance of the unit
determines which faction the unit belongs to. Unit Type details the specific type of
unit or building at that location. For simplicity, the following analyses will highlight
significant unit types directly. Finally, Health shows the relative health of the unit using
a scale of bright yellow representing full health to black representing no health.

For these analyses, we examine counterfactuals where the value function estimate
is either increased by two standard deviations from a sampled low-value scene, or from
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Fig. 5. Four example counterfactuals generated using gradient-based walks in the latent space.
The left column shows low value function estimate query scenes with corresponding higher val-
ued counterfactuals, the right with high value function estimates and lower valued counterfac-
tuals. For each example, the top row shows the semantic frames (allegiance, unit type, health)
for the query scene, the middle row shows its higher valued counterfactual, and the bottom row
shows the highlighted key differences. Key differences are derived by analyzing the differences
in each spatially significant semantic frame.



Outcome-Guided Counterfactuals from a Jointly Trained Generative Latent Space 15

decreased by the same amount from a high-value one. Because the observation space
is composed of semantic frames, with each corresponding to a concept such as unit
type or allegiance, the differences between a query scene and its counterfactual directly
map to understandable and meaningful changes. This can be used to identify types of
changes associated with counterfactuals along an outcome variable; for example, con-
verting enemy defenders into weaker units results in increased value-function estimates.
While this is specific to the SC2 Assault task, similar analyses may be extended to other
domains via pre-trained detectors.

Figure 5 shows four sampled query scenes and their counterfactuals generated by
gradient perturbation with the plausibility adjustment in place. The left column for low
value queries to high value counterfactuals, with the opposite on the right. We find the
generated counterfactuals are both proximal to the query and with minimal artifacts.
Deltas in the semantic frames between the queries and counterfactuals show numerous
explanations for factors that can increase the value-estimate. For example, reducing the
number of enemy defenders (top left) or attacking when the enemy defenders are of a
weaker type (bottom left) increase the odds of success. On the other hand, situations
where the enemy command center is at full health, but still has a full complement of
defenders reduces the value function estimate, or decreases the agent’s perceived ability
to destroy the enemy command post.

Figure 6 illustrates the impact of the plausibility adjustment. For a low-valued start-
ing query, the gradient-based counterfactual with the plausibility adjustment displays
less noise, and a lower anomaly score, than one run to the same value.

The sequence of feature changes in the scene between the query and a counterfac-
tual also provides information about which features bolster an outcome in the query.
Figure 7 gives an example a low value-function query and a high valued NUN drawn
from the library. Four samples are drawn from the latent trajectory from the query (left)
to the NUN (right). The top row shows the scene reconstruction, restricted to the unit al-
legiance frame for clarity. The bottom shows the value function estimate (blue) and the
anomaly score for a reconstruction at that point in the latent traversal (red). The differ-
ences between scene features between each of the sampled points illustrates the change
in the value function resulting from those feature changes. In addition, the schedule of
feature edits can identify correlated features and their impact on the value function.

Discussion and Future Work

We presented a latent space that jointly contains information about observations and
outcome variables that permits unconditioned sampling. From this, we presented two
methods for obtaining counterfactuals: the first employing interpolations between the
query and case-based instances drawn from a memory, the second using gradient up-
dates to iteratively update the query to reflect the desired outcomes. We show that the
joint latent approach can produce more valid counterfactuals that are also more plausi-
ble. We also show that reconstruction error as a proxy for the likelihood gradient can
help improve the plausibility of counterfactuals in certain cases. We followed with an
assessment of a sampling of generated counterfactuals, demonstrating the ability of the
method create meaningful and plausible examples.
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Fig. 6. The impact of plausibility adjustments: The top row shows the query scene, along with its
computed anomaly score. The middle row shows a gradient-based counterfactual for increasing
the value, with adjustments in place, the bottom rows shows the equivalent-valued counterfactual
without the adjustments. These adjustments preserve the spatial structure of the command struc-
ture and defending units (1a vs. 1b) as well as the center set of obstacles and friendly Blue unit
placement (2a vs. 2b).
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Fig. 7. Traversal in the latent space between the a low-value query (1) and high-value nearest un-
like neighbor counterfactual (4). The top row shows the reconstructed scene from the latent, re-
stricted to unit Allegiance for clarity, while the bottom shows the value estimate and the anomaly
score for that point in the traversal. The traversal provides a sensitivity analysis showing both the
value of the feature and its importance in the original query

Future areas of investigation include a closer examination of these methods in con-
trast to feature-level adversarial methods. A major concern about that class of methods
is that the counterfactuals they generate may be imperceptible to humans, as their per-
turbations are fuzzing attacks that minimize feature-level changes. While latent space
traversal methods can take steps to ensure a minimal amount of feature-level differ-
ences, future work should include stronger assurances for preventing the generation of
counterfactuals that are imperceptibly different from the query. Our approach allows
gradient-based adjustments to have a latent meet different criteria, such as improving
data-likelihood. This can be tailored to include adjustments reflecting feature edits cor-
responding to actionable elements the agent or human operator has control over, such
as the disposition of friendly forces in the SC2 Assault environment.

Another area of possible improvement would be the use of classifier-free guidance
to improve the quality of the counterfactuals, as gradient-based signals from discrimi-
native classifiers may not be sufficient to capture the shape of certain outcome variable
distributions [10]. Use of this method in conditional latent diffusion was also found to
improve generated imagery [30].

Finally, we note that this work, like many others, looks at intrinsic measures of
counterfactual quality. Proper extrinsic evaluations of how counterfactuals can improve
a meaningful task remains to be addressed. One possible avenue would be to use coun-
terfactuals to improve the examples used for machine-teaching and tutoring applications
[34]. We are also investigating the use of directed counterfactuals to warn decision-
makers of likely or dangerous possible scenarios. In addition, they may also act as a
source of additional weak evidence for observational assessments of the causal link
between features and outcomes.
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Fig. 8. The modified Variational Autoencoder used in our work. Changes include a multi-level
latent incorporating information from each convolution layer, additional prediction targets off the
latent z, and an additional affine translation layer prior to decoding.
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Figure 8 illustrates the modified Variational Autoencoder (VAE) [17] used to create
the joint observation and outcome latent. The encoder encodes input observations x
to a latent z. To improve reconstruction quality, the latent is passed through an affine
transformation to interpret the latent prior to decoding, as proposed in StyleGAN 2 [14].
This finally passed to a decoder, which provides the reconstruction x̂.

The architecture of the encoder and decoders are matched with the nature of the
observations in specific domain. For Cartpole [3], encoders were composed of three
sequential blocks, each consisting a linear layer followed by a batch normalization [11]
with a rectified linear activation [1]. Cartpole’s feature space is a four dimensional vec-
tor, consisting of the cart position and velocity, and pole angle and rotation rate.

Both Canniballs [33] and the Starcraft 2 Learning Environment [36] SC2 Assault
minigame used 2D convolutions instead of linear layers. Canniballs’ observation space
consisted of four 12× 12 spatial arrays, representing player, enemy, food, and obstacle
locations. The SC2 Assault observation space consisted of three 64× 64 spatial feature
arrays, representing allegiance of each unit, their types, and their health. Models for
these environments used a sequence of four blocks consisting of a 2D convolution, batch
norm, and rectified linear activation. Convolutions employed a kernel size of 4, with
Canniballs using a stride of 1 while SC2 Assault used 2. Decoders for all three domains
mirrored the encoding arrangement, with transpose equivalents for 2D convolutions.
The dimensionality of the latent z was 256 for all three environments, and the affine
post-latent transform was implemented as a linear layer size 256.

Following the dense connectivity pattern in [?], the latent z is composed of infor-
mation from each convolution layer in the encoder. The intent is to capture lower level
information in the latent.

For predicting the Interestingness outcome variables, we used a sequence of three
linear layers (sizes 128, 64, 32) with rectified linear activations, with a final single node
layer for regressing the standardized target variable value, with mean and standard-
deviations estimated from the training data.

For the reconstruction-only latent model of the SC2 Assault environment, the stan-
dalone predictors for the Interestingness Variables used the same architecture as one
used for the joint training.

Training

All of our models and code were implemented in PyTorch [27] and trained on a NVIDIA
GeForce RTX 3090. Training was conducted to 1.1×109 steps. The variational autoen-
coder was also tuned with a fixed beta schedule going from β = 0 to 10−5 [2], allowing
the encoders to learn a feature set prior to increasing the weight on the KL term for the
priors. Optimization was conducted using Adam with a learning rate of 1× 10−3.

To support a wide range of domains, our VAE supports inputs from multiple en-
coders and decoders. This is particularly important for StarCraft II [36] representations,
which consist of multiple spatial semantic maps. Each encoder can either be MLPs or
convolutional, depending on the part of the input it captures. The outputs of the encoders
are concatenated and passed to a MLP for inferring the mean and standard deviations.
To improve the ability to reconstruct smaller details, convolutional encoders assemble
a combined latent by constructing individual latents from each encoder layer.
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For the Interestingness Variables, standardized outcome variable values were tar-
geted during training, using a mean-squared error loss for training the outcome variable
predictors. Reconstruction losses were dependent upon the environment and the obser-
vational feature types. Cartpole observations consisted of four standardized real valued
variables, and were targeted using mean-square error. Canniballs’ four spatial arrays
were binary-valued, and used binary cross entropy losses for each layer. Finally, SC2
Assault consisted of two categorical spatial arrays, using cross entropy loss, and one
real-valued using mean-squared error with values normalized to the 0-1 range.

Table 2 shows respective losses at the end of training smoothed via exponential
moving average. The last column shows the losses for training the reconstruction-only
latent, for the SC2 Assault environment.

Loss Cartpole Canniballs SC2 Assault SC2 Recon-only

Recon 3.6× 10−6 8.2× 10−5 3.1× 10−3 3.3× 10−3

Interestingness Variables
Value 3.6× 10−5 1.4× 10−3 1.0× 10−3 2.6× 10−3

Confidence 7.9× 10−6 8.1× 10−6 6.3× 10−4 1.6× 10−3

Riskiness 1.9× 10−4 1.4× 10−9 7.6× 10−6 1.4× 10−5

Table 2. Validation losses, smoothed using exponential moving average, by environment. Last
column lists losses for the reconstruction-only model trained on the SC2 Assault environment. All
Interestingness Variable losses are reported in mean-squared error against standardized values.
Reconstruction (recon) scores are summed over the losses for each feature layer comprising each
environment, with categorical losses represented by cross entropy and regression losses by mean-
square error against normalized values.
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Fig. 9. Number of valid counterfactuals (CFs, y-axis) at or below the observational difference to
the query (x-axis) for each environment. In all environments, the latent-based approaches (Inter-
polation and Gradient) were able to produce counterfactuals not present in the memory (NUN)
and that are more proximal to the query.
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Counterfactual Proximity Analysis and Unseen Scenes

In certain use cases, there is an upper bound on the distance between the query and a
valid counterfactual before they are deemed unrelatable [15]. To assess this, we exam-
ined the proximity of valid counterfactuals to the query for each method. Figure 9 shows
the cumulative fraction of valid counterfactuals whose observational differences from
the query are at or below the given level, where “valid” is binary a binary pass/fail met-
ric. We find that the latent space methods (InterpPt and Gradient) were able to produce
more valid counterfactuals compared to retrieving the closest counterfactual from mem-
ory (NUN). These are also unseen scenes, as they would otherwise have been selected
as counterfactuals from memory. This effect is more pronounced in the Canniballs and
SC2 Assault environments, as their observation spaces are significantly more complex
than Cartpole’s.

Anomalous Scene Detector

To arrive at a quantitative estimate of the number of actual anomalous scenes in the SC2
Assault minigame, we took 1392 pairs of real instances and sampled the reconstruction
between them, giving us 4176 scenes. We then labeled these as anomalous or not, based
on mistakes such as partially reconstructed units or duplicates of unique structures. Ear-
lier experimentation found anomalous scenes derived from randomly sampled latents
were easily distinguishable, while those from latent interpolations between latents for
real scenes proved extremely difficult to classify. As a result, we focused on separating
plausible versus anomalous scenes derived from interpolated latents. We scored all of
the instances using the VAE based anomaly score, which computed the observational
difference between the latent’s reconstruction and its re-encoded reconstruction. The
scores for 2196 randomly selected training scenes were used to tune a threshold max-
imizing anomalous scene detection accuracy, giving a training accuracy of 96% and a
test accuracy of 95% on the remaining 1980 test instances, over a baseline guess (plau-
sible) of 66%.

Code Release

The necessary code and data files will be made open-source and will be available at
from our Github page, https://github.com/imago.


