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Abstract—Accurately predicting the health state of lithium-
ion batteries is crucial for their safety, reliability, and longevity.
Predicting the State of Health (SOH) using health indicators is
a proven effective method. However, real-world battery charge-
discharge data is often noisy, particularly during capacity
regeneration. To achieve accurate health state predictions, we
extracted over ten health indicators and designed a hybrid
model: DAE-CNN-BiLSTM-Attention. This model integrates
the strengths of Convolutional Neural Networks (CNN) for lo-
cal feature extraction, Bidirectional Long Short-Term Memory
networks (BiLSTM) for temporal dependency learning, the At-
tention mechanism for effective weight assignment, and Denois-
ing Autoencoders (DAE) for restoring original data,enabling
the network to better adapt to complex real-world environ-
ments.The adaptability and stability of the proposed model
were validated using two public datasets: NASA and CALCE.
Compared to other existing methods, the proposed model
demonstrated superior performance, achieving mean absolute
error (MAE) and root mean square error (RMSE) of 0.0154
and 0.0191, respectively.

Index Terms—State of Health(SOH), Lithium-ion Bat-
tery(LiB), feature extraction, convolution neural network
(CNN), long short-term memory (LSTM)

I. Introduction

To address environmental challenges and the fossil
energy crisis, there is an urgent and vigorous devel-
opment of clean energy sources such as wind, hydro,
and nuclear power. Consequently, the issue of energy
storage and utilization has become particularly critical.
Lithium batteries, compared to other types such as lead-
acid and nickel-cadmium batteries, offer higher energy
density, lower self-discharge rates, and longer charge-
discharge lifespans. These advantages have led to their
widespread application in various fields, including portable
electronic devices, electric vehicles, and energy storage
systems [1].However, over time and with usage, batteries

inevitably experience aging. This results in increased
internal resistance, reduced usable capacity, and degraded
performance, which can lead to battery leakage, local-
ized short circuits, and potential safety hazards such as
device malfunctions, shutdowns, or even overheating and
explosions. Consequently, in critical applications, batteries
are often replaced periodically to ensure safety, which
inevitably leads to resource wastage. Battery Management
Systems (BMS) play a crucial role in ensuring the safe,
reliable, and efficient operation of batteries, with the
State of Health (SOH) being a core concern. Accurately
predicting the SOH is vital for assessing battery aging,
conserving resources, and ensuring the safe operation of
batteries [2]- [4].

The State of Health (SOH) of a battery reflects its
degree of aging, typically expressed as a percentage that
decreases as the battery ages. It is manifested through
parameters such as reduced total usable capacity and
increased resistance. The higher the SOH value, the
healthier the battery. SOH estimation can be achieved
by monitoring parameters such as the battery’s voltage,
current, temperature, and other factors. Commonly, bat-
tery health is represented by the ratio of the maximum
usable capacity to the nominal capacity5.This paper also
adopts this definition, with the SOH defined as shown in
Eq (1).

SOH =
Cmax
Cnom

× 100% (1)

where Cmax and Cnom are the maximum usable capacity
and the nominal capacity of the battery, respectively. In
most applications, a decline in the battery’s maximum
usable capacity to 70% of its initial capacity is generally
considered the failure threshold [6].



Due to the complex operating environments of batteries,
such as temperature variations and the internal chemical
reactions within the battery, which introduce uncertain-
ties, the highly nonlinear and time-varying characteristics
of batteries make accurately predicting SOH a challenging
research problem [7]. Currently, many methods exist to
accurately predict battery SOH, which can be mainly
classified into model-based and data-driven approaches.
Model-based methods predict battery SOH by acquiring
battery model parameters. These methods analyze and
utilize the physical and internal chemical characteristics
of the battery to establish equivalent circuit models [8]- [9]
or electrochemical models [10]. Typically, state observers
are used to describe the degradation mechanisms between
battery cycles [11], such as Kalman filters [12]- [13] and
particle filters [15]. Although electrochemical models have
relatively high accuracy, they rely on precise electro-
chemical impedance spectroscopy. On the other hand,
equivalent circuit models are less satisfactory because they
fail to capture the aging characteristics of the battery.
Model-based approaches often involve ideal or empirical
models that do not account for internal chemical reac-
tions and aging mechanisms, making accuracy increasingly
difficult to maintain over time [1]. Additionally, the
physical and chemical parameter models of batteries are
very complex, which imposes severe limitations due to
measurement difficulties, robustness, dynamic accuracy,
and poor adaptability.

In contrast to model-based methods, data-driven ap-
proaches do not require consideration of these parameters.
Instead, they directly extract and analyze historical charge
and discharge data from the battery, performing deep data
mining to identify the relationship between the extracted
features and the battery SOH through machine learning
or deep learning techniques. Examples include Back-
propagation (BP) neural networks [16], Support Vector
Machines (SVM) [17], Relevance Vector Machines (RVM)
[18], and Bayesian networks [19]. However, considering the
time dependency of battery degradation data, recurrent
neural networks (RNNs) have shown superior predic-
tive performance. Literature [11] has already suggested
using RNNs for battery SOH prediction. Long Short-
Term Memory (LSTM) networks [20], as an upgraded
version of RNNs, prevent issues like gradient explosion
and perform exceptionally well in sequence prediction. To
connect the degradation data over time, some studies have
used bidirectional LSTM networks [21]. To overcome the
limitations of single networks, more research has adopted
hybrid network approaches. For example, [22] used LSTM
combined with Empirical Mode Decomposition for pre-
dicting Remaining Useful Life (RUL) of batteries. Paper
[23] combined Gated Recurrent Units (GRU) with Convo-
lutional Neural Networks (CNN) (CNN-GRU) to predict
SOH of lithium-ion batteries. Study [24] employed a hybrid
network composed of CNN and LSTM (CNN-LSTM) for
SOH estimation and RUL prediction.

Besides using different algorithms for SOH estimation,
many studies have extracted various Health Indicators
(HIs) to improve SOH estimation results for lithium-ion
batteries. Indicators include Constant Current-Constant
Voltage (CC-CV) protocols [25], Open Circuit Voltage
(OCV) [26], Incremental Capacity (IC) curve peaks [27],
cycle numbers [28], differential capacity [29], and differ-
ential voltage [30], which describe battery degradation.
Reference [31] selected external characteristic parameters
such as current, voltage, and temperature as HIs and used
the Pearson correlation coefficient to calculate HIs that
are highly correlated with the SOH degradation process
of lithium-ion batteries.

Despite achieving good prediction results, most methods
assume that hidden layer features obtained from raw input
data by neural network (NN) training have equal weight
for each dimension. However, each feature dimension has
different impacts on SOH. Ignoring this fact can limit
prediction accuracy [11]. Attention mechanisms, including
channel attention (i.e., dimension attention), multi-head
attention, spatial attention, and temporal attention [32],
focus on important information. Attention mechanisms
allow network models to selectively focus on specific
information that is more valuable for the current task,
thereby improving model performance. Moreover, real-
world data are often noisy, especially during the battery
charge and discharge capacity regeneration process [33].

In summary, this paper proposes a novel hybrid network
model. Initially, the data is denoised, followed by the
extraction of local features using two convolutional layers.
Long-term dependencies within the sequence are captured
through a bidirectional LSTM, while a temporal attention
mechanism focuses on each timestep in the sequence, as-
signing a weight to each timestep to emphasize important
points and improve the handling of sequential data. The
main contributions of this paper are as follows:

1. The accuracy and feasibility of the DAE-CNN-
BiLSTM-Attention model for SOH prediction were val-
idated on two commonly used public datasets, NASA and
CALCE.

2. Ten health indicators related to battery aging, in-
cluding time, temperature, voltage, current, and internal
resistance, were extracted. To avoid the interference of
multiple factors, the top five most relevant health indi-
cators for each battery were selected as network input
features.

3. The model considered the phenomenon of battery
capacity regeneration and the impact of real-world noise
by incorporating a denoising step in the code, enhancing
the model’s robustness.

The remainder of this paper is organized as follows:
Section 2 describes the methods used, including feature
extraction and the proposed network model. Section 3
validates the model’s effectiveness with actual battery
data, presenting experimental results and analysis. Section
4 provides the conclusions of this study.



Fig. 1: Overall framwork of the proposed battery SOH estimation model.

II. Methdology

A. Feature extraction

The data-driven health indicators are derived from
the datasets. All health indicators are extracted from
the NASA and CALCE datasets. The extracted simple
indicators and their aging performance are shown in
Table I.

These health indicators are multidimensional features,
each with varying degrees of correlation to the SOH. In-
cluding all health indicators in the output could introduce
noise from less relevant features, thereby reducing pre-
diction accuracy. Therefore, we eliminate low-correlation
indicators and select high-correlation indicators for input
into the network. In this study, we use Pearson correlation
coefficient analysis to filter the indicators, ultimately se-
lecting the top five features for network input. The Pearson
correlation coefficient is commonly used to analyze the

correlation between health indicators and SOH [34], and
its calculation principle is shown in Eq (2).

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

where xi and yi represent the values of the data points,
with x̄ and ȳ denoting their respective mean values, and
n being the total number of data points.The Pearson
correlation coefficientr quantifies the degree of linear
relationship between two variables and ranges from -1
to 1. The closer the absolute value is to 1, the stronger
the correlation. A value closer to 1 indicates a strong
positive correlation, while a value closer to -1 indicates a
strong negative correlation.An absolute value of r close to
1 signifies a strong correlation. Specifically, an r value
approaching 1 indicates a strong positive correlation,
while anr value approaching -1 suggests a strong negative
correlation.



TABLE I: Details of Health Indicators (HIs)
Abbreviation Explanation Aging Behavior

CCT Constant current
charging time

Shortens as battery
ages due to increased
internal resistance
causing faster voltage
rise

CVT Constant voltage
charging time

Lengthens as battery
ages, with reduced
current acceptance
near full charge,
lowering charging
efficiency

DT Discharge time Shortens as battery
ages, with increased
internal resistance
causing faster voltage
drop

TT Time to reach maxi-
mum temperature

Shortens as battery
ages, with increased
internal resistance
generating more
heat, causing faster
temperature rise

R Internal resistance Increases as battery
ages

CMT Time for constant
voltage charging
current to drop to
1.5A

Shortens as battery
ages, with decreased
capacity and increased
internal resistance
causing faster current
drop

CVI mean Mean constant voltage
charging current

Decreases as battery
ages, with increased
internal resistance and
current dropping to a
lower level until fully
charged

CVI std Standard deviation
of constant voltage
charging current

Increases as battery
ages, with greater fluc-
tuation

CCV mean Mean constant current
charging voltage

Decreases due to in-
creased voltage drop
from higher internal
resistance

CCV std Standard deviation
of constant current
charging voltage

Increases as battery
ages, with greater fluc-
tuation

CDV mean Mean constant current
discharging voltage

Decreases due to in-
creased voltage drop
from higher internal
resistance

CDV std Standard deviation of
constant current dis-
charging voltage

Increases as battery
ages, with greater fluc-
tuation

B. DAE-CNN-BiLSTM-Attention model

The raw input data is often noisy, especially during
charge and discharge cycles. In most methods, the raw
data is fed directly into the neural network without
any denoising, which significantly impacts the prediction
accuracy. To ensure stability and robustness, it is essential
to denoise the input data before feeding it into the
deep neural network. Our approach uses a denoising
autoencoder (DAE), an unsupervised learning method
that reconstructs the input data from its low-dimensional
representation while preserving as much information as

possible [35].
Attention mechanisms have been widely applied in

various deep learning tasks in recent years [36]. In this
paper, we calculate attention scores using an attention
mechanism, convert them into weights with the softmax
function, and then apply these weights to the outputs
of the LSTM to obtain context vectors. This approach
is simple to implement, computationally efficient, and
well-suited for handling time-series data, highlighting
important temporal information within the network.

Fig. 1. illustrates the framework of the DAE-CNN-
BiLSTM-Attention model for predicting battery SOH,
including denoising functionality and the CNN, BiLSTM,
and Attention modules. In part A, health indicators are
extracted, and the top 5 features are selected based
on their Pearson correlation coefficients. These features
are then normalized, with 70% used as training data
and 30% as validation data. Gaussian noise is added,
followed by two CNN layers to extract local features.
The BiLSTM captures long-term dependencies in the
sequential data, while the attention mechanism helps the
network focus on the most important parts for predicting
SOH. An autoencoder is employed to denoise the data
by attempting to reconstruct the original data from the
noisy input, thereby enhancing the robustness of the
network.The model structures are summarized in Table II.
The loss function converges to zero, and the model’s
performance is quantified using RMSE and MAE metrics.

III. Experiment results and analysis
A. Datasets

The data from the NASA repository was collected by
the NASA Ames Prognostics Center of Excellence (PCoE)
on the NASA prognostics testbed [11]. NASA batteries
were used to validate the proposed method [35]. This
study utilizes batteries B0005, B0006, B0007, and B0008,
each undergoing charge and discharge cycles at 24°C with
a nominal capacity of 2Ah. During the charging phase,
the batteries were charged with a constant current of
1.5A up to 4.2V, followed by constant voltage charging
until the current dropped to 20mA. In the discharging
phase, the batteries were discharged with a constant
current of 2A until the cut-off voltage was reached. This
cycle was repeated continuously.Fig. 2 shows the capacity
degradation process of the NASA battery dataset.

The CALCE dataset is a battery cycling test dataset
from the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland. CALCE bat-
teries are widely used in battery state estimation studies
and were used to validate the proposed method in [33].
This study uses batteries CS2_35, CS2_36, CS_37, and
CS2_38, each undergoing charge and discharge cycles at
an ambient temperature of 1°C with a nominal capacity
of 1.1Ah. During the charging phase, the batteries were
charged with a constant current (CC) of 0.5A until the
voltage reached 4.2V, followed by constant voltage (CV)



TABLE II: Structure and parameters of neural networks.

Model Structure Number of Sampling Points

CNN
noisy input→ X X
Conv1D(Channel: 64/Kernel: 3/padding: 1)→ReLU→ 64
Conv1D(Channel: 128/Kernel: 3/padding: 1)→ReLU→ 128

BiLSTM Number of bidirectional layers: 1 128
Hidden_size: 100 → Hidden_size * 2 200

Attention
Hidden_size * 2 → 20
Attention_size: 20 → 200
Fc(200→1) 1

Encoder
encoder_fc1: input_size * sequence_length 100
→ hidden_size X
decoder_fc2: → input_size * sequence_length X

Fig. 2: NASA dataset capacity degration at ambient
temperature of 24℃.

charging until the current dropped to 20mA. In the
discharging phase, the batteries were discharged with a
constant current (CC) of 1A until the voltage dropped to
2.7V.Fig. 3 shows the capacity degradation process of the
CALCE battery dataset.

Fig. 3: CALCE dataset capacity degration at ambient
temperature of 1℃.

B. Feature Selection
As shown in table III, the top 5 health indicators are

used as inputs to the model. For instance, the inputs
selected for B0005 are ’CCT’, ’DT’, ’TT’, ’CMT’,’CDV
mean’. Fig. 4 and Fig. 5 respectively illustrate the cor-
relations between the various health indicators, with red
representing positive correlations and blue representing
negative correlations.

C. Overall performance
This study employs three commonly used metrics to

quantify the performance of the model in predicting
battery health status: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE). The definitions of these
metrics are as follows:

MAE =
1

n− T

n∑
t=T+1

∥x̂t − xt∥ (3)

RMSE =

√√√√ 1

n− T

n∑
t=T+1

(x̂t − xt)2 (4)

Where Cn represents the length of the sequence, and
CTrepresents the length of the training sequence samples.
MAE (Mean Absolute Error) is the average value of the
absolute errors between the predicted and actual values,
which measures the average difference between them.
RMSE (Root Mean Square Error) is the square root of the
average of the squared differences between the predicted
and actual values, providing the standard deviation of the
errors. RE (Relative Error) is the ratio of the error to the
actual value, measuring the proportion of the error in the
actual value. The smaller these values are, the better the
performance of the model.

We designed several experiments to validate the perfor-
mance of the proposed model. table IV presents the evalua-
tion results, with the best results highlighted in bold. The
DAE-CNN-BiLSTM-Attention model consistently shows
the smallest MAE and RMSE, demonstrating superior
predictive performance. The best evaluation result for
this model was achieved on the CS2_35 battery, with



Fig. 4: NASA Pearson Correlation Heatmap:(a)B0005;(b)B0006;(c)B0007;(d)B00018.

Fig. 5: CALCE Pearson Correlation Heatmap:(a)CS2_35;(b)CS2_36;(c)CS2_37;(d)CS2_38.



Fig. 6: NASA capacity estimation results and errors:(a)B0005;(b)B0006;(c)B0007;(d)B00018.

Fig. 7: CALCE capacity estimation results and errors:(a)CS2_35;(b)CS2_36;(c)CS2_37;(d)CS2_38.



TABLE III: Correlation Coefficients of Health Indicators for Different Batteries.

B0005 B0006 B0007 B0018

CCT 0.862586 CCT 0.908604 CCT 0.786684 CCT 0.648654
DT 0.999947 DT 0.999915 DT 0.999725 DT 0.999773
TT 0.877558 TT 0.897890 TT 0.816621 TT 0.804534
CMT 0.881882 CMT 0.919521 CMT 0.815183 CMT 0.694932

CCV mean -0.001942 CCV mean -0.047989 CCV mean -0.004465 CCV mean -0.570699
CCV std 0.822106 CCV std 0.862932 CCV std 0.839493 CCV std 0.251537
CVI mean 0.245934 CVI mean 0.160218 CVI mean 0.471227 CVI mean -0.106422
CVI std 0.475350 CVI std -0.156089 CVI std 0.468511 CVI std -0.051191

CDV mean 0.982357 CDV mean 0.965189 CDV mean 0.961071 CDV mean 0.985401
CDV std -0.283559 CDV std -0.694572 CDV std -0.482625 CDV std -0.892615

CS2_35 CS2_36 CS2_37 CS2_38

R -0.969031 R -0.975631 R -0.968516 R -0.922052
CCT 0.967323 CCT 0.969335 CCT 0.955910 CCT 0.942224

CCV mean -0.952510 CCV mean -0.951288 CCV mean -0.922861 CCV mean -0.921456
CCV std 0.897771 CCV std 0.917804 CCV std 0.855091 CCV std 0.875672
CVT -0.626522 CVT -0.565320 CVT -0.612713 CVT -0.197397

CVI mean 0.060142 CVI mean 0.133853 CVI mean 0.081966 CVI mean 0.142492
CVI std 0.022159 CVI std 0.156692 CVI std 0.144904 CVI std 0.173008

DT 0.991876 DT 0.994180 DT 0.991499 DT 0.967231
CDV mean 0.990909 CDV mean 0.989263 CDV mean 0.988342 CDV mean 0.955991
CDV std -0.947330 CDV std -0.949600 CDV std -0.945006 CDV std -0.952266

TABLE IV: MAEs and RMSEs of SOH estimation on the NASA and CALCE datasets.

Datasets Metrics LSTM At-LSTM CNN-BiLSTM CNN-BiLSTM-At DAE-CNN-BiLSTM-At

B0005 MAE 1.0882 1.0880 0.8882 0.5521 0.5075
RMSE 1.5428 1.3567 1.3393 0.7334 0.7064

B0006 MAE 1.6684 1.2518 1.1133 1.2459 0.8462
RMSE 2.2141 1.7345 1.6578 1.2806 1.2405

B0007 MAE 1.1695 1.1872 0.9839 0.5992 0.4407
RMSE 1.3116 1.5503 1.4796 0.9050 0.6337

B0018 MAE 1.4277 1.2273 0.9233 0.7266 0.7258
RMSE 1.8202 1.8140 1.2973 1.1352 0.9738

CS2_35 MAE 0.0488 0.0470 0.0485 0.0478 0.0154
RMSE 0.0267 0.0294 0.0228 0.0197 0.0191

CS2_36 MAE 0.0373 0.0382 0.0341 0.0337 0.0266
RMSE 0.0391 0.0341 0.2546 0.0230 0.0303

CS2_37 MAE 0.0315 0.0226 0.0335 0.0371 0.0207
RMSE 0.0571 0.0262 0.0380 0.0364 0.0335

CS2_38 MAE 0.0384 0.0358 0.0261 0.0227 0.0286
RMSE 0.0511 0.0498 0.0522 0.0713 0.0509

a Mean Absolute Error (MAE) of 0.0154 and a Root
Mean Square Error (RMSE) of 0.0191. Compared to the
model without denoising, the performance improvements
in MAE and RMSE were 55.4% and 3.14%, respectively.
Additionally, the model is simple, requiring only one
minute to complete 500 training iterations, which is
significantly faster compared to the 90 minutes and 10
minutes reported in paper [11].

Fig. 6 shows the prediction and error of the NASA
battery health state. The predicted results are very close
to the actual battery health state values, with all errors
within 5% even at peak anomaly points.Fig. 7 shows

the prediction and error of the CALCE battery health
state.This study utilized 70% of the battery data for
training and predicted the entire degradation process.
Compared to the NASA dataset, the CALCE dataset has
a significantly larger data volume and more anomaly noise,
which increases the difficulty of prediction. Although the
error has increased somewhat, it still remains close to the
actual degradation curve.

IV. Conclusion

Accurately estimating the State of Health (SOH) of bat-
teries is critical for effective battery management, and es-



tablishing a reliable prediction network is key. We propose
a data-driven hybrid neural network for SOH prediction.
Initially, we extract over ten features from the batteries
and select the top five features based on their absolute
Pearson correlation coefficients for input into the network.
The Convolutional Neural Network (CNN) first extracts
features from the noisy input data, then the Bidirectional
Long Short-Term Memory (BiLSTM) network learns the
degradation information of the battery, the Attention
mechanism focuses on important information, and finally,
the autoencoder-decoder restores the noisy data to its
original state, enhancing the model’s adaptability and
stability. The proposed model was validated on different
battery datasets and demonstrated lower Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE)
compared to other models.
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