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Abstract

We introduce C3LLM (Conditioned-on-Three-Modalities Large Language Mod-
els), a novel framework combining three tasks of video-to-audio, audio-to-text,
and text-to-audio together. C3LLM adapts the Large Language Model (LLM)
structure as a bridge for aligning different modalities, synthesizing the given condi-
tional information, and making multimodal generation in a discrete manner. Our
contributions are as follows. First, we adapt a hierarchical structure for audio
generation tasks with pre-trained audio codebooks. Specifically, we train the LLM
to generate audio semantic tokens from the given conditions, and further use a
non-autoregressive transformer to generate different levels of acoustic tokens in
layers to better enhance the fidelity of the generated audio. Second, based on the
intuition that LLMs were originally designed for discrete tasks with the next-word
prediction method, we use the discrete representation for audio generation and
compress their semantic meanings into acoustic tokens, similar to adding “acoustic
vocabulary” to LLM. Third, our method combines the previous tasks of audio
understanding, video-to-audio generation, and text-to-audio generation together
into one unified model, providing more versatility in an end-to-end fashion. Our
C3LLM achieves improved results through various automated evaluation metrics,
providing better semantic alignment compared to previous methods.

1 Introduction

Conditional multimodal generation is the task of generating output that incorporates different modali-
ties, such as text, image, video, and audio [24, 48, 21, 22]. Essentially, this multimodal task can be
seen as a translation task among different modalities, and thus, challenges arise for making inferences
from cross-modal representations and dealing with potential modality gaps [29].

Multimodal Large Language Models (MM-LLMs) have recently gained significant interest in research
due to their ability to understand and follow user instructions. Most work focuses on contextual
understanding across various modalities like video-to-text [52, 40], audio-to-text [20, 25] and image-
to-text [31]. However, the area of audio generation, particularly video-to-audio [26, 10] or image-to-
audio generation [39], remains underexplored. This is partly because video contains excessive visual
information not always needed for audio generation, while images lack the temporal information
crucial for audio. Video-to-audio tasks also face synchronization challenges, with recent solutions
like temporal masking [50] proving inadequate for complex scenarios. Additionally, current methods
often encode video features by extracting a few random frames [50, 7], which hinders learning
temporal information.
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C3LLM

(Sound of playing drum)

(Sound of bird tweeting)

"Birds chirp in the 
distance"

"An engine hums as it idles" (Sound of engine)

Figure 1: C3LLM is capable of video-to-audio, audio-to-text, and text-to-audio. Examples of different
tasks are illustrated in arrows of different colors.

Audio generation is less intuitive compared to other tasks, as it is harder to precisely measure the
generated sound quality using human ears. Additionally, previous works mainly focus on generating
music-related audio, which is more structured compared to naturally occurring audio [6, 32]. Few
works have focused on generating visually guided open-domain audio clips [4, 55]. Moreover, most
existing models [26, 51] are only limited to generating audio-only content, consequently constrained
to specific downstream tasks. While contemporary work CoDi [44] achieves some form of any-to-any
generation, their result simply uses linear interpolations in the latent space. C3Net [53] adapted
three ControlNet [54] architectures on top of CoDi’s design, still it also relies on interpolation when
predicting the final output.

In this connection, we aim at utilizing the versatility of LLM to align between different modalities.
With sufficient data, transformers or LLMs have shown to be effective in serving as a unified backbone
on different modality tasks even with simple design [42]. We thus propose Conditioned-On-Three-
Modalities Large Language Model, or C3LLM in short. C3LLM mainly comprises a LLM backbone
serving as the bridge among three different modalities, and a hierarchy audio tokenizer adapted from
Encodec [11] for decoding. Our model first encodes the respective modality, either audio, text or
video, to be processed by the LLM backbone. For video, we extract the dense information and project
it to the LLM’s embedding space. For audio, we use the audio tokenizer to convert the information
into discrete representation and translate the corresponding indices from the tokenizer codebooks
into LLM special tokens, which are extended as part of LLM’s vocabulary beforehand. The semantic
information is further processed by the LLM. For tasks involving audio generation, We treat the
LLM prediction as coarse acoustic tokens. The preliminary result is further extended to fine-grained
acoustic tokens and combined to generate the final audio output, and thus multimodal output not
limited to a single modality.

To sum up, our contributions are as follows: 1) C3LLM utilizes the versatility of LLM for conditional
multimodal generation tasks, where the LLM treats encoded audio information as additional acoustic
vocabulary; 2) C3LLM uses a discrete tokenizer for modeling audio representation hierarchically,
which better suits the nature of LLM while preserving the quality of the generated audio; 3) Con-
sequently, this paper provides a uniform model for three different tasks involving video, audio and
text, see Figure 1. Through extensive evaluation, our work demonstrates on-par results compared
to the state-of-the-art models in their respective domains, providing further insight into conditional
multimodal tasks.

2 Related Work

Multimodal Alignment Mokady et al. [33] has utilized the powerful Contrastive Language-Image
Pre-Training (CLIP) [37] model to project the image into an image-text shared latent space. Given
image embedding, they further apply a GPT-2 [38] to generate caption. Wu et al. [17] trained CLAP
model on LAION-Audio-630K, a large collection of 633,526 audio-text pairs from different data
sources, to obtain a robust and general result on all types of audio clips. Similar to them, we encode
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Figure 2: Overview of the video encoding part and the LLM. On the right is the non-autoregressive
(NAR) transformer to further extend the coarse acoustic tokens into fine-grained acoustic tokens. We
freeze the encoder, train a MLP, and finetune LLM using LoRA. For text condition, we directly input
them into LLM after tokenization and also treat them as the condition for NAR transformer decoding.

video, audio and text data into a shared latent space using contrastive learning and projection. This
approach enables an audio encoder to project audio into a space shared with image and text, aligning
more closely with the hidden space of a large language model. For long audio understanding, local
features and overall information are fused.

Multimodal LLM LLM is prevailing in the AI community. ChatGPT [34] and GPT-4 [35] have
shown great power in understanding and reasoning tasks. Other open source LLMs, such as
LLama [36], Vicuna [5], Alpaca [45], and Gemma [16] have greatly contributed to the research
community and inspired many innovations. With these advances, progress has been made in using
LLMs for understanding multimodal information, improving the performance of MM-LLMs [31].

We notice that most LLMs understand multimodal information with the help of a well-trained encoder
to bridge the gap between modality information and LLM hidden space. For example, PandaGPT [41]
utilizes ImageBind [19] to align multiple modalities. Video-LLama [52] applies two Q-formers to
transform video and audio information. Llava [31] directly applies a linear projection layer to give
LLM image information. MiniGPT-4 [56] follows this approach, using linear layers to align Vicuna
and Q-former. To fit the discrete and auto-regressive nature of LLMs, Large World Model [30]
achieves long-context video understanding by combining VQGAN [12] to tokenize each frame of the
video. However, these LLMs lack the capability to generate modalities other than language.

Multimodal Generation In multimodal generation, the goal is to generate various modalities like
audio, text, images, and videos interchangeably. State-of-the-art approaches, such as Composable
Diffusion (CoDi) [44] and C3Net [53], produce diverse modality combinations conditioned on other
modalities. NExT-GPT [49] and CoDi2 [43] leverage LLMs to process and synthesize semantic
information from different modalities, providing a wide range of meaningful conditions for the
diffusion model. Diffusion models are crucial for generating and refining high-quality content,
typically encoding each modality into a shared latent space and using MLPs to project information
between the LLM hidden space and the diffusion latent condition space.

However, these methods often overlook the distinct features of each modality. For instance, NExT-
GPT uses ImageBind [19] to encode videos into image space, losing temporal features. In audio
generation, the diffusion model struggles to map audio timing accurately to corresponding video
frames, making it challenging to incorporate the temporal dimension of video modality.

Conditioned Audio Generation To better focus on the time domain of audio, the transformer
architecture [46] is well-suited due to its attention mechanism. In the context of audio generation,
SpecVQGAN [26] has successfully employed a neural codebook to represent audio information,
enabling the use of a transformer to predict discrete audio tokens based on video features.

Recently, VALL-E [47] and MusicLM [13] use multiple codebooks and Residual Vector Quantization
(RVQ) [11] to create diverse audio representations. An auto-regressive transformer is employed to
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Figure 3: Overview of audio encoding part and the LLM. We use a pre-trained CLAP encoder and
an MLP layer to align the audio information with LLM embedding.

predict the initial layers of audio indices based on the textual conditions, and a non-auto-regressive
(NAR) transformer is followed to generate the subsequent layers, taking into account the previously
generated tokens and conditions. It has been observed that the first audio index layer captures crucial
information for overall audio quality, like rhythm and intonation, while subsequent layers add detailed
information, enhancing richness.

3 Method

C3LLM comprises three major components: 1) Tokenizers for encoding corresponding modality
information to be comprehended by LLM; 2) a multimodal LLM that serves as a powerful backbone
that connects corresponding modalities. Especially for audio generation tasks, we have 3) a non-
autoregressive (NAR) Transformer that further refines the generated coarse acoustic tokens from the
LLM. Our model structure is illustrated in Figure 2 and Figure 3.

3.1 Audio Tokenizer and Video Tokenizer

For audio generation, we employ the EnCodec [11] pretrained codebooks and decoder, which utilizes
the RVQ method to obtain eight codebooks that enable high-bandwidth audio reconstruction. To
streamline the process and conserve computational resources, we focus on the first two codebooks.
We leverage the LLM to predict the first layer, taking into account text or visual conditions, and we
train the NAR transformer decoder specifically to predict the second layer of audio tokens. After the
prediction of the first two layers of audio tokens, the pre-trained decoder decodes them back into
audio waveform.

For the audio-to-text task, we leverage the powerful audio encoder of CLAP to convert audio
waveforms into a shared space that is more similar to the hidden space of the LLM. We freeze the
audio encoder and introduce an MLP to project the audio vectors into the hidden space of the LLM.
This allows for a more effective integration of audio information into the text-generation process. By
utilizing the capabilities of CLAP and LLM together, we achieve improved performance in generating
detailed descriptions from audio inputs.

When it comes to the video-to-audio task, we draw inspiration from the successful approach employed
by SpecVQGAN [26]. To efficiently capture both visual and temporal information while compressing
the video data, we employ a frame-wise feature extractor denoted as H . This feature extractor extracts
RGB features (fr) and optical flow features (fo) from each frame of the video. By applying frame-
wise concatenation, we obtain the video feature representation F = {fr

i , f
o
i }Ni=1, where N represents

the total number of frames in the video. To further enhance the integration of visual information,
we introduce an additional MLP that transforms the concatenated video features into embeddings
suitable for the LLM.

Contrary to the discrete audio tokenization method, we choose to use the continuous representation
for video. During our experiment, we observe that video involves too much visual information
that audio generation may not necessarily need. A similar discrete method that uses VQGAN [12]
to process frame-level information will result in excessive visual tokens, making learning visual
information inefficient. The MLP projection layer that we employed will project the continuous video
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feature into LLM embedding space, similar to previous methods [31]. For text input, we directly use
the LLM’s tokenizer for tokenization.

3.2 Autoregressive Generation of Coarse Audio Tokens

Employing the EnCodec audio tokenizer allows us to represent continuous audio information in
discrete form. We denote the continuous audio input as a ∈ RC×L, where C is the number of
channels and L is the time of the audio clip times sample rate. First, the audio input is encoded in
a smaller representation in the form of z = E(a) ∈ RC×N×D×Q, with Q denoting the number of
quantizers used during the encoding process and D is the dimension of the codebooks. Our next step
is to convert the representation into LLM-aware acoustic tokens. Specifically, we obtain the indices
s ∈ RC×N×Qfrom the encoded audio by comparing with the quantizer codebook.

To jointly model different modalities in a unified model, we further extended the LLM’s text vocab-
ulary Vt = {vi}Nt

i=1with acoustic vocabulary Va = {vj}Na
j=1. The extended audio-text vocabulary

now becomes V = {Vt, Va}. Contrary to previous audio generation models [26, 10] that involve
the generation of a single modality, our method equipped the LLM backbone with the ability to
understand and generate both audio and text information with a unified vocabulary.

To better differentiate the three kinds of modalities that condition the autoregressive generation, we
further wrap the encoded feature with special tokens as modality indicators. To be more specific, we
wrap the audio tokens with <Audio>,</Audio> indicators and video embedding in an embedded
sequence of <Video>,</Video> indicators. In doing so, we avoid the possibility of confusing the
LLM with different kinds of information.

To further elaborate on the conditional generation tasks performed by LLM: for audio-to-text and
text-to-audio tasks, the source input Xa,t = {xi

t}Ni=1 is a sequence of either acoustic/text tokens.
Here N is the number of tokens we have and xt ∈ V ; for video-to-audio task, the source input
Xv = {xi

e}Ni=1 is a sequence of embeddings and xe ∈ RD, where D is the embedding dimension of
LLM. After LLM’s tokenization, the input tokens for audio and text will become input embeddings
and fed into the LLM. Our LLM backbone is a decoder-only structure with the next token prediction
method. The distribution of the predicted token in the first layer is given by pθLLM

(C1|X) =∏
i pθLLM

(ci1|X,C<i
1 ) autoregressively. The objective has thus become:

LLLM = −
T ′∑
i=1

log pθLLM (ci1|X,C<i
1 ), (1)

where T ′ is the number of acoustic tokens generated by LLM, θLLM is the parameter of LLM, ci1 is
the token generated at step i, C<i

1 are previous tokens, and X is the text or video condition.

During inference, the LLM will autoregressively predict the next token until <eos> is generated. Our
LLM thus serves as the bridge for connecting between different pairs of modalities. The generated
output will be decoded subsequently.

Due to the limited computation resource available, we use Gemma-2B [16], a lightweight open-source
LLM developed by Google, which is claimed to have comparable performance with LLaMA-2-
7B [14] on many QA and reasoning tasks. We use Low-Rank Adaptor (LoRA) [23] to finetune
Gemma to make it understand vision/text conditions and generate audio tokens.

3.3 Non-Autoregressive Transformer for Audio Refinement

In C3LLM, we propose an audio refinement method to further ensure the generated audio fidelity.
Inspired by [47], we utilize a non-autoregressive Transformer (NAR) to transform coarse acoustic
tokens from LLM’s output to fine-grained acoustic tokens. We treat the video embedding or text
input as condition and concatenate it with the generated coarse acoustic tokens. In the original paper,
the NAR is used to predict seven layers of acoustic tokens given by the first layer. However, we find
this design very slow to converge during our experiment. We adopt a simpler design to only utilize
two layers of codebooks, and train the NAR to predict the second layer given the first layer prediction
generated by LLM. Thus probability distribution for the next layer is given by pθNAR

(C2|X,C1),
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and we want to minimize the objective function:

LNAR = − log pθNAR(C2|X,C1) = −
T ′∑
i=1

log pθNAR(c
i
2|X,C1). (2)

3.4 Detokenization for High Fidelity Output

The decoder combines LSTM and CNN architectures. The LSTM component emphasizes temporal
consistency, while the CNN component reconstructs frequency information. The model employs a
combination of L1 loss for the time domain and a set of L1 and L2 losses for the Mel-spectrogram
in the frequency domain, across various time scales. To effectively preserve audio information, the
model incorporates two strategies: 1) Utilizing a greater number of tokens to represent each second
of audio, thereby increasing the sample rate. 2) Employing multiple codebooks to capture a wider
bandwidth, enhancing the representation.

The audio waveform can experience interference from multiple sources. By employing more code-
books, the model can effectively decompose overlapping signals, with each codebook capturing audio
of different frequencies.

4 Experiments

4.1 Training Datasets

We apply corresponding datasets for the three tasks. For video-to-audio task, we finetune our model
on the VGGSound [3] dataset, which contains over 310 classes of 200,000+ videos, capturing
challenging real-world acoustic scenarios. Concerning the large size, we use around half of the
common version of VGGSound containing 164 classes. The resulting number of training video
samples is 63,853.

For audio-to-text and text-to-audio tasks, we use the AudioCaps [8] dataset. AudioCaps [8] dataset
is a large-scale dataset of about 46K audio clips paired with human-written text collected via
crowdsourcing on the AudioSet [18] dataset. The dataset contains a diverse range of 10-second audio
samples from various natural sources, including vehicles, animals, weather, etc. We filter all the
failed links and produce 45,028 sound files in train split. For audio-to-test task, we notice that in
some papers such as EnCLAP [27], multiple referencing ground truth are used for evaluation. As the
original AudioCaps paper [8] only contains one caption per audio clip, we choose to only use one
caption as the referencing ground truth.

4.2 Evaluation Metrics

The evaluation metrics are summarized as follows: For video-to-audio and text-to-audio tasks, we use
the Inception score (ISc) and Frechet audio distance (FAD) to evaluate audio fidelity. For audio-video
relevance, we utilize the MKL metric [26] and we use KL for text-to-audio task. For audio-to-text
task, we use the CIDEr (Consensus-based Image Description Evaluation), SPIDEr (SPeech-to-
Image Description Evaluation), and SPICE (Semantic Propositional Image Caption Evaluation).
Furthermore, to evaluate the synchronization of the generated audio in the video-to-audio setting, we
use the same evaluation metrics as CondFoleyGen [10], namely # Onset Accuracy [10], and Onset
AP [10].

4.3 Evaluation and comparison

We mainly compare our model with CoDi [44], which is the current state-of-the-art model combining
different multimodal content generation tasks. We download the pretrained fp16 version of CoDi [44]
model and evaluate on the same test set. The training and evaluation are conducted on NVIDIA
GeForce RTX 4090. The main result is presented in Table 1

For audio-to-test task, we use the open-sourced Audio Captioning metrics [28] for evaluation. we
observe that CoDi’s performance is lower by a large margin, which might be the result that LLM
is more capable of captioning tasks due to the next-word prediction method. We include some test
results in Table 3.
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Figure 4: Comparison with baseline for video-to-audio generation task. CoDi failed to generate
semantic-aligned audio and the generation is not clean, often mixed with human speaking or noise.
Our method can produce aligned audio with clear synchronization.

Task Method Metric

V2A

KL↓ ISc↑ FAD↓
Codi [44] 3.6449 3.6941 11.5036

Ours (w/o NAR) 3.5873 2.1301 17.1095
Ours 3.5522 2.5783 10.2217

A2T
SPIDEr↑ CIDEr↑ SPICE↑

Codi [44] 0.0726 0.0812 0.0640
Ours 0.3150 0.4721 0.1579

T2A

KL↓ ISc↑ FAD↓
CoDi [44] 3.1786 4.5047 10.1597

Ours (w/o NAR) 3.4865 2.5732 22.7320
Ours 3.6765 2.9606 18.1615

Table 1: Quantitative comparison with baseline on three tasks.

For video-to-audio task, our result is better than the baseline except for the ISc metric. The ISc metric
measures the diversity of the generated audio. As our model is only fine-tuned on Gemma-2B [16]
backbone, we believe our result will be improved with more power backbone and tunable parameters,
given more training resources. Additionally, our method achieves synchronization with the input
video, as shown in Figure 4. The quantitative evaluation is presented in Table 2

We notice that for text-to-audio, CoDi is trained on multiple datasets such as AudioCaps [8], Au-
dioSet [18], BBC Sound Effect, Soundnet [2], and Freesound. On the other hand, our model is only
trained on AudioCaps. The total number of training examples for CoDi is significantly larger than
ours. Furthermore, there is a huge domain gap between text and audio. Audio waveform has time
information while text does not, so it is hard to map a sentence to a specific audio token in each time
frame. Besides, we utilize LoRA [23] to finuetune LLM which is not capable of bridging the gap
with so few trainable parameters. These are the reasons for the comparison result.

4.4 Ablation Studies

We hereby conduct experiments to test how the non-autoregressive transformer will refine the output
coarse acoustic tokens. We include our results in Table 1. As shown in the table, the NAR plays a
central role in further improving the result.
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Method Metric
# Onset Accuracy↑ Onset AP↑

Codi [44] 0.097 0.535
Ours 0.142 0.670

Table 2: Results for evaluating video-audio synchronization on VGGSound dataset

Ground truth Our method CoDi [44]
continuous snoring of a person a person snoring dog sleeping on a bed

church bells ringing bells are ringing angel is in a coat by in red hat
a car engine is revving while driving a vehicle engine accelerates driving for speed going for a crossing

a telephone ringing a telephone rings several times phone of the phone

A cat meowing a few times a cat is meowing
catwoman’s cats are coming cat of

the cats in a cat calendar

spinning tires on pavement a car is skidding wildly
car for just avoiding a speeding car

wreck with cold scary highway blare

Table 3: Samples output obtained from AudioCap test set. We observe that CoDi often fails to capture
the semantic meaning, and the generated captions are more like describing visual input rather than
acoustic sound. Additionally, the output is not sufficiently fluent. We thus believe LLM structure is
more capable for captioning tasks

Table 4: Additional A2T task conducted on
Clotho dataset

Method Metric
SPIDEr↑ CIDEr↑ SPICE↑

Codi [44] 0.0640 0.0766 0.0514
Ours 0.2088 0.3097 0.1078

Table 5: Additional V2A task conducted on VAS
dataset

Method Metric
KL↓ ISc↑ FAD↓

Codi [44] 4.54874 3.12170 11.80060
Ours 3.97517 2.69774 10.35411

To mitigate the possible effect of using only one referencing ground truth for evaluating audio-to-text
task, we tested our model on the Clotho dataset [9]. The Clotho dataset contains 4981 audio clips and
3938 clips in train split. Audio waveforms are from 15 to 30s duration, and each audio has 5 captions
which are 8 to 20 words long. We perform similar processing as the AuidoCaps dataset for training
and evaluation. Table 4 tabulates the results.

We also conducted an additional evaluation of our model on the VAS [15] dataset for video-to-audio
task, as shown in Table 5. We obtain a similar result as VGGSound. Our model continues to
outperform the baseline.

5 Conclusion and Discussion

5.1 Limitation and Future Work

Due to limited computation power, we can only take one modality input and generate text or audio.
Next, we want to condition on two or more modalities and generate video, and we want to generate
long audio/video. Moreover, to bridge the modality gap between text-to-audio generation, we will
adopt semantic tokens of audio to give well-aligned information. We will utilize more powerful LLM
backbones such as LLama3 [1]

5.2 Conclusion

In this paper, we present C3LLM, a unified structure that can perform three tasks namely video-to-
audio, audio-to-text and text-to-audio. Our model capitalizes on the power of LLM for translating and
aligning between different modalities. We also propose a non-autoregressive transformer for audio
refinement. Through extensive experiments, we show that our model can synthesize high-fidelity
audio, ensuring semantic alignment with input, especially synchronization with the visual condition.
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Although our model demonstrates excellent results through evaluation, challenges exist that can
restrain the performance. Specifically for the audio-to-text task, our model relies on the pre-trained
CLAP encoder that poses an upper-bound for modeling more complex scenarios. A more efficient
way for audio encoding is worthwhile in future research.
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A Appendix / supplemental material

A.1 Audio-to-Text examples

In this section, we provide more examples of the predicted output of the audio-to-text task in Table 6,
in addition to Table 3. We also include some examples from the Clotho dataset [9], shown in Table 7.

Ground truth Our method CoDi [44]
a person snoring a person snores lightly sleeping or a baby in a skiing

a river stream of water flowing water is rushing by brown birds outside in the forest
clicking followed by humming noise an engine humming and clicking highway worker hiking cold turkey

sounds of a river with man
briefly mumbling water is flowing and a man speaks waterfall falls in water
several goats bleat sheep bleat nearby the brown goat

a police siren going off a siren is emitted

clear weather warning direction as
water officer does traffic safety
direction while a traffic stop in

her direction.

Table 6: Additional samples output obtained from AudioCap test set. We again notice that words
describing colors or visual scenes exist in CoDi’s output which is unusual.

Ground truth 1 Our method CoDi [44]
a radio dispatcher and an

officer are communicating
over the radio

a radio is tuned, as a
person speaks over the radio

foreign radio is not time to
watch someone on the phone to

communications wire
lost of people are conversing in

a very busy diner
a group of people are talking

and laughing people walking in the area
a machine is running in a

humming manner
while metal is buzzing

a buzzing electric engine
that is trying to start up

pilot cable bowler take a caution
steer light not flying < speed> engine.

Table 7: Additional samples output obtained from Clotho test set. Due to the space limit, we only
include ground truth caption 1. Other referencing groundtruth can be found in the CSV file provided
by the original paper [9].
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