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Abstract—Federated learning is an emerging data-private
distributed learning framework, which, however, is vulnerable
to adversarial attacks. Although several heuristic defenses are
proposed to enhance the robustness of federated learning, they
do not provide certifiable robustness guarantees. In this paper,
we incorporate randomized smoothing techniques into federated
adversarial training to enable data-private distributed learning
with certifiable robustness to test-time adversarial perturbations.
Through comprehensive experiments, we show that such an
advanced federated adversarial learning framework can deliver
models as robust as those trained by the centralized training.
Further, this enables training provably-robust classifiers to `2-
bounded adversarial perturbations in a distributed setup. We
also show that the one-point gradient estimation-based training
approach is 2− 3× faster than the popular stochastic estimator-
based approach without any noticeable certified robustness dif-
ferences.

Index Terms—federated learning , certifiable robustness, ran-
domized smoothing, adversarial training, gradient estimation

I. INTRODUCTION

Federated learning is an emerging distributed learning
framework that enables edge computing at a large scale [1]–
[4], and has been successfully applied to various areas such
as Internet of Things (IoT), autonomous driving, health care
[2], etc. In particular, federated learning aims to exploit the
distributed computation and heterogeneous data of a large
number of edge devices to perform distributed learning while
preserving full data privacy. The original federated learning
framework proposed the federated averaging (FedAvg) algo-
rithm [3]. In each learning round, a subset of edge devices are
selected to download a global model from the cloud server,
based on which the selected devices train their local models
using local data for multiple stochastic gradient descent (SGD)
iterations. Then, these devices upload the trained local models
to the server, where the local models are aggregated and
averaged to obtain an updated global model that will be used
in the next learning round. Throughout the federated learning
process, all data are kept privately on the local devices.

However, as modern federated learning often adopts over-
parameterized models (e.g., deep neural networks) that have
been proven to be vulnerable to adversarial perturbations to the
test data [5]–[7], there is a rising concern about the adversarial
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robustness of the federated learning models used by massive
number of edge devices. As an example, if a federated-
trained model is vulnerable to adversarial examples, then its
performance on edge devices solving safety-critical tasks can
be significantly degraded in turn having serious consequences.
To defend such adversarial attacks in federated learning, many
studies propose to include standard adversarial training in the
local training steps of federated learning [8]–[11]. However,
these approaches may not be able to defend strong adversaries
and do not have certifiable adversarial robustness guarantee.
To address these issues, some studies proposed the randomized
smoothing technique that can train certifiably robust models
at scale [12]–[14].

Specifically, randomized smoothing procedure uses a
smoothed version of the original classifier f and certifies the
adversarial robustness of the new classifier. The smoothed
classifier is defined as g(x) = arg maxc Pδ∼N (0,σ2I)(f(x +
δ) = c), meaning the label of a data sample x corresponds
to the class whose decision region {x′ ∈ Rd : f(x′) = c}
has the largest measure under the distribution N (x, σ2I),
where σ is used for smoothing. Suppose that while classi-
fying a point N (x, σ2I), the original classifier f returns the
top class cA with probability pA = P(f(x + δ) = cA),
and the “runner-up” class cB is returned with probability
pB = maxc6=cA P(f(x + δ) = c), then the prediction of the
point x under the smoothed classifier g is guaranteed to be
robust within the radius r(g;σ) = σ

2 (Φ−1(pA) − Φ−1(pB)),
where Φ−1 is the inverse CDF of the standard Normal
distribution. In practice, Monte Carlo sampling is used to
estimate a lower bound on pA and an upper bound on pB
as its difficult to estimate the actual values for pA and pB .
Since standard training of the base classifier does not achieve
high robustness guarantees, [13] proposed to use Gaussian
data augmentation-based training in which the base classifier is
trained on Gaussian noise corruptions of the clean data. Such a
smoothed model has been shown to outperform other existing
certifiably robust models [13] and the randomized smoothing
scheme is applicable to deep networks and large datasets.
To further enhance certifiable robustness of deep models,
the authors in [15] combined standard adversarial training
approach with the randomized smoothing technique to obtain
significantly improved certification guarantees. In particular,



[15] demonstrated that such an adversarial training approach
can substantially improve the robustness of smoothed models.
However, these certifiably-robust training approaches are only
applied to centralized learning setup, and similar provably-
robust approaches in a federated learning setup is virtually
non-existent. To bridge this gap, in this paper, we incorporate
the randomized smoothing (with adversarial training) approach
into the paradigm of federated learning to develop certifiably
robust federated learning models.

A. Our Contributions

We apply the randomized smoothing (with adversarial train-
ing) approach to enable the certifiable robustness of federated
learning to adversarial perturbations. Specifically, in the local
training phase, each device applies adversarial training to train
a robust smoothed local model to defend `2 adversarial attacks.
These local models are further aggregated by the central server
to obtain a robust global model. To the best of our knowledge,
this is the first work in the direction of enabling certifiable
robust federated learning.

We also conduct comprehensive deep learning experiments
to validate the effectiveness of our proposed approach. Our
experiments show that such an advanced federated adver-
sarial learning framework can deliver models as robust as
those trained by the centralized training. Further, this enables
training provably-robust classifiers to `2-bounded adversarial
perturbations in a distributed setup. We also show that one-
point gradient estimation-based training approach is 2 − 3×
faster than the popular stochastic estimator-based approach
without any noticeable certified robustness differences.

II. ADVERSARIAL LEARNING WITH RANDOMIZED
SMOOTHING

Consider a standard soft classifier Fθ that is parameterized
by θ and maps an input data x ∈ Rd to a probability mass of
class labels Y . Then, its corresponding smoothed soft classifier
Gθ is defined as

Gθ(x) := Eδ∼N (0,σ2I)[Fθ(x+ δ)]. (1)

Intuitively, the smoothed classifier Gθ perturbs the input
sample with Gaussian noises and averages the predicted class
distributions of all corrupted samples. In particular, the stan-
dard deviation σ of the Gaussian noise controls the level of
certifiable robustness of the smoothed classifier.

To improve the performance, in [15], the authors proposed
to leverage adversarial examples of the input data against
the smoothed classifier Gθ (instead of Fθ). Specifically, [15]
proposed the following adversarial training problem, where
the training uses the adversarial data x̂ that is found within an
`2 ball of the original data x by attacking the smoothed soft
classifier Gθ.

(SmoothAdv) : min
θ

max
‖x̂−x‖2≤ε

Jθ(x̂) := − log[Gθ(x̂)]y, (2)

where [Gθ(x̂)]y denotes the y-th entry of the predicted clas-
sification probability mass. This approach is referred to as

SmoothAdv and the objective function is highly stochastic
and non-convex. To solve the above adversarial optimization
problem, two approaches were proposed in [15]. For the first
approach, the authors approximate the gradient of the above
objective function using stochastic samples as follows

(Stochastic estimator)

∇xJ(x̂) ≈ −∇x log

(
1

m

m∑
i=1

[Fθ (x̂+ δi)]y

)
, (3)

where δi, i = 1, ...,m are drawn i.i.d from N
(
0, σ2I

)
. Then,

standard projected gradient ascent is applied to find adver-
sarial samples. While the above stochastic gradient estimator
provides an accurate gradient estimation, it is computational
expensive as for every sample x we need to perform back-
propagation on a mini-batch of m corrupted samples.

To avoid performing back-propagation, [15] discussed an-
other gradient-free [16] approach. Specifically, note that
the adversarial optimization problem is equivalent to x̂ =
arg min‖x̂−x‖2≤ε

[
Gθ(x̂)

]
y
. In particular, the gradient of

[G(x̂)]y can be conveniently characterized using the following
one-point gradient-free estimator using Stein’s lemma.

(One-point estimator)

∇x
[
Gθ (x̂)

]
y
≈ 1

m

m∑
i=1

[
δi
σ2
· [Fθ (x̂+ δi)]y

]
. (4)

The above estimator only involves function values that can
be efficiently computed via forward-propagation. In particular,
each gradient estimate δi

σ2 · [Fθ (x̂+ δi)]y only needs to evalu-
ate the function value at a single point x̂+δi. Compared to the
gradient-based stochastic estimator, this one-point estimator is
computation lighter but induces a higher estimation variance.
In [15], the performance of the one-point estimator was
not evaluated for SmoothAdv, and its comparison with the
stochastic estimator was not comprehensive.

III. FEDERATED ADVERSARIAL LEARNING

In this section, we incorporate the SmoothAdv method into
the federated learning framework. Our proposed algorithm is
referred to as Fed-SmoothAdv and is shown in Algorithm 1.

To elaborate, first note that the hierarchical structure of
Fed-SmoothAdv is the same as that of standard federated
learning, i.e., a subset of edge devices is sampled in every
round to perform local training, and then their local models
are aggregated by the cloud server through a standard model-
averaging scheme (see the Central-server pseudo codes). How-
ever, in our federated adversarial learning, each client uses
SmoothAdv to perform local adversarial training instead of
the local SGD training in standard federated learning (see
the LocalTrain and SmoothAdv pseudo codes). In particular,
the local SmoothAdv adversarial training will generate strong
adversarial samples by attacking the smoothed local model,
and use these strong adversarial samples to significantly en-
hance the adversarial-robustness of the local model. Finally,
the robust local models are aggregated in the central server to
produce a globally robust federated model.



Algorithm 1: Federated Adversarial Learning (Fed-
SmoothAdv)

Central-server executes: # Run on the central
server

for learning round t = 1, 2, . . . do
Sample a subset St of clients
for each client k ∈ St in parallel do

θkt+1 ← LocalTrain (k, θt)
Send θkt+1 to the server

Server aggregates θt+1 ←
∑
k∈St

nk

n θ
k
t+1

LocalTrain (k, θ) : # Local training of client k
for local iteration i = 1, 2, ..., E do

Sample a minibatch of data b
θ ← SmoothAdv (θ, b) # Use one of the two
gradient estimators

SmoothAdv (θ, b) : # Adversarial training with
randomized smoothing

Data samples
(
x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(b), y(b)

)
Generate noises {δ(j)i }mi=1 ∼ N

(
0, σ2I

)
for any

x(j), j = 1, ..., b
L← [] # List of adversarial examples
for 1 ≤ j ≤ b do

Generate adversarial sample x̂(j) for x(j) by
attacking the smoothed classifier using one of the
gradient estimators in eqs.(3,4) and noises
{δ(j)i }mi=1.

Append {(x̂(j) + δ
(j)
1 , y(j)), . . . , (x̂(j) + δ

(j)
m , y(j))}

to list L.
Train model θ using adversarial samples in L for

multiple SGD steps.

IV. EXPERIMENTS

A. Experiment Setup and hyperparameters

We compare the standard certified robustness of Fed-
SmoothAdv with the baseline method SmoothAdv in train-
ing an AlexNet [17] on CIFAR-10 [18]. Here, certified ro-
bustness is defined as the fraction of the test samples that
are correctly classified (without abstaining) by Gθ and are
certified within an `2 radius of r. We set the smoothing
parameter σ = {0.12, 0.25, 0.5} and the perturbation bound
ε = {64, 128, 256}, and use the same σ for certification as
that used in the training. For both methods, we apply both the
stochastic estimator and the one-point estimator. Moreover,
we test Fed-SmoothAdv under different levels of device data
heterogeneity γdevice (the higher the more heterogeneous).

For Fed-SmoothAdv, we simulate 1000 edge devices and
only 10% of them are sampled in each learning round. Each
device holds 500 data samples. To control the data hetero-
geneity of each device, we define a data heterogeneity ratio
γdevice in (0, 1). Specifically, we randomly assign one class
label as the major class of each device. Then, for each device,
γdevice portion of samples are sampled from the major class,

and the rest (1−γdevice) portion of samples are drawn from the
remaining classes uniformly at random. In the experiments ,
we set γdevice = 0.1, 0.5 that correspond to homogeneous data
and heterogeneous data, respectively.

In the experiments, we set the number of Gaussian noise
samples to be m = 2, and use 2 projected gradient descent
steps for generating the adversarial samples. We set the inner-
learning-rate for generating adversarial samples to 0.01, and
the outer-learning-rate for updating the model parameters to
0.01. We set batch-size to 30 for each activated device of Fed-
SmoothAdv and 60 for SmoothAdv. Moreover, each activated
device of Fed-SmoothAdv uses 20 batches of data in the local
training of a learning round, and this is equivalent to 1000
batches of data used by the centralized SmoothAdv. The total
number of learning rounds is 150. In the certification phase,
we set α = 0.001, which means that there is at most 0.1%
chance that the certification falsely certifies a non-robust input.

B. Comparison of Certified Accuracy

In Figure 1, we plot the certified accuracy of both
SmoothAdv and Fed-SmoothAdv (with heterogeneity
γdevice = 0.1, 0.5) with σ = 0.25, ε = 128. It can be seen that
the certified accuracy of Fed-SmoothAdv is slightly lower
than that of SmoothAdv, but is reasonably close. Also, the
data heterogeneity γdevice does not affect the certified accuracy
of Fed-SmoothAdv, which implies that SmoothAdv can be
effectively applied to enhance the adversarial robustness of
heterogeneous federated learning. Moreover, we note that
while the performance of the one-point estimator is almost
the same as that of the stochastic estimator, the training time
is significantly reduced by 2-3 times due to avoidance of
backpropagation. In Figure 2, we plot the certified accuracy
results under σ = 0.5 and ε = 128. One can observe a
similar comparison between the two methods as that in
Figure 1. In particular, with a larger σ, the certified accuracy
is lower but spans over a wider range of `2 radius. The results
corresponding to all other choices of σ, ε can be found in
Appendix A, where one can make very similar observations
and conclusions.

C. Ablation Study

In this subsection, we further explore the certified accuracy
of Fed-SmoothAdv under the following ablation settings: (1)
Without adv & smooth, i.e., standard training of original
classifier; (2) With adv only, i.e., adversarial training of
original classifier (using stochastic estimator); and (3) With
adv & smooth, i.e., adversarial training of smoothed classifier
(using stochastic estimator). All the trained models in a given
figure use the same σ value to be certified so that we can
evaluate their accuracy within the same radius.

Figure 3 plots the results under σ = 0.25, ε = 128
with homogeneous data (γdevice = 0.1) and heterogeneous
data (γdevice = 0.5), respectively. First, the certified accuracy
of Fed-SmoothAdv is much higher than that of standard
and adversarial training of original (non-smoothed) classifier,
which indicates that randomized smoothing is very helpful



Fig. 1: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.25 and ε = 128.

Fig. 2: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.5 and ε = 128.

to improve the performance of Fed-SmoothAdv. Second,
adversarial training does not achieve significantly higher cer-
tified accuracy than standard training, which again indicates
that importance of having a smoothed classifier. Moreover,
Figure 4 plots the results under σ = 0.5, ε = 128 with
homogeneous data (γdevice = 0.1) and heterogeneous data
(γdevice = 0.5), respectively, where one can make similar
observations and conclusions. In particular, by comparing
Figure 3 with Figure 4, one can see that as σ increases,
the certified accuracy is lower but spans over a wider range
of `2 radius. In summary, adversarial training is a little
helpful to improve Fed-SmoothAdv’s certified accuracy, while
randomized smoothing is much more helpful to do so. This
demonstrates the necessity to add randomized smoothing to
certifiably-robust federated adversarial learning, which is what
we proposed in this paper.

V. CONCLUSION

In this paper, we incorporated the randomized smoothing
techniques into the federated adversarial learning framework
to enable certifiable robustness to test-time adversarial pertur-
bations. We demonstrated through extensive experiments that
our adversarially smooth federated learning models could suc-
cessfully achieve similar certified robustness as the centralized
models. Meanwhile, we empirically proved that the device data
heterogeneity and type of gradient estimator did not affect the
performance much. The attempt in this paper is crucial for the
applications of federated learning because of the adversarial
attacks on its user’s devices and the resulting strong demand

Fig. 3: Ablation study of Fed-SmoothAdv with σ = 0.25 and
ε = 128.

for user’s data privacy and security in the real world. In the
future, we will apply randomized smoothing to more complex
federated learning frameworks [4] and theoretically study its
performance.



Fig. 4: Ablation study of Fed-SmoothAdv with σ = 0.5 and
ε = 128.
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[10] R. Kerkouche, G. Ács, and C. Castelluccia, “Federated learning in
adversarial settings,” arXiv:2010.07808, 2020.

[11] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. International
Conference on Machine Learning, vol. 97, 2019, pp. 634–643.

[12] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE
Symposium on Security and Privacy (SP), 2019, pp. 656–672.

[13] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proc. International Conference on Ma-
chine Learning, vol. 97, 09–15 Jun 2019, pp. 1310–1320.

[14] L. Li, M. Weber, X. Xu, L. Rimanic, T. Xie, C. Zhang, and B. Li,
“Provable robust learning based on transformation-specific smoothing,”
arXiv preprint arXiv:2002.12398, 2020.

[15] H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck,
and G. Yang, “Provably robust deep learning via adversarially trained
smoothed classifiers,” in Advances in Neural Information Processing
Systems, vol. 32, 2019.

[16] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K.
Varshney, “A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications,”
IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, vol. 25, 2012.

[18] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the certified accuracy results of
both SmoothAdv and Fed-SmoothAdv (with heterogeneity
γdevice = 0.1, 0.5) under some other choices of σ and ε. From
Figure 5-Figure 11, we can observe the same comparison and
make the same conclusions as those in Section IV.



Fig. 5: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.12 and ε = 128.

Fig. 6: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.12 and ε = 64.

Fig. 7: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.25 and ε = 64.

Fig. 8: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.5 and ε = 64.



Fig. 9: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.12 and ε = 256.

Fig. 10: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.25 and ε = 256.

Fig. 11: Certified accuracy of SmoothAdv and Fed-SmoothAdv with σ = 0.5 and ε = 256.




