
Dual-CBS: A Hierarchical Approach via Conflict-Based Search
and Sampling for Multi-Agent Motion Planning

Joonyeol Sim*1, Shao-Hung Chan*2, Sven Koenig1,3

1University of California, Irvine
2University of Southern California

3University of Örebro
joonyeos@uci.edu, shaohung@usc.edu, svenk@uci.edu

Abstract

Multi-Agent Motion Planning (MAMP) is the problem of
finding a set of collision-free trajectories in a configuration
space, one for each agent, to move from their start config-
urations to their goal configurations while minimizing their
sum of travel times. To solve MAMP, one approach is to con-
struct a roadmap offline from the entire configuration space
and search for a solution accordingly. However, construct-
ing a roadmap and resolving collisions between agents on
the roadmap can result in heavy computational overhead. An-
other approach is to construct a roadmap for each agent on-
line. It assigns priorities between agents and samples one tra-
jectory for each agent on its roadmap, where agents with low
priorities should avoid collisions from those with high priori-
ties. However, agents with low priorities may take a long time
to reach their goal configurations, and thus the solution this
approach finds may have a high sum of travel times. To com-
bine search and sampling, we propose Dual Conflict-Based
Search (Dual-CBS). Its strategy is to iteratively find one tra-
jectory for each agent and resolve collisions between them.
To find a trajectory for each agent, Dual-CBS constructs a
four-neighbor grid graph, where each grid cell represents a
square area of the configuration space. Then, it runs a search
algorithm to find one grid-based path for each agent on the
graph, and samples one configuration in each grid cell. To
resolve collisions, Dual-CBS uses swept area constraints to
prevent an agent from traversing areas that overlap with the
trajectories of other agents. Compared to the approach that
constructs roadmaps offline, Dual-CBS incurs significantly
less computational overhead in constructing the roadmap.
Compared to the approach that constructs roadmaps online,
Dual-CBS guides the sampled trajectories with the grid-based
paths and thus finds solutions with a lower sum of travel
times.

Introduction
Multi-Agent Motion Planning (MAMP) is the problem of
finding a set of collision-free trajectories, one for each agent,
to move from their start locations to their goal locations
in a continuous environment while minimizing the sum of
travel time (Okumura and Défago 2023; Cohen et al. 2019).
It has numerous applications, including operating a swarm

*These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0 20 40 600

20

40

60

Y-
ax

is

Dual-CBS

0 20 40 600

20

40

60 SSSP

0 50 100 150 200
Time (s)

X-axis

Start Configuration Goal Configuration Obstacle Path

Figure 1: The trajectory visualizations of our Dual-CBS and
the state-of-the-art MAMP approach, SSSP. The colors of a
trajectory, ranging from blue to red, indicate its travel time
(in seconds), progressing from low to high. Although SSSP
generates trajectories of smaller lengths than Dual-CBS, it
requires agents to move sequentially to avoid collisions and
thus introduces larger delays than Dual-CBS. In this MAMP
instance, Dual-CBS and SSSP find solutions with a sum of
travel time of 26.63 seconds and 216.60 seconds. Dual-CBS
achieves approximately 8 times lower sum of travel time
than SSSP.

of drones, navigating a group of autonomous vehicles, and
coordinating a team of mobile robots in an automated ware-
house. However, MAMP is a challenging problem. Com-
pared to Single-Agent Motion Planning (SAMP), which
aims to find a path that avoids collisions with static obsta-
cles, MAMP requires multiple paths to avoid collisions with
static obstacles and other agents, making it intractable as
the number of agents increases. Thus, recent studies solve
MAMP with a two-phase approach that (I) avoids colli-
sions with static obstacles by constructing a roadmap and
(II) avoids collisions between agents by running a search
algorithm on the roadmap (Okumura and Défago 2023). A
roadmap is a graph with vertices representing the configura-
tions where an agent does not collide with any static obsta-
cles and with edges representing the transitions (i.e., actions)
between two configurations.

One approach is to construct a roadmap offline (or, equiv-
alently, explicitly) as a pre-processing technique that covers
the configuration space (Henkel and Toussaint 2020; Hönig
et al. 2018). Although offline approaches typically generate
trajectories of small travel times, they mainly suffer from
two drawbacks. Firstly, if the configuration space is large,
then constructing a roadmap can result in a huge compu-
tational overhead. Secondly, if the roadmap is sparse, then
it can limit the transitions of agents’ configurations, result-
ing in difficulties in resolving collisions. In contrast, one can
also construct a roadmap online (or, equivalently, implicitly)
that incrementally generates its vertices and edges (Oku-
mura and Défago 2023; Kottinger, Almagor, and Lahija-
nian 2022). Although online approaches can find a set of
collision-free paths in a short runtime, they generate trajec-
tories with large travel times.

To find trajectories that avoid collisions (i.e., in Phase
(II)), one approach is to run a search algorithm by view-
ing the configurations of all agents as a joint state. How-
ever, searching the joint-state space to find a near-optimal
solution can result in a large branching factor, leading to in-
efficiency. Thus, recent studies have focused on decoupling
MAMP into several prioritized SAMP problems, where low-
priority agents should avoid collisions with high-priority
agents. On the other hand, since solving even a simple
form of an SAMP problem is PSPACE-hard (Reif 1979),
sampling-based search algorithms are employed to expedite
the process (Karaman et al. 2011). However, as the config-
uration space increases, sampling-based search algorithms
can result in huge computational overhead and, meanwhile,
produce trajectories with large travel times.

In this paper, to strike a balance between runtime and
solution quality, we propose Dual Conflict-Based Search
(Dual-CBS), which combines search and sampling in a hier-
archical manner. Dual-CBS has two components: the Plan-
ning CBS (PCBS) and the Sampling CBS (SCBS). PCBS
discretizes time into timesteps and the configuration space
into a four-neighbor grid graph, where each grid cell repre-
sents a square area that can be occupied by multiple agents.
Dual-CBS uses PCBS to search for a set of shortest grid-
based paths and reduce the number of conflicts, which hap-
pen when two agents visit the same grid cell at the same
timestep or traverse the same edge in opposite directions at
the same timestep. Then, given a set of grid-based paths
from PCBS (which can still contain conflicts), Dual-CBS
uses SCBS to sample a set of trajectories, where each grid
cell contains a sampled configuration. Timesteps are mapped
to time intervals. To resolve collisions between agents when
sampling trajectories, we propose swept volume constraints
to prevent agents from overlapping with each other’s trajec-
tories inside the same grid at the same time interval.

Dual-CBS finds a set of grid-based paths and then sam-
ples the trajectories during the search accordingly. Thus, it
can be viewed as constructing a customized roadmap for
each agent along its grid-based path, rather than construct-
ing a roadmap for the entire configuration space. That is,
the set of grid-based paths from PCBS reduces the sampling
space of SCBS to sequences of grid cells. Additionally, since
PCBS always finds the shortest grid-based paths, its grid-

based paths provide guidance for SCBS to sample trajecto-
ries that are near-optimal, resulting in solutions with a low
sum of travel times.

Related Work
Single-Agent Motion Planning (SAMP) A typical ap-
proach to solving an SAMP problem uses a search algorithm
to find a path that does not collide with static obstacles. One
approach is to construct a roadmap offline in the configu-
ration space and then use a search algorithm to find a path
on it. In contrast, another approach is to avoid collisions with
static obstacles during the search. Sampling-based search al-
gorithms have shown their efficiency in solving SAMP. For
example, the Probabilistic Roadmap (PRM) (Kavraki et al.
1996) is a sampling-based roadmap, while the Rapidly Ex-
ploring Random Tree (RRT) (LaValle 1998) is a search tree
that explores the configuration space by sampling and per-
forms collision checking during the search.

Multi-Agent Motion Planning (MAMP) We focus on
the aforementioned two-phase approaches. In terms of con-
structing roadmaps offline, Henkel and Toussaint (2020)
construct the roadmap by first generating samples with PRM
in the configuration space and then optimizing the positions
of the resulting vertices and edges via Stochastic Gradient
Descent. Hönig et al. (2018) construct the roadmap with
SPArse Roadmap Spanner algorithm (SPARS) (Dobson and
Bekris 2014). Although offline construction of the roadmap
typically yields near-optimal solutions for MAMP, it intro-
duces huge computational overhead for roadmap construc-
tion. On the other hand, in terms of constructing roadmaps
online, Okumura and Défago (2023) develop Simultaneous
Sampling-and-Search Planning (SSSP), which simultane-
ously generates a roadmap for each agent and runs a search
algorithm to find a collision-free trajectory on each roadmap.
Although SSSP finds a set of collision-free trajectories fast,
it resolves collisions between agents with priorities, where
agents with low priorities should avoid collisions with those
with high priorities. In this case, agents with low priorities
may require long travel times to reach their goal configura-
tions. Thus, SSSP tends to find solutions with large sums of
travel times, as shown in Figure 1.

Problem Definition
We follow the definition of Multi-Agent Motion Planning
(MAMP) as presented in Okumura and Défago (2023). We
consider a MAMP problem in a workspace W ⊆ R2 that
represents the physical environment in which agents move.
The agent set A = {a1, ..., an} consists of n agents. All
agents operate in a shared configuration space C ⊆ R2.
The configuration of agent ai is denoted as qi ∈ C. The
workspace occupied by an agent at configuration q is de-
noted as R(q) ⊂ W . For obstacle regions O ⊂ W , the
free configuration space is defined as Cfree := {q ∈ C |
R(q) ∩ O = ∅}. A trajectory of agent ai is defined as
σi : R≥0 → Cfree, mapping continuous times to configu-
rations in the free configuration space. We denote the set of
all trajectories as Σ. Each agent ai ∈ A has a start config-
uration si ∈ Cfree and a goal configuration gi ∈ Cfree. A

SCBSPCBS

if	 𝑃!. 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ≤ 𝜃

𝑃!

𝑃" 𝑃#

𝑃$ 𝑃%

𝑆!

𝑆" 𝑆#

𝑆$ 𝑆%

Select Conflict

Select Conflict

Select Collision

Select Collision

Succeed in resampling Failure in resampling

(a) PCBS and SCBS tree expansion

PCBS SCBS

Return Trajectory

#Conflicts ≤ 𝜃

Open set == ∅

#Collisions == 0

(b) Dual-CBS flowchart

Figure 2: Overview of Dual-CBS. A PCBS node has a set of
grid-based paths, and an SCBS node contains trajectories.
(a) PCBS expands PCBS nodes until the number of conflicts
drops below the threshold θ at node P4, then passes a set of
grid-based paths stored in P4 to SCBS for continuous trajec-
tory adjustment. The stars and triangles represent the goal
and start configurations of the agent. (b) The control flow
between PCBS and SCBS. If an SCBS node has no colli-
sions, the algorithm returns the collision-free trajectories. If
the open set of SCBS becomes empty, SCBS transfers con-
trol to PCBS to find an alternative set of grid-based paths.

collision ⟨ai, aj , tstart, tend⟩ occurs between agents ai and aj
that follows trajectories σi and σj , when their bodies overlap
in the workspace, i.e., R(σi(t)) ∩ R(σj(t)) ̸= ∅, for some
t ∈ [tstart, tend]. The travel time Ti of agent ai is the time
at which it arrives at its goal configuration gi and remains
there. The completion time Tend = maxi Ti is the time at
which all agents have reached their goal configurations.

We aim to find collision-free trajectories Σ that minimize
the sum of travel times

∑
i Ti, where each trajectory σi sat-

isfies:

• σi(0) = si ∧ σi(Tend) = gi

• σi(t) ∈ Cfree , ∀t ∈ [0, Tend]

• R(σi(t)) ∩R(σj(t)) = ∅, ∀j ̸= i, t ∈ [0, Tend]

Dual Conflict-Based Search (Dual-CBS)
Dual Conflict-Based Search (Dual-CBS) alternates between
a discrete MAPF solver and a continuous trajectory adjust-
ment. The discrete MAPF solver finds a set of grid-based
paths that constrain a continuous sampling space. The con-
tinuous trajectory adjustment then generates collision-free
trajectories by iteratively sampling configurations within the
grid cells traversed by these paths.

Dual-CBS comprises two components: Planning CBS
(PCBS) for the discrete MAPF solver and Sampling CBS
(SCBS) for the continuous trajectory adjustment. Before
running Dual-CBS, we discretize the workspace into a four-
neighbor grid graph by partitioning the environment into
grid cells of length L. PCBS then operates on this grid graph
and expands the PCBS tree until it finds a node whose num-
ber of conflicts drops below a given conflict threshold θ.
Once this condition is met, PCBS passes the current set of
grid-based paths stored in that node to SCBS. SCBS then
operates on the configuration space C and performs continu-
ous trajectory adjustment by expanding the SCBS tree until
all trajectories are collision-free. If SCBS fails to resolve all
collisions, it discards the current SCBS tree and transfers
control to PCBS to obtain an alternative set of grid-based
paths. This alternation between PCBS and SCBS continues
until a collision-free solution is found. Figure 2 illustrates
this alternating process between PCBS and SCBS.

Dual-CBS has a few parameters. The sampling attempt
limit Natt is the maximum number of sampling attempts al-
lowed at each SCBS node to resolve a collision. The con-
flict threshold θ determines when PCBS transfers control to
SCBS. Once the number of conflicts in a PCBS node drops
below θ, PCBS passes a set of grid-based paths to SCBS.
The maximum velocity vmax limits the speed of all agents to
ensure kinematic feasibility.

Planning Conflict-Based Search (PCBS)
The four-neighbor grid graph is denoted as G = (V, E),
where V represents the vertex set and E represents the edge
set. A path of agent ai is defined as πi : Z≥0 → V , map-
ping discrete timesteps to vertices in the grid graph. We de-
note the set of all grid-based paths as Π. We consider three
types of conflicts in the four-neighbor grid graph G. A ver-
tex conflict ⟨ai, aj , v, t⟩ occurs when agents ai and aj oc-
cupy the same vertex v ∈ V at the same timestep t. A ver-
tex conflict is a target conflict if one agent has arrived at
its goal grid cell and remains there permanently while the
other agent passes through the same vertex. An edge conflict
⟨ai, aj , u, v, t⟩ occurs when agents ai and aj traverse the
same edge (u, v) ∈ E in opposite directions from timestep
t− 1 to timestep t.

We define four constraint types: (i) a vertex constraints
forbid agent ai from occupying vertex v at timestep t, (ii) an
edge constraints forbid agent ai from traversing edge (u, v)
from timestep t − 1 to timestep t, (iii) length constraints
requires agent ai to delay its arrival at vertex v until at least
timestep t+1, and (iv) target-block constraints forbid agent
ai from traversing vertex v at or after timestep t.

PCBS follows the two-level framework of Conflict-Based
Search (CBS) (Sharon et al. 2015), which separates the

Algorithm 1: Planning CBS (PCBS)

1: procedure DUAL-CBS(A, Natt, θ, vmax)
2: Proot ← new PCBSNode
3: Proot.Π← GENERATEINITIALPATHS(A)
4: Proot.cost← COMPUTECOST(Proot.Π)
5: Proot.conflicts← DETECTCONFLICTS(Proot.Π)
6: Proot.constraints← ∅
7: QPCBS ← {Proot}
8: while QPCBS ̸= ∅ do
9: P ← QPCBS.pop()

10: if |P.conflicts| ≤ θ then
11: Σ← SOLVESCBS(P.Π, Natt, vmax)
12: if Σ ̸= None then
13: return Σ
14: conflict← CHOOSECONFLICT(P.conflicts)
15: for each agent ai in conflict do
16: P ′ ← COPY(P)
17: P ′.constraints← P ′.constraints

∪ {GENERATECONSTRAINT(conflict, ai)}
18: πi ← FINDPATH(ai,P ′.constraints)
19: if πi ̸= None then
20: P ′.Π[i]← πi

21: P ′.cost← COMPUTECOST(P ′.Π)
22: P ′.conflicts← DETECTCONFLICTS(P ′.Π)
23: QPCBS ← QPCBS ∪ {P ′}
24: return No solution found

search into a high-level constraint tree expansion and low-
level single-agent path planning. At the high level, CBS ex-
pands a constraint tree where each node contains a set of
constraints imposed on each agent. CBS expands nodes in a
best-first manner according to the sum of path lengths. At the
low level, CBS uses A∗ to replan paths of individual agents
subject to the constraints of the current node. When a con-
flict is detected in the current node, CBS splits that node into
two child nodes. Each child node adds a corresponding con-
straint to one of the conflicting agents.

Algorithm 1 presents PCBS. PCBS maintains the high-
level and low-level search structure of CBS. It begins by
initializing the root node Proot (Line 2). It then generates
initial paths for all agents using A∗ and computes the sum
of path lengths (Lines 3–4). PCBS detects conflicts and ini-
tializes the constraint set to empty (Lines 5–6). This root
node is then inserted into a priority queue QPCBS (Line 7).
At each iteration, PCBS expands the node P with the low-
est sum of path lengths from QPCBS and removes it from
QPCBS (Line 9). Unlike CBS, PCBS first checks whether
the number of conflicts of node P drops below the conflict
threshold θ (Line 10). If so, then the set of paths of that
node P.Π is passed to SCBS (Line 11). If SCBS success-
fully resolves all collisions and returns collision-free trajec-
tories, then PCBS returns those trajectories and terminates
(Lines 12–13). Otherwise, PCBS selects the first conflict
from P.conflicts (Line 14). For each agent involved in the
conflict, PCBS creates a child node by copying the parent
node (Lines 15–16).

For a vertex conflict, PCBS splits P into two child nodes

Algorithm 2: Sampling CBS (SCBS)

1: procedure SOLVESCBS(Π, Natt, vmax)
2: Sroot ← new SCBSNode
3: Sroot.Σ← SAMPLEINITIALTRAJECTORIES(Π)
4: Sroot.cost← COMPUTECOST(Sroot.Σ)
5: Sroot.collisions← DETECTCOLLISIONS(Sroot.Σ)
6: Sroot.constraints← ∅
7: QSCBS ← {Sroot}
8: while QSCBS ̸= ∅ do
9: S ← QSCBS.pop()

10: if |S.collisions| = 0 then return S.Σ
11: collision← CHOOSECOLLISION(S.collisions)
12: t← FINDASSOCIATEDTIMESTEP(S, collision)
13: for each agent ai in collision do
14: S ′ ← COPY(S)
15: S ′.constraints← S ′.constraints

∪ {GENERATECONSTRAINT(collision, ai, t)}
16: for att← 1 to Natt do
17: q′ ← SAMPLING(S ′.constraints, t)
18: if q′ ̸= None then
19: S ′.Σ[i][t]← q′

20: if CHECKCONSTRAINTS(S ′, ai, t) then
21: S ′.cost← COMPUTECOST(S ′.Σ)
22: S ′.collisions←

DETECTCOLLISIONS(S ′.Σ)
23: QSCBS ← QSCBS ∪ {S ′}
24: break
25: return None

by imposing a vertex constraint on one of the conflicting
agents. Similarly, for an edge conflict, PCBS imposes an
edge constraint. For a target conflict, where one agent ai
occupies its goal grid cell while some other agents pass
through at timestep t, PCBS splits P into two child nodes.
One with a length constraint on ai that delays the arrival of
agent ai at its goal grid cell by at least one timestep (i.e., the
time agent ai is allowed to stay permanently at its goal grid
cell should be at least t + 1), and another one with target-
block constraints on all agents that pass through the goal
grid cell of agent ai. These constraints prevent them from
traversing it at or after timestep t (Line 17).

The path of the constrained agent is then replanned to re-
spect the imposed constraint and the constraints imposed on
it by the parent nodes of P (Line 18). If a path is found,
the solution of the child node, its sum of path lengths, and
conflicts are updated (Lines 20–22), and the node is inserted
into QPCBS (Line 23). This best-first search continues un-
til either SCBS finds collision-free trajectories or QPCBS be-
comes empty, in which case the algorithm returns no solu-
tion (Line 24).

Sampling Conflict-Based Search (SCBS)

SCBS takes a set of grid-based paths from PCBS and gener-
ates trajectories by sampling one configuration within each
grid cell traversed by the grid-based paths. It then expands
the SCBS tree to find collision-free trajectories.

𝒂𝟐

𝒂𝟑
𝒂𝟏

𝒂𝟑
𝒂𝟏

𝒂𝟐𝒂𝟐

𝒂𝟑𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟏 𝒂𝟐

𝒂𝟏

𝒂𝟑

Trajectories Constraints

Trajectories Constraints for 𝒂𝟏

Trajectories Constraints for 𝒂𝟏 Trajectories Constraints for 𝒂𝟏, 𝒂𝟑

𝒂𝟏, 𝒂𝟐, 𝒕𝒔𝒕𝒂𝒓𝒕, 𝒕𝒆𝒏𝒅 Select Collision

Trajectories Constraints for 𝒂𝟐

𝒂𝟏, 𝒂𝟑, 𝒕𝒔𝒕𝒂𝒓𝒕, 𝒕𝒆𝒏𝒅 Select Collision

Figure 3: Illustration of the SCBS tree with swept area con-
straints. SCBS detects a collision ⟨a1, a2, tstart, tend⟩ in the
root node (inside the box) and splits the root node into two
child nodes, each adding a swept area constraint for one of
the colliding agents. The color of each swept area corre-
sponds to the agent on which the constraint is imposed. In
the left child node, the configuration for a1 is sampled to
avoid the swept area of a2, and vice versa in the right child
node. SCBS then chooses the left child node, detects a col-
lision ⟨a1, a3, tstart, tend⟩, and splits it into two child nodes.
Each node maintains constraints inherited from its ancestor
nodes and a newly added constraint. In the bottom-left node,
a1 must avoid sampling within the swept areas of both a2
and a3.

Agent Synchronization While PCBS operates on discrete
timesteps, SCBS maps each timestep to a continuous time
interval. SCBS determines the velocity of each agent using
sampled configurations so that they arrive at their next con-
figurations simultaneously. Along the set of grid-based paths
Π, each agent ai moves from qti to qt+1

i from timestep t to
timestep t + 1. To ensure all agents arrive at their next con-
figurations at the same time, the timestep duration ∆τt is set
to the time required for the agent with the largest displace-
ment to travel at maximum velocity vmax. The velocity of
each agent ai at timestep t is then computed as:

∆τt =
maxj ∥qt+1

j − qtj∥2
vmax

, vti =
qt+1
i − qti
∆τt

. (1)

where qt+1
i −qti is the displacement vector and ∥·∥2 denotes

the Euclidean norm in R2. By construction, the agent with
the largest displacement in timestep t travels exactly at speed
vmax, while every other agent travels no faster than vmax to
ensure their arrivals at the end of the timestep.

Swept Area Constraints SCBS introduces swept area
constraints, which are inspired by the concept of swept vol-
umes (Abdel-Malek et al. 2006). A swept volume represents
the total space traced by a moving object over time. We adapt
this concept to our 2D workspace as the swept area, de-
fined as the spatial region occupied by the trajectory of an
agent during a given time interval. When a collision is de-
tected, SCBS samples another configuration for one of the
colliding agents to avoid that collision. Since the sampled
configuration determines where the agent arrives, sampling
within the swept area of the trajectory of the other agent
involved in the collision causes another collision. A swept
area constraint is defined as ⟨ai, σj , tstart, tend⟩, which re-
stricts SCBS from sampling configurations for agent ai that
enter the swept area of trajectory σj during the time interval

[tstart, tend], i.e., Ri(σi(t)) ∩
(⋃

τ∈[tstart,tend]
Rj(σj(τ))

)
= ∅

for all t ∈ [tstart, tend].
Algorithm 2 presents SCBS. It begins by initializing the

root node (Line 2). For each agent ai, SCBS generates an
initial trajectory by sampling one configuration within each
grid cell traversed by its grid-based path πi. The start con-
figuration si and goal configuration gi remain fixed, while
configurations for intermediate grid cells are sampled from
Cfree within each cell (Line 3). Using the velocities computed
from Equation 1, SCBS calculates the sum of travel times
and detects collisions (Lines 4–5). The constraint set is ini-
tialized to empty (Line 6). The root node is then inserted
into a priority queue QSCBS ordered by sum of travel times
(Line 7).

At each iteration, SCBS expands the node S with the low-
est sum of travel times from QSCBS and removes it from
QSCBS (Line 9). If no collisions remain, SCBS returns the
collision-free trajectories (Line 10). Otherwise, SCBS se-
lects the first collision (Line 11). Since collisions occur in
continuous time, SCBS maps the collision to the correspond-
ing discrete timestep t along the grid-based path. Due to
agent synchronization, all agents transition from timestep
t − 1 to t during the same time interval. Thus, if a collision
occurs within that interval, SCBS identifies t as the associ-
ated timestep (Line 12). SCBS then splits the node into two
child nodes (Line 13). For each conflicting agent ai, SCBS
creates a child node S ′ by copying S (Line 14) and adding
a swept area constraint ⟨ai, σj , tstart, tend⟩, where [tstart, tend]
corresponds to the time interval between timesteps t−1 and
t (Line 15). Figure 3 illustrates this process.

SCBS then attempts to sample the configuration of agent
ai at timestep t up to Natt times (Line 16). At each attempt,
SCBS samples a new configuration q′ in the grid cell at
timestep t along the path of agent ai (Line 17). If such a con-
figuration that satisfies the swept area constraints is found
(Line 18), the configuration in the trajectory of agent ai at
timestep t is updated (Line 19). SCBS then checks whether
agent ai collides with any agent specified in its constraints
during the transition from timestep t−1 to t (Line 20). If the
constraints are satisfied, the cost and collisions of the child
node are updated (Lines 21–22). The child node is then in-
serted into QSCBS (Line 23), and the sampling loop termi-
nates (Line 24).

5 10 15 20 25
Number of Agents

0

1000

2000

3000

Su
m

 O
f T

ra
ve

l T
im

es
 (s

)

5 10 15 20 25
Number of Agents

0

20

40

R
un

tim
e

(s
)

5 10 15 20 25
Number of Agents

0

50

100

Su
cc

es
s R

at
e

(%
)

Dual-CBS SSSP

Figure 4: Performance comparison between Dual-CBS and SSSP for different numbers of agents, showing the sum of travel
times, runtime, and success rate.

The best-first node expansions continue until either
collision-free trajectories are found or QSCBS becomes
empty (Line 25). In the latter case, SCBS returns None and
transfers control to PCBS to find an alternative set of grid-
based paths.

Experiments
We compare Dual-CBS to SSSP (Okumura and Défago
2023), one of the state-of-the-art online approaches for the
MAMP problem. We generate test environments with cir-
cular obstacles of varying radii. The environment size is
set to 60m × 60m, and all agents have a radius of 0.5m.
The obstacles are randomly placed until the obstacle den-
sity reaches 10%. We allow the obstacles to overlap, cre-
ating larger non-convex obstacles. We generate 50 problem
instances for each number of agents in {5, 10, 15, 20, 25},
with random obstacle locations and radii, and start and goal
configurations of all agents sampled randomly. An example
environment is shown in Figure 1.

The maximum velocity vmax is set to 4.0m/s for all agents.
As described in the agent synchronization, Dual-CBS ad-
justs the velocity of each agent so that all agents arrive at
their next configurations simultaneously. In contrast, SSSP
plans sequentially for each agent, allowing each to move at
maximum velocity without synchronization constraints. The
parameter values for Dual-CBS are set to vmax = 4.0, Natt =
20, and θ = 20. We set a time limit of 300 seconds for each
problem instance. All experiments are conducted on an Intel
Xeon Gold 6148 2.40 GHz CPU and 192 GB RAM. Both
Dual-CBS and SSSP are implemented in Python 3.12.

We evaluate the performance of Dual-CBS and SSSP us-
ing four metrics: (1) the success rate, the percentage of in-
stances where collision-free trajectories are found within
300 seconds time limit, (2) the sum of travel times, the sum
of the travel times of all agents, and (3) the runtime, the
computational time required to find collision-free trajecto-
ries, measured only for successfully solved instances.

Figure 4 shows our experimental results. With regard to
the sum of travel times, Dual-CBS outperforms SSSP. Dual-
CBS achieves a sum of travel times of 68.86s for five agents,
while SSSP achieves only a sum of travel times of 131.02s.

This gap widens as the number of agents grows. These dif-
ferences stem from the different algorithmic approaches.
Dual-CBS plans paths for all agents simultaneously, while
SSSP plans for them sequentially, which forces agents to
wait for other agents.

With regard to runtime, Dual-CBS needs only 0.30 to 3.61
seconds for smaller scenarios with 5 to 15 agents compared
to 1.88 to 10.94 seconds for SSSP. Both algorithms need
around 18 seconds for 20 agents. Dual-CBS needs 44.96 sec-
onds compared to 27.63 seconds for SSSP.

With regard to success rate, both algorithms achieve per-
fect success rates of 100% for 5 to 20 agents. Dual-CBS
achieves a success rate of 80% for 25 agents while SSSP
continues to achieve near-perfect success rates.

Conclusion
In this paper, we proposed Dual Conflict-Based Search
(Dual-CBS) for solving the MAMP problem. Dual-CBS
achieves better solution quality than SSSP while avoiding
the computational overhead of offline roadmap construction.
Dual-CBS partitions the given configuration space into a
grid and finds a set of grid-based paths by resolving conflicts
with PCBS. It then finds a set of trajectories by sampling
one configuration per grid cell and resolving collisions with
SCBS, which uses swept area constraints to restrict sam-
pling within the swept area of the trajectory of another agent.
Empirically, Dual-CBS requires larger runtimes than SSSP
to find collision-free trajectories for MAMP as the number
of agents increases. However, Dual-CBS finds collision-free
trajectories with a lower sum of travel times than SSSP. Our
future work includes taking kinodynamic constraints into ac-
count when generating trajectories with SCBS.

Acknowledgments
The research at the University of California, Irvine and
the University of Southern California was supported by the
National Science Foundation (NSF) under grant numbers
2544613, 2434916, 2321786, 2112533, as well as gifts from
Amazon Robotics and the Donald Bren Foundation.

References
Abdel-Malek, K.; Yang, J.; Blackmore, D.; and Joy, K. 2006.
Swept volumes: Foundation, Perspectives, and Applications.
International Journal of Shape Modeling, 87–127.
Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S.
2019. Optimal and Bounded-Suboptimal Multi-Agent Mo-
tion Planning. In Proceedings of the International Sympo-
sium on Combinatorial Search (SoCS), 44–51.
Dobson, A.; and Bekris, K. E. 2014. Sparse Roadmap Span-
ners for Asymptotically Near-Optimal Motion Planning. In-
ternational Journal of Robotics Research, 18–47.
Henkel, C.; and Toussaint, M. 2020. Optimized Di-
rected Roadmap Graph for Multi-Agent Path Finding using
Stochastic Gradient Descent. In Proceedings of the Annual
ACM Symposium on Applied Computing, 776–783.
Hönig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.;
and Ayanian, N. 2018. Trajectory Planning for Quadrotor
Swarms. In IEEE Transactions on Robotics, 856–869.
Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and
Teller, S. 2011. Anytime Motion Planning using the RRT*.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1478–1483.
Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces. IEEE Transactions on
Robotics and Automation, 566–580.
Kottinger, J.; Almagor, S.; and Lahijanian, M. 2022.
Conflict-Based Search for Multi-Robot Motion Planning
with Kinodynamic Constraints. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
13494–13499.
LaValle, S. M. 1998. Rapidly-Exploring Random Trees: A
New Tool for Path Planning. The Annual Research Report,
1–4.
Okumura, K.; and Défago, X. 2023. Quick Multi-Robot Mo-
tion Planning by Combining Sampling and Search. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 252–261.
Reif, J. H. 1979. Complexity of the Mover’s Problem and
Generalizations. In Proceedings of the Annual Symposium
on Foundations of Computer Science (SFCS), 421–427.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 40–66.

